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Analytical and Numerical Aspects of Wavelets 

By 

Noora Hazem Janem 

Supervisor 

Prof. Naji Qatanani 

 

Abstract 

Almost every physical phenomenon can be described via a waveform –a 

function of time, space or some other variables, in particular, sound waves. 

The Fourier transform gives us a unique and powerful way of viewing 

these waveforms. 

Nowadays, wavelet transformation is one of the most popular candidates of 

the time-frequency-transformations. There are three types of wavelet 

transforms, namely: continuous, discrete and fast wavelet transforms. 

In this work we will study Fourier transform together with its properties 

and present the connections between Fourier transform and wavelet 

transform. Moreover, we will show how the Wavelet-Galerkin method can 

be used to solve ordinary differential equations and partial differential 

equations. For the applications of wavelet transform we will consider two 

applications; first signal decomposition and reconstruction: in this section 

we use two filters to decompose a signal using the wavelet decomposition 

algorithm and then we use similar process to rebuild the original signal 

using the wavelet reconstruction algorithm. A second application is the 

audio fingerprint. Assume we have an audio. We read this audio and then 

convert it into signals. These signals are then divided into a number of 

frames. Next, we decompose each frame of this audio signal into five  layer 

wavelets. Finally we use the wavelet coefficients to compute the variance, 

zero crossing, energy and centroid. 
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Introduction 

Wavelets have been initially introduced in the beginning of 1980’s. They 

were developed in their initial stage in France by the so called ” French 

School ” by J. Morlet [18], A. Grossmann [33] and Y. Meyer [17].  

In 1807, the French mathematician, Joseph Fourier, discovered that all 

periodic functions could be expressed as a weighted sum of basic 

trigonometric functions. The first known connection to modern wavelets 

dates back to Joseph Fourier. 

The concepts of a wavelet, which was not introduced until the beginning of 

the 1980’s, was first studied by Alfred Haar [1] in 1909, afterwards called 

the Haar wavelet. 

Wavelets, or ’’ Ondelettes ’’ as they are called in French, are used as a tool 

for signal analysis for seismic data [7, 18]. They were introduced in 

seismology to provide a time dimension to seismic analysis, where Fourier 

analysis fails [18]. 

 The name wavelet comes from the requirement that should integrate to 

zero, waving above and below x-axis [23]. Wavelets are mathematical tools 

that cut up data or functions into different frequency components, and then 

study each component with a resolution matching to its scale [1, 18]. 

In 1981, Morlet teamed up with Alex Grossmann developed the continuous 

wavelet transform in 1984 [21]. 

In 1985, Yves Meyer discovered the first smooth orthogonal wavelet basis 

functions with better time and frequency localization [23]. 
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In 1986, Stephane Mallat, a former student of Yves Meyer, collaborated 

with Yves Meyer to develop multiresolution analysis theory (MRA), 

discrete wavelet transform and wavelet construction techniques [1, 12]. 

Ingrid Daubechies became involved in 1986. She introduced the interaction 

between signal analysis and the mathematical aspects of dilations and 

translations [11]. 

A major breakthrough was provided in 1988 when Daubechies managed to 

construct a family of orthonormal wavelets with compact support. This 

result was inspired by the work of Meyer and Mallat in the field of 

multiresolution analysis [7, 21]. Since then, mathematicians, physicists and 

applied scientists became more and more excited about the ideas. 

Wavelets are currently being used in fields such as signal and image 

processing, human and computer vision, data compression, and many 

others. 

This thesis is organized as follows: 

In chapter one, we study the Fourier transform and wavelet transform. 

Types of  wavelet transform, namely: continuous, discrete and fast wavelet 

transform will be considered in chapter two. Chapter three includes 

multiresolution analysis and solving ordinary differential equations and 

partial differential equations using Wavelet-Galerkin Methods. In chapter 

four, we present some applications of wavelets. These include: 

decomposition and reconstruction of signals and the audio fingerprint. 
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Chapter One 

Fourier Transform and Wavelet Transform 

1.1 Introduction 

1.2 Fourier Transform  

1.3 Wavelet Transform 
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Chapter One  

Fourier Transform and Wavelet Transform 

1.1 Introduction 

Frequency measures how often a thing repeats over time [3]. A frequency 

domain is a plane on which signal strength can be represented graphically 

as a function of frequency, instead of a function of time. All signals have a 

frequency domain representation. In 1822, Baron Jean Baptiste Fourier 

detailed the theory that any real world waveform can be generated by the 

addition of sinusoidal waves. This was arguably proposed first by Gauss in 

1805. Signals can be transformed between the time and the frequency 

domain through various transforms. 

1.2  Fourier Transform 

A wave is usually defined as an oscillation function of time or space, such 

as a sinusoid. The Fourier transform is a tool that breaks a waveform  (a 

function or signal ) into an alternate representation, characterized by sines 

and cosines. Any waveform can be re-written as the sum of sinusoidal 

functions as the Fourier transform shows. 

      The Fourier Transform of a function ℎ(𝑡) is defined by  

𝐹(ℎ(𝑡)) = 𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡

∞

−∞

                        (1.1) 

𝐻(𝑓) gives how much power ℎ(𝑡) contains at the frequency 𝑓, and is often 

called the spectrum of ℎ. The result of Eq.(1.1) is a frequency or function 

of 𝑓. We can define the inverse of Fourier transform as:  
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𝐹−1(𝐻(𝑓)) = ℎ(𝑡) = ∫ 𝐻(𝑓)𝑒2𝜋𝑖𝑓𝑡𝑑𝑓

∞

−∞

                    (1.2) 

Eq.(1.2) states that we can obtain the original function ℎ(𝑡) from the 

function 𝐻(𝑓). As a result, ℎ(𝑡) and 𝐻(𝑓) form a Fourier pair, that is, they 

are distinct representations of the same underlying identity [27]. 

we can write this equivalence via the following symbol :  ℎ 
𝐹
⇔𝐻 

Definition (1.1) 

The amplitude of a signal is its maximum value. 

Example (1) 

The signal 𝑓(𝑡) = 5 cos (
𝜋

2
𝑡) has an amplitude 5 as shown in Figure 1.1 

 

 

Figure 1.1  𝑓(𝑡) = 5 cos (
𝜋

2
𝑡) 

The Fourier transform can be illustrated by the so called a box function 

(square pulse or square wave) [8]. 
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Figure 1.2 The box function 

In Fig.(1.2) , the function ℎ(𝑡) has amplitude of 𝐴, and extends from 

𝑡 = −
𝑇

2
 𝑡𝑜  𝑡 =  

𝑇

2
  . For |𝑡|  >  

𝑇

2
 , ℎ(𝑡) =  0 

Using the definition of the Fourier transform (eq. (1.1)) for calculating 

𝐻(𝑓), the integral is: 

𝐹(ℎ(𝑡)) = 𝐻(𝑓) = ∫ ℎ(𝑡)

∞

−∞

𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡 

= ∫𝐴𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡

𝑇
2

−
𝑇
2

 

=
𝐴

−2𝜋𝑖𝑓
 [𝑒−2𝜋𝑖𝑓𝑡]−𝑇

2

𝑇
2  

=
𝐴

−2𝜋𝑖𝑓
[𝑒−𝜋𝑖𝑓𝑇 − 𝑒𝜋𝑖𝑓𝑇] 

=
𝐴𝑇

𝜋𝑓𝑇
[
𝑒𝜋𝑖𝑓𝑇 − 𝑒−𝜋𝑖𝑓𝑇

2𝑖
] 
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=
𝐴𝑇

𝜋𝑓𝑇
sin(𝜋𝑓𝑇) 

= 𝐴𝑇[𝑠𝑖𝑛𝑐(𝑓𝑇)] . 

The solution, 𝐻(𝑓) is often written as a sinc function, defined as : 

𝑠𝑖𝑛𝑐(𝑡) =
sin(𝜋𝑡)

𝜋𝑡
 . 

Fig. 1.3 shows the Fourier transform of the box function such that the 

Fourier transform of ℎ(𝑡) is 𝐻(𝑓) 

 

        Figure 1.3 The sinc function is the Fourier Transform of the box function 

We can illustrate the Fourier transform by considering the square pulses 

defined for T=10, and T=1. The box functions with their Fourier transforms 

are shown in Figures 1.4 and 1.5 for the amplitude A=1. 
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          Figure 1.4 The box function with T=10, and its Fourier transform. 

    

             Figure 1.5 The box function with T=1, and its Fourier transform. 

 The wider square pulse produces a narrower and more constrained 

spectrum (the Fourier Transform) as shown in Figure 1.4.  Figure 1.5, 

shows that a thinner square pulse produces a wider spectrum than that of 

Figure 1.4. In general: rapidly changing functions require more high 
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frequency content (as in Figure 1.5). Functions that are moving more 

slowly in time will have less high frequency energy (as in Figure 1.4).  

Moreover, when the box function is shorter in time (as Figure 1.5), so that 

it has less energy, there appears to be less energy in its Fourier transform 

[8].  

1.2.1  Properties of Fourier Transform [3, 4, 14] 

1) Linearity of Fourier Transform 

Let 𝑔(𝑡) and ℎ(𝑡) be two functions where Fourier transforms are given by 

𝐺(𝑓) and 𝐻(𝑓), respectively. Then the Fourier transform of any linear 

combination of 𝑔 and ℎ is given as:  

𝐹{ 𝑏1𝑔(𝑡) + 𝑏2ℎ(𝑡) } =  𝑏1𝐺(𝑓) + 𝑏2𝐻(𝑓)                (1.3) 

𝑏1 𝑎𝑛𝑑 𝑏2 are any constants ( real or complex numbers ). Eq.(1.3) can 

easily be shown by using the definition of the Fourier transform : 

𝐹{ 𝑏1𝑔(𝑡) + 𝑏2ℎ(𝑡) } = ∫[𝑏1𝑔(𝑡) + 𝑏2ℎ(𝑡)]𝑒
−2𝑖𝜋𝑓𝑡

∞

−∞

𝑑𝑡

= ∫ 𝑏1𝑔(𝑡)𝑒
−2𝑖𝜋𝑓𝑡

∞

−∞

𝑑𝑡 + ∫ 𝑏2ℎ(𝑡)𝑒
−2𝑖𝜋𝑓𝑡

∞

−∞

𝑑𝑡 

                       =  𝑏1 ∫ 𝑔(𝑡)𝑒−2𝑖𝜋𝑓𝑡
∞

−∞

𝑑𝑡 + 𝑏2 ∫ ℎ(𝑡)𝑒−2𝑖𝜋𝑓𝑡
∞

−∞

𝑑𝑡

= 𝑏1𝐺(𝑓) + 𝑏2𝐻(𝑓). 

2) Shift Property of the Fourier Transform  

The time shift is defined as: 
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𝐹{ ℎ(𝑡 − 𝑐)} =  ∫ ℎ(𝑡 − 𝑐)𝑒−2𝑖𝜋𝑓𝑡
∞

−∞

𝑑𝑡                        (1.4) 

      =  ∫ ℎ(𝑢)𝑒−2𝑖𝜋𝑓(𝑢+𝑐)
∞

−∞

𝑑𝑢 

           =  𝑒−2𝑖𝜋𝑓𝑐 ∫ ℎ(𝑢)𝑒−2𝑖𝜋𝑓𝑢
∞

−∞

𝑑𝑢 

= 𝑒−2𝑖𝜋𝑓𝑐𝐻(𝑓) . 

if the original function ℎ(𝑡) is shifted in time by a constant amount, then it 

should have the same magnitude of the spectrum, 𝐻(𝑓) (see Eq.(1.4)).  

3) Scaling Property of the Fourier Transform 

Let ℎ(𝑡) have Fourier transform 𝐻(𝑓) scaled in time by a non-zero 

constant 𝑎, written as ℎ(𝑎𝑡). The Fourier transform will be given by: 

𝐹{ ℎ(𝑎𝑡) } =
𝐻 (

𝑓
𝑎)

|𝑎|
                                                          (1.5) 

we can prove Eq.(1.5) by using the definition : 

𝐹{ ℎ(𝑎𝑡)} =  ∫ ℎ(𝑎𝑡)𝑒−2𝑖𝜋𝑓𝑡
∞

−∞

𝑑𝑡 

Substitute:  𝑢 = 𝑎𝑡  , 𝑑𝑢 = 𝑎𝑑𝑡 

𝐹{ ℎ(𝑎𝑡)} =  ∫
ℎ(𝑢)

𝑎

∞

−∞

𝑒−2𝑖𝜋𝑓
𝑢
𝑎𝑑𝑢 

Now, 𝑖𝑓 𝑎 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and  𝑓 > 0 then 
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𝐹{ ℎ(𝑎𝑡)} =  ∫
ℎ(𝑢)

𝑎
𝑒−2𝑖𝜋𝑓

𝑢
𝑎

∞

−∞

𝑑𝑢 =  
𝐻 (

𝑓
𝑎)

𝑎
 

 𝑖𝑓 𝑎 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ,  

𝐹{ ℎ(𝑎𝑡) } =  ∫
ℎ(𝑢)

𝑎
𝑒−2𝑖𝜋𝑓

𝑢
𝑎

−∞

∞

𝑑𝑢 =  − ∫
ℎ(𝑢)

𝑎
𝑒−2𝑖𝜋𝑓

𝑢
𝑎

∞

−∞

𝑑𝑢 =  
𝐻 (

𝑓
𝑎)

−𝑎
 

→ 𝐹{ ℎ(𝑎𝑡) } =  
𝐻 (

𝑓
𝑎)

|𝑎|
 . 

4) Derivative Property of the Fourier Transform 

The Fourier transform of the derivative of ℎ(𝑡) is given by: 

𝐹 { 
𝑑ℎ(𝑡)

𝑑𝑡
 } =  2𝑖𝜋𝑓 × 𝐻(𝑓)                                           (1.6) 

5) Convolution Property of the Fourier Transform  

The convolution of two piecewise continuous functions 𝑔(𝑡) and ℎ(𝑡) on 

(−∞,∞) is a function in time defined by: 

𝑔(𝑡) ∗ ℎ(𝑡) =  ∫ 𝑔(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏

∞

−∞

                               (1.7) 

The Fourier transform of the convolution of 𝑔(𝑡) 𝑎𝑛𝑑 ℎ(𝑡) [with 

corresponding Fourier transform  𝐺(𝑓) 𝑎𝑛𝑑 𝐻(𝑓)] is given by : 

𝐹{ 𝑔(𝑡) ∗ ℎ(𝑡)} = 𝐺(𝑓)𝐻(𝑓)                                          (1.8) 
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6) Modulation Property of the Fourier Transform 

A function is '' modulated " by another function if they are multiplied in 

time. The Fourier transform of the product is the convolution of the two 

functions in the frequency domain : 

𝐹{ 𝑔(𝑡)ℎ(𝑡) } = 𝐺(𝑓) ∗ 𝐻(𝑓)                                         (1.9) 

7) Parseval's Theorem  

We've seen how the Fourier transform gives a unique representation of the 

original underlying signal, ℎ(𝑡). That is, 𝐻(𝑓) contains all the information 

about ℎ(𝑡). To further cement the equivalence, we present Parseval's  

Identity for Fourier Transforms. 

Let ℎ(𝑡) have Fourier transform 𝐻(𝑓), then the following equation holds:  

∫|ℎ(𝑡)|2
∞

−∞

𝑑𝑡 =  ∫|𝐻(𝑓)|2
∞

−∞

𝑑𝑓                                   (1.10) 

The integral of the squared magnitude of a function is known as the energy 

of the function. The Parseval’s identity states that the energy of ℎ(𝑡) is the 

same as the energy contained in 𝐻(𝑓), as shown in eq.(1.10) 

8) Duality 

Suppose ℎ(𝑡) has Fourier transform 𝐻(𝑓). Then the Fourier transform of 

the function 𝐻(𝑡) is calculated by : 

𝐹{ 𝐻(𝑡) } = ℎ(−𝑓)                                                         (1.11) 
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This is known as the duality property of the Fourier transform. 

1.3  Wavelet Transform 

Definition (1.2) 

Let 𝑝 ≥ 1 be a real number. Then the 𝐿𝑝 − 𝑠𝑝𝑎𝑐𝑒 is the set of all real-

valued functions 𝑓 on a domain  𝐼 such that 

∫|𝑓(𝑥)|𝑝 𝑑𝑥 < ∞     , 𝑜𝑣𝑒𝑟 𝐼 

If 𝑓 ∈ 𝐿𝑝(𝐼), then its 𝐿𝑝 − 𝑛𝑜𝑟𝑚 is defined as: 

‖𝑓‖𝑝 = (∫|𝑓(𝑥)|
𝑝 𝑑𝑥)

1
𝑝
 

Example (2) 

If  𝐼 = ℛ , then the space 𝐿2(ℛ) is the set of all square integrable functions 

𝑓 on ℛ with 𝐿2 −norm defined by  

‖𝑓‖2 = (∫|𝑓(𝑥)|
2 𝑑𝑥)

1
2
< ∞ 

and the function is said to have finite energy. 

A wavelet is a function that is localized in time and frequency with zero 

mean. 

An oscillatory function  𝜓(𝑡) ∈ 𝐿2(ℛ), with zero mean is a wavelet if it has 

the following desirable properties : 

1. Smoothness [6]: 𝜓(𝑡) is 𝑛 times differentiable and the derivatives 

are continuous. This smoothness of the wavelet increases with the 

number of vanishing moment.  
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2. The important property which gave wavelets their name 𝑖. 𝑒. the 

admissibility condition. It can be shown that 𝜓(𝑡) satisfies the 

admissibility condition if 

∫
|𝜓(𝜔)|2

|𝜔|
 𝑑𝜔  <  +∞ 

𝜓(𝜔) is the Fourier transform of 𝜓(𝑡). Now, by using the 

admissibility condition we can write |𝜓(𝜔)2||
𝜔=0

= 0 , this means 

that the Fourier transform of 𝜓(𝑡) vanishes at the zero frequency. 

A zero at the zero frequency means that the average value of the 

wavelet in the time domain must be zero 

∫𝜓(𝑡) 𝑑𝑡 = 0 

and therefore it must be oscillatory. In other words, 𝜓(𝑡) must be a 

wave [18, 25, 34]. 

3.  A wavelet must have finite energy [22] 

𝐸 = ∫|𝜓(𝑡)|2
∞

−∞

 𝑑𝑡 <  ∞ 

Definition (1.3) [33] 

A function 𝜓 ∈ 𝐿2(ℛ) which satisfies admissibility condition is called an 

(admissible) wavelet. 

Definition (1.4) [11] 

Given a function  𝑔(𝑡) , we define the following: 

1. Translation : 𝑇𝑎𝑔(𝑡) = 𝑔(𝑡 − 𝑎)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℛ . 

2. Modulation : 𝑀𝑎𝑔(𝑡) = 𝑒
2𝜋𝑖𝑎𝑡𝑔(𝑡)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℛ .  
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3. Dilation : 𝐷𝑎𝑔(𝑡) = |𝑎|
− 
1

2 𝑔 (
𝑡

𝑎
)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℛ /{0} . 

Applying the translation and dilation operations on a wave can take place 

as follows: 

𝑇𝑏𝐷𝑎𝑔(𝑡) = |𝑎|
− 
1
2 𝑔 (

𝑡 − 𝑏

𝑎
)     𝑎𝑛𝑑    𝐷𝑎𝑇𝑏𝑔(𝑡) = |𝑎|

− 
1
2 𝑔 (

𝑡

𝑎
− 𝑏) .  

Example (3) 

The signal 𝑓(𝑡) = 4cos (
𝜋

3
𝑡) has amplitude 4 as in figure 1.6, and has two 

translation and dilation as in figure 1.7 

                                 

Figure 1.6   𝑓(𝑡) = 4cos (
𝜋

3
𝑡) 

        

             𝑎)   𝑓(𝑡) = 4cos (
𝜋

3
(𝑡 − 5))                                   𝑏)   𝑓(𝑡) = 2cos (

𝜋

12
𝑡) 

 Figure 1.7 
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The wavelet basis is a family of functions based on a well-localized 

oscillating function 𝜓(𝑡) of the real variable 𝑡. 

A wavelet is a function with zero average [19]: 

∫ 𝜓(𝑡) 𝑑𝑡 = 0

∞

−∞

                                                               (1.12) 

Eq.(1.13) shows the family of functions generated from 𝜓 by translation 

and dilation.   

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
 𝜓 (

𝑡 − 𝑏

𝑎
)   , 𝑎 > 0 , 𝑏 ∈ ℝ              (1.13) 

where 𝑏 is the translation variable and 𝑎 is the dilation variable , 

 𝜓(𝑡) ∈ 𝐿2(ℛ). 

The function 𝜓𝑎,𝑏 is called ''wavelets'' and sometimes called "mother 

wavelet" because all other wavelet functions within the family are 

generated from translations and dilations of 𝜓(𝑡). Actually, if the function 

has a dilation 1 and a zero translation then it is called the mother wavelet. 

Note that 𝜓 is assumed to be real.  

The input can be a real or complex function and the output also may be real 

or complex. In Fourier transform the input can be a real or complex 

function but its output is always complex [5]. 

A restriction on 𝜓(𝑡) is that it has a zero integral. Actually, a further 

restriction on 𝜓(𝑡) requires that the first 𝑘 + 1 moment vanish [17]. This 

gives a series of integral moments equal to zero, that is: 
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∫ 𝜓(𝑡)

∞

−∞

𝑑𝑡 =  ……… = ∫ 𝑡𝑘
∞

−∞

𝜓(𝑡)𝑑𝑡 = 0                          

A classical example of a wavelet is the Mexican hat function  

𝜓(𝑡) = (1 − 2𝑡2)𝑒−𝑡
2
 

Being the second derivative of a Gaussian, it has two vanishing moments, 

and  𝜓(𝑥) satisfies (1.12) [5]. 

Definition (1.5) [15] 

Let 𝑈 be an open set in ℛ𝑛, and let 𝑓 ∶ 𝑈 → ℛ  be a continuous function, 

the support of  𝑓 is 𝑠𝑢𝑝𝑝 𝑓 = { 𝑥 ∈ 𝑈 ∶ 𝑓(𝑥) ≠ 0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  }. 

The function  𝑓 is compactly supported if  𝑠𝑢𝑝𝑝 𝑓 is bounded. 

Now, we say that 𝜓 has compact support on 𝐼 if it’s vanish outside this 

interval. 

1.3.1  Mother wavelet 

For practical applications, and for efficiency reasons, one prefers 

continuously differentiable functions with compact support as mother 

wavelet. However, to satisfy analytical requirements and in general for 

theoretical reasons, one chooses the wavelet functions from a subspace of 

the space  𝐿1(ℛ) ∩ 𝐿2(ℛ) . This is the space of measurable functions that 

are absolutely and square integrable with  

∫|𝜓(𝑡)|

∞

−∞

𝑑𝑡 <  ∞  𝑎𝑛𝑑  ∫|𝜓(𝑡)|2
∞

−∞

𝑑𝑡 <  ∞ 
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This space ensures that one can formulate the conditions of square norm 

one and zero mean: 

∫ 𝜓(𝑡)𝑑𝑡 = 0 
∞

−∞
 ( condition for zero mean ) , and 

∫ |𝜓(𝑡)|2
∞

−∞
𝑑𝑡 = 1  ( condition for square norm one [21] ). 

For 𝜓 to be a wavelet for the continuous wavelet transform, the mother 

wavelet must satisfy the admissibility criterion in order to get a stable 

invertible transform. 

In most situations, it is useful to restrict 𝜓 to a continuous function with a 

higher number 𝑀 of vanishing moments [17], i.e. for all integers 𝑚 <  𝑀  

∫ 𝑡𝑚
∞

−∞

𝜓(𝑡)𝑑𝑡 = 0 

The mother wavelet is dilated (or scaled) by a factor of 𝑎 and translated (or 

shifted) by a factor of  𝑏 to give: 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) 

1.3.2  Wavelet Transform 

The wavelet transform is a tool that cuts up data or functions or operators 

into different frequency components . The wavelet transform of a signal 

evolving in time depends on two variables: scale (or frequency) and time, it 

provides a similar time-frequency description of Fourier transform with a 

few important differences, and is defined as [7, 18]: 
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𝑊(𝑎, 𝑏) =  
1

√|𝑎|
∫ 𝑓(𝑡)

∞

−∞

𝜓 (
𝑡 − 𝑏

𝑎
)𝑑𝑡                      (1.14) 

The wavelet coefficients 𝐶𝑗,𝑘 are given by 

𝐶𝑗,𝑘 = 𝑊(2
−𝑗 , 𝑘2−𝑗)                                                      (1.15) 

here 𝑎 = 2−𝑗 is called the dyadic dilation or binary dilation and 𝑏 = 𝑘2−𝑗 

is the dyadic or binary position. 

and we define:   

𝑊𝑟,𝑠 = 𝑎0
− 
𝑟
2 ∫ 𝑓(𝑡) 𝜓(𝑎0

−𝑟

∞

−∞

𝑡 − 𝑠𝑏0)𝑑𝑡                      (1.16) 

In Eq. (1.14) and (1.16) it is assumed that 𝜓 satisfies Eqn. (1.12). 

Formula (1.16) is obtained from (1.14) by restricting 𝑎 𝑎𝑛𝑑 𝑏 to only 

discrete values: = 𝑎0
𝑟 , 𝑏 = 𝑠𝑏0𝑎0

𝑟, with  𝑟, 𝑠 ranging over  ℤ 𝑎𝑛𝑑 𝑎0 > 1,

𝑏0 > 0 fixed.  

As 𝑎 changes, the 𝜓𝑎,0(𝑡) = |𝑎|
−
1

2  𝜓 (
𝑡

𝑎
) covers different frequency ranges 

( large values of the scaling parameter |𝑎| correspond to small frequencies 

or large scale 𝜓𝑎,0 ; small values of |𝑎| correspond to high frequencies or 

very fine scale 𝜓𝑎,0 ) [7]. 
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Chapter Two 

Types of Wavelet Transform 

2.1  Introduction 

     The wavelet transform was introduced by Morlet, who used it to 

evaluate seismic data. Since then, various types of wavelet transforms have 

been developed. There exists many different types of wavelet transform, all 

starting from the basic formulas (1.14) and (1.16): 

1. The Continuous Wavelet Transform (CWT), also called the Integral 

Wavelet Transform: it performs a multiresolution analysis by 

contraction and dilatation of the wavelet functions. 

2. The Discrete Wavelet Transform (DWT): uses filter banks for the 

construction of the multiresolution time-frequency plane.  

3. The Fast Wavelet Transform (FWT) 

2.2 Continuous Wavelet Transform ( CWT ) 

Definition (2.1) (Parseval’s Identity) [13] 

Parseval's identity represents an important result on Fourier series. Namely;  

∑ |𝐶𝑛|
2

∞

𝑛=−∞

=
1

2𝜋
∫|𝑓(𝑥)|2
𝜋

−𝜋

𝑑𝑥 

where the Fourier coefficients 𝐶𝑛 𝑜𝑓 𝑓 are given by  

𝐶𝑛 =
1

2𝜋
∫ 𝑓(𝑥)𝑒− 𝑖𝑛𝑥𝑑𝑥
𝜋

−𝜋

 

where 𝑓 in 𝐿2[−𝜋, 𝜋] . 
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Definition (2.2) [17, 5] 

The inner product of the vector space 𝐿2(ℛ) of square integrable is defined 

by  

< 𝑓(𝑡), 𝑔(𝑡) > =  ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡

∞

−∞

 

we defined:  

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
)    𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ ℛ  , 𝑎 ≠ 0        (2.1) 

The continuous wavelet transform [33, 19] of a function 𝑓(𝑡) ∈ 𝐿2(ℛ) is 

defined as its inner product with a family of admissible wavelets  𝜓𝑎,𝑏(𝑡) , 

𝑖. 𝑒  𝒲(𝑎, 𝑏) = < 𝑓 ,  𝜓𝑎,𝑏 >                (2.2) 

𝒲(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝜓 (

𝑡 − 𝑏

𝑎
)

∞

−∞

𝑓(𝑡) 𝑑𝑡                        (2.3) 

where 𝑎 𝑎𝑛𝑑 𝑏 are the time and scale variables (respectively). 

we can write ( by using Parseval's identity [31, 33] )  

2𝜋 𝒲(𝑎, 𝑏) = <  𝑓 , 𝜓̂𝑎,𝑏 >                                           (2.4) 

where  

𝜓̂𝑎,𝑏(𝜔) =
𝑎

√|𝑎|
𝑒−𝑖𝜔𝑏 𝜓̂(𝑎𝜔) 

Suppose that the wavelet 𝜓 satisfies the admissibility condition [34]  
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𝐶𝜓 = ∫
|𝜓̂(𝜔)|

2

𝜔

∞

−∞

 𝑑𝜔  <  ∞   

The inverse transform is given by 

𝑓(𝑥) =
1

𝐶𝜓
∫ ∫𝒲(𝑎, 𝑏)

∞

−∞

∞

−∞

𝜓𝑎,𝑏(𝑥) 𝑑𝑎
𝑑𝑏

𝑎2
                 (2.5) 

Note that if 𝜓 ≠ 0, then all 𝜓 ∈ 𝐿2(ℛ) are admissible wavelets, 𝜓̂ 

differentiable at 0 and  𝜓̂(0) = 0 . This has given 𝜓 the name wavelet or 

"small wave" [7, 33]. 

We note that the reconstruction formula (2.5) and the expression for 𝐶𝜓 in 

Eq.(2.5) are such that they are consistent with the definition of the wavelet 

family in Eq.(2.1). 

In fact, the Fourier transform can be viewed as a special case of the 

continuous wavelet transform with the choice of the mother wavelet 

𝜓(𝑡) = 𝑒−2𝜋𝑖𝑡𝑓 . 

Definition (2.3) [33] 

A function 𝑔 is H𝑜̈lder continuous of order 𝛽  ( 0 < 𝛽 ≤ 1 ) at a point 𝑡 𝑖𝑓  

|𝑔(𝑡) − 𝑔(𝑡 + ℎ)| = 𝒪(ℎ𝛽) . 

Now, if the continuous wavelet transform has an asymptotic behavior like 

𝒲(𝑐, 𝑑) = 𝒪 (𝑐
𝛽+1
2 )            𝑓𝑜𝑟 𝑐 → 0 
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Then the function 𝑔 is H𝑜̈lder continuous of order 𝛽, (0 < 𝛽 ≤ 1). The 

converse is true as well.  

If higher order of H𝑜̈lder continuous functions  (𝛽 ≥ 1) exists [33]; then 

the number of vanishing moments of the wavelet has to be bigger than  , i.e  

∫ 𝜓(𝑥)

∞

−∞

𝑥𝑞𝑑𝑥 = 0       𝑓𝑜𝑟     0 ≤ 𝑞 ≤ 𝛽     𝑎𝑛𝑑 𝑞 ∈ Ζ 

2.2.1 Properties of Continuous Wavelet Transform 

If 𝜓 and 𝜙 are wavelets, and let , 𝑔 ∈ 𝐿2(ℛ) , then the following properties 

hold: 

1. Linearity : 𝑊(𝛼𝑓 + 𝛽𝑔) = 𝛼𝑊(𝑓) + 𝛽𝑊(𝑔)  , 𝛼, 𝛽 ∈ ℛ. 

2. Translation : 𝑊(𝑇𝑐𝑓) = 𝑊(𝑓)(𝑎, 𝑏 − 𝑐). 

3. Dilation : 𝑊(𝐷𝑐𝑓) =
1

√𝑐
(𝑊𝑓) (

𝑎

𝑐
,
𝑏

𝑐
) , 𝑐 > 0. 

4. Symmetry : 𝑊(𝑓) = 𝑊𝑓𝜓(
1

𝑎
,
−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
    , 𝑎 ≠ 0. 

Note that we denote 𝑊𝜓 by 𝑊 . 

2.2.2  Popular Functions for CWT Analysis  

There are two functions that are popular for CWT analysis [7, 33]: 

1.  The Mexican hat function  

𝜓(𝑥) = (1 − 𝑥2)𝑒− 
𝑥2

2 = − 
𝑑2

𝑑𝑥2
 𝑒− 

𝑥2

2  

This is the second derivative of a Gaussian 𝑒− 
𝑥2

2  . This wavelet is smooth 

and has two vanishing moments. 
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Figure 2.1   𝜓(𝑥) = (1 − 𝑥2)𝑒− 
𝑥2

2   and its translation and dilation 

𝜓(𝑥) has two translated dilations. 

Now, consider the Mexican hat wavelet: 

𝜓(𝑡) = (1 − 𝑡2)𝑒− 
𝑡2

2  

𝜓𝑎,𝑏 =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) =

1

√|𝑎|
(1 − (

𝑡 − 𝑏

𝑎
)
2

)𝑒− 
(
𝑡−𝑏
𝑎
)
2

2  

Fix 𝑎 = 1 and the translating factor 𝑏 could be any integer. 

𝜓1,𝑏 = 𝜓(𝑡 − 𝑏) = (1 − (𝑡 − 𝑏)
2)𝑒− 

(𝑡−𝑏)2

2  

𝜓1,4 = 𝜓(𝑡 − 4) = (1 − (𝑡 − 4)
2)𝑒− 

(𝑡−4)2

2  



26 

 

(𝒂)  𝝍𝟏,𝟒 = (𝟏 − (𝒕 − 𝟒)
𝟐)𝒆− 

(𝒕−𝟒)𝟐

𝟐  

 

(𝒃)  𝝍𝟏,−𝟒 = (𝟏 − (𝒕 + 𝟒)
𝟐)𝒆− 

(𝒕+𝟒)𝟐

𝟐  
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(𝒄)  𝝍𝟒,𝟎 =
𝟏

𝟐
(𝟏 −

𝒕𝟐

𝟏𝟔
)𝒆− 

𝒕𝟐

𝟑𝟐 

 

(𝒅)  𝝍𝟏
𝟒
,𝟎
= 𝟐(𝟏 − 𝟏𝟔𝒕𝟐)𝒆− 𝟖∗𝒕

𝟐
 

Figure 2.2 



28 

Figure 2.2 (𝑎) is the graph of the Mexican hat wavelet where 𝑎 = 1 and =

4 , Figure 2.2 (b) the same when 𝑎 = 1 and 𝑏 = −4 . 

Also, fixing 𝑏 = 0 and the dilation parameter ∈ ℛ , and 𝑎 ≠ 0, 

𝜓𝑎,0 =
1

√|𝑎|
𝜓 (

𝑡

𝑎
) =

1

√|𝑎|
(1 −

𝑡2

𝑎2
) ∗ 𝑒

− 
𝑡2

2∗𝑎2 

Notice, 𝑎 > 1 extends the wave and 0 < 𝑎 < 1 shrinks the wave as we can 

see in Figure 2.2 (𝑐) and (𝑑) respectively. 

2. The Morlet wavelet  

𝜓(𝑥) = 𝑒𝑖𝜔0𝑥 𝑒− 
𝑥2

2
𝜔0
2

 . 

 

Figure 2.3   𝜓(𝑥) = 𝑒𝑖𝜔0𝑥 𝑒− 
𝑥2

2
𝜔0
2
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( see [7, 19, 33] for more details ). 

2.3  Discrete Wavelet Transform ( DWT ) 

2.3.1 Discretization of the Continuous Wavelet Transform 

 The discretization will allow for numerical solutions based on a 

summation rather than a continuous integral. 

To discretize continuous wavelet transform [18, 5]  

𝑊(𝑎, 𝑏) =  
1

√|𝑎|
∫ 𝑓(𝑡)

∞

−∞

𝜓 (
𝑡 − 𝑏

𝑎
)𝑑𝑡  

we use binary discretization set 𝑎 = 2−𝑗  and  𝑏 = 2−𝑗𝑘 , 𝑤ℎ𝑒𝑟𝑒  𝑗, 𝑘 ∈ Ζ. 

The discretization of 𝑊(𝑎, 𝑏) becomes 𝑊(2−𝑗 , 2−𝑗𝑘)  such that 𝑗, 𝑘 ∈  Ζ, 

where the corresponding discrete wavelet functions are defined by  

𝜓𝑗𝑘(𝑥) = 2
𝑗
2 𝜓(2𝑗𝑥 − 𝑘)    , 𝑗, 𝑘 ∈  Ζ                   (2.6)          

2.3.2  Discrete Wavelet Transform 

  In the continuous wavelet transform, we consider the family 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
)         𝑎, 𝑏 ∈ ℛ  , 𝑎 ≠ 0 

and 𝜓 is admissible. In the discretization we restrict 𝑎, 𝑏 to discrete values 

only, we choose: dilation parameter 𝑎 = 𝑎0
𝑢, where 𝑢 ∈ Ζ, dilation step 

𝑎0 ≠ 1 fixed  and assume  𝑎0 > 1 .  
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Now if 𝑢 = 0, we can discretize 𝑏 by choosing integer (positive and 

negative) multiples of one fixed 𝑏0 such that 𝑏0 > 0, so that the 𝜓(𝑥 − 𝑣𝑏0) 

"cover" the whole line. 

𝑤𝑖𝑑𝑡ℎ (𝑓) can be measured by using the formula                              

𝑤𝑖𝑑𝑡ℎ (𝑓) = [ ∫ 𝑥2 |𝑓(𝑥)|2 𝑑𝑥]
1

2  where it is assumed that  ∫ 𝑥 |𝑓(𝑥)|2 𝑑𝑥 = 0. 

Now, for different values of  , the width of  𝑎0
− 𝑢/2

∗  𝜓(𝑎0
− 𝑢𝑥)  is   𝑎0

𝑢 ∗

𝑤𝑖𝑑𝑡ℎ (𝜓(𝑥)) . 

Choosing 𝑏 = 𝑣𝑏0𝑎0
𝑢 will ensure that the discretized wavelets at level 𝑢 

"cover" the line in the same way that the 𝜓(𝑥 − 𝑣𝑏0) does. 

Thus we choose 𝑎 = 𝑎0
𝑢 , 𝑏 = 𝑣𝑏0𝑎0

𝑢 , where 𝑢, 𝑣 range over Ζ, and       

𝑎0 > 1 , 𝑏0 > 0 are fixed; the appropriate choices for 𝑎0, 𝑏0 depend, of 

course, on the wavelet 𝜓 [7]. This corresponds to  

𝜓𝑢,𝑣(𝑥) = 𝑎0
− 
𝑢
2  𝜓 (

𝑥 − 𝑣𝑏0𝑎0
𝑢

𝑎0
𝑢 ) 

= 𝑎0
− 
𝑢
2𝜓(𝑎0

− 𝑢 𝑥 − 𝑣𝑏0) . 

Discrete wavelets are not continuously scalable and translatable but can 

only be scaled and translated in discrete steps. This is achieved by 

modifying the wavelet representation 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
 𝜓(
𝑡 − 𝑏

𝑎
) 

to create 
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𝜓𝑗,𝑘(𝑡) =
1

√𝑠0
𝑗

 𝜓 (
𝑡 − 𝑘𝜏0𝑠0

𝑗

𝑠0
𝑗

)                                      (2.7) 

where 𝑗 and 𝑘 are integers and 𝑠0  >  1 is a fixed dilation step. 𝜏0 ( the 

translation factor ) depends on the dilation step. 𝜓𝑗,𝑘(𝑡)  is called a discrete 

wavelet, which is normally a (piecewise) continuous function. The effect of 

discretizing the wavelet is that the time-scale space is now sampled at 

discrete intervals [34]. 

Example (1) 

We introduce a function that satisfies the admissibility condition, namely 

the Haar wavelet. The Haar wavelet is defined by: 

𝜓(𝑥) =

{
 
 

 
 1  , 𝑥 ∈ [0,

1

2
)

−1  , 𝑥 ∈ [
1

2
, 1)

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note that the Haar wavelet is discontinuous, has compact support, and has 

a zero mean. 

We show 𝜓(𝑥) is an admissible wavelet by computing 

𝜓̂(𝜔) =
1

√2𝜋

(

 
 
∫𝑒−𝑖𝑥𝜔

1
2

0

 𝑑𝑥 − ∫𝑒−𝑖𝑥𝜔
1

1
2

 𝑑𝑥

)

 
 
=

1

√2𝜋
(
1 + 𝑒−𝑖𝜔 − 2𝑒−

𝑖𝜔
2

𝑖𝜔
) 

and so 
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|𝜓̂(𝑏𝜔)|
2

𝑏
=
|1 + 𝑒−𝑖𝑏𝜔 − 2𝑒− 

𝑖𝑏𝜔
2 |

2

𝑏3 𝜔2
=
|𝑒− 

𝑖𝑏𝜔
2 |

2

× |𝑒
𝑖𝑏𝜔
4 − 𝑒− 

𝑖𝑏𝜔
4 |

4

𝑏3 𝜔2
 

=
16𝑠𝑖𝑛4(

𝑏𝜔
4
)

𝑏3 𝜔2
 

Integrating by parts yields [37]: 

𝐶𝜓 = lim
𝑚→∞

∫
𝑠𝑖𝑛4(𝑥)

𝑥3

𝑚𝜔
4

0

 𝑑𝑥 

= lim
𝑚→∞

 
−𝑠𝑖𝑛4(𝑥)

2𝑥2
]
𝑥=0

𝑚𝜔
4

+ lim
𝑚→∞

1

4
 ∫

2𝑠𝑖𝑛(2𝑥) − sin (4𝑥)

𝑥2

𝑚𝜔
4

0

 𝑑𝑥 

= lim
𝑚→∞

sin(4𝑥) − 2 sin(2𝑥)

4𝑥
|
𝑥=0

𝑚𝜔
4

+ lim
𝑚→∞

∫
cos(2𝑥) − cos(4𝑥)

𝑥

𝑚𝜔
4

0

 𝑑𝑥 

= lim
𝑚→∞

(

 ∫
cos(2𝑥) − 1

𝑥

𝑚𝜔
4

0

 𝑑𝑥 − ∫
cos(4𝑥) − 1

𝑥

𝑚𝜔
2

0

 𝑑𝑥

)

  

= 𝑙𝑛2 

The Discrete Wavelet Transform (DWT) of 𝑔(𝑡) with respect to a wavelet 

𝜓(𝑡) is defined as [2] 

𝑑(𝑢, 𝑣) =
1

𝑎0
𝑢
2

 ∫𝑔(𝑡)  𝜓(𝑎0
−𝑢 𝑡 − 𝑣𝑏0)𝑑𝑡                 (2.8) 

where 𝑢 ∶ dilation parameter, 𝑣 ∶ translation parameter, 𝑎0, 𝑏0 depend on 

the wavelet used. 
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As a special case, if 𝑎 = 2𝑢 and = 𝑣2𝑢 , the wavelet expressed as 

𝜓𝑎,𝑏(𝑡) = 𝜓 (
𝑡 − 𝑏

𝑎
) = 𝜓 (

𝑡 − 𝑣2𝑢

2𝑢
) = 𝜓(2−𝑢𝑡 − 𝑣) = 𝜓𝑢,𝑣(𝑡) 

which is the dilated and translated version of the mother wavelet. 

The DWT is: 

𝑑(𝑢, 𝑣) =
1

2𝑢/2
 ∫ 𝑔(𝑡)

2𝑢(𝑣+1)

2𝑢𝑣

 𝜓(2−𝑢 𝑡 − 𝑣) 𝑑𝑡 

Here, 𝑑(𝑢, 𝑣) is equivalent to CWT  𝑊(𝑎, 𝑏) when 𝑎 = 2𝑢 and = 𝑣2𝑢 . 

Inverse operation ( IDWT ) is expressed as:  

𝑔(𝑡) = ∑ ∑ 𝑑(𝑢, 𝑣)2−
𝑢
2

∞

𝑣=−∞

∞

𝑢=−∞

 𝜓(2−𝑢 𝑡 − 𝑣) 

The DWT is computed by successive low pass and high pass filtering (also 

known as filter bank) of the discrete time-domain signal along with down 

sampling by two provides approximation and detail components. 

 Now, if the impulse response of high pass filter is 𝑔(𝑣) and low pass filter 

is ℎ(𝑣) then we can express a two level decomposition tree of DWT by the 

Fig. 2.4. The reverse process of decomposition yields the reconstruction of 

original sequence 𝑥(𝑣). Fig. 2.5 shows two levels wavelet reconstruction 

tree. The approximation and detail coefficients are up sampled by two at 

every level then passed through the high pass and low pass synthesis filters 

of impulse response of 𝑔́(𝑣) and ℎ́(𝑣) then added. This process is 



34 

continued to obtain the original signal through the same number of levels 

as in the decomposition process [29, 31]. 

 

Fig. 2.4  Decomposition tree of DWT 

 

Fig. 2.5  Reconstruction tree of DWT 
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Note that, formulas (2.3) and (2.8) assume that  𝜓  satisfies  

∫𝜓(𝑡)𝑑𝑡 = 0 

We can consider the formal wavelet definitions, with the Fourier transform 

(1.1) and (1.2): 

1. A wavelet is a function 𝜓(𝑡) in 𝐿2(ℛ) whose Fourier transform Ψ(𝑓) 

satisfies the condition (almost everywhere) 

∫
|Ψ(𝑡𝑓)|2

𝑡

∞

0

 𝑑𝑡 = 1 

2. A wavelet is a function 𝜓(𝑡) in 𝐿2(ℛ) such that 2𝑝/2𝜓(2𝑝𝑥 − 𝑞), 

𝑝, 𝑞 ∈ Ζ  is an orthonormal basis for 𝐿2(ℛ).  

For more details see ( [7], [5] and [34] ). 

2.4   Fast Wavelet Transform ( FWT ) 

 Any wavelet function can be expressed as a weighted sum of shifted, 

double-resolution scaling functions. That is, we can write  

𝜙(𝑥) = √2∑𝑔𝜙(𝑚)

𝑚

 𝜙(2𝑥 −𝑚) 

where 𝑔𝜙(𝑚) are called the wavelet function coefficients and 𝑔𝜙 is the 

wavelet vector. 

If the function being expanded is a sequence of numbers, like samples of a 

continuous function 𝑓(𝑥), the resulting coefficients are called the discrete 

wavelet transform (DWT) of 𝑓(𝑥). The DWT coefficients of 𝑓(𝑥) are 

defined as [5, 19]: 
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𝐷𝜙(𝑗, 𝑘) =
1

√𝑀
∑𝑓(𝑥)

𝑥

 𝜙𝑗,𝑘(𝑥) 

Now consider the multiresolution equation  

𝜓(𝑥) = √2∑𝑔𝜓(𝑚)

𝑚

 𝜓(2𝑥 −𝑚) 

By scaling 𝑥 by 2𝑗, translation of 𝑥 by 𝑘 units, and letting 𝑛 = 2𝑘 +𝑚  we 

would get  

𝜓(2𝑗𝑥 − 𝑘) = √2∑𝑔𝜓(𝑚)

𝑚

 𝜓(2(2𝑗𝑥 − 𝑘) −𝑚) 

= √2∑𝑔𝜓(𝑛 − 2𝑘)

𝑛

 𝜓(2𝑗+1𝑥 − 𝑛) 

Similarly, 

𝜙(2𝑗𝑥 − 𝑘) = √2∑𝑔𝜙(𝑛 − 2𝑘)

𝑛

 𝜙(2𝑗+1𝑥 − 𝑛) 

Now consider the DWT coefficient functions 𝐷𝜙(𝑗, 𝑘) . By changing 

variable we can get  

𝐷𝜙(𝑗, 𝑘) =
1

√𝑀
∑𝑓(𝑥)

𝑥

 2
𝑗
2 𝜙(2𝑗𝑥 − 𝑘) 

Now replacing  𝜙(2𝑗𝑥 − 𝑘), it becomes  

𝐷𝜙(𝑗, 𝑘) =
1

√𝑀
∑𝑓(𝑥)

𝑥

2
𝑗
2 {∑𝑔𝜙(𝑛 − 2𝑘)

𝑛

√2 𝜙(2𝑗+1𝑥 − 𝑛)} 

𝐷𝜙(𝑗, 𝑘) =∑𝑔𝜙(𝑛 − 2𝑘) 

𝑛

{ 
1

√𝑀
∑𝑓(𝑥)

𝑥

2
𝑗+1
2   𝜙(2𝑗+1𝑥 − 𝑛) } 



37 

where the bracketed quantity is identical to 𝐷𝜙(𝑗0, 𝑘) with 𝑗0 = 𝑗 + 1. We 

can thus write  

𝐷𝜙(𝑗, 𝑘) =∑𝑔𝜙(𝑛 − 2𝑘)

𝑛

 𝐷𝜙(𝑗 + 1, 𝑘)   

Similarly [19], the approximation coefficients are written by  

𝐷𝜓(𝑗, 𝑘) =∑𝑔𝜓(𝑛 − 2𝑘)

𝑛

 𝐷𝜓(𝑗 + 1, 𝑘) . 
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Chapter Three 

Solving ODEs and PDEs Using Wavelets 

3.1 Introduction 

The concept of  Multiresolution is intuitively related to the study of signals 

or images at different levels of resolution. The resolution of a signal is a 

qualitative description associated with its frequency content. An objective 

of a Multiresolution analysis is to construct a wavelet system, which is a 

complete orthonormal set in 𝐿2(ℛ). Many applications of mathematics 

require the numerical approximation of solutions of differential equations. 

We discuss how to solve Ordinary Differential Equation and Partial 

Differential Equation by Wavelet-Galerkin Method.  

3.2 Multiresolution Analysis and Construction of Wavelets 

 The basic principle of the multiresolution analysis (MRA) deals with the 

decomposition of the whole function space into individual subspaces  

𝑊𝑚 ⊂ 𝑊𝑚+1 [5, 6, 7, 18, 19, 25]. 

Definition (3.1) [9] 

The space spanned by basis function {𝜙𝑖(𝑡)} is 

𝑠𝑝𝑎𝑛 {𝜙𝑖(𝑡)} = ∑𝑐𝑖 𝜙𝑖(𝑡)    𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑖 . 

Definition (3.2) 

The wavelet set {𝜓𝑎,𝑏} forms an orthogonal system if  
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< 𝜓𝑎,𝑏 , 𝜓𝑎,𝑐 > =  ∫𝜓𝑎,𝑏 (𝑡) 𝜓𝑎,𝑐(𝑡)𝑑𝑡 = 0   ,     𝑏 ≠ 𝑐 

 If in addition  

< 𝜓𝑎,𝑏 , 𝜓𝑎,𝑐 > =  ∫𝜓𝑎,𝑏 (𝑡) 𝜓𝑎,𝑐(𝑡)𝑑𝑡 = 1  

then the system is called orthonormal. 

Definition (3.3) 

Given {𝜓𝑎,𝑏(𝑡)} is an orthogonal system, we call it complete if a function 

𝑓(𝑡) satisfies < 𝑓,𝜓𝑎,𝑏 > = 0 implies that 𝑓 ≡ 0, or more precisely, that  

‖𝑓‖2 = ∫𝑓2(𝑡) 𝑑𝑡 = 0 . 

Definition (3.4) [6, 18] 

A multiresolution analysis (MRA) in 𝐿2(ℛ) is an increasing sequence of 

closed subspaces 𝑊𝑗  , 𝑗 ∈ ℤ, 𝑖𝑛 𝐿
2(ℛ)   

 . . ⊂ 𝑊0  ⊂  𝑊1 ⊂ 𝑊2 ⊂ 𝑊3 ⊂..  

satisfying the properties: 

1. 𝑊𝑗 ⊂ 𝑊𝑗+1 

2. Dilation property 𝑓(𝑡) ∈ 𝑊𝑗 ↔ 𝑓(2𝑡) ∈ 𝑊𝑗+1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ ℤ  

3. Intersection property: 

lim
𝑗→+∞

𝑊𝑗 =⋂𝑊𝑗
𝑗∈ℤ

= {0}. 

4. Density Property : 
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lim
𝑗→ −∞

𝑊𝑗 =⋃𝑊𝑗
𝑗∈ℤ

̅̅ ̅̅ ̅̅ ̅̅
= 𝐿2(ℛ) 

     means ⋃ 𝑊𝑗𝑗∈ℤ   is dense in 𝐿2(ℛ). 

5. Existence of a scaling function. There exists a function 𝜙 ∈ 𝑊0 such 

that { 𝜙(𝑥 − 𝑚) ∶ 𝑚 ∈ ℤ }  is an orthonormal basis for 𝑊0 . 

𝑊0 = 𝑠𝑝𝑎𝑛  {𝜙(𝑥 −𝑚)} 

𝑊0 = { ∑𝛽𝑘
𝑘∈ℤ

 𝜙(𝑥 − 𝑚) ∶  {𝛽𝑘}𝑘∈ℤ  ∈  𝑙
2(ℤ)} 

the function 𝜙 is called the scaling function or father wavelet of the given 

MRA. 

6. For every wavelet 𝜓, we can consider 𝑊𝑗 ∈ 𝐿
2(ℛ) , ∀ 𝑗 ∈ Ζ,  

𝑊𝑗 = ⋯+ 𝑉𝑗−2 + 𝑉𝑗−1  and  𝑊𝑗+1 = 𝑊𝑗 + 𝑉𝑗  , 𝑗 ∈ Ζ . 

Condition 4 means that for any ∈ 𝐿2(ℛ) , there exists a sequence 

{𝑓𝑚}𝑚=1
∞  such that each 𝑓𝑚 ∈ ⋃ 𝑊𝑗𝑗∈ℤ   and  {𝑓𝑚}𝑚=1

∞  converges to 𝑓 in 

𝐿2(ℛ) , that is , ‖𝑓𝑚 − 𝑓‖ → 0  𝑎𝑠 𝑚 → ∞. 

In condition 5, we have a multiresolution analysis with a Riesz basis if we 

assume ( { 𝜙(𝑥 − 𝑚) ∶ 𝑚 ∈ ℤ } ) a Riesz basis for 𝑊0 

 Condition 2 implies that  

𝑓(𝑥) ∈ 𝑊𝑗  ↔ 𝑓(2𝑚𝑥) ∈ 𝑊𝑗+𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗,𝑚 ∈ ℤ 

in particular, 
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𝑓(𝑥) ∈ 𝑊0  ↔ 𝑓(2𝑗𝑥) ∈ 𝑊𝑗 

The set of all possible approximations of functions at the resolution 2−𝑗 

represents the space 𝑊𝑗. MRA is then obtained by computing the 

approximation of signals at various resolutions with orthogonal projections 

onto different spaces  {𝑊𝑗}𝑗∈Ζ . 

In order to calculate the approximation, the orthogonal basis of each space 

𝑊𝑗 is generated by dilating and translating a single function 𝜙 called 

scaling function, 𝑖. 𝑒. 

𝜙𝑗,𝑚 = 2− 
𝑗
2 𝜙(2−𝑗𝑡 − 𝑚)    ,𝑚 ∈ ℤ                            (3.1)  

Defining the orthonormal projection operator 𝑃𝑗 from 𝐿2(ℛ) onto  𝑊𝑗 by 

𝑃𝑗(𝑓)(𝑥) = ∑ < 𝑓,𝜙𝑗,𝑘 >

𝑘∈ℤ 

 𝜙𝑗,𝑘 (𝑥). 

we have two cases: First, if the resolution 2−𝑗 goes to 0, then the 

condition(3) implies that we lose all the details of 𝑓 and 

lim
𝑗→ +∞

‖𝑃𝑗  𝑓‖ = 0 

Second, if the resolution 2−𝑗 goes to +∞, then the property (4) ensures that  

lim
𝑗→ −∞

𝑃𝑗  𝑓 = 𝑓  𝑖𝑛 𝐿
2(ℛ) , lim

𝑗→ −∞
‖𝑓 − 𝑃𝑗  𝑓‖ = 0 
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If we replace 2−𝑗  by  2𝑗 in Eq.(3.1), then we have 

lim
𝑗→ +∞

𝑃𝑗(𝑓) = 𝑓      𝑎𝑛𝑑     lim
𝑗→ −∞

𝑃𝑗  (𝑓) = 0 

The projection 𝑃𝑗(𝑓) can be considered as an approximation of 𝑓 at the 

scale 2− 𝑗 . 

The real importance of a multiresolution analysis lies in the simple fact that 

it enables us to construct an orthonormal basis for 𝐿2(ℛ) [1]. 

In order to prove this statement, first assume that {𝑊𝑚} is a multiresolution 

analysis. Since 𝑊0  ⊂  𝑊1 , define 𝑉0 as the orthogonal complement of  𝑊0  

in  𝑊1 , that is , 𝑊1 = 𝑊0 ⨁ 𝑉0. 

Since, 𝑊𝑚  ⊂  𝑊𝑚+1 , define  𝑉𝑚 as the orthogonal complement of 𝑊𝑚 in 

𝑊𝑚+1 for every 𝑚 ∈ ℤ  so that we have 

𝑊𝑚+1 = 𝑊𝑚⨁ 𝑉𝑚     𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 ∈ ℤ    

 Since 𝑊𝑚  → {0}  as  𝑚 →  − ∞ , we see that  

𝑊𝑚+1 = 𝑊𝑚⨁ 𝑉𝑚     =⨁𝑉𝑙
𝑙= −∞

∞

   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ ℤ  

Since ⋃ 𝑊𝑗𝑗∈ℤ   is dense in 𝐿2(ℛ) , we may take the limit as 𝑚 → ∞ to 

obtain  

𝐿2(ℛ) =⨁𝑉𝑙
𝑙= −∞

∞

 

where ⊕ means direct sum. 
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To find an orthonormal wavelet, therefore, all we need to do is to find a 

function 𝜓 ∈ 𝑉0 such that { 𝜓(𝑥 − 𝑘) ∶  𝑘 ∈ ℤ } is an orthonormal basis for 

𝑉0 . In fact, if this is the case, then  

{ 𝜓𝑗,𝑘 (𝑥) = 2
𝑗
2 𝜓(2𝑗𝑥 − 𝑘) ∶  𝑘 ∈ ℤ  } 

is an orthonormal basis for 𝑉𝑗  for all 𝑗 ∈ ℤ due to the condition in the 

definition of multiresolution analysis and definition of 𝑉𝑗 . 

hence  

{ 𝜓𝑗,𝑘 (𝑥) = 2
𝑗
2 𝜓(2𝑗𝑥 − 𝑘) ∶  𝑘, 𝑗 ∈ ℤ  } 

is an orthonormal basis for 𝐿2(ℛ) , which shows that 𝜓 is an orthonormal 

wavelet on ℛ.  

 

Daubechies has constructed, for an arbitrary integer N, an orthonormal 

basis for 𝐿2(ℛ) of the form 
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𝜓𝑗,𝑘 (𝑥) = 2
𝑗
2 𝜓(2𝑗𝑥 − 𝑘) ∶  𝑘, 𝑗 ∈ ℤ 

that satisfies the following properties [1, 5]: 

1. 𝑠𝑢𝑝𝑝 (𝜓𝑁) = [−𝑁 + 1 , 𝑁] 

2. 𝜓𝑁 has 𝜆𝑁 continuous derivatives for large 𝑁 , where 

𝜆 = 1 −
𝑙𝑛3

𝑙𝑛4
 ≅  .2075 

3. 𝜓𝑁 has 𝑁 vanishing moments  

∫ 𝑥𝑘
∞

−∞

𝜓(𝑥)𝑑𝑥 = 0   𝑓𝑜𝑟 𝑘 = 0,1,…… ,𝑁. 

3.3  Wavelets and Differential Equations 

  We consider the class of ordinary differential equations of the form 

   𝐿 𝑣(𝑥) = 𝑓(𝑥)        𝑓𝑜𝑟     𝑥 ∈ [0,1]                            (3.2)  

 where 𝐿 is called differential operator, represented as a finite linear 

combination and its derivatives containing higher degree, 𝐿 is denoted by 

𝐿 =∑𝑐𝑗(𝑥)

𝑚

𝑗=0

𝐷𝑗 

where 𝑐𝑗(𝑥) are the coefficients of the operator, and with appropriate 

boundary conditions on 𝑣(𝑥) for 𝑥 = 0,1. [1, 18, 23]. 

Definition (3.5) [1, 23] 

Let 𝐵 be an 𝑚 ×𝑚 matrix. Define ‖𝐵‖ the norm of 𝐵 by 

‖𝐵‖ = 𝑆𝑢𝑝
‖𝐵𝑥‖

‖𝑥‖
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where the supremum is taken over all nonzero vectors in 𝐶𝑚. Equivalently, 

‖𝐵‖ = 𝑆𝑢𝑝 { ‖𝐵𝑥‖ ∶ ‖𝑥‖ = 1 , 𝑥 ∈ 𝐶𝑚 } 

Definition (3.6) [32] 

Let 𝐵 be an 𝑚 ×𝑚 matrix. Define 𝐶#(𝐵) , the condition number of the 

matrix 𝐵 by 𝐶#(𝐵) = ‖𝐵‖ ‖𝐵
−1‖ 

If  𝐵 is not invertible , the condition number of the matrix 𝐵 equals ∞ . 

Note that 𝐶#(𝐵) is scale invariant, 𝑖. 𝑒 , for 𝑐 ≠ 0 , 

𝐶#(𝑐𝐵) = 𝐶#(𝐵) 

Definition (3.7) [28] 

The transpose of 𝐵 is 𝐵𝑇 where 𝐵𝑇 = {𝑏𝑗𝑖  } . Thus if 𝐵 is 𝑛 × 𝑝 the 

transpose 𝐵𝑇 is 𝑝 × 𝑛 with 𝑖, 𝑗 element equal to the 𝑗, 𝑖 element of 𝐵. 

Definition (3.8) [28] 

The conjugate transpose of 𝐵 is 𝐵∗ where 𝐵∗ = { 𝑏̅𝑗𝑖  }, and 𝑏̅ is the 

complex conjugate of 𝑏 . Thus if the order of 𝐵 𝑖𝑠 𝑛 × 𝑝, the conjugate 

transpose 𝐵∗, is 𝑝 × 𝑛 with 𝑖, 𝑗 element equal to the complex conjugate of 

the 𝑗, 𝑖 element of 𝐵. 

If 𝐵 is a matrix with real elements then 𝐵∗ = 𝐵𝑇 . 

𝐵 is normal if 𝐵𝐵∗ = 𝐵∗𝐵 . 
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Lemma (3.1) [1] 

Suppose that B is an 𝑚 ×  𝑚 normal invertible matrix. Let 

|𝜆|𝑚𝑎𝑥 = max  { |𝜆| ∶  𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵 } 

and 

|𝜆|𝑚𝑖𝑛 = min  { |𝜆| ∶  𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵 } 

𝐶#(𝐵) =
|𝜆|𝑚𝑎𝑥
|𝜆|𝑚𝑖𝑛

 

3.3.1  Wavelet–Galerkin Method for Differential Equations 

The classical Galerkin methods have the disadvantage that the stiffness 

matrix becomes ill conditioned as the problem size grows. To overcome 

this disadvantage, we use wavelets as basis functions in a Galerkin method. 

Then, the result is a linear system that is sparse because of the compact 

support of the wavelets, and that, after preconditioning, it has a condition 

number independent of problem size because of the multiresolution 

structure [1, 18, 19, 23]. 

We consider the class of ordinary differential equations ( known as Sturm–

Liouville equations ) of the form [17, 18] 

𝐿𝑣(𝑡) =  − 𝑐(𝑡)𝑣́́(𝑡) − 𝑐́(𝑡)𝑣́(𝑡) + 𝑑(𝑡)𝑣(𝑡)                  (3.3) 

𝐿𝑣(𝑡) =  − 
𝑑

𝑑𝑡
 (𝑐(𝑡)

𝑑𝑣

𝑑𝑡
) + 𝑑(𝑡)𝑣(𝑡) = 𝑓(𝑡) , 0 ≤ 𝑡 ≤ 1  

with Dirichlet boundary conditions 
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𝑣(0) = 𝑣(1) = 0 

Let 𝑐(𝑡), 𝑑(𝑡) 𝑎𝑛𝑑 𝑓(𝑡) be real-valued functions, such that 𝑓(𝑡) 𝑎𝑛𝑑 𝑑(𝑡) 

are continuous functions and the function 𝑐(𝑡) has a continuous derivative 

on [0,1] . 

Then, there exist finite constants  𝐴1 , 𝐴2 , 𝐴3  such that [20] 

 0 ≤ 𝐴1 ≤ 𝑐(𝑡) ≤ 𝐴2      𝑎𝑛𝑑      0 ≤ 𝑑(𝑡) ≤ 𝐴3       ∀𝑡 ∈ [0,1]   

the operator is called uniformly elliptic. 

Note that 𝐿2[0,1] is a Hilbert space with inner product  

< 𝑓, 𝑔 > =  ∫𝑓(𝑡)

1

0

 𝑔(𝑡)̅̅ ̅̅ ̅̅  𝑑𝑡 

 where 𝑔(𝑡)̅̅ ̅̅ ̅̅  is the complex conjugate of 𝑔(𝑡). 

For the Galerkin method, we suppose that {𝑢𝑗}𝑗  is a complete orthonormal 

system (orthonormal basis) for 𝐿2[0,1] , and that every 𝑢𝑗 is 𝐶2 on [0,1] 

and it satisfies  

𝑢𝑗(0) = 𝑢𝑗(1) = 0                         (3.4) 

we select some finite set Γ of indices 𝑗 and consider the subspace 

𝑆 = 𝑆𝑝𝑎𝑛 { 𝑢𝑗 ∶ 𝑗 ∈ Γ} 

𝑖. 𝑒  the set of all finite linear combination of the elements {𝑢𝑗} , 𝑗 ∈ Γ . 

looking for an approximation for 𝜐𝑠 of the exact solution 𝑣 of the equation 

(3.3) in the form [23] 
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𝑣𝑠 =∑𝑥𝑘
𝑘∈Γ

𝑢𝑘   ∈ 𝑆                 (3.5) 

where each 𝑥𝑘 is a scalar. Our criterion for determining the coefficients 𝑥𝑘  

is that 𝑣𝑠 should behave like the true solution 𝑣 on the subspace 𝑆  , that is,  

< 𝐿 𝑣𝑠, 𝑢𝑗 >  =  < 𝑓, 𝑢𝑗 >     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ Γ               (3.6) 

By linearity, it follow that   

< 𝐿 𝑣𝑠, 𝑔 >  =  < 𝑓, 𝑔 >       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝑆 

Note that the approximate solution 𝑣𝑠 automatically satisfies the boundary 

conditions 𝑣𝑠(0) = 𝑣𝑠(1) = 0, because of equation (3.4). Using these 

results we get 

< 𝐿 ( ∑𝑥𝑘
𝑘∈Γ

𝑢𝑘  ) , 𝑢𝑗  > = < 𝑓, 𝑢𝑗 >     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ Γ 

and if we substitute equation (3.5) in (3.6) then we obtain 

∑< 𝐿 𝑢𝑘 , 𝑢𝑗 > 𝑥𝑘
𝑘∈Γ

= < 𝑓 , 𝑢𝑗 >         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ Γ        (3.7) 

Let 𝑥 denote the vector (𝑥)𝑘∈Γ , and 𝑦 be the vector (𝑦𝑘)𝑘∈Γ , where     

𝑦𝑘 = < 𝑓 , 𝑢𝑗 > , and let 𝐴 be the matrix with rows and columns indexed 

by Γ, that is, 𝐴 = [ 𝑎𝑗,𝑘  ]𝑗,𝑘∈Γ  , where 

𝑎𝑗,𝑘 = < 𝐿 𝑢𝑘 , 𝑢𝑗 > . 

Thus , (3.7) is linear system of equations 

∑𝑎𝑗,𝑘
𝑘∈Γ 

 𝑥𝑘 = 𝑦𝑗      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ Γ, 𝑜𝑟    𝐴𝑥 = 𝑦          (3.8) 
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In the Galerkin method, for each subset Γ we obtain an approximation   

𝑣𝑠 ∈ 𝑆 , by solving the linear system (3.8) for x and using these components 

to determine 𝑣𝑠 by (3.5). We expect that as we increase our set Γ  in some 

systematic way, our approximation 𝑣𝑠 will converge to the exact solution 𝑣. 

The nature of the linear system depends upon choosing a wavelet basis for 

the Galerkin method. There are two properties that the matrix 𝐴 in the 

linear system (3.8) should have [20]: 

First, 𝐴  should have a small condition number to obtain stability of the 

solution under small perturbations in the data. Second, 𝐴 should be sparse 

for quick calculations, which means that A should have a high proportion 

of entries that are 0 . 

The condition number of 𝐴 measures how unstable the linear system   

𝐴𝑥 = 𝑦 is under perturbation of the data y. In applications, a small 

condition number (  𝑖. 𝑒.  near 1 ) is desirable.  

If the condition number of 𝐴 is high, it would be convenient to replace the 

linear system 𝐴𝑥 = 𝑦 by an equivalent system 𝑀𝑧 = 𝜐 whose matrix 𝑀 has 

a low condition number. 

Now, let 𝜙𝑗,𝑘(𝑡) =  2
𝑗/2 𝜙(2𝑗  𝑡 − 𝑘)  be a wavelet basis for 𝐿2([0,1]) with 

boundary condition 

𝜙𝑗,𝑘(0) =  𝜙𝑗,𝑘(1) = 0 

for each (𝑗, 𝑘) ∈ Γ ,  𝜙𝑗,𝑘 𝑖𝑠 𝐶
2. 
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The scale of 𝜙 approximates 2−𝑗 and is centralized near point 2−𝑗𝑘 and 

equates to zero outside the interval centred at 2−𝑗𝑘 of length proportional 

to 2−𝑗 . 

In wavelet Galerkin method, equations (3.5) and (3.6) may thus be replaced 

by  

𝑣𝑠 = ∑ 𝑥𝑗,𝑘
𝑗,𝑘∈Γ

𝜙𝑗,𝑘 

and  

∑ < 𝐿

𝑗,𝑘∈Γ

𝜙𝑗,𝑘  , 𝜙𝑙,𝑚 > 𝑥𝑗,𝑘 = < 𝑓, 𝜙𝑙,𝑚 >        ∀𝑙,𝑚 ∈ Γ 

So that  𝐴𝑋 = 𝑌 , where   

𝐴 =  [𝑎(𝑙,𝑚);(𝑗,𝑘)](𝑙,𝑚),(𝑗,𝑘)∈Γ  , 𝑋 = (𝑥𝑗,𝑘)(𝑗,𝑘)∈Γ    , 𝑌 = (𝑦𝑙,𝑚)(𝑙,𝑚)∈Γ  

Now, in    𝑎(𝑙,𝑚);(𝑗,𝑘) = < 𝐿𝜙𝑗,𝑘  , 𝜙𝑙,𝑚 >   , 𝑦𝑙,𝑚 = < 𝑓 , 𝜙𝑙,𝑚 >, The pairs 

(𝑙,𝑚) and (𝑗, 𝑘) represent respectively rows and columns of 𝐴. 

Consider 𝐴 to be sparse. Represent 𝐴𝑋 = 𝑌 by equivalent 𝑀𝑍 = 𝑉 . In 

which case 𝑀 has relatively low condition number, if 𝐴 has not. This 

system is now well conditioned. Again 𝑀 to be sparse is desirable. 

The matrix 𝑀 has condition number bounded independently of  Γ. So we 

increase Γ  to approximate solution with more accuracy, the condition 

number maintains its bounded ness [23]. 
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3.4  Solution of Partial Differential Equations Using Wavelets 

  For using Wavelet-Galerkin method for PDEs, we consider the following 

time dependent problem [18]  

𝑢𝑡(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) , 𝑥 ∈ Γ  , 𝑡 > 0               (3.9) 

with boundary conditions on 𝑢(𝑥, 𝑡). 

we approximate the solution of (3.9) in the following form –by using 

wavelets Galerkin method- 

𝑢(𝑥, 𝑡) = ∑ 𝑎𝑗,𝑘(𝑡)

(𝑗,𝑘)∈Λ

 𝜓𝑗,𝑘(𝑥)                                  (3.10) 

substituting the solution (3.10)  in eq. (3.9), we get 

∑
𝑑

𝑑𝑡
(𝑗,𝑘)∈Λ

 𝑎𝑗,𝑘(𝑡)𝜓𝑗,𝑘(𝑥) + 𝐿 ∑ 𝑎𝑗,𝑘(𝑡)

(𝑗,𝑘)∈Λ

 𝜓𝑗,𝑘(𝑥) = 𝑓(𝑥, 𝑡)  

then, applying the orthogonality condition, we have 

∑
𝑑𝑎𝑗,𝑘(𝑡)

𝑑𝑡
(𝑗,𝑘)∈Λ

< 𝜓𝑗,𝑘, 𝜓𝑙,𝑚 > + ∑ 𝑎𝑗,𝑘(𝑡)

(𝑗,𝑘)∈Λ

< 𝐿𝜓𝑗,𝑘, 𝜓𝑙,𝑚 > = < 𝑓, 𝜓𝑙,𝑚 >    (3.11) 

𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑙, 𝑚) ∈ Λ 

The system (3.11) is a system of linear or nonlinear ODEs, and we get two 

assumptions: 

1. If we get a linear system then we can solve it by Runge- Kutta 4th 

order method.   

2. If we get a non linear system, then we can't solve it by 𝑅𝐾4, and be 

complicated due to the product of integrals called connection 

coefficients. 
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Chapter Four 

Applications of Wavelets 

4.1 Filter Bank 

4.2 Signals Decomposition and Reconstruction 
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Chapter Four 

Applications of Wavelets 

In this chapter we will consider some applications of wavelets. 

4.1  Filter Bank 

A filter bank is a set of filters, which split up the signal’s frequency 

components into different signals, each with a subset of frequencies. A 

simple filter bank consists of one high pass filter and one low pass filter, 

both having a cut off frequency at half the frequency bandwidth. Applying 

this filter bank to signal results into two new signals, one with the lower 

half frequencies and one with the upper half frequencies. 

 

Fig. (4.1) Simple filter bank 

where 𝑥 is input signal, and 𝑦0 , 𝑦1 are output signals. 𝐻1 and 𝐻0 are high 

and low pass filters, respectively. To construct a filter bank with more than 

two frequency bands, the output signal 𝑦0 could be filtered again by two 

filters, one low pass filter and a high pass filter which divide the bands up 

again into two bands. The number of samples (lengths of output signals)  

have doubled. The solution is to downsample (decimates) [2, 31]. The 

downsampling operation, which is done in the analysis bank, shall remove 
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the odd-numbered components and save only the even-numbered 

components of the two outputs, as shown in Eq. (4.1) 

(↓ 2)

[
 
 
 
 
 
 

.
𝑣(−2)
𝑣(−1)

𝑣(0)

𝑣(1)

𝑣(2)
. ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

.
𝑣(−4)

𝑣(−2)

𝑣(0)

𝑣(2)

𝑣(4)
. ]

 
 
 
 
 
 

                                               (4.1) 

The downsampling operator is usually denoted by ↓ 2 . Decimating results 

in a signal with half the number of samples that represent the same time 

interval as the original signal. Thus, the sample rate is halved, too. 

 

𝑥  

 

 

 

 

  

input          analysis        decimators      expandors        re-synthesis         output 

Fig. (4.2) Two-Channel Analysis/Re-Synthesis Filter Bank. 

The decimated output can then be filtered again with the same filters to 

split it up into lower and higher frequency contents. 

For reconstruction, up sampling (expanding) must be done in order to undo 

the decimation by inserting a zero after each sample. Introducing zeros 

𝐻0 
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between samples is to create a longer signal. Additionally, two re-synthesis 

filters 𝐹0 and 𝐹1 are needed to smooth out the zeros, reversing the analysis 

of low pass and high pass filters. The resulting samples are obtained by 

adding the outputs of the re-synthesis filters. 

Applied to a half- length vector 𝑣, up sampling inserts zeros as in Eqn. 

(4.2), where ↑ 2 indicates up sampling [31]. 

(↑ 2)

[
 
 
 
 
.

𝑣(0)

𝑣(1)

𝑣(2)
. ]
 
 
 
 

=

[
 
 
 
 
 

.
𝑣(0)
0

𝑣(1)
0

𝑣(2)
. ]
 
 
 
 
 

                                                      (4.2) 

Figure (4.2) shows a two-channel filter bank analysis followed by re-

synthesis. 

As discrete filters do not have an ideal cut off, the low pass and high pass 

filters’ frequency responses overlap: the low pass lets through frequency 

components of the high pass band, conversely, the high pass filter lets 

through low frequencies, see Figure (4.3). This aspect, causes aliasing 

when down sampled. The solution for perfect reconstruction is to design 

the reconstruction filters 𝐹0 and 𝐹1 in such a way that they cancel out the 

aliasing of the analysis filters. 
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Fig (4.3) Overlapping low pass and high pass filter responses 

4.2  Signals Decomposition and Reconstruction 

4.2.1  Why Developing Wavelets ? 

Approximating signal data with functions is not a new concept. Joseph 

Fourier developed a method using sines and cosines to represent other 

functions in the early 1800’s. Fourier analysis is very good for analyzing 

signal data that does not change with time or involve jump discontinuities, 

because of the smooth and periodic behavior of sines and cosines. The 

graph on the right in Figure 4.4 displays a more complex signal that 

includes many jump discontinuities and appears to be dampening with 

time. The graph on the left in Figure 4.4 displays a well behaved signal, 

which might represent sound from a musical instrument. Fourier analysis 

would easily approximate the signal on the left, but not the one on the right 

[12]. 
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                    Signal                                                             Complex signal 

Figure 4.4 

4.2.2  The Haar Wavelet 

The Haar scaling function and wavelet are defined respectively as: 

𝜙(𝑥) = {
1   𝑖𝑓   0 ≤ 𝑥 < 1
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             𝑎𝑛𝑑        𝜓(𝑥) =

{
 
 

 
 1   𝑖𝑓   0 ≤ 𝑥 <

1

2

−1   𝑖𝑓  
1

2
≤ 𝑥 < 1

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

      

Figure 4.5   Haar Wavelet 
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Figure 4.5 shows the Haar wavelet. The Haar wavelet and Haar scaling 

function are used to generate sets of basis functions, which are used to 

break up or reconstruct a signal. The basis functions are similar to the 

original scaling function and wavelet, except that they are shifted and have 

different heights and widths. For example, 𝜙(𝑥 − 𝑛) has the same graph as 

𝜙(𝑥) but shifted to the right 𝑛 units, 𝑚𝜙(𝑥) has the same graph as 𝜙(𝑥) 

but with height 𝑚 instead of 1 , and  𝜙(𝑏𝑥) has the same graph as 𝜙(𝑥) but 

takes value 1 for the range [0,
1

𝑏
) and 0 elsewhere. We can rewrite the Haar 

wavelet using the scaling function by combining the previous concepts as: 

𝜓(𝑥) = 𝜙(2𝑥) − 𝜙(2𝑥 − 1) 

 where 𝜙(𝑥) 𝑎𝑛𝑑 𝜙(2𝑥 − 1) are orthogonal. 

Figure 4.6 explains how the Haar scaling function can be used to 

approximate a signal. The right side of Figure 4.6 displays one possible 

approximation of the signal on the left using building blocks based on the 

Haar scaling function. The left side of Figure 4.6 shows a signal that 

contains a small amount of noise. Although this is a simple example, it 

highlights basic concepts of approximating a signal using a multiresolution 

analysis. 

The Haar scaling function and wavelet are discontinuous, and do not 

approximate smooth signals well. Daubechies developed wavelets that are 

localized in behavior, continuous, and yield better approximations to 

smooth signals [12]. 
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Figure 4.6 

4.2.3 Multiresolution Analysis and the Discrete Wavelet Transform  

How can we use the Haar wavelet and scaling functions to actually analyze 

a signal ? Let's use the points of data 𝑎3 = [5   6   25   30   20   7    25  5] 

to perform a discrete wavelet transform to illustrate the concepts behind a 

multiresolution analysis [36]. 

 Figure 4.7:  A plot of 𝑎3 
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Wavelet Decomposition Algorithm 

Two filters are necessary to decompose a signal using the wavelet 

decomposition algorithm [36]. The low pass filter, 𝐿, is for averaging, and 

the high pass filter, 𝐻, is for differencing. Deriving the low and high pass 

filters based on the Haar scaling function and wavelet yields 𝐿 = [0.5  0.5] 

and 𝐻 = [−0.5  0.5].  

Step 1: Calculate the convolutions of 𝐿 and 𝐻 with the signal. By Matlab 

[24] we get : 

𝑐𝑜𝑛𝑣(𝐿, 𝑎3) = [2.5  5.5  15.5  27.5  25  13.5  16  15  2.5] 

𝑐𝑜𝑛𝑣(𝐻, 𝑎3) = [−2.5 − .5 − 9.5 − 2.5   5   6.5 − 9  10  2.5] 

Step 2: downsampling, which means discarding the odd numbered 

coefficients. The resulting vectors, 𝑎2 and 𝑏2 are respectively referred to as 

the scaling and wavelet coefficients. 

𝑎2 = [5.5  27.5  13.5  15] 

𝑏2 = [−.5 − 2.5  6.5  10] 

The first coefficient in 𝑎2 is 5.5 or  
5+6

2
 , and the second coefficient is 27.5  

or  
25+30

2
 . The 𝑐𝑜𝑛𝑣.  of 𝑎3 and the low pass filter yields the averages of 

neighboring data points. The first coefficient of  𝑏2 is −.5 which is 

difference of 5 𝑎𝑛𝑑 6 with their average 5.5 . The last coefficient in 𝑏2 is 

10 which is the difference of 25 and 5, with their averages 15 . The 
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𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  of 𝑎3 and the high pass filter yielded the differences of 

neighboring data points and their average. 

 The process continues by decomposing the scaling coefficient vector using 

the same 2 steps, and finishes when 1 coefficient remains. 

𝑎1 = [16.5    14.25] 

𝑏1 = [−11   − .75] 

𝑎0 = [15.375] 

𝑏0 = [1.125] 

It is not a coincidence that the original signal data, 𝑎3, has 23 = 8 data 

points, or that the first level decomposition contains 22 = 4 coefficients. 

All signals that are analyzed using a discrete wavelet transform must have 

length equal to some power of 2, which is referred to as dyadic length. 

Why not stop with the first level decompositions, 𝑎2 and 𝑏2?  The largest 

coefficients in 𝑏2 are 6.5 and 10, which are associated with the changes 

from fifth data point, 20, to the sixth data point, 7, and from the seventh 

data point, 25, to the eighth data point, 5. If the goal is to detect large 

changes in the signal, then the first decomposition missed the change from 

the second data point, 6, to the third data point, 25. The change is detected 

in the largest coefficient of 𝑏1, −11, which is associated with the 

coefficients 5.5 and 27.5 in 𝑎2 , or the shift from 6 to 25 in the original 

signal. Multiresolution analysis uses different scales of resolution to build a 

complete picture of the original signal. 
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Wavelet Reconstruction Algorithm 

A similar process can be used to rebuild the original signal using the 

wavelet reconstruction algorithm [36]. A new low pass filter, 𝐿𝑇, and a 

new high pass filter, 𝐻𝑇, are needed. 𝐿𝑇 = [1   1] and 𝐻𝑇 =  [1 − 1] 

based on the Haar scaling function and wavelet. 

Step 1: Up sample the scaling and wavelet coefficient vectors by adding 

zeros. 

𝑈𝑝(𝑎0) = [15.375     0] 

𝑈𝑝(𝑏0) = [ 1.125   0] 

Step 2: Calculate the convolutions of the scaling coefficients and 𝐿𝑇, and 

the wavelet coefficients and 𝐻𝑇. By Matlab we get : 

𝑐𝑜𝑛𝑣. (𝐿𝑇, 𝑈𝑝(𝑎0)) = [15.375     15.375] 

𝑐𝑜𝑛𝑣. (𝐻𝑇, 𝑈𝑝(𝑏0)) = [1.125  − 1.125] 

Step 3: Add the new average and difference vectors to yield the 

reconstructed  average vector, 𝑎1 

𝑟𝑎1 = [15.375     15.375] + [1.125  − 1.125] = [16.5    14.25] 

The reconstructed version of 𝑎1 and the difference vector, 𝑏1, can be used 

to reconstruct 𝑎2. 

𝑈𝑝(𝑟𝑎1) = [16.5   0   14.25  0] 

𝑈𝑝(𝑏1) = [−11   0  − .75   0] 
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𝑟𝑎2 =  𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑟𝑎1)) +  𝑐𝑜𝑛𝑣(𝐻𝑇, 𝑈𝑝(𝑏1))

=  [16.5   16.5    14.25    14.25] + [−11    11   − .75    .75]

=  [5.5    27.5    13.5    15] 

Finally, we can reconstruct the original signal. 

𝑟𝑎3 = 𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑟𝑎2)) +  𝑐𝑜𝑛𝑣(𝐻𝑇, 𝑈𝑝(𝑏2))

=  [5    6    25    30    20    7   25    5] 

There were 4 coefficients in 𝑏2, 2 coefficients in 𝑏1, and 1 coefficient in 𝑎0 

and 𝑏0. Eight coefficients from the wavelet decomposition were necessary 

to reconstruct the original signal, which contained 8 data points.  

Example (1) 

Wavelet Decomposition Algorithm 

Let  𝑏3 = [2   5   25   20   4   3   15   2]  

 

Figure 4.8: A plot of  𝑏3 
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and 𝐿 low pass filter, 𝐻 high pass filter 

𝐿 = [0.5   0.5] 

𝐻 = [−0.5    0.5] 

Calculate 𝑐𝑜𝑛𝑣 by Matlab [24] 

𝑐𝑜𝑛𝑣(𝐿, 𝑏3) = [1   3.5   15   22.5   12   3.5   9   8.5   1] 

𝑐𝑜𝑛𝑣(𝐻, 𝑏3) = [−1  − 1.5  − 10   2.5   8   0.5  − 6   6.5   1] 

again,  

𝑏2 = [3.5   22.5   3.5   8.5] 

𝑐2 = [−1.5   2.5   0.5   6.5] 

𝑏1 = [13   6] 

𝑐1 = [−9.5   − 2.5] 

𝑏0 = [9.5] 

𝑐0 = [3.5] 

Wavelet Reconstruction Algorithm 

𝐿𝑇 = [1   1] 

𝐻𝑇 = [1  − 1] 

𝑈𝑝(𝑏0) = [9.5   0] 

𝑈𝑝(𝑐0) = [3.5   0] 
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𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑏0)) = [9.5   9.5   0] 

𝑐𝑜𝑛𝑣(𝐻𝑇, 𝑈𝑝(𝑐0)) = [3.5  − 3.5   0] 

𝑟𝑏1 = [9.5   9.5   0] + [3.5  − 3.5   0] = [13   6   0] 

𝑈𝑝(𝑟𝑏1) = [13   0   6   0] 

𝑈𝑝(𝑐1) = [−9.5   0  − 2.5    0] 

𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑟𝑏1)) = [13   13   6   6   0] 

𝑐𝑜𝑛𝑣(𝐻𝑇, 𝑈𝑝(𝑐1)) = [−9.5   9.5  − 2.5   2.5   0]    

𝑟𝑏2 = 𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑟𝑏1)) + 𝑐𝑜𝑛𝑣(𝐻𝑇,𝑈𝑝(𝑐1)) 

[13   13   6   6   0] + [−9.5   9.5  − 2.5   2.5   0]   

= [3.5   22.5   3.5   8.5   0] 

𝑟𝑏3 = 𝑐𝑜𝑛𝑣(𝐿𝑇, 𝑈𝑝(𝑟𝑏2)) +  𝑐𝑜𝑛𝑣(𝐻𝑇,𝑈𝑝(𝑐2)) 

[3.5   3.5   22.5   22.5   3.5   3.5   8.5   8.5   0] + [−1.5   1.5   2.5  

− 2.5   0.5  − 0.5   6.5  − 6.5   0] 

= [2   5   25   20   4   3   15   2] 

we get the original signal. 

4.3  Audio Fingerprint 

Audio Fingerprint or content-based audio identification (CBID) has been 

studied since the 1990s. 
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An audio fingerprint can be seen as a short summary of an audio object 

using a limited number of  bits, 𝑖. 𝑒  a fingerprint function 𝐹 should map an 

audio subject 𝑋 consisting of a large number of bits into a fingerprint of 

only a limited number of bits. We can draw a map with hash functions 𝐻 

from object 𝑋 (large) to a hash value (small). 

Hash function allow comparison of two large subjects  𝑋 and 𝑌, by just 

comparing their respective hash value 𝐻(𝑋) and 𝐻(𝑌) [10, 30]. 

Definition (4.1) 

The formula of  Hanning Window is 

𝜔(𝑛) = {
0.5 ∗ (1 − cos (

2𝜋𝑛

𝑁 − 1
))     , 0 ≤ 𝑛 ≤ 𝑁 − 1

0                                       ,             𝑒𝑙𝑠𝑒
 

                          

Figure 4.9   Hanning Window 

There are various steps in audio fingerprint which are as follows [16, 26]: 

1𝑠𝑡 step : Pre-processing or Pretreatment: As the input to the algorithm, the 

audio file is given. The Pretreatment involves the conversion of audio 
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signal into mono signal, filtering using a low-pass filter, and down sampled 

whose down sampling frequency is 5KHZ. 

2𝑛𝑑  step : Framing, Windowing and Overlapping : The signal must be 

divided into a number of frames. The length of the frame is 0.375, using 

Hanning window, the overlap factor is p=28/32 .The number of frame 

depends on the audio. The rate at which frames are computed per second is 

called frame rate. A window function is applied to each block to minimize 

the discontinuities at the beginning and end.  

3𝑟𝑑  step : Decomposition: if the number of vanishing moments is 4 then we 

denote it by 𝑑𝑏4, using the wavelet based on 𝑑𝑏4 to decompose each frame 

of audio signal in 5 layer wavelet. We get a six components, one is 

approximation component 𝑐𝐴5 and five details components  

𝑐𝐷1, _ _ _ , 𝑐𝐷5. 

4𝑡ℎ step : we calculate the following [35]: 

1. The variance of the wavelet coefficients :  

The formula is :  

𝜎(𝑖, 𝑗) =
1

𝑁
 ∑(𝑐𝐷𝑗 − 𝑐𝐷̅̅̅̅ )

2
𝑁

𝑗=1

 

where  

𝑐𝐷̅̅̅̅ =∑∑𝑐𝐷𝑗

𝑁

𝑗=1

 

2. The zero crossing rate of wavelet coefficients : 
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The formula is : 

𝑧𝑐𝑟𝑚 =
1

2
∑|𝑠𝑖𝑔𝑛[𝑥(𝑛)] − 𝑠𝑖𝑔𝑛[𝑥(𝑛 − 1)]| 𝜔(𝑛 − 𝑚)

𝑚

 

where 𝜔(𝑛) is the window function, and 𝑁 is the length of window 

function, and 𝑥(𝑛) is the 𝑛𝑡ℎ value of the wavelet coefficients in the 𝑚𝑡ℎ 

frame, which separately correspond to 𝑐𝐴5 and 𝑐𝐷5, and 

𝑠𝑖𝑔𝑛 [𝑥(𝑛)] = {
1     𝑥(𝑛) ≥ 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3. The centroid of the wavelet domain 

The centroid of the wavelet domain is expressed as the center of energy 

distribution. In wavelet domain, the centroid of the audio signal changes 

with time, so it can be the characteristic of reflecting the non-stationarity of 

audio signal. 

The computational formula of the centroid is: 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑖|𝑥(𝑖)|2𝑁
𝑖=1

∑ |𝑥(𝑖)|2𝑁
𝑖=1

 

where 𝑥(𝑖) is the 𝑖𝑡ℎ wavelet coefficient. 

4. The energy of sub-band in wavelet domain  

The formula of calculating the energy of sub band [30] is as follows:  

𝑒𝑛𝑒𝑟𝑔𝑦 =
1

𝑁
∑|𝑥(𝑖)|2
𝑁

𝑖=1

 

 The change in amplitude of the audio signal is an important dynamic 

characteristic of the audio signal, and it can reflect the change of energy. 
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We can use the wavelet coefficients to measure the energy characteristics 

of audio because of the fact that the average rate of the wavelet coefficients 

corresponds to the average rate in time domain. 

The principle framework of the algorithm is shown in Fig. 4.10 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                          

Fig. 4.10 : Principle framework of the algorithm 
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We can summarize the previous steps as follows: 

The audio file is given as the input to the algorithm then we convert the 

audio into signals, then the signal is divided into a number of frames, next 

we decompose each frame of audio signal in 5 layer wavelet. Finally, we 

use the wavelet coefficient to compute the following parameters: variance, 

zero crossing rate, centroid and energy. 

Now, we apply these steps in Matlab  by: 

function [ output_args ] = matlab_code( input_args ) 
% Student Name: Noora Hazem Janem 
% Student ID: 11256149 
% An najah University 
% College of Science 
% Department of Mathematics 
% Supervisor: Prof. Naji Qatanani 

  
% This Matlab code has been developed for my master thesis entitled  
%" Analytical & Numerical Aspects of Wavelets " 

  
% The following MATLAB code is to read an audio, filter, framing, and 

apply 
% Wavelet decomposition on it, then we use the wavelet coefficients to 
% compute the following parameters: Variance, Zero Crossing, Centriod, 

& 
% Energy 

  
% Step 1: Read an audio from a spcified directory    
%[y, Fs] = wavread('C:\Users\My folder\Desktop\noora'); 

  
clc 
fileName='C:\Users\My folder\Desktop\noora'; 
[wave, fs, nbits]=wavread(fileName); 
fprintf('Information of the sound file "%s":\n', fileName); 
fprintf('Duration = %g seconds\n', length(wave)/fs); 
fprintf('Sampling rate = %g samples/second\n', fs); 
fprintf('Bit resolution = %g bits/sample\n', nbits); 

  

  
% Step 2: Pre-processing stage on the audio 
%y = decimate(wave,2); 

  

  
% Sampling frequency is 5 kHz 
Fs = 50e3; 
t = linspace(0,1,50e3); 
% Lowpass filter everything below 5 kHz 
% Specify the filter 
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hlpf = fdesign.lowpass('Fp,Fst,Ap,Ast',4e3,4.1e3,0.5,50,50e3); 
% Design the filter 
D = design(hlpf); 
% apply the filter 
y = filter(D,wave); 
% figure; 
% subplot(211) 
% plot(psd(spectrum.periodogram,wave,'Fs',Fs,'NFFT',length(wave))); 
% title('Original Signal PSD'); 
% subplot(212); 
% plot(psd(spectrum.periodogram,y,'Fs',Fs,'NFFT',length(wave))); 
% title('Filtered Signal PSD'); 

  

  
% Step 3: Break the signal into frames of frame length of 0.375 using 

hanning 
% window  
frame_len = 0.375; 
N = length(wave); 
num_frames = floor(N*frame_len); 

  
new_sig = zeros(N,1); 
count = 0; 
frame_len =3; 
for k = 1: num_frames 
    % Extract a frame of speech 
    frame = wave((k-1)*frame_len+1 : frame_len*k) 

     
    % Identify non silent frames by finding frames with max amplitude 

more 
    % than 0.03  
   % max_val = max(frame); 

     
   % if(max_val > 0.03) 
        %this frame is not silent 
        count = count +1; 
        new_sig((count-1)*frame_len + 1 : frame_len*count) = frame; 
  %  end 
end 

  

  
%subplot(211) 
figure,plot(t(1:length(wave)),wave(1:length(wave))); title('Original 

Waveform'); 
%subplot(212) 
figure,plot(t(1:length(wave)),y(388:length(wave)+387)); 

title('Filtered Waveform'); 

  

  
% Reload the original One-dimensional signals and then compute the 

number 
% of signals 
[h,w]=size(new_sig); 

  

  
% Perform one-dimensional decomposition at 5 layer wavelet of the 

signals  
% using db4  
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for i=1:h 
[c,l] = wavedec(new_sig(i),5,'db4') 
coeff_num = size(c,2); 
for j=1:coeff_num 
wavelet_coefficients(i,j)=c(1,j); 
end 
end 

  

  
% Compute the variance of the wavelet coefficients  
Variance = var(var(wavelet_coefficients)); 

  

  
% Now, we need to calculate the zero crossing value of the wavelet 
% coefficients 
ZeroCrossingRate = mean(mean(abs(diff(sign(wavelet_coefficients))))); 

  

  
% The centroid of the wavelet domain can be computed using the 

following 
% equation: 
Centroid = mean(mean(wavelet_coefficients)); 

  

  
% Computing or finding the energy of sub-band in the wavelet domain 

can be 
% achieved using the following equation: 
for i=1:h 
[Ea(i,:),Ed(i,:)] = wenergy(wavelet_coefficients(i,:),l); 
end 

  

  
% To find the mean of the energy corresponding to the wavelet 

coefficients 
% details, we use: 
energy = mean(mean(Ed)); 
end 

 

We read audio named noora in the previous code 

If we applied the 1𝑠𝑡 step and use low pass filter with down sampling 

frequency 5KHZ, then we get  

Duration = 0.121519 seconds 

Sampling  rate = 44100 samples / second 

Bit resolution = 16 bits / sample 
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we get from 2𝑛𝑑  𝑎𝑛𝑑 3𝑟𝑑 steps two graphs : the original waveform and the 

filtered waveform:  

 

a) Original Waveform 

 

b) Filtered Waveform 

Figure 4.11 : The Original Waveform and Filtered Waveform 
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From Figure 4.11, we got filtered waveform from the original waveform, 

such that Figure 4.11 (b) becomes smoother than Figure 4.11 (a).  

From 4𝑡ℎ step we get the following results: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1.0988 

𝑧𝑒𝑟𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.7146 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 0.0047 

𝑒𝑛𝑒𝑟𝑔𝑦 = 7.3362𝑒 − 032 

Note that:  

frame length =  0.375,  

number of frame of this audio  = 2009,  

number of signals ( ℎ ) = 6027, 

coefficient number for each frame = 33. 
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Conclusion 

The fundamental idea of wavelet transforms is the transformation that 

allows only changes in time extension, but not in shape. This is influenced 

by the choice of basis functions which satisfy that condition. 

The wavelet transform is more accurate than the Fourier Transform. The 

Fourier Transform cannot provide any information about the changes of the 

spectrum with respect to time. Fourier transform assumes that the signal is 

stationary. Hence, we use the wavelet transform because it is more suitable 

for analyzing the non stationary signal, since it preserves the quality of the 

signal. 

We have observed the importance of  wavelet transform in various 

applications. These applications include the audio fingerprint. By filtering 

and down sampling we have obtained a filtered waveform from the original 

waveform. In other words, we de-noise the noisy signal to become smooth.  
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