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Abstract 

The effects of a uniform external magnetic field, with strength parameter of 

h, on the magnetic properties of a two-dimensional square dipolar 

antiferromagnetic planar system, with sizes (104 × 104,64 × 64,32 × 32), 

have been determined for both zero and finite temperatures. In this study, 

the classical spins are confined to the plane of the system and interact 

through a nearest neighbor antiferromagnetic exchange interaction, the 

long-range dipolar interaction, and a uniform external magnetic field along 

the axis of the lattice. Throughout, the strength of the exchange interaction 

is assumed to be antiferromagnetic and fixed at −1.2g, where g is the 

strength of the dipolar interaction. At zero temperature, the ground state 

calculations show that the system switches from ferromagnetic phase (FE 

phase) to the dipolar antiferromagnetic phase (AF phase) at ho = 6.00g as 

the applied field is decreased. As the applied field is decreased further, the 

spin configuration starts to turn antiferromagnetically perpendicular to the 

applied field in a continuous manner. As the applied field goes to zero, the 

system favors the dipolar antiferromagnetic in which the spins are aligned 

perpendicular to the field (AF1 phase). At finite temperature, the magnetic 

phase diagram for the system has been determined as a function of both h 

and T using Monte Carlo simulations. At low temperatures, the results from 

simulations show that the system exhibits a first order transition from the 
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ferromagnetic phase to the dipolar phase (AF phase) as the field is 

decreased. When the applied field goes to zero, the system favors the 

dipolar phase in which the spins are ordered at   with the axis of the lattice 

(AF2 phase). At low fields, the Monte Carlo results indicate that the system 

exhibits a second order transition from the dipolar antiferromagnetic phase 

to the paramagnetic phase as the temperature is increased. However, at high 

fields and for low temperatures the system favors the ferromagnetic phase. 

As the temperature is increased the system gradually disorders. In addition, 

Monte Carlo simulation results show that there exists a range of the 

magnetic field values in which the system exhibits a first order 

reorientation transition from the dipolar antiferromagnetic phase to the 

ferromagnetic phase as the temperature is increased.                                     
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Chapter 1 

Introduction 

Along the past two decades, there has been an increasing interest in 

reduced dimensional magnetic systems, stimulated by the wide use of such 

materials in industrial applications and manufacturing processes. One 

important class of reduced dimensional magnetic materials is quasi two-

dimensional systems. The attractive features of this class of materials for 

both scientific and technological applications are referred to their magnetic 

properties, which are different from those of their bulk counterparts. This 

has recently led to significant technological applications such as magnetic 

sensors, recording and storage media [1, 2] . 

Three important magnetic systems can be considered to be quasi-

two-dimensional. The first is ultra thin magnetic films. Ultra thin magnetic 

films consist of several mono-layers of magnetic atoms deposited on a non-

magnetic substrate, such as Ni on Cu(001) substrate [3, 4]. The magnetic 

spins of such films are observed to be ordered at low temperatures, and 

show a variety of interesting ordered phases. Among these are the 

reorientation transitions of magnetization from out-of-plane to in-plane 

either above critical temperature at constant film thickness [5, 6, 7, 8], or 

above critical film thickness at constant temperature [5, 6, 9, 10, 11]. A 

transition from in-plane to out-of-plane has also been observed, as in Ni on 

Cu(001) substrate and Gd on W(110) substrate [12, 13, 14]. A wide variety 

of magnetic patterns can also be stabilized in ultra thin magnetic films, 
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because of the interplay between the perpendicular induced surface 

anisotropy, the exchange interaction, and the long-range dipolar interaction 

[15, 16, 17]. 

Nowadays ferromagnetic thin films are of great interest due to 

several reasons. First, their wide range of applications in electronics, data 

storage, processing, recording media, catalysis, biotechnology, and 

pharmacology [18, 19, 20]. Second, advances in film growth methods [9, 

21]. Third, enhancements in characterization methods [5, 7, 8, 22]. In the 

context of the current work, antiferromagnetic thin films, which are used in 

spin valve applications [1, 2, 23, 24, 25, 26, 27, 28], is a challenge area of 

research. Although the technological importance of the spin valve, few 

research have been done on the antiferromagnetic thin films due to the 

inability of conventional methods to spatially determine the microscopic 

magnetic structure of the antiferromagnetic thin films [29]. Recently, this 

problem has been partially solved by the use of X-ray magnetic linear 

dichroism spectroscopy [30, 31, 32, 33]. Even though, antiferromagnetic 

thin films remain an experimental and theoretical challenge. 

The second important class of quasi-two-dimensional systems is the 

layered magnetic compounds as the rare earth (RE) ions in the family 

compounds REBa2Cu3O7-δ (0 < δ < 1). These rare earth compounds are 

suggested to be quasi-two-dimensional systems because their structures 

consist of the ab-planes of RE ions each of which lie between two double 

copper oxide layers, and the c-axis is approximately three times as long as 
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the a and b axes [34, 72]. This class of magnetic materials is very 

interesting because nearly all rare earth ions in such compounds show 

antiferromagnetic ordering at low temperatures (2K°), and this ordering 

phase coexists with the superconducting phase. In the case of ErBa2Cu3O7, 

for example, neutron-scattering technique shows that its magnetic spins are 

ordering within the ab-plane (with Ne´el temperature TN ≈ 0.50 K°). In this 

case, the magnetic spins are aligned ferromagnetically in the b direction 

and antiferromagnetically in the a direction. This phase is denoted as the 

dipolar antiferromagnetic phase (AF1 phase) [36, 37, 38, 39, 40, 41, 42]. 

The third important class of quasi-two-dimensional systems is the 

magnetic micro or nano particles; where a large number of publications 

with different geometries have been considered, including regular arrays of 

magnetic nano particles such as dots, rings, tubes, and wires [43, 44, 51, 

52, 53, 54, 55, 56, 57] . 

In addition to the basic scientific interest in the magnetic properties 

of the nanodots, there is evidence that they might be used in the production 

of new magnetic devices, specially in recording media [60, 61]. Obviously, 

modern technology demands techniques capable of producing nano meter-

sized structure over large areas. A good perspective is the use of nano dots 

nickel that could store terabyte of data in a computer chip just a few 

centimeters wide [74]. Recent studies on such structures have been carried 

out with the aim of determining the stable magnetized state as a function of 

the geometry of the particles [62, 63]. In particular, the study of highly 
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ordered arrays of magnetic wires with diameters typically in the range of 

tens to hundreds of nanometers is a topic of growing interest [64, 65, 66, 

67]. The high ordering, together with the magnetic nature of the wires, are 

fundamental in technological interest, since they can determine the success 

of patterned media in high-density information storage [69].  

The magnetization of ferromagnetic nano wire arrays has already 

been studied by magnetic force microscopy (MFM) that, in addition, 

enables us to gain direct magnetic information of individual nano-objects. 

In these works, MFM measurements have been carried out by applying 

magnetic fields on magnetized and demagnetized samples to study the 

switching behavior of individual nanowires and to obtain the hysteresis 

loops of the nanowire arrays [64, 50, 70]. In the equilibrium state, it was 

found that the nanowires exhibit a homogeneous magnetization along the 

axial direction (with the magnetization of each wire pointing up or down). 

It appears that the magnetostatic interaction among these wires can play a 

fundamental role in the magnetization reversal processes and domain 

structures of each wire, which consequently affect the magnetic properties 

of the system. In particular, it was pointed out that the dipolar interaction 

between such wires has a similar effect on its magnetic properties as do 

classical spins interacting through long range dipolar interaction [58]. So 

the interaction among these wires can be best described by a two-

dimensional model. Moreover, a reorientation transition has been predicted 

and observed in micro or nano magnetic dot systems [59]. 
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The development of materials with certain characteristics to a 

specific application requires a sufficient understanding of their microscopic 

interactions that are affected by some factors such as the composition and 

preparation of the system. For example, the tasks of using ultra thin 

magnetic films in data storage aspects requires that the magnetization of the 

film be set and read with a high degree of accuracy. Further more, 

variations in the composition of the film can be used to manipulate some 

properties such as sensitivity to an external field [89]. Consequently, the 

stability of magnetic ordering in reduced dimensional systems is affected 

by various factors due to the type and nature of interactions that are 

presented in a particular system. Most of the recent explosive growth in 

electromagnetic media, therefore has been referred to the new discoveries 

and better understanding of the magnetic and electronic properties of low-

dimensional systems . 

In addition to the dimensionality of the lattice, the spin 

dimensionality is an important factor in determining the magnetic 

properties of low-dimensional magnetic systems. Theoretical studies have 

divided such magnetic systems into Ising model (in which the spins are 

constrained to be oriented perpendicular to the plane of the system due to 

the strong perpendicular magnetic surface anisotropy), plane rotator model 

(in which the spins are confined to the plane of the system due to the strong 

planar surface anisotropy), and the anisotropic Heisenberg model (in which 

the spins have three dimensional components due to a finite value of 

magnetic surface anisotropy). A realistic theoretical model of low-
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dimensional magnetic systems must include the exchange interaction, the 

dipolar interaction, and the magnetic surface anisotropy [71]. Despite its 

small amount, the long-range dipolar interaction plays essential role in two 

dimensional magnetic systems due to its long range character and its 

anisotropic nature. In the two dimensional plane rotator system, for 

example, it was found that the short-range exchange interaction is 

insufficient for establishing a spontaneous magnetization at any finite 

temperature [76, 77]. Different and interesting behavior appears in the 

plane rotator model when the dipolar interaction is included. Using the 

Luttinger and Tisza method, Belobrove et al reported that the ground state 

(i.e., zero temperature state) of the pure dipolar planar system on a square 

lattice is continuously degenerate and consists of four sublattices, where the 

spins of these sublattices make angles ¢ , 2π-¢, π-¢, π+¢ and   with the 

positive x-axis counterclockwise (  being arbitrarily) [78, 79] .  

Using both the mean field mean-field theory and Monte Carlo 

simulations, Zimmerman et al have confirmed the existence of such 

continuous degeneracy in a pure dipolar planar model on the honeycomb 

lattice [80]. Later on, Henly (who introduced the concept of “order from 

disorder˝) concluded that fluctuations such as thermal fluctuations and 

dilution, or applied magnetic field break the degeneracy of the ground state 

[81, 82]. Moreover, Parakash and Henley studied the two-dimensional 

plane rotator system on both square and honeycomb lattices with nearest 

neighbor dipolar interaction [83]. They found that thermal fluctuations, 

dilution and uniform applied magnetic field break the continuous 
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degeneracy of the ground state to a discrete fourfold symmetry in the case 

of a square lattice and to a discrete six-fold symmetry in the case of the 

honeycomb lattice. They also found that, in the case of the square lattice, 

the thermal fluctuations favor a dipolar antiferromagnetic phase in which 

spins are aligned ferromagnetically along one of the two axes of the lattice 

and antiferromagnetically along the other axis (AF1 phase), while the 

dilution favors a dipolar antiferromagnetic phase in which the spins are 

ordered at   to the x-axis (AF2 phase). For the case of a uniform applied 

magnetic field along the x-axis, they found that this field favors a dipolar 

antiferromagnetic phase in which the spins are ordered ferromagnetically 

along the x-axis and antiferromagnetically along the other axis (AF1 phase, 

which is perpendicular to the applied field). 

The two-dimensional square planar system with pure long-range 

dipolar interaction was studied at finite temperature by Monte Carlo 

simulations as well as linearized spin-wave approximations [84, 85]. Both 

studies also showed a long-range magnetic order in such systems. The two 

dimensional square planar system having the long-range dipolar and the 

short-range antiferromagnetic interactions was investigated by both Monte 

Carlo simulations and linearized spin-wave approximations [86, 87]. These 

two studies concluded that thermal fluctuations break the degeneracy of the 

ground state and lead to a long range magnetic order. In addition, the two 

studies showed that the characteristics of the ordered phase depend on the 

strength of the exchange parameter. At low temperatures, the results show 

that a first order transition from the dipolar antiferromagnetic phase to the 
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simple antiferromagnetic phase (AA phase) can occur as the 

antiferromagnetic parameter is increased. The results also show that the 

dipolar phase consists of two distinct phases AF1 and AF2. While AF1 

phase occurs in the two regions where   and , AF2 occurs in the region .   

Recently, Abu-Labdeh et al investigated the two-dimensional planar 

system on a square lattice having the long-range dipolar interaction and a 

uniform applied magnetic field along the x-axis for both zero and finite 

temperature [88]. From Monte Carlo simulations, the magnetic phase 

diagram was determined for this system as a function of the applied field 

and temperature. At low temperatures and for low values of the applied 

field, Monte Carlo results show AF1 phase in which the spins are aligned 

perpendicular to the field. As the external field is increased the dipolar 

order parameter decreases continuously until the system undergoes a 

transition to the ferromagnetic phase (FE phase). 

While extensive work has been done on the behavior of reduced-

dimensional ferromagnetic systems, few systematic works has been done 

on reduced-dimensional antiferromagnetic systems. In particular, little is 

known about the effects that arise from the interplay of the dipolar, 

exchange, magnetic surface anisotropy, and uniform external magnetic 

field in the low-dimensional antiferromagnetic systems. To get a better 

understanding of both the micro and macroscopic properties of the 

magnetic phenomena within the low-dimensional antiferromagnetic 

systems, this study focuses on the effects of a uniform external magnetic 
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field and temperature on the magnetic behavior of the classical two-

dimensional dipolar antiferromagnetic plane rotator system.For zero 

temperature analytic method is used, while at finite temperatures a number 

of Monte Carlo simulations are carried out. Throughout, the exchange 

interaction parameter J is assumed to be antiferromagnetic with a fixed 

value (J = −1.2 g, where g is the strength of the dipolar parameter). In 

addition, the applied magnetic field is assumed to be uniform and parallel 

to the x-axis of the square lattice . 

The outline of this thesis is as follows. In Chapter two we will 

present the planar model in general terms including the dipole-dipole 

interaction, exchange interaction, and uniform external magnetic field. In 

Chapter three, the basic methods behind Monte Carlo simulation technique 

and the computational aspects will be introduced. In Chapter four, the 

results of the system of interest for both zero and finite temperatures are 

presented and discussed. Finally, the conclusion is given in chapter five. 
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Chapter 2 

The Model in General Terms 

In this study, the model of interest is a square planar model, in which 

the two in- plane directions of the square lattice are denoted by ˆx and ŷ. 

Each lattice site is associated with an ion which has a total magnetic 

moment µ , and a total spin S. The system, therefore, is composed of N 

ions arranged on a square lattice of length L, such that N = L×L . The 

magnetic moments and spins are confined to rotate freely in the plane of 

the system. The ions of the present system are assumed to interact through 

the long-range dipolar interaction (Edd), nearest neighbor antiferromagnetic 

exchange interaction (Eex), and uniform external magnetic field (Eh) which 

represents the contribution of a uniform external magnetic field along the x-

axis of the lattice. So that the total energy E of the system can be written as 

                                 hexdd EEEE ++=                    (2.1)                     

The first term of Equation 2.1 corresponds to the dipole-dipole 

interaction that are always present between magnetic moments. As stated 

before, the dipolar interaction has a long-range character, and it is 

anisotropic. The contribution of the dipolar interaction is       

( )( )∑
≠

⋅⋅⋅





 −=

ji
r

rr

rdd
ij

ijjiji

ij

jiE 53 32
1 µµµµ

                    (2.2) 
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where iµ  is the classical magnetic moment at the lattice site i, ijr  is the 

vector connecting site i to site j, and the sum is over all possible pairs of 

sites in the lattice except i = j. 

The second term of Equation 2.1 is the nearest neighbor exchange 

interaction. Ferromagnetism and antiferromagnetism are based on 

variations of the exchange interaction, which is a consequence of the Pauli 

principle and the Coulomb interactions. The simplest case of the exchange 

interaction is due to two ions with spins 1S  and 2S  , which is given by 

                       21 SSE ex ⋅−ℑ=                                                 (2.3) 

where ℑ  is the exchange constant which depends on the distance between 

the spins, and it is determined by the overlap integrals. For positive 

parameter ℑ ,  a parallel spin orientations is favored, which leads to ferro- 

magnetic state; while for negative exchange parameter, an antiparallel spin 

orientations is preferred, which leads to a simple antiferromagnetic state. In 

contrast to the dipolar interaction, the exchange interaction has features of 

short-range characters, and it has an isotropic nature. For a system of N 

spins, the exchange energy is then given by  

                       j
ji

iex SSE ∑
〉〈

⋅−ℑ=
,

                                        (2.4) 

where the sum is over all nearest neighbor pairs, and iS  is the 

classical spin vector at site i. The last term of Equation 2.1 refers to the 

Zeeman energy, which arises from the interaction of an applied magnetic 
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field with the magnetic moments. As mentioned earlier, it has an important 

role in characterizing the development of materials in specific features. For 

example, the fabrication of magnetic thin films, that are very sensitive to 

the application of an external magnetic field needs a detailed understanding 

of their microscopic interactions. In addition, the wide use of technological 

applications such as data storage often requires manipulation of the 

magnetic structure by an external magnetic field [89]. The contribution of 

this term to the total energy of the system is 

                                ∑−=
i

x
iBE µ                                                 (2.5) 

where B is the strength of a uniform external magnetic field in the 

direction of the x-axis, and x
iµ is the component of a magnetic moment in 

the direction of the applied magnetic field. With Equations 2.2, 2.4, and 

2.5, Equation 2.1 reads  

( )( ) ∑∑∑ −⋅ℑ−








−=

〉〈≠

⋅⋅⋅

i

x
ij

ji

i

ji
r

rr

r
BSSE

ij

ijjiji

ij

ji µ
µµµµ

,
2
1

53
3      (2.6) 

In order to carry out Monte Carlo simulations, Equation 2.6 should 

be expressed in terms of dimensionless quantities. Therefore, we define a 

set of two-dimensional classical unit vectors { }σ   such that  

                                  )()( ieffi rr σµµ ≡                                          (2.7) 
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and  

                     )()( ieffi rSrS σ≡                                           (2.8) 

Where  

                                    1)( =irσ                                               (2.9) 

In addition, all distances are scaled by the lattice constant a, such that  

                                         a
r

i
iR )(→         

With these definitions, Equation 2.6 is then reduced to 

( )( )∑
≠

⋅⋅⋅










−=

ji
R

RR

Ra ij

ijjiji

ij

jieffE 533

2

3
2

σσσσµ
           

             ∑∑ −⋅ℑ−
〉〈 i

x
ieffj

ji

ieff BS σµσσ
,

2                                        (2.10)                                                                        

For simplicity, we define new coupling parameters 

                        3

2

2

)(

a

effg µ=                                                             (2.11) 

                2
effSJ ℑ=                                                            (2.12) 

                        
eff

Bh µ=                                                                          (2.13) 

where g, J, and h, respectively, represent the strength parameters of the 

dipolar, exchange and applied field interactions. Substituting Equations 

2.11, 2.12, and 2.13 into Equation 2.10 yields                                                                          
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   ∑
≠






 ⋅




 ⋅⋅
















−=

ji
R

RR

R ij

ijjiji

ij

jigE
53

3
σσσσ

                                        

          ∑∑ −⋅−
〉〈 i

x
ij

ji

i hJ σσσ
,

                                                            (2.14) 

In the present study, the parameters J and h are measured in units 

such that g = 1, nd the exchange interaction is assumed to be 

antiferromagnetic with a fixed value (i.e., J = −1.2g ). 

Since the dipolar energy is slowly convergent, it is efficient to apply 

the Ewald summation technique for calculating its sum. The main idea 

behind this technique is to separate the dipolar energy into two parts. 

 The first part is localized and rapidly convergent in real space, while 

the second part is a long-range component and rapidly convergent in 

momentum space. However, the details of this technique is described in 

earlier work [90, 91]. 
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Chapter 3 

Monte Carlo Simulations and 

the Computational Details 

While the task of statistical mechanics at equilibrium is to calculate 

thermal averages, the problem of the many particle system is best treated 

by means of computational methods. Nowadays, computer simulations 

have become a rich source of scientific research that support both theory 

and experiment in a variety of fields and subjects. The advantage of 

simulations is that one can get a better understanding by switching off one 

or more physical parameters that are simultaneously affect the real systems. 

One remarkable simulation method is the Monte Carlo technique. From a 

historical point of view, the first large scale Monte Carlo work carried out 

dates back to the middle of the twentieth century. The earliest published 

work on Monte Carlo is perhaps the paper of Metropolis and Ulam [93] in 

the year 1949. Monte Carlo (MC) technique is based on random numbers. 

For carrying out a MC simulation, we require a sequence of numbers, 

which are random, independent, real and uniformly distributed in the range 

0 to 1. The aim of MC simulations, therefore, is to evaluate thermal 

averages by statistically sampling the significant region of their phase 

space using a computer.  

In this Chapter, we will introduce (in brief) the fundamentals of 

Monte Carlo simulations, including importance sampling, transition 

probability, detailed balance, and the Metropolis algorithm. For more 

details readers may return to many references 

and texts as in [92, 93, 94, 95, 96, 97]. 
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3.1  Importance Sampling, Detailed Balance, and 

          Metropolis Algorithm 

In thermodynamics, there are two main categories of measurements 

that are performed in computational statistical physics. They are called 

mechanical quantities, and entropic (or thermal quantities). Examples of 

mechanical quantities are internal energy (U) and pressure (P), while 

examples of entropic quantities are the free energy (F) and entropy (S). 

These two categories of thermodynamic quantities are distinguished by 

their relations to the partition function Z. For example U is given 

by 

                           )ln(2 Z
T

TKU
B ∂

∂= ,                                   (3.1) 

while F is given by 

                          )ln( ZTKF
B

−= ,                                             (3.2) 

where T is the temperature, and kB is the Boltzman constant. 

In the canonical ensemble, the observable thermal quantity Q of a 

system can be calculated as 

            

∑
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where λνE  is the energy of the system in state λν , λνQ  is the value of Q at 

some state λν  , and  

                          ]exp[)( TKE Bλλ νν −∝Ρ                            (3.4) 

is the Boltzman probability. In general, the exact evaluation of Equation 

3.3 is impossible. For example, the Ising spin system of 100 spins have 2100     

≈ 1030 states. If we assume, optimistically, that it takes a nano second to 

generate a spin configuration, the total time required to sample all the spin 

configurations is nearly of the order of thirty thousand billion years. 

Therefore, an approximation method is needed to estimate < Q >. One 

approximation method is to evaluate the quantity < Q > by summing 

Equation 3.3 over a large, but finite number of states. These states are 

selected according to the Boltzman probability distribution )(νΡ  , in which 

they are statistically significant. This method is called the importance 

sampling. 

The significant states are selected using a Markov process. In this 

process, state 1+λν  is generated from previous state λν  through a transition 

probability )( 1+→ λλ ννW , such that the distribution function of the states 

generated by the Markov process is given by the Boltzman distribution. 

Markov process, therefore, should satisfy the following four conditions. 

• The state 1+λν  is generated every time it is determined by the state λν  . 

• The transition probability should satisfy the condition 

                          
1)( 1 =→ +∑ λλ

λ

ννW .                             (3.5) 
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This condition is so called the condition of normalization. 

• Reaching any state of the system from any other state is possible if the 

program is run for a long enough time. This condition is so called the 

condition of ergodicity. 

• At equilibrium, the rate at which the system makes transition into or out 

of any state ν  must be equal. This condition is so called condition of the 

detailed balance, and is given by 

                )()()()( 111 λλλλλλ νννννν →Ρ=→Ρ +++ WW ,               (3.6) 

or 

             
)](exp[
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)(
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λλ EE
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+

+
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νν
 .             (3.7) 

Equation 3.7 implies that the transition probability ratio for moving 

from state λν  to state 1+λν  depends only on the energy change  

                    λλ EEE −=∆ + 1                                           (3.8) 

One efficient method for the transition probability that satisfies 

Equation 3.7 is the Metropolis algorithm [97]. In this algorithm the 

transition probability from state λν  to state 1+λν  reads 

             
)( 1+→ λλ ννW






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∆− λλ
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                           (3.9) 
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Equation 3.9 indicates that the transition to the new state 1+λν  is 

accepted if its energy is lower than or equal to the present state λν   . 

However, if the state 1+λν  has a higher energy than the state λν  then there 

is, still, a possibility to accept it. To accept a new state which has a higher 

energy than the present state, we choose a random number Z between 0 and 

1. If the transition probability is greater than Z, then we accept the new 

state 1+λν  , otherwise the new state is rejected and the system stays in the 

present  state λν . In moving from λν  to 1+λν  , there are many choices. One 

common and efficient choice is to change only one degree of freedom of 

the system (such as rotating a single spin at an angle φ  to a new angle φ ′  in 

the case of the plane rotator system). 

The optimal Metropolis algorithm used in the present study proceeds 

according to the following ten steps: 

1. Choose an initial state, λν  = { }οσ  , of the system, 

2. Randomly select the target spin, iσ  , where i ∈ (1, 2, 3, ...,N = L × L), 

3. Generate a new state, 1+λν ,  randomly by changing the orientation of the   

     selected iσ  to iσ ′  such that  

                          iii σσσ ∆=′ µ                                                     (3.10) 

4. Compute the energy difference, E∆  , between the new state and the old    

     state, 

5. Calculate the Transition probability according to Equation 3.9, 

6. Generate a uniform distribution number Z between 0 and 1, 

7. Compare Z with the Calculated )( 1+→ λλ ννW . If )( 1+→ λλ ννW  is greater 
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    than Z accept the move, otherwise leave the spin as it is and retain the   

     old spin configuration, 

8. Repeat steps 2-7 as necessary, 

9. Store the required observable quantities of the system every nth Monte    

    Carlo steps per lattice site (MCS/site) to calculate the averages, 

10. Calculate the required observable quantities of the system using the  

       Simple arithmetic average 

                         ∑
=

=
M

M M

Q
Q

1λ

λν
                                             (3.11) 

where λνQ  is the value of the observable quantity Q at the state λν  and M is 

the total number of the Monte Carlo steps per lattice site. Equation 3.11 

indicates that <Q >M becomes a more and more accurate estimate as the 

number of the Monte Carlo steps per site (i.e., M) is increased. 

The Metropolis algorithm is shown schematically in Figure 3.1. 
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Figure (3.1): A schematic of the Metropolis algorithm. 
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3.2  Computational Aspects 

Throughout this research, the finite temperature MC Simulations for 

the plane rotator model are carried out via super-computing machine 

clusters through Western Canada Research Grid WestGrid and Shared 

Hierarchical Academic Research Computing Network SHARCNET.   

The finite system is simulated for different lattice sizes; N = 322, 642, 

1042, and is treated as an infinite plane of replicas by imposing suitable 

periodic boundary conditions [72, 98, 88, 99]. As an illustration, the first 

site in a row in the square lattice is considered as the right nearest neighbor 

of the last site in the same row and the last site in a row is considered as the 

left nearest neighbor of the first site in the same row. The same holds for 

the top and bottom sites in each column. In addition, the Ewald summation 

technique is used to sum over the replicas [72]. Indeed, the simulations are 

based on the standard Metropolis algorithm. However, the code used in this 

study was originally written by MacIsaac and his co-workers [100, 102], 

and modified by Abu-Labdeh and his co-workers [102]. 

Data are collected from Monte Carlo simulations through two stages. 

In one, temperature is fixed at a certain value and the external field is 

varied gradually in steps of 0.05. In the other, the external field is fixed at a 

certain value and the temperature is varied in steps of 0.05. Phase 

transitions occur when the properties of the system is changed. From the 

transition points, the magnetic phase diagram of the system has been 

determined as a function of both temperature and applied magnetic field. 
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Detailed coverage of the phase behavior are performed with L = 32, and the 

results are confirmed with L = 64 and 104. For each Monte Carlo 

simulation, the number of Monte Carlo steps per unit site (MCS/site) that is 

required to bring the system into equilibrium is estimated, from the plot of 

the internal energy versus time (Figure 3.2), to be 104 MCS/site. The 

number of samples used to calculate the averages, however, ranged from 

14×104 MCS/site at high values of temperature for the 104×104 system 

to 29 × 104 MCS/site at low temperature for the 32 × 32 system. 

For a wide range of temperatures selected arbitrarily, in each Monte 

Carlo simulation job, the external magnetic field h is applied parallel to the 

x-axis of the lattice and decreased gradually in steps of 0.05 throughout the 

simulation process. It is worth noting that the simulation is initially 

performed at h = 10 g, in which the spins are aligned parallel to the applied 

field. This is more effective to be introduced as an initial state of spins 

rather than picking them up at random in order to start the Monte Carlo 

simulation jobs. When the job is completed by reaching 0 field, the Monte 

Carlo simulation job is then reversed in steps of 0.05. (i.e., the applied field 

is increased in steps of 0.05). The final state of that simulation at h/g would 

then be used as the initial state for the simulation at h/g ± 0.05. 

By the same manner described in decreasing and increasing the applied 

field, the system is simulated again for cooling and heating over a wide 

range of applied field values selected arbitrarily. This time, the simulation 

is initially performed at T/g = 8.00 in which the spins are in the disordered  
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phase, and then the temperature is decreased in steps of 0.05. When the run 

is completed by reaching very low value of temperature (T = 0.05 g), the 

Monte Carlo simulation run is then reversed (i.e., the temperature is 

increased in steps of 0.05). Again, the final state of that simulation at T/g 

would then be used as the initial state for the simulation at T/g ± 0.05. 
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Figure (3.2): Average internal energy (< E/g >) per spin as a function of 

time (MCS/site) for the plane rotator model having long-range dipolar, 

short-range exchange, and uniform applied magnetic field, in an N = 1042 

system. 
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Chapter 4 

Results and Discussion 

In this chapter, we present and discuss the magnetic properties of a 

planar system on a square lattice with lattice sizes 32 × 32, 64 × 64, and 

104 × 104. As mentioned before, in the present system the long-range, 

short-range, and uniform applied magnetic field are considered. In addition, 

the strength of the exchange parameters is fixed at J = −1.2g.  

In the following section, the ground state properties and the order 

parameters of the dipolar anti ferromagnetic and ferromagnetic phases are 

presented and discussed. The finite temperature properties of the system 

follow in section 4.2. The chapter closes by the simulations including the 

magnetic phase diagram. 

4.1 Ground State Properties and Order Parameters 

In the case of the pure dipolar system (h = 0, J = 0), it has been 

found by several authors that the ground state spin configuration has the 

spins aligned in the plane of the system and it is continuously degenerate 

[103, 104, 105]. This ground state is called the dipolar antiferromagnetic 

state, and denoted by the AF phase. Some examples of the dipolar 

antiferromagnetic ground state spin configurations are shown in Figure 4.1. 

Other ground state spin configurations can be generated by a 

transformation which continuously maps the spin configurations shown in 

Figure 4.1a into the spin configuration Figure 4.1c by changing the angle φ  

shown in Figure 4.2 [105]. The fact that the dipolar antiferromagnetic  
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Figure (4.1): Some examples of the dipolar anti-ferromagnetic ground state 

Spin configurations. In Figure 4.1a the spins are aligned along the x-axis. In 

Figure 4.1b the spins are ordered at 
4

π±  to the x-axis. In Figure 4.1c 

 the spins are aligned perpendicular to the x-axis. 

 



 

 
 

32

 

 

Figure (4.2): A schematic of the magnetic unit cell showing the four magnetic     

sub-lattices labeled by α= 1, 2, 3, 4. 
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phase is continuously degenerate is surprising because the dipolar 

interaction is variant under rotation.   

It was pointed out that the addition of a small antiferromagnetic 

exchange interaction (| J | < 3.2 g) does not break the degeneracy of the 

ground state spin configurations of the pure dipolar system [72, 106]. In 

contrast, it was found that the addition of a small uniform external 

magnetic field along the x-axis breaks the degeneracy of the ground state 

spin configurations, and leads to a dipolar configuration in which the spins 

are fully ordered antiferromagnetically perpendicular to the direction of the 

field as shown in Figure 4.1c [107, 88]. As the applied field is increased, 

Abu-Labdeh et al. [88] found that the spin configuration starts to turn 

ferromagnetically parallel to the applied field in a continuous manner as 

shown in Figure 4.3. If the strength of the applied field is sufficiently large 

(h > 1.164 g), they found that the ground state spin configuration switches 

to a ferromagnetic phase, in which the spins are aligned parallel to the 

applied field as shown in Figure 4.4. This state is denoted by the FE phase. 

Therefore, the competition between the dipolar and the applied field can 

lead to a reorientation transition at zero temperature. 

Since this study focuses on a square planar system, which includes 

the long-range dipolar interaction, the short-range exchange interaction, 

and the applied field, order parameters for the dipolar antiferromagnetic 

and ferromagnetic states are needed here. In order to establish the order  
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Figure (4.3): A ground state spin configurations for intermediate values of the  

applied field B , where 31 φφ = , and 42 φφ = .  
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Figure (4.4): A ground state spin configuration for large values of B , where 
ο04321 ==== φφφφ .  
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parameters for the present system, the square lattice is subdivided into four 

sublattices, labeled by an index α  = 1, 2, 3, 4 as shown in Figure 4.2. For 

each sublattice a corresponding sublattice magnetization ~M® is 

defined as  

yr
N

xr
N

M

r

y

r

x ˆ])([
4

ˆ])([
4 ∑∑ +=

αα

ααα σσ
             (4.1) 

Two order parameters (MAF and MFE) are constructed from Equation 

4.1 as 

 
]ˆ)(ˆ)[(

4

1
42314321 yMMMMxMMMMM yyyyxxxx

AF −−++−−+=      (4.2) 

and 

]ˆ)(ˆ)[(
4

1
42314321 yMMMMxMMMMM yyyyxxxx

FE +++++++=    (4.3) 

The order parameter MAF characterizes ordering in the ground state 

corresponding to the pure dipolar antiferromagnetic phase, while the order 

parameter MFE characterizes ordering in the ground state corresponding to 

the pure ferromagnetic phase. For the pure dipolar antiferromagnetic phase, 

                                        1=AFM                                                 (4.4) 
                        

                                              0=FEM   ,                                              (4.5) 

while for the ferromagnetic phase, 

                                      0=AFM                                                   (4.6) 
 

                                            1=FEM                                                      (4.7) 
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By restricting the system to the action of the classical Hamiltonian 

given by Equation 2.14, the ground state energy of the system is calculated 

as a function of the sublattice magnetization angle φ  at different values of 

h. When ο0=φ  , the spins are aligned along the positive  x-axis, and as φ  is 

varied spins in even numbered columns are rotated clockwise as shown in 

Figure 4.3, while those in odd numbered columns are rotated 

counterclockwise. So that for ο90=φ  spins in odd numbered columns are 

aligned along the ±y axis, while spins in even numbered columns are 

aligned along the −y axis as shown in Figure 4.1c. 

The results for the ground state energy, )(φοE  are shown in Figure 

4.5 for different values of h. Figure 4.5 indicates that for a fixed value of h 

the ground state energy is a minimum at a certain sublattice magnetization 

angle, cφ . By assigning the local minima for the curves shown in Figure 

4.5 and from other similar curves, cφ   is plotted as a function of h as shown 

in Figure 4.6. From Figure 4.6, we conclude that at zero temperature and 

for large values of the external field the ferromagnetic state along the 

applied field is energetically favored. However, at 20.000.6 ±=
g

hο  the 

spin configuration starts to turn antiferromagnetically perpendicular to the 

applied field in a continuous manner as shown in Figure 4.3. At very small 

magnetic field, the spins are fully ordered antiferromagnetically 

perpendicular to the field as shown in Figure 4.1c. 

 

 

 



 

 
 

38

 

This result is similar with what Prakash and Henley pointed out for a 

truncated dipole-like interaction [107], and with what Abu-Labdeh et al 

pointed out for a long-range dipolar interaction [88]. Although the addition 

of a small exchange interaction does not change the behavior of the spins at 

zero temperature, it shifts the location of the transition between the ordered 

phases to a higher value of the applied field.  
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Figure(4.5): The ground state energy per spin as a function of the sub-lattice        

magnetization angle φ  for different values of h.  
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Figure (4.6): The critical sub-lattice magnetization angle (cφ ) as a function of 

The applied magnetic field (h/g).  
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4.2  Finite Temperature Properties 

The equilibrium phases of interest are the AF and FE phases. Figure 

4.7 show how the order parameters MAF and MFE, defined by Equations 4.2 

and 4.3 but in terms of the thermally averaged sublattice magnetization, 

change with both increasing and decreasing the applied field at T = 0.10 g 

in an N = 1042 system. At low temperatures and for ( h > 6.00 g), the data 

shown in Figure 4.5 indicate that the ferromagnetic phase is energetically 

favored (< MAF > ≈ 0 and < MFE > ≈ 1). At the transition (hR = 5.70 g ), the 

system switches from the ferromagnetic phase to the dipolar 

antiferromagnetic phase. A similar behavior is observed on increasing the 

value of the applied field. This implies the existence of a thermally induced 

reorientation transition between the dipolar phase and the ferromagnetic 

phase. 

Further evidence for the first order phase transition between the two 

ordered phases is also seen in Figure 4.8, where the behavior of the average 

sublattice magnetization angle  

                      x

y

M

M

α

α
αφ arctan=                                                 (4.8) 

is shown as a function of decreasing and increasing the applied field at T = 

0.10 g in an N = 1042 system. For large values of the applied field ( h > 6.0 

g ), Figure 4.8 shows that the spins would all be aligned parallel to the 

applied field ( ο031 == φφ  and ο36042 == φφ ). At the transition (hR = 

5.70 g), the system switches from ferromagnetic phase to an ordered phase 

in which ( ο3031 ≅= φφ , ο33042 ≅= φφ ). As the applied field is  
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Figure (4.7): The two thermally averaged order parameters (< MAF > and 

< MFE >)  per spin as a function of both decreasing and increasing the applied  

magnetic field at T/g = 0.10.  
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Figure (4.8): A plot of αφ  , for each of the sub-lattice magnetization, as a  

Function of both decreasing and increasing the applied magnetic field  

at T/g = 0.10.  
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Figure (4.9): Snapshots of spin configurations at T/g = 0.10 for (a) h/g = 7.00,     

(b) h/g = 4.20, (c) h/g = 0.40 and (d) h/g = 0.05 in an N = 1042 system.   
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decreased, the spin configuration start to turn antiferromagnetically 

perpendicular to the applied field. At h ≈  0.40 g the spins become fully 

ordered antiferromagnetically perpendicular to the field ( ο9031 ≈= φφ , 

ο27042 ≈= φφ ). As the applied field is decreased further, spins in odd 

numbered columns are rotated clockwise while in even numbered columns 

are rotated counterclockwise. When the value of the applied field goes to 

zero, the spins are fully oriented at 
4

π±  to the x-axis 

οοοο 225,135,315,45 4321 ==== φφφφ ). This is consistent with the earlier 

work for the antiferromagnetic dipolar planar system on a square lattice 

[106, 108]. Sample spin configurations for h/g = 7.00, 4.20, 0.40 and 0.05 

are shown in Figure 4.9a, Figure 4.9b, Figure 4.9c, and Figure 4.9d, 

respectively, at T = 0.1g. The spin configurations in Figure 4.9 indicate that 

the symmetry axis is different for different values of the applied field. For h 

= 7g Figure 4.9a suggests that the symmetry axis is oriented along the 

applied field. (i.e., along the x-axis), while for h/g = 0.40 (Figure 4.9c) and 

for h/g = 0.05 (Figure 4.9d) the symmetry axis is oriented, respectively, at 

,
2

π±  and 
4

π±  to the x-axis. It is worth noting that while the data 

indicate that the transition from the ferromagnetic phase to the dipolar 

antiferromagnetic is first order, the hysteresis is very small (Figure 4.7), 

consistent with the discontinuous nature of the transition (Figure 4.8). 

At low field, Figure 4.10 shows the thermally averaged order 

parameters < MAF > and < MFE > as a function of both increasing and 

decreasing temperature for h/g = 1.5 in an N = 1042 system. The data 

plotted in Figure 4.10 show a dipolar antiferromagnetic phase at low  

temperature. As the temperature is increased the dipolar order parameter 

decreases, dropping rapidly at TN = 2.2g to indicate the transition from the 
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ordered dipolar antiferromagnetic phase to the disordered paramagnetic 

phase. A similar behavior is observed on decreasing temperature. 

 This indicates a continuous transition (i.e., a second order phase 

transition) between the low temperature dipolar phase and the paramagnetic 

phase occurs at TN = 2.20g. 

The existence of a second order phase transition is also reflected in 

the behavior of the heat capacity 

                 2

22

TK

EE
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E
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B
H

−
=

∂
∂=                                             (4.9) 

as shown in Figure 4.11. In Figure 4.11 a peak occurs at TN = 2.2g. Further 

evidence for a second order phase transition is also clearly seen in Figure 

4.12, where < MAF > and < MFE > are plotted as a function of decreasing 

temperature for h = 1.5g in an N = 1042 and N = 642 systems. The data 

present in Figure 4.12 show sharp transitions as the system size increases, 

consistent with a second order transition.  

At large values of the applied field, Figure 4.13 shows the thermally 

averaged order parameters < MAF > and < MFE > as a function of both 

increasing and decreasing temperature for h = 8.0g in an N = 1042 system. 

The data in Figure 4.13 indicate that the system is ferromagnetically 

ordered at low temperatures. As the temperature is increased, the system  
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Figure (4.10): The two thermally averaged order parameters (<MAF> and  

<MFE>) per spin as a function of increasing and decreasing temperature at 

 h/g = 1.50.  
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Figure (4.11): The specific heat per spin as a function of temperature for   

heating  and cooling the system with h/g = 1.50 in N = 1042 system.  
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Figure (4.12): The thermally averaged order parameters (< MAF >) per spin 

as a function of increasing and decreasing temperature at h/g = 1.50 in N =  

1042 and N = 642 systems.  
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Figure (4.13): The thermally averaged order parameters < MAF > and  

 < MFE > as a function of increasing and decreasing temperature for  

h/g = 8.00 in an N = 1042 system.  
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gradually disorders. A similar behavior is observed on decreasing 

temperature. This agrees with the corresponding heat capacity data shown 

in Figure 4.14. A rounded peak occurs in the heat capacity data shown in 

Figures 4.14, which is a remnant of the singularity, is suppressed by the 

presence of the external magnetic field. 

For intermediate value of the applied magnetic field, Figure 4.15 

shows < MAF > and < MFE > as a function of both increasing and 

decreasing temperature for h = 4.75g in an N = 1042 system. In Figure 4.15 

the data indicate that the two order parameters now behave differently from 

that shown in Figures 4.7 and 4.10. At low temperature and for this value 

of h, the system is in the dipolar antiferromagnetic phase. As the 

temperature is increased, the thermally averaged dipolar order parameter   

(< MAF >) effectively drops to zero while the thermally averaged 

ferromagnetic order parameter (< MFE >) increases to a value of ~  0.9 at 

the transition temperature TR = 0.85g. 

As the temperature is increased further, the systems gradually 

disorders. A similar behavior is observed on decreasing temperature with 

very small hysteresis. The hysteresis at the transition is shown in more 

details in Figure 4.16, which shows the two thermally averaged order 

parameters as a function of increasing and decreasing temperature in the 

region near the transition temperature. This hysteresis, together with the 

discontinuous change in the order parameters for both heating and cooling, 

indicates that the reorientation transition between the dipolar 

antiferromagnetic phase and the ferromagnetic phase at this value of h is 

first order. The reorientation transition shown in Figure 4.15, implies that 

the competition between the  
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Figure (4.14): The heat capacity CH as a function of increasing and decreasing 

Temperature for h/g = 8.00 in an N = 1042 system.  
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uniform external magnetic field, the dipolar interaction and the 

antiferromagnetic exchange interaction can give rise to a thermally induced 

reorientation transition between the two ordered phases. 

The temperature dependence of the two thermally averaged order 

parameters shown in Figure 4.15 is consistent with the heat capacity data 

shown in Figure 4.17. The heat capacity data plotted in Figure 4.17 show 

two distinct peaks. The narrow peak corresponding to the reorientation 

transition between the two ordered phases on heating and cooling, while 

the broad peak corresponds to a remnant of the singularity due to the 

presence of the applied magnetic field. 
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Figure (4.15): The thermally averaged order parameters < MAF > and  

< MFE > as a function of increasing and decreasing temperature for 

 h/g = 4.75 in an N = 1042 system.  
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Figure (4.16): The thermally averaged order parameters < MAF > and  

 < MFE > as a function of increasing and decreasing temperature for 

  h/g = 4.75 in an N = 1042 system around the transition point.   
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Figure (4.17): The heat capacity CH as a function of increasing and decreasing  

 temperature in an N = 1042 system.  

 

 

 

 

 

 

 

 

 

 
 



 

 
 

57

 

4.3  The Magnetic Phase Diagram 

At finite temperature, the equilibrium phases of the system obtained 

from Monte Carlo simulations have been presented in the phase diagram 

shown in Figure 4.18. The phase diagram shows the AF phase (Region I), 

in which the ordering corresponds to the dipolar antiferromagnetic phase, 

the FE phase (Region II), in which the ordering corresponds to the 

ferromagnetic phase, and a disordered phase (Region III), in which the 

ordering corresponds to the paramagnetic phase. 

The simulation points separating the two ordered phases (Region I) 

and (Region II), and the dipolar phase (Region I) from the paramagnetic 

phase (Region III) are obtained from the points at which the thermally 

averaged order parameters drop to zero, as well as from the corresponding 

peak in the magnetic heat capacity. The transition between the two ordered 

phases (Region I and II) appears to be first order with clear discontinuities 

in < φ  > [Figures 4.8]. In contrast, the transition between the dipolar 

antiferromagnetic phase (Region II) and the paramagnetic phase 

(RegionIII) appears to be second order with clear size effects [Figures 

4.12], continuous in < MAF >, and lack of hysteresis [Figures 4.10]. It is 

worth noting that in the ferromagnetic phase, there is no transition on 

heating the system, but the system gradually disorders as the temperature is 

increased. However, the locus of the rounded peaks in the heat capacity 

data (due to a remnant of the singularity) is shown as a solid line in the 

phase diagram. The filled circle point, which indicates the intersection of 

this locus of maxima with the first-order and second-order transition 

location of the boundaries, identifies the approximate tricritical point of this 

system. The approximate location of this tricritical point is (TR = 2.15 g, hR 

= 3.00 g). 
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Figure (4.18): The magnetic phase diagram for the planar system as a function of  

the applied magnetic field and temperature in an N = 1042, 642,322 systems. 

Region I is the dipolar phase, region II is the ferromagnetic phase and egion III is 

the paramagnetic phase. The simulation points between region I and II indicate 

the line of first-order transition between the dipolar phase and the ferromagnetic 

phase; where as the simulation points between region I and region III indicate the 

line of a second-order transition between the dipolar phase and the paramagnetic 

phase. The solid line highlights the line where the rounded peaks in the heat 

capacity data occur due to a remnant of the singularity, which is suppressed by 

the presence of the applied magnetic field. The filled circle indicates the  

approximate location of the tri-critical point.  
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Conclusion 

In this study, the effects of a uniform applied magnetic field on the 

magnetic properties of the dipolar antiferromagnetic plane rotator system 

on a square lattice with different sizes (N = 32×32, 64×64, and 104×104) 

have been studied for both zero and finite temperatures. In particular, the 

magnetic phase diagram for this system has been determined as a function 

of both the temperature and applied field using Monte Carlo simulations. 

As mentioned in Chapter 1, there are many technological and industrial 

applications for quasi two-dimensional systems, specially, their 

applications in data storage devices. Since such systems are very sensitive 

to the action of an external magnetic field, it is a better to understand the 

effects of a uniform applied magnetic field on the nature and stability of 

these systems. 

In the current work, a uniform external magnetic field is applied 

parallel to the axis of the square lattice and the exchange interaction 

parameter J is assumed to be antiferromagnetic and fixed at −1.20 relative 

to the dipolar parameter g. At zero temperature and for low values of a 

uniform applied field the ground state energy calculations show that the 

spins are in a dipolar antiferromagnetic phase (AF1 phase) perpendicular to 

the field. As the applied field is increased, the dipolar order parameter 

decreases continuously until the system undergoes a first order transition to  
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the ferromagnetic phase at ho = 6.00 g. At low temperature, and for zero 

applied field, however, Monte Carlo simulations show a dipolar 

antiferromagnetic phase in which the spins are oriented at 
4

π±  to the x-axis 

(AF2 phase). This result is consistent with what Abu-Labdeh  et al found 

for the dipolar antiferromagnetic plane rotator system on a square lattice 

[98]. As the applied field is increased, the spins rotate continuously until 

the system becomes in the AF1 phase perpendicular to the field. Further 

increase in the applied field, the spins rotate continuously until a first order 

transition to the ferromagnetic phase occurs. 

At small values of the applied field and for low temperatures, Monte 

Carlo results show a finite dipolar order parameter. As the temperature is 

increased the dipolar order parameter decreases continuously until the 

system undergoes a second order transition to the disordered phase 

(paramagnetic phase). On the other hand, Monte Carlo simulations for 

large values of the applied field show a finite ferromagnetic order 

parameter in which the spins are aligned along the applied field. As the 

temperature is increased, the ferromagnetic order parameter gradually 

decreases. For intermediate values of the applied field, there exists a range 

around ho = 6.00 g for which the system undergoes a first order 

reorientation transition from the dipolar phase to the ferromagnetic phase 

with increasing temperature. As the temperature is further increased the 

system gradually disorders. These results are summarized in the phase 

diagram shown in Figure 4.18. 
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