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Abstract

The anisotropic quantum dot (QD) Hamiltonian has been solved using the
diagonalization method in the presence of a perpendicular magnetic field and Gaussian
impurity, considering both types of spin-orbit interaction (SOI): Rashba and
Dresselhaus. The diagonalization process has been carried out using the one-
dimensional harmonic oscillator basis.

The acceptor impurity's presence significantly affects the system's eigensolution,
specifically causing an interesting level crossing between the states and changing the
ground state order. Furthermore, the impurity's strength, position, and spatial stretch
have been investigated, and the result shows that the impurity plays an important role in

manipulating the QD properties.

The magnetization and magnetic susceptibility as important quantities of the QD system
made from InAs are studied. The results show a diamagnetic-paramagnetic phase
transition at low temperatures due to the impurity presence. This magnetic transition
strongly correlates with the impurity profiles (strength, position, and influence domain),
magnetic field, and temperature. As the strength of the impurity increases, the

diamagnetic-paramagnetic transition occurs at a lower value of the magnetic field.

In addition, the effective Lande factor g of the system has been studied. The result
shows that, as the electric field increases, the Rashba SOI increases |g|, while the
Dresselhaus SOI reduced |g| of the QD. Furthermore, in the presence of both types of
SOl, increasing the electric field enhances the |g| since in the InAs material, the Rashba
SOI dominates the Dresselhaus SOI. The result emphasizes the role of Rashba SOI in

spintronics devices.
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The confinement strength effect on the g has been investigated, the g shows a peak
value at particular confinement strength. In addition, the anisotropy of the QD shows a

significant role in controlling g.

The density of states of the system has also been computed to physically describe the
impact of each system parameter on the energy spectrum. As the magnetic field turns
on, the figures demonstrate how the anisotropy of the confinement potential also causes

the harmonic oscillator symmetry to be broken.

Keywords:  Quantum dot; Magnetic properties; Rashba spin-orbit interaction;
Dresselhaus spin orbit interaction; Lande g factor; Computational physics; Density of
states;
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Chapter One
Introduction

Spin-orbit coupling (SOC), one of the most critical consequences of Dirac's theory for
particles in condensed matter physics, is widely believed to play an important role in
electronic devices such as spintronic transistors. In addition to heterostructure
confinement and external fields, SOC significantly manipulates the density of states of
the system to show different physical properties compared to a bulk system. Adding
impurities (donor or acceptor impurities) to the low-dimensional system also can

manipulate the system properties.

1.1 Quantum confinement
Quantum-confined structures, known as Nanostructures, are classified according to their

degree of spatial confinement. In the quantum well, the carrier has the freedom to move
in a two-dimensional space where the motion in the third spatial dimension is confined,
while in the quantum wire, the carrier is confined to move freely in one dimension only,
the ultimate quantum structure being a system that confines carriers in all three
dimensions. These quantum structures are termed quantum dots (QDs). A QD is a
nanometer-scale structure of narrow-band gap semiconductors (such as GaAs),
frequently surrounded by a wider-band gap semiconductor (such as AlGaAs). One of
the fundamental properties of QDs which is of considerable importance in dealing with
those nanostructures, is their capacity to confine carriers in all three directions,
presenting a discrete spectrum of energy spectra similar to that of pure atoms that gave
quantum dots the name of "artificial atoms" (Ashoori, 1996).

QDs have a size similar to the electron and hole wave functions, which allows for
efficient spatial confinement of these charge carriers. Typically, their size falls in the
range of a few to tens of nanometers. The charge carriers' quantum confinement is a
semiconductor nanostructure's primary physical property. Spatial confinement occurs in
ways that significantly alter material characteristics. First, it moves the bulk
semiconductor's conduction and valence bands, allowing its forbidden bandgap to
expand. Second, quantum confinement alters the electronic density of states of the
nanostructure dramatically. Therefore, a significant change in the system's physical
properties will take a place (Reimann & Manninen, 2002).



The discrete energy spectra in the QD strongly depend on the dot size, material type,

and QD shape; a smaller size means larger confinement.

The relationship between dot size and confinement can be intuitively understood by
considering the spatial constraints imposed on the charge carriers. In a larger quantum
dot, electrons have more space to move around, and their energy levels are less discrete.
However, when the dot size is reduced, the available space for electrons becomes
limited, resulting in a higher degree of localization. Consequently, the energy levels
become more discrete, forming distinct energy states that are well-separated from each

other.

Moreover, in addition to dot size, other factors such as the material type and QD shape
also play crucial roles in determining the discrete energy spectra. The material
properties, including the band structure and electronic properties, influence the energy
levels that can be occupied within the quantum dot. Different materials exhibit varying
energy gaps between their electronic bands, which further impact the discrete energy
levels within the QD.

1.2 Spintronics

Spintronics, also known as spin electronics, is an expanding field of nanoscale
electronics in which the spin and charge of an electron are utilized to convey
information. It is considered one of the most promising area of research, given its

diverse applications (Bader & Parkin, 2010).

The common objective of spintronics is to comprehend the interaction of particle spin
and its surroundings and find a practical way of controlling electronic properties, such
as current, by spin or magnetic field, as well magnetic properties gate voltages or
electric currents. In addition, to comprehend the core logic of spin, such as relaxation of
spin (how spins vanish and arise) and spin transit (how spins move in semiconductors
and metals). It is fundamentally important as basic physics concerns because of their
demonstrated value as phenomena in electronic technology (Hu & Xiang, 2020; Wolf et
al., 2001; Zutié et al., 2004).

Electronic devices use an electron's elementary charge to move it. The electrical
conductivity of a semiconductor may be modified by applying a voltage to it, resulting
in the realization of a controlled switch. These switches are the foundation of every

2



hardware logic system. Electrons carry angular momentum, known as "spin,” in
addition to charge. The Stern-Gerlach experiment quantifies this inherent feature of
electrons, demonstrating that the spin has two possibilities, down or up, depending on
the measurement devices; this is equivalent to the digital states 1" and "0," raising the
possibility that the spin might be used to represent binary memory states. A spin field-
effect transistor (see Fig. A.1), for example, would switch its logic state from off to on

by changing the magnetic field orientation (Dieny et al., 2020; Schliemann et al., 2003).

Spintronics is essential in the memory field to meet the demands of high storage
capacity, compact size, and fast response. New devices that mix logic, sensor, and
storage applications are also available. Furthermore, these "spintronics™ technologies
may lead to quantum computers and quantum computing based on solid-state electrical
devices, altering the future of information technology (Yakout, 2020). Fig. A.1 shows a
schematic presentation for a spin transistor where the electron moves from the source to
the drain according to its spin orientation; the applied voltage controls the electron

transition.

1.3 Spin-orbit interaction
As the name suggests, spin-orbit interaction (SOI) is a link between an electron's spin

dynamics and its orbital motion in space.

According to the theory of special relativity, when the inertial frame of reference
changes, electric and magnetic fields are Lorentz transformed. Thus, an electron
traveling through an electric field "sees" a moving electric field, which is caused by
moving charges, in its rest frame. These flowing charges — or electrical current —
generate an "internal magnetic field" in the electron’s rest frame. This "internal magnetic
field" connects back to the electron's spin. The magnitude and direction of this internal
magnetic field are determined by the electron's velocity and travel direction in a
material, therefore, SOl produces a k-dependent internal magnetic field, where k

represents the electron's wave vector.

When comparing the Zeeman effect to the spin-orbit interaction (SOI), it becomes
evident that the latter has a distinct influence on the behavior of electronic spins in
materials. While the Zeeman effect is responsible for the splitting of energy levels based

on the interaction between the spin and an external magnetic field, the spin-orbit



interaction goes beyond the direct influence of an applied magnetic field, as shown in
Fig. A.2.

The lack of structural inversion symmetry of the confinement potential of electrons in a
quantum heterostructure, also known as Rashba SOI (Rashba, 1960), and lack of crystal
inversion symmetry, also known as Dresselhaus SOI (Dresselhaus, 1955), are the two
primary "sources" of the electric field that lead to SOI.

1.4 Density of states
The density of states (DOS) of a system in condensed matter and solid-state physics

refers to the proportion of states that the system will occupy at each energy. The number
of states in a unit of energy is known as the density of states. Which is typically an
average over the space and time domains of the many states in which the system exists.
The distribution of these states is theoretically represented by a probability density
function. The dispersion relations of the system's attributes are directly correlated with
the density of states. High DOS for a given energy level indicates that numerous states

are open for occupation.

The DOS of the matter is often continuous. Whereas, the density distribution is discrete
in isolated systems, such as atoms or molecules in the gas phase. Therefore, the local

densities of states are frequently used to show the local variations of DOS.

The DOS is dependent upon the dimensional limits of the structure itself. The units of
DOS in a system characterized by three orthogonal parameters (3 Dimensions) are
Volume 'Energy™! , in a two-dimensional system, the units of DOS are
Area lEnergy™! , in a one-dimensional system, the units of DOS are

Length™Energy~1.

The distribution of electrons varies as dimensionality is decreased, as demonstrated by
calculations of the density of states for small structures. For example, compared to bulk
semiconductors, quantum wires have a DOS greater at some energy, and QDs have

electrons that are quantized at specific energies.

The density of states represents the number of permitted electron (or hole) states per
volume at a given energy level and is derived from the principles of quantum

mechanics. It is simple to demonstrate that, concerning dimensionality, the dependence

4



of the density of states on system energy considerably changes. Table 1 and Fig. A.3
illustrate how the DOS changes for bulk (3D), 2D, 1D, and 0D systems.

Table 1

The effect of spatial confinement on DOS as a function of energy
System Dimensionality DOSvs. E
Bulk 3D DOS xE
Quantum well 2D DOS « Constant

i 1
Quantum wire 1D DOS o —
VE

Quantum dot oD DOS x 6 (E—E,)

There exist finite energy ranges in a real structure (which is not exactly 2-D) over which
the energy independence holds (the derivation holds for each single, well-separated
possible value of k,). A staircase is what a quantum well's density of states looks like.
The density of state functions becomes ever more limited when semiconductor

dimensionality is more constrained to 1-D (quantum wire) and 0-D (QD).

1.5 Literature survey

Researchers have shown a particular interest in low-dimensional systems, and a
considerable number of theoretical research have been carried out to investigate the
impact of external fields on thermal, magnetic, and optical properties (Ali et al., 2022;
Avetisyan et al., 2016; Baghdasaryan et al., 2018; Boda & Chatterjee, 2016; Bzour et
al., 2017; Castano-Yepes et al., 2019; Chakraborty & Pietiladinen, 2005; Datta & Ghosh,
2011; Elsaid, Abu Alia, et al., 2020; Elsaid, Shaer, et al., 2020; Gumber et al., 2015;
Gumber et al., 2016; Jha et al., 2014; Khordad, 2017; Stufler et al., 2005). The presence
of impurities has been discovered to have a significantly influence on system
modification (Boda & Chatterjee, 2016; Datta & Ghosh, 2011; Elsaid et al., 2019;
Kandemir & Cetin, 2005; Yahyah et al., 2019).

Numerous theoretical studies have been devoted to solve the Schrodinger equation for
the QD system using various approaches, such as the variational approach (Ciftja &
Faruk, 2005; Kandemir & Cetin, 2005; Shaer et al., 2016), the 1/N expansion method



(Yahyah et al., 2019; Yaseen et al., 2019), and the exact diagonalization method (Ali et
al., 2019; Alia et al., 2019; Sharma et al., 2019).

Shaer et al. have studied the two electrons in a GaAs QD system using the variational
method and investigated the thermal and magnetic properties of the system. The
magnetic susceptibility shows an oscillatory behavior due to the Coulomb interaction
between the two electrons, which caused the ground state changing (Shaer et al., 2016;
Shaer et al., 2019).

The exact diagonalization method was used to study the magnetization and magnetic
susceptibility of a donor impurity in parabolic GaAs QD by Alia et al. (Alia et al.,
2019). The computed results show that the electric field can tune the magnetic
properties of the QD GaAs medium by flipping the sign of its magnetic susceptibility
from diamagnetic to paramagnetic. In addition, the magnetic susceptibility transition
has shown to be strongly correlated to Hamiltonian parameters such as magnetic field,
electric field, donor impurity, and Rashba SOI.

The electrical properties of elliptical quantum dot in the presence of the Rashba spin-
orbit interaction and a perpendicular external magnetic field have been investigated (S.
Avetisyan et al., 2012). The research has shown that when the quantum dots anisotropy
increases, the Fock-Darwin spectra strongly depend on the Rashba spin-orbit coupling,
even without the magnetic field. It is discussed how the anisotropy contributes to this
strong influence. Since the resulting dipole-allowed optical transitions conspicuously
display the significant spin-orbit-coupling effect, it can be directly observed

experimentally.

The effect of the spin-orbit interaction on the electron magnetization and magnetic
susceptibility of parabolic InAs QD has been investigated by Voskoboynikov et al.
(Voskoboynikov et al., 2003), where the work gives a theoretical investigation of the
influence of spin-orbit interaction on electron magnetic properties of tiny semiconductor
QDs at low temperatures, these properties exhibit quite exciting behavior. The sudden
variations in magnetization and susceptibility at low magnetic fields are attributable to
the alternate crossing of the spin—split electron levels in the energy spectrum, primarily

caused by spin-orbit interaction.



Hosseinpour (Hosseinpour, 2020) provided a brief investigation of the influence of
Rashba SOI and Gaussian impurity on the thermal properties of an asymmetric QD. The
Rashba SOI was considered when the author calculated the doped QD’s internal energy,
heat capacity, and entropy. It has been shown that Rashba coupling, Gaussian impurity
parameters, and applied fields may manipulate thermal properties and that increasing
the electric field and Rashba coupling strength lowers the internal energy. Entropy
(internal energy) drops due to changes in some factors, such as the magnetic field and
intensity of the confinement potential. In different work, Hosseinpour (Hosseinpour &
systems, 2020) has studied the nonlinear optical properties of QDs in the presence of the
Rashba SOI, and in this work she shown a significant impact of the Rashba SOI on the

system's optical properties.

Prabhakar et al. (S. Prabhakar et al., 2011) investigated the change in an electron's
Lande' g factor by anisotropic gate potentials and magnetic fields in InAs QDs. For both
isotropic and anisotropic QDs, the author tried to offer analytical formulations and
numerical simulations of the change in the Lande' g factor in this study. The authors
demonstrated that the Rashba spin-orbit coupling significantly affects the fluctuation of
Lande' g factor with electric fields using both analytical approaches and numerical
simulations. In particular, significant Rashba spin-orbit interaction demonstrates that the

electric-field tunability covers an extensive range of g factor values.

The study also uncovers a significant finding that, if the area of the symmetric and
asymmetric QD is kept equal, the anisotropic gate potential leads to a quenching effect
in the orbital angular momentum that minimizes the variance in the electric field and

magnetic field tunability of the Lande' g factor.

In a separate study, Madhav et al. (Madhav & Chakraborty, 1994) have investigated the
electronic properties of anisotropic quantum dots in a magnetic field. They authors have
calculated the energy spectra and pair-correlation function of a two-electron system to
analyze the impact of inter-electron interaction on isotropic and anisotropic QDs.

In Ref (de Sousa & Das Sarma, 2003), the effective Lande g factor have been studied
and the spin-flip time of a heterojunction of 111-V semiconductor QDs. The results have
shown that the Lande g factor is highly sensitive to the Rashba and Dresselhaus spin-

orbit interactions. In addition, the study highlights a strong sensitivity of g and T; to dot



radius and magnetic field, providing opportunities for the development of a QD spin
quantum computer, where external gates may control the spin-orbit coupling to engineer

the g factor and spin-flip time.

For a single uncapped InAs self-assembled quantum dot, anisotropy of the spin-orbit
interaction (SOI) is investigated in Ref (Takahashi et al., 2010). The SOI energy is
calculated from anticrossing or SOIl-induced hybridization between the ground and

excited states with opposing spins.

1.6 Research gap
The purpose of this section is to demonstrate, in great detail, the main differences

between this work and previously published results related to the QD research field. By
conducting a comprehensive analysis and comparison, we aim to highlight the unique
contributions and advancements offered by our study, shedding new light on the

understanding of QDs.

As mentioned earlier, numerous publications seek to investigate the QD magnetic
properties, where the authors usually solve the single electron Hamiltonian and study

the system properties.

Some studies have focused on the GaAs / AlGaAs QD properties and have included
spin-orbit interaction effects in some of these studies. However, the Rashba coupling
parameter in GaAs material is small compared to InAs material, which has a relatively
small band gap. Another critical point is that the effective Lande g factor for the InAs
material is larger than the GaAs Lande g factor (ggaas = —0.44 while g;,4s = —14.1);
as a result, the spin-dependent terms in InAs material are expected to have a more
significant effect, therefore, more expected application in the future. Hence, it will be

exciting to study the SOC for this material in QD form.

Another important point, in this work, we deal with both Rashba and Dresselhaus spin-
orbit interaction, and each of them has a different source, so to have a wide picture of
the spin-orbit interaction, the QD. Hamiltonian has included both (Rashba and

Dresselhaus) spin-orbit terms jointly.

Rashba and Dresselhaus spin-orbit interactions were not previously studied together for

the InAs QD sample. However, as mentioned before, the higher value for the InAs g-



factor gives the SOC a significant contribution to the system properties; therefore, it
may be acceptable to be an excellent candidate for spintronics technology.

The parabolic potential is the most common model to describe the QD confinement, and
most previous studies deal with the isotropic potential; however, in the present work, we

choose the anisotropic model expected to be closer to experimental results.

Additionally, in Ref (Kahraman & Bulutay, 2021) the authors presented atomistic
computations within an empirical pseudopotential framework for the electron s-shell
ground state g tensor of InGaAs quantum dots (QDs) embedded to host matrices that
grant electronic confinement. The results shown that low Indium concentration offers

limited g-factor tunability under shape or confinement variations.

Supported by the recent experimental result of Camenzind et al. (Camenzind et al.,
2021), we aim to theoretically calculate the effective Lande g- factor for the InAs

material.

The study investigates the combined effects of anisotropic parabolic potential, Gaussian
impurity, external fields, and spin-orbit interaction on the magnetic and electronic

properties of InAs QD.

1.7 Research objectives
The spin-orbit coupling is critical factor in determining a material's applicability to the
spintronics technology. The high g-factor for InAs material is a significant point that

demonstrates the impact SOI on the properties of the QDs.
The main objectives of this research project can be summarized as follows:

1. To solve a single electron Hamiltonian confined in an asymmetric QD in the presence
of SOI, magnetic fields, and Gaussian impurity by using the diagonalization technique

and computing the eigenenergies and eigenfunctions.

2. To study the behavior of the electron density as an important quantity that reflects the
effects of the applied fields and the spin-orbit interactions on the electron behavior. The
Gaussian impurity potential, which is included in the Hamiltonian, has additional
important effects on the behavior of the spectroscopic properties of the confined

electron.



3. To study the magnetic quantities of the QD material like magnetization M and the
magnetic susceptibility x. We shall investigate, further, the effects of all physical
quantities on the magnetic phase transition from paramagnetic to diamagnetic, in
particular, the effect of the electric field as it plays an important role in controlling the
magnetic behavior of the QD nanomaterial that has significant applications in the field
of spintronics.

4. To calculate the electron Lande g-factor of an electron confined in the InAs QD, an
important factor in controlling the spin of the electrons in the field of spintronics. The
electron g-factor is highly affected by the spin-orbit (SOI) interaction terms (Rashba and
Dresselhaus) and the applied electric field terms, which are included explicitly in the
QD Hamiltonian.

5. To investigate further the density of states of the anisotropic QD, considering the
significant effects of external fields (magnetic and electric fields) and Gaussian
impurity.

1.8 Structure of the dissertation
The dissertation contains four chapters divided as follows:

Chapter 1- Introduction: Chapter one includes a general introduction about the
quantum confinement of the charge carriers, spintronics, spin orbit interaction, density
of states. In addition, it provides the main differences between current research and
previous ones in the research gap section, furthermore, a literature review for previous
works related to the quantum dot confinement, numerical methods and spin orbit

interaction studies.

Chapter 2- Theory: In the second chapter, we explain, in details, how to construct the
Hamiltonian based on effective mass theory for an electron in anisotropic quantum dot,
including the effect of an external applied magnetic field, taking into consideration the
presence of acceptor Gaussian impurity and spin orbit interaction terms. Furthermore,
the numerical method for solving Schrodinger equation using exact diagonalization
method. And the physical meaning for the calculated properties: energy spectra of the
electon, wave functions, probability density, statistical average energy, effective Lande

g factor, density of states, magnetization, and magnetic susceptibility. In addition, in the

10



theory section, we show all the necessary mathematical expression and steps to simplify

the Hamiltonian matrix.

Chapter 3- Results and discussion: In this section, the calculated results will be shown
in figures and tables with physical and mathematical investigation for the quantum dot
physical properties, in addition to physical properties, we will provide some
computational output for advantages of using closed analytical expressions.

Chapter 4- Conclusion: Chapter four includes the conclusions from the research with

the results from chapters 3.
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Chapter Two
Hamiltonian Theory and Computation Method

2.1 QD Hamiltonian
Starting from the Hamiltonian of an electron in the presence of a magnetic field which

was discussed by Landau in 1930, following that work, H can be written as,

(p—eA)?

H =
2m*

(1)

Where

h, o :
p= 7(5’5’ 0), is the momentum operator

A is the vector potential corresponding to magnetic field along the Z-direction
m* is the effective mass of the electron in InAs material

e is the electron charge

the quantity (p -e A) is known as canonical (total) momentum. Using the symmetric

gauge and defining w, = %, the eigenenergies were found to be,

1
E=(2n 4+ |m|+ 1)hﬂ—§hmlwc (2)

Wc

Where Q = - n = 0,1,2,..,and m; = 0,1, £2,.. n and m, represent the radial and

azimuthal quantum numbers, respectively.

When a magnetic field is applied perpendicular to a conducting plane, the motion of
electrons becomes quantized into discrete energy states known as Landau levels. Each
Landau level represents a set of allowed energy eigenstates for the electrons in the
system. The energy spacing between adjacent Landau levels is constant and depends

solely on the strength of the magnetic field.

As an extension to the previous Hamiltonian, the single electron in a circular QD
confined in parabolic potential in the presence of a magnetic field is presented by the
following Hamiltonian,

(p—eA)? 1

g X ~"7 %2 2 2
H = Y +2mw0(x + y*) 3)
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The above Hamiltonian was solved by Fock and Darwin (Darwin, 1931; Fock, 1928).
Similar to Landau's work, the energy spectra were found as follows,

1
E = (Zn + |ml| + 1)hﬂeff—§hml W, (4)

2
where Q,¢r = /wg + % , as special case, if w, — 0, the energy solution given in Eq.

(4) will match the landau energy given by Eq. (2).

The Fock-Darwin states arise from the combined effects of the harmonic oscillator
potential and the magnetic field on the charged particle's motion. The harmonic
oscillator potential, characterized by its quadratic potential energy term, confines the
particle in two dimensions, while the magnetic field introduces a quantization of the

particle's orbital motion.

The Fock-Darwin states can be thought of as a two-dimensional analogue of the one-
dimensional harmonic oscillator states. They are characterized by the following

properties:

e  Energy quantization: Similar to the one-dimensional harmonic oscillator, the
Fock-Darwin states exhibit quantized energy levels. These energy levels depend
on the strength of the magnetic field, the frequency of the harmonic oscillator
potential, and the particle's effective mass.

o Radial and azimuthal quantum numbers: The Fock-Darwin states are labeled by
two quantum numbers: the radial quantum number, which determines the number
of radial nodes in the wavefunction, and the azimuthal quantum number, which
specifies the angular momentum of the particle.

o Landau level structure: The Fock-Darwin states exhibit a Landau level structure,
with each Landau level corresponding to a different energy eigenstate. Each
Landau level can accommodate multiple states with different azimuthal quantum
numbers but the same energy.

o Oscillation pattern: The Fock-Darwin wavefunctions exhibit characteristic
oscillatory behavior both radially and azimuthally, reflecting the confinement and
quantization of the particle’s motion in the harmonic oscillator potential and

magnetic field.

13



Fig. A.4 and Eqg. 4 show that at B = 0, the spectrum matches the symmetric harmonic
oscillator energies, and the degeneracy becomes larger with a higher energy level, while

as B — oo, the energy levels converge to Landau level.

In the isotropic potential case, the energy levels of the system possess a (2n + |m;| +
1) fold degeneracy. Here, n represents the principal quantum number and|m;| denotes
the magnetic quantum number. This degeneracy arises due to the rotational symmetry of

the potential, which allows for multiple states with the same energy.

To be closer to a real application, we introduce the asymmetric harmonic oscillator
confinement potential (heterostructure confinement) representing the restriction of the

motion of the charge carrier, such potential given by
v (x ):1 *(zz_l_zz) (5)
conflX, Y Zm Wy X wyy
Where w, # wy,

The potential plot given in Fig. 1(a and b) shows the broken potential circular symmetry
in the case of w, # w,. As an expected result, the solution of such a system is quite
similar to the isotropic potential case, except that the (2n + |m;| + 1) fold degeneracy
will be lifted due to broken symmetry. This result was previously reported in Ref
(Madhav & Chakraborty, 1994).

2.2 Gaussian impurity

In the semiconductor field, impurity is considered a very important factor in
manipulating the system properties, and the Gaussian impurity model was considered a
successful model to reflect the physical effect of impurity mathematically,

((X—Xo)2+(y—)’0)2)
Vimp (x, y) = Vpe d? (6)

where (x,,y,) denotes impurity position and the positive (negative) value of 1
corresponds to an acceptor (donor) impurity potential strength where d is a tunable

parameter to impact impurity stretch.

The Gaussian impurity model provides a mathematical framework to describe the
behavior of impurity atoms within a semiconductor. In this model, the impurity atoms
are represented by Gaussian-like potential profiles. These profiles represent the spatial

distribution of the impurity charge or potential energy within the QD.
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The Gaussian shape of the impurity potential arises due to the distribution of charge or
potential energy associated with the impurity atom. The model assumes that the
impurity atom is localized, and the charge or potential energy associated with it

decreases smoothly and symmetrically away from the impurity site.

One of the key advantages of the Gaussian impurity model is its simplicity, which
makes it computationally tractable. The model provides a reasonable approximation for
many impurity-related phenomena, especially when the impurity concentration is

relatively low.

The presence of the impurity (donor or acceptor) plays an essential role by changing the
potential shape, therefore, expected to change the probability distribution of the charge
carrier resulting in a significant change of the system properties.

Density plots of the effective potential for different cases of impurity types and
positions are demonstrated in Fig. 1, the effective potential for isotropic case (c, d, and e
) and anisotropic case (f, g, and h) in the presence of acceptor impurity (c, d, f, and g)
and donor impurity (e, and h), the impurity positions are: (0,0), (1,0), (0,1), (0,0), (0,1),
(1,)inc, d, e, f, gand h, respectively.

Up to now, our Hamiltonian describes the spin-independent properties, so we still have
to take care of spin contribution, the normal Zeeman effect due to interaction between

the electron spin and external magnetic field, expressed by the Hamiltonian,

~ 1
Hzeeman = Ego.uBO-z (7)

where, g, , Ug, o is the material Lande g factor, Bohr magneton, and spin Pauli

matrices, respectively.

The inclusion of this term allows us to investigate the influence of the external magnetic
field on the spin states and energy levels of the electron. The Zeeman effect leads to the
splitting of energy levels based on the orientation of the electron's spin relative to the
magnetic field direction.
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Figure 1
Density plot for the confinement potential for the isotropic and anisotropic case without
impurity (a and b) and in presence of the impurity (c-h)
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The magnitude of the Zeeman effect depends on the Lande g-factor, which represents
the ratio between the magnetic moment of the electron and its spin angular momentum.
Different materials and systems can exhibit different g-factors, leading to variations in

the strength and behavior of the Zeeman effect.

2.3 Spin-orbit interaction

The spin-orbit interaction (SOI) arises from the coupling between the intrinsic spin
angular momentum of electrons and their orbital angular momentum. This interaction
plays a crucial role in various physical phenomena, particularly in condensed matter
systems. The SOI term incorporates the effects of both Rashba and Dresselhaus spin-
orbit interactions, which are two prominent mechanisms responsible for spin-orbit

coupling in solid-state materials.

The Rashba spin-orbit interaction arises in systems with structural inversion asymmetry.
It can occur at interfaces or surfaces of materials or in heterostructures where the lack of
inversion symmetry breaks the degeneracy between spin-up and spin-down states. The
Rashba effect is typically characterized by a linear momentum dependence of the spin-
orbit coupling strength. In the presence of an electric field gradient, the Rashba
interaction leads to a spin-dependent potential that couples the electron's spin and

momentum, resulting in spin splitting and influencing electronic transport properties.

On the other hand, the Dresselhaus spin-orbit interaction arises due to the lack of bulk
inversion symmetry in materials, such as zinc-blende crystals. It can be present in
systems with structural asymmetry, such as quantum wells or nanowires. The
Dresselhaus effect is described by a linear and cubic momentum dependence of the
spin-orbit coupling strength. Similarly, to the Rashba interaction, the Dresselhaus
interaction leads to spin splitting and affects the electronic band structure, transport

properties, and spin dynamics in the material.

When considering the SOI term, which encompasses both the Rashba and Dresselhaus
contributions, we take into account the combined effect of these two mechanisms. The
SOI term quantifies the strength and nature of the spin-orbit coupling in the system,
providing a framework to describe the interplay between the electron's spin and its
orbital degrees of freedom.

Mathematically, the Hamiltonian term includes the effects of Rashba and Dresselhaus
SOI can be written as,
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Hsp = Hp + H) (8)
. ag
Hg = F[GX(P—QA)]Z 9)

Ay = “2[o.(p - e A)] (10)

Hg, consists of the Rashba interaction, whose strength is characterized by the parameter
ar and the Dresselhaus interaction with a strength characterized by aj. The electric
field E of the quantum well-confining potential affects these coupling
characteristics.(i.e., E = —0V/0z) along the z direction at the interface in a heterojunction
as (de Sousa & Das Sarma, 2003)

ar = yYgreE (11)
2mte 2/3
ap = O.78yD< v ) E?/3 (12)

where the Dresselhaus coefficient y, = 130 eVA®® , Rashba coefficient y, = 110A4°,
and effective mass m* = 0.0239m, is considered for InAs QD, where m,, is the free

electron mass.

2.4 Exact diagonalization method
The total Hamiltonian of an electron which is presented in InAs anisotropic doped

quantum dot under the presence of external magnetic and electric fields, is given by:

(0 — eA)?
2m*

H= + Veont (6, ) + Vip (6, ¥) + Hso + Hzeeman ~ (13)
The analytical solution of the above full Hamiltonian is unobtainable. So, we will apply
the Exact Diagonalization Method (EDM) as an efficient technique to solve the desired
QD Hamiltonian. The EDM is extremely useful for obtaining accurate estimates of the
quantum system's energies and related quantities. Moreover, contrary to other methods,
except the computer power, the obtained results from the EDM are unaffected by
approximations or limitations. It involves constructing the Hamiltonian matrix in a

chosen basis and diagonalizing it to find the eigenvalues and eigenvectors.

To apply the Exact Diagonalization Method, we start by selecting a suitable basis to

represent the quantum states of the system. The choice of basis depends on the specific
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problem and the symmetries involved. Typically, a basis set that spans the relevant
Hilbert space is chosen, and the Hamiltonian is expressed in terms of this basis.

Once the Hamiltonian matrix is constructed, it is diagonalized using numerical
algorithms such as the Lanczos algorithm or the Davidson algorithm. These algorithms
iteratively find the eigenvalues and eigenvectors of the Hamiltonian matrix, allowing us

to determine the energy spectra and corresponding wavefunctions of the system.

The advantage of the Exact Diagonalization Method is that it can provide accurate
results for small to moderate-sized systems. However, as the dimension of the Hilbert
space increases, the computational requirements grow exponentially, making it

challenging to apply the method to larger systems.

As a first step, we need to construct a Hamiltonian matrix with elements evaluated as

follows:

AW g ) (14)

NxNysS

(H) = (Unnys

In this work, these matrix elements (H,_, sn.n;s') Will be obtained in the simplest

closed-form to reduce significantly the computational time needed for the
diagonalization process.

To diagonalize that matrix and compute the eigensolution, we have to solve the

eigenvalue equation |<‘}’nxnys

ﬁ|LP ro ,>—E1| = 0, and obtaining the eigenvalues

NyNysS

and eigenstates.

The one-dimensional Harmonic oscillator wave functions will be used as bases to

construct the total wave function;

YY) = ) Cumn(@ ) (@5,) (15)
where
1 TT &
A \2 _&x* . om'wy
(pn(x) = \/W <\/_E> e 2 Hn(axx) 'ax :( h )1/2 (16)
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1 TNz &y N
‘Pn()’)=2—nn| (—) e 2 Hn(“yY) » Ay

the effective frequencies, @, and @, given as

2
w

_ 2 ¢
w wi +—
X X 4
2

w

_ 24 ¢
Wy a)y+4

g

K~

m*@
h

1

y>5

(17)

(18)

(19)

The matrix terms of the full Hamiltonian can be obtained in a closed analytical form in

two different ways, as explained:

1) we can express the position and momentum operators in terms of ladder operators of

a one-dimensional harmonic oscillator, shown as:

Oq . 1 _
4= B0 me)
And then simplify the matrix elements with the help of relations:
afI|nq> = \/n_qlnq - 1)

a;r|nq) = ’nq + 1|nq +1)

where q can be either x or y coordinate.

(20)

(21)

(22)
(23)

The previous ladder operator's technique is expected to be the most efficient approach

when dealing with the terms that have a linear dependence on the coordinate of

momentum, i.e., the SOI terms.

2) Evaluating the integrals using Hermite polynomial orthogonality and recurrence

relations are given as,

J Hp COH, (x)e™ " dx = Vr2™n! 8,y

20

(24)



Hyyq(x) = 2xHyp(x) — 2nHy, 4 (x) (25)
Hy(x) = 2nHp,_4(x) (26)

The last technique will be efficient when the Gaussian impurity Hamiltonian is

evaluated

2.5 Hamiltonian matrix elements
To complete the diagonalization process, the matrix elements for the Hamiltonian

H=H; + Viny(x,y) + Hr + Hy (27)
Where

_ (p—eA)? .

Hl = 2—"1* + Vconf(x' y) + HZeeman (28)

can be expressed as

(‘annys A% g >

= <anxnys H1|Lpn’ nys’ > + <anxnys I,/\L'mza|Lpn,'cng,s' >

+ <q1n nys HR|Lpn,n,S,>

+ <lpn nys HD|Lpnxnys > (29)

Since the well-known quantum numbers n,,n, for the one-dimensional harmonic
oscillator will not be long as good quantum numbers, we prefer to use a new notation
n, and m for the x and y dimensions, respectively. The first term on the right-hand side

above can be expanded as,
(lpnms |H1 |l‘pnlmlsl)
PZ+P; 1 1 w2 w2
] <Lp“ms “gm tg@By—Bx)tgm ((“’ ) (o 5

1
= <(1’l +1/2)h * Wy + (m+1/2)h * (3;/ + EQOI/LBS> Sn,n’dm,m’ds.s'

Lpn’m’s’>

1
Ewc(ny - Pyx) an’m’s'> (30)

+ (Wams
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To simplify the last term in the above equation, the position and momentum can be
expressed in terms of the previously mentioned ladders operators as,

h

A t
1= |3mas (9ataa) (31)
hmdog
Dq = 1 ) (aq - a;r) (32)
1
<lpnxnys Ewc(ny - Pyx) Lpn’ n! s'>
w w
=—fuwc /—"— / 2N (V' + VM + 16, 116 pmm 41
y
_\/_V 6nn 1 mm'—
o, @,
’ = ’ = (\/_“ 6nn —16mm +1
—vn' +1 “m,5n,n’+16m,m’—1) 65,5' (33)

Now, to find the matrix element of the Gaussian impurity term

<lpnxnys V\impllpn&ng,s’>
_(x=x¢)?
= V0(¢n(ax'x)¢m(ay'y)|e az
_=y0)*
Xe a7 |¢>n 1 (@ X) Py (@, ) (34)

Which can be evaluated by separating the integral into independent x and y integrals as

<Lpnxnys I’/\imp |lpn' ng,s'> Vo Ih I

where
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_(X—xo)z
e d?

bn (ax)

L = <¢n(ax)

+00 P _(x=x¢)?
= Af H,(yx)H, (@yx)e ™™ *e a*? dx
_(y=y0)? )
I =\pm(By) e @ dm(BYy)
+oo 2, _(=ye)?
=5 f Hpn (@ y)Hp (@y)e™™ e @ "dy  (36)
. Ty ay
With constants A = —————5 and B = > 172
(2n+n'n!n’[”) (zm"'m'm!m’!n)

to simplify the integrations, we use the transformations:

2 1 2 1
x6(né-7z) (1332 )

Y _ d2 n2
Ay =e oAy =e o,

2 _-2.,%1 2_ 7%
Nx = x+;:ny_ay+

Q

L
d2
yields

+00
I, = A/le H, (axu)H (a;u)e_(”_px)zdu

+o0
I, = Blyj Hp(a;v)H, (a;v)e"(”"py)zdv

o @
L ay=—=,a;, ==, u=nxandv =1,y

Where p, = =% p, = 22|
Px Nyxd? py nydz Nx Ny

With the help of the relation (Grandshteyn & Ryzhik, 1980)

foo e‘(x‘y)an/(ax)Hn(a:x)dx
) min(n',n) ,
S Y () ()

k=0

(39)

It's now easy to write
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h=D ) flnn) (40)
k=0
min(m,m')
L=D, ) gUmm) (41)
=0
where
/4 k *2 ﬂ—k
fle,n,n') = 2%k!" C G (1 — a™*) 2 X Hp ' i (@1 p1) (42)
) . v m+m’_l
gllmm’) =220 GG —B™) 2 X Hpp—p(B1p2)  (43)

With D; = BA,n'/2/n, and D, = BA,'/2/n,
Finally, the impurity matrix element will be evaluated using the relation:

~

Vimp |lpngcn§,s'>
min(n,n') min(mm')

=D,D, Z Z flke,n,n') X g(l, m,m") § ¢ (44)

k=0 =0

<lpnxnys

To evaluate the spin-orbit interaction terms: Rashba and Dresselhaus, we expand the

vectors cross prOdUCt, as
Hy = 5[0 % (p — e, = [ox(py — e4y) = 0, (px —eA)]  (45)
ap ap
Hp =—[0.(p — eA)] = — [0y (py — ed)) —ox(px —edy)]  (46)

Recalling that for the vector potential, we chose the symmetric gauge A4 =

g (—vy,x,0), so equations (45 and 46) can be expressed respectively as,

ag eB eB
Hpg :7 Oy (py_7x>_0-y (px'i'?y) (47)

ap eB eB
HD=7 ay(py—7x)+0x(px+7y) (48)

It is appropriate to use ladder operators for the momentum, position, and spin angular

momentum,
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0 =5 (o, +0.) (49)

1

oy =7 (o, —0.) (50)

as a result, the matrix element for Rashba Hamiltonian is evaluated to be in terms of the

system’s parameters and quantum numbers as follows :

ar . We —\ =
% <5s,1+s’ <_l6m,—1+m’6n,n’ <O(:ym + 2hay> m

w
+ 08 14m! O <— a:Cm* + 2h&;> V1i+m

y

,
+6m' On 140’ (O(:C m* + 2fl5(§) V'
x

w
+ Smm! On14n’ (a:C m* — Zh('x;) m)

X

w,
+ 65,_1_'_5/ <_i6m,_1+m16n,nl <—O(:C‘l’n’k + 2fl&;) vm'
y

w
+ 08 14m! O <a:Cm + 2h&;) Vi+m

y

w
+ 8 O 14 (a:C m* — Zha;) Vn'

X

w
T N (a:C m* + Zha;) Vi n)) (51)
X

From Eq. (51), one can see the missing of the states with different quantum numbers for
the basis harmonic oscillators (m=n"+1&m=m'),(n=n"—1&m =m'),and
same for y quantum numbers, (n =n' &m =m’'+1),(n =n' &m =m’ — 1), where
all the above contributions are taken into account for different spin orientations,

mathematically s # s’.

And for the Dresselhaus Hamiltonian, going ahead with same procedures, the result is
will be quite similar for the Rashba Hamiltonian, mathematically, the Dresselhaus term
give a contribution when s#s’" and (n=n"+1&m=m'),(n=n"—-1&m =

m'),or(n=n"&m=m'+1),(n=n"&m=m'-1).

After simplification, the term will be:
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ap . wm ,
2\/—7<554+s’ <6m,—1+m'6n,n’ <_2ayh + - > vm

+ 6m,1+m’6n,n’ (20(yh +

— w.m’
+ O 14m Onn’ | —2050 + = 1+m'

iw.m*
TP ST N (2i&;h+ c )ﬁ

(X'X
iw.m*
TP ST S (—zia;h == >\/1 T n>) (52)
X

Now, combining all the energy matrix elements, our energy matrix H,, is ready for
diagonalization and extracting the desired quantum dot energy. These obtained energy
spectra are used to investigate the dependence of system properties of the QD on the

tunable physical parameters.

2.6 Quantum dot properties: magnetic and electronic
From the exact diagonalization output, one can use sufficient single electron’s energy

spectra to calculate the partition function using canonical definition

The partition function, denoted by Z, is a fundamental quantity in statistical mechanics
that characterizes the equilibrium properties of a system. It is defined as the sum over all
possible states of the system, weighted by their Boltzmann factors. In the case of a
qguantum system, the partition function is obtained by considering the energy spectra of

single electrons within the system, mathematically,

7= Z e~BEn (53)
n

B = 1/kgT , where kg is a Boltzmann constant.

The average energy can be calculated by using the standard statistical expression:
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B 0Ln(Z)

()= -~

(54)

This expression allows us to determine the average energy as a function of the

temperature and the system's energy levels.

The average energy, denoted by (E), is defined as the expectation value of the energy
operator over all possible states of the system. It represents the average value of the
energy that the system possesses.

To comprehend the magnetic properties of materials, it is essential to investigate how
they interact with an external magnetic field. When a magnetic field is applied, it
influences the energy levels of the electrons within the quantum dot, leading to changes
in the average mean energy of the system. By quantifying the relationship between the
applied magnetic field and the resulting changes in energy, the magnetization can be

determined.

The magnetization (M) of QD, a key feature that indicates the response of the material
to an external magnetic field can be calculated by taking the derivative of the average
energy with respect to the magnetic field. This calculation is crucial in understanding
the magnetic properties of the materials:

__®
M=-2C (55)

Similar to this, the magnetic susceptibility (y) may categorize a material as diamagnetic

when, (y < 0). and paramagnetic when (y > 0).

By using the derivate of magnetization (M) with respect to the magnetic field, it is
possible to determine the material's magnetic susceptibility

_ oM

x="2 (56)

It is worth mentioning that the exact derivative in analytical form is unobtainable since
the result of the diagonalization process will give us the numerical values for the energy
spectra, so we deal with the definition of the derivative; for example, the magnetization

can be computed using the following definition,

I (E(B + AB)) —(E(B))
im

M= AB—0 AB

(57)
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In the same manner, magnetic susceptibility can be calculated.

In addition to previous quantities, the effective Lande g factor (gc-r = g) will be

computed for the low-lying state using the relation

i Ecs(sT) —Egs(s )
geff: G.s ”BB G.s (58)

The electronic density of state (DOS) for a QD is another quantity that can reveal much
important information about the electronic structure of nanomaterial, which is given as

the sum of a series of & functions as,
DOS(E) = =1 6(E — En) (59)

which we numerically calculated with a Gaussian distribution as,

1 —(E — E,))?
DOS(E) = Wz exp I%l (60)

where I is the broadening factor, and E,, is the energy of the system, which was shown

a result of the diagonalization process.
The algorithm of our work can be visualized by the scheme given in Fig. A.5.

2.7 Convergence tests
The completeness of the wavefunctions in the one-dimensional harmonic oscillator

implies that any function, including the arbitrary wave function can be expressed
precisely as a linear combination of the basis wavefunctions. This property allows us to
decompose complex wave functions into simpler components, facilitating the analysis

and understanding of quantum mechanical systems.

The wavefunctions, or basis, of the one-dimensional harmonic oscillator are considered
as a complete set so that any function can be expressed in terms of a linear combination

of them, yielding that any arbitrary wave function 1, can be written as,

N
YY) = im D Comn(@ Ddm(ay,7) (61)

Ideally, we have to construct a matrix with infinite dimension for the Hamiltonian to get

the exact energy spectra, but in practice, the size of the basis, and hence the dimension
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of the Hamiltonian matrix, has to be large enough to ensure the convergence of the state
vectors we are interested in. As N becomes large, any further increase of the Hilbert
space dimension will not have a noticeable effect on the calculated low-lying excited
states, so it is sufficient to take the value of N to ensure that the highest desired energy,

let us call it Ef, converges to a specific value as N increases, and this convergence

condition is given mathematically as,
|[Ef(N+1)—E(N)|=6,<e (62)

Here, €; represents the maximum energy value tolerance and depends on our
calculation's desired accuracy. For this reason, the numerical method is called exact

diagonalization method.

We aim to calculate the energy for low-laying states and then use these energies to
investigate the temperature-dependent properties, mainly the partition function (Z). The
Z-expression is also an infinite sum over the system energies (ideally, the sum over all
the energy spectra of the system), as given later by Eq. (27). The second critical stage is
to ensure the issue of convergence at any temperature value; we have to test the effect of

larger states above Ef, by applying the condition:
Z(Ef)—Z (Ef-1) =06, <€ (63)

€, represents the maximum tolerance in the partition function value. It is worth
mentioning here that as the temperature increases, the electron has a chance to be in the
higher state, so the higher state (f) must be increased, and more energy states will be
included in the partition function to ensure the converged results, therefore, to have
acceptable accuracy in the new Ef , we should reinvestigate the convergence condition
given by Eq. (62) and increase the Hilbert space dimension (N). Our two-stage

convergence test is summarized in Fig. A.6.

Since the total Hamiltonian in this project contains the combined effects of many
physical terms (anisotropic confinement potential, impurity, external magnetic field,
and spin orbit interaction effect) we can fix or neglect, temporarily, one or more terms to
compare the result and ensure the accuracy of our code and method. One of the essential
quantitative checks is taking the isotropic case (by setting w, = w,, ) so, and neglecting

the impurity term, the calculated energies using exact diagonalization method in case,
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the parabolic quantum dot, will give the same energy are expected to match the

analytical energy given by Eq. (4).
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Chapter Three
Results and Discussions

This chapter presents the computed numerical results for the energy spectra,
magnetization, magnetic susceptibility, effective g factor, and density of state for InAs
anisotropic QD presented in the perpendicular magnetic field, taking into account the
doping process with acceptor impurity, which has been modeled to Gaussian form. The
material parameters for InAs in this work have been chosen to be : m* = 0.0239m,
and g, = -15 (Sanjay Prabhakar et al., 2011).

3.1 Hamiltonian matrix and diagonalization

In Fig.2, the Hamiltonian matrix has been displayed to investigate the effect of each
term on the system's electronic properties; as previously mentioned, the isotropic
(circular) quantum confinement in the spatial direction has an analytical solution in
terms of the used HO bases, so as expected result to give a contribution to main
diagonal of the Hamiltonian as shown in Fig. 2(a), the value of the energy equals the
two-dimensional harmonic oscillator energy. The presence of the magnetic field causes
a new mixing between the eigenstates as appeared in the last term in Eg. 30, so mixing
the state with An = +1, Am = +1, and As = 0, so from this point, the well-known n,,
n, will not be longer a good quantum numbers to describe the system states; this

remark can be seen in Fig. 2(b). it's worth mentioning here that the solution for the
anisotropic HO is previously discussed; the analytical solution has been found using
appropriated canonical transformation with new rotated bases, for the interested reader
can refer to (S. Avetisyan et al., 2012). The SOI terms: Rashba and Dresselhaus give a
new mixing between the state and the interesting remark that the SOl mixes the states
with a different spin as shown in Fig. 2(c) and d, finally, the on-center Gaussian
impurity contributed to mixing the states, as shown in Fig. 2(e) the combined matrix for
the above matrix terms has been collected in Fig 2(f).

from Fig. 2(f), one can see that the combined effect of the Gaussian impurity and the
both type of the SOI, give more contribution for the of diagonal terms, means they
significantly mixed the original harmonic oscillator’s states, as result a higher matrix

dimension is required to ensure the convergence issue.
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Figure 2:
Hamiltonian matrix for the anisotropic quantum dot a) the diagonal term b) mixing term
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Another crucial point is that using a closed analytical form for evaluating the
Hamiltonian matrix elements significantly speeds up computation processes. For
instance, the impurity matrix element term in Eqg. 34 was calculated using the numerical
integration method, and using the output from Eq. 44. the computation time and the

matrix elements values for some low-lying states are given in Table 2.

For example, the analytical evaluation of the matrix element of the impurity
(1,1| Himp|1,1) is 62 times faster than the numerical integration. It is worth to mention
that in case of on center impurity, the impurity Hamiltonian is even in each spatial
dimension, so it's expected to get zero contribution if at least the bra and ket of the x or

y harmonic oscillator basis have different parity as (1,1| Hypp|1,2) and (2,1| Himp|3,2).

In case the impurity Hamiltonian makes zero contribution, numerical integration
methods often require a considerable amount of time to ensure accurate zero values.
This is because numerical integration involves discretizing the problem domain and
evaluating the integrand at multiple points, which can be computationally expensive. It
requires a fine-grained sampling to capture the small variations in the integrand that
may lead to non-zero values, even when the impurity Hamiltonian is expected to

contribute nothing.

However, when a closed analytical expression is available, the computation time can be
significantly reduced. Analytical expressions provide a direct mathematical formula or
equation to calculate the desired quantity without the need for numerical
approximations. By substituting the necessary variables and parameters into the
analytical expression, the result can be obtained promptly, often with a lower

computational cost compared to numerical methods.

The basis-functions with n,, n, were taken from 0 — 30 for each direction in the linear
variational calculation. The direct product of the basis gave a 30 X 30-dimensional
space. We confirmed that the basis functions cover the two-dimensional space, at least
in expressing the observables under investigation. A larger number of basis functions
were used in the convergence test. Table 3 shows the eigenenergies for the ground and

the first two excited states for a range of basis functions.
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Table 2

On-center impurity matrix element for w, = 6 meV ,
numerical integration and closed form given in Eq 44

w, =3 meV ,d = 10 nm, using

Numerical matrix elements Analytical matrix elements

(Himp)n I Time (sec)  element value Time (sec) element value
Y (arb. unit) (arb. unit)
1,111 0.019907 1.56501869 0.0003211 1.565019
1,112 0.002576 0 0.0002766 0
1,1,1,3 0.057623 -0.742598035  0.0003056 -0.7426
1,121 0.032559 0 0.0003129 0
1,122 0.071604 0 0.0003115 0
1,131 0.066772 -0.474280457  0.0003008 -0.47428
1,132 0.133869 0 0.0003289 0
1,1,3,3 0.215458  0.225045131 0.0003257 0.225045
1,211 0.002405 0 0.0002741 0
1,2,1,2 0.024303  1.150427913 0.0003658 1.150428
1,2,1,3 5.461316 0 0.0003951 0
1,2,2,1 0.081158 0 0.0002921 0
1,231 0.155340 0 0.0003213 0
1,2,3,2 0.098687 -0.348639 0.0003433 -0.34864
1,2,3,3 6.420399 0 0.0004045 0
2,111 0.040773 0 0.0002983 0
2,113 0.11347 0 0.00036 0
2,121 0.026372 1.241433 0.0003509 1.241433
2,122 0.002800 0 0.0003636 0
2,123 0.089877 -0.58906 0.0003739 -0.58906
2,211 0.088176 0 0.0003478 0
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Table 3

The low-lying state energies for different basis numbersat Vo = 16 meV,d = 10 nm,w, =
4meV ,w, = 6 meV, and B = 2T

Dimensional space G.S 1% excited state 2"% excited state

5x%x5 10.2834 12.9467 20.3453
10 X 10 10.0443 11.0118 11.3830
12 X 12 10.0311 10.9846 11.3798
15 x 15 10.0140 10.9043 11.3779
17 x 17 10.0093 10.9008 11.3766
20 x 20 10.0025 10.8960 11.3750
22 % 22 10.0025 10.8960 11.3750
25 x 25 9.9996 10.8938 11.3747
27 x 27 9.9995 10.8938 11.3746
30 x 30 9.9995 10.8938 11.3746
35 % 35 9.9995 10.8938 11.3746
40 X 40 9.9995 10.8938 11.3746
45 X 45 9.9995 10.8938 11.3746

3.2 Energy spectra and electron probability

In Fig. 3 (a and b), we have shown the Fock-Darwin states of a single electron in the
absence of impurity (V, = 0), for circular QD Fig. 3(a) and elliptical QD Fig. 3(b). The
figures show quite similar behavior of the energies as a function of B, except that the
degeneracies of the states are lifted at B=0 due to different confinement strengths in x
and y directions; this result has been previously reported in Ref (Siranush Avetisyan et
al., 2012). At B # 0 the most characterized feature of the figures is that the Fock
Darwin levels are split due to Zeeman interaction into two substates corresponding to
different spin orientations. This separation between the two sublevels shows linearly
behavior with the applied magnetic field as |ug g B|. Fig. 3(c and d) highlights the effect
of an on-center gaussian impurity on the state's energies of the system as a function of

37



B. An interesting level crossing between the ground state and the first excited state has
appeared at a particular B. In the isotropic (anisotropic) potential case, this crossing
occursat B = 2.4 T (2.8T).

We have studied the dependence of low-lying states on the impurity profiles (strength,
influence domain, and position). Fig. 3(e, f, g) shows the effect of the acceptor impurity
domain on the level crossing; as d increases, the intersection point occurs at a lower
magnetic field value. Also, by comparing Figs. 3(d, e, and h), it is revealed that
increasing the impurity strength for a fixed influence domain moves the crossing to a

lower B value.

In Fig. 3(i and j) we plot the low-lying states as a function of impurity strength (Fig.
3(i)) and impurity domain (Fig. 3(j)). The on-center impurity affects the ground state
(10,0 )) more than other states, and this increase in the ground state energy makes the
levels cross. As V,, increases, the repulsive force between the impurity and the electron
increases; as a result, the electron is pushed from the center to be at a higher energy
state. In the same way, as d increases, the impurity effect is speared from the center, so
the electron is being pushed further away. Another observation is that when d increases,

the excited states are also significantly affected by the impurity potential.

To explain this observation, the electron probability density has been plotted in Fig. A.7
for different impurity profiles (strength, position, and domain). As the top panel shows,
in the absence of impurity, the electron in the state |0,0 ) has a higher probability of
being at the center of the quantum dot. Since, w, < w,,. The first excited state (|1,0 ))
has a node in the x-direction, while the state |0,1 ) is the second excited state (which has
a node in the y-direction), These distinct nodal patterns in the excited states underscore
the different behaviors resulting from the anisotropic nature of the confinement
potential in the x and y directions. In the presence of an on-center impurity, the charge
density distributes away due to electron-impurity repulsion, so the electron has a greater
probability of being further from the center, while for the excited states |1,0 ) and |0,1 )
the electron probability at the center is zero, so the presence of the impurity has an
insignificant effect on these excited states' probability, therefore, a minor effect on the

state's energy, especially for low values of d.
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Figure 3

Low-lying state energies of the QD: (a - h) as a function of B, (i) as function of V4 and (j) as

function of d.
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As the impurity strength increases, the probability becomes less at the center, so the
electron is obligated to be at a higher confined point due to the parabolic well in the x
and y directions. On the other hand, for a larger value of d (bottom panel of Fig. A.7),
the effects of impurity on the excited states are apparent, and the effects on the state
|1,0 ) and |0,1 ) varies due to the isotropy of the QD.

From Fig. 4(a), it is clear that the E s increases as the impurity strength increases, and
the cusp, which corresponds to the crossing, shifts to the left towards a lower magnetic
field due to available repulsive energy as the strength increases. In Fig. 4(b), the effect
of the impurity domain on the E; s has been displayed. As d increases, more cusps
appear in the E; . For example, two cusps for d = 20 nm correspond to the two

crossings in Fig. 3(c).

In Fig. 4(c and d), we have displayed the effect of impurity position on the energy level
for the four low-lying states. From these two plots, we can conclude that the off-center
impurity position affects the states with a larger probability of the electron being at the
impurity position; when the impurity is located at x (y) = 22 nm from the origin, the
energy of the state |1,0 ) (]0,1)) is significantly affected, while the sates |0,1) (|1,0))
are minorly affected due to their node at x (y) = 0, whereas the third excited state
12,0 ) is more affected by the on-center impurity than the lower excited states due to its

electron probability at x = 0.

The electron's probability density was calculated and plotted in Fig. A.8 for the previous
four orbits (ground state and the first, second and third excited states) for anisotropic
quantum dot (w, =4 meV,w, = 6 meV) in presence and absence of impurity to
support the result of Fig. 4 and make it more understandable. The density extends
perpendicular to the axis, which contains the impurity. for example, as the impurity
located at (22 nm,0), which approximately the position of the anti-node of the first
excited state |1,0 ) of the harmonic oscillator basis at given system parameters and the
electron has a high probability to be there, the electron is pushed away from the
impurity location and the probability density is redistributed to be extended in the y-
direction, so the electron has a larger probability to be at further point from the origin,

As a consequence, the energy value increases, on other hand.
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Figure 4

E ;s as a function of B for different impurity profiles (a and b), Impurity position effect on the
low-lying energy state (c and d)
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3.3 Magnetic properties of the Quantum dot system
The average statistical energy has been plotted in Fig.5 in the presence of on-center

impurity for different temperatures, and the figure shows that the (E) is very similar
to the ground state energy at low temperatures T — 0, E; s has cusps at the level

crossings, where the states are degenerate.

In Fig. 5(b). The average statistical energy has been plotted as a function of T for
different numbers of states. The results show that at low temperatures, there is no need
to take a greater number of states since, at low temperatures, the probability of the
electron to be in the higher states is neglectable. However, as the temperature increases,
an interesting phenomenon occurs. The electron now possesses a notable probability of
occupying higher energy states. Consequently, to ensure proper convergence and
accuracy in describing the system's statistical energy, the summation must be extended
to larger values of N,,.. By including a greater number of states, the calculation
encompasses a wider range of possible electron configurations, thereby accounting for
the increased likelihood of the electron residing in higher energy levels at elevated

temperatures.

These results highlight the crucial role of temperature in determining the necessary
number of states to consider for an accurate representation of the system's statistical
energy. It showcases the importance of carefully selecting N,,.,. based on the
temperature regime of interest to effectively capture the behavior of the electron in

different thermal conditions.

Numerically, when the temperature (T) is within the low range (T < 20 K), it is
observed that the average energy curves exhibit a high degree of similarity regardless of
the chosen value for N,,,,.. In this regime, the system's behavior is such that the
probability of the electron occupying higher energy states is significantly diminished at

these lower temperatures.

However, as the temperature enters the higher range (T > 20 K), a distinct change in
behavior is observed. At these elevated temperatures, the electron gains a substantial
probability of occupying higher energy states. As a consequence, the convergence of the

average energy curves becomes dependent on the value of N4
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Figure 5

a) (E) vs. the magnetic field for fixed impurity profiles b) (E) vs. the T for different N,
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The dependence of the magnetization on the magnetic field and the impurity profile was
studied in Fig. 6. The results show the presence of oscillation in the magnetization curve
due to the intersection of the low-lying states' energies. In Fig. 6(a), the effect of the
impurity strength is shown; the increase in the impurity strength pulls the intersection in
the energy levels shown in previous figures towards a lower magnetic field value, as

expected.

The influence of impurity extension has been investigated in Fig. 6(b). It is noticed that
there are many peaks in the magnetization curve at larger values of d due to the
occurrence of multiple cusps in the ground state energy curves, which appeared in Fig.
5(b).

The effect of the impurity's position was investigated in Fig. 6(c) since the major effect
on magnetization is attributable to the ground state at temperatures near zero. As a

result, the impurity's existence away from the center reduces the oscillation peaks hight.

The results revealed that when the impurity was positioned away from the center, there
was a noticeable reduction in the height of the oscillation peaks. This observation
indicates that the presence of the impurity, when situated at a distance from the central
region, influences the magnetization characteristics, leading to a dampening effect on
the oscillation amplitudes.

In Fig. 6(d), the effect of the temperature has been illustrated. For T — 0, At the level
crossings, the magnetization is discontinuous; consequently, the susceptibility diverges.
On the other hand, at finite temperatures, thermal excitations make the magnetization a
continuous and smooth function, and the susceptibility then has the spectral line form
with a temperature dependence linewidth, as presented in Fig. 7(a). The number and

position of the peaks depend on the impurity profile, as shown in Fig. 7(b).

From the previous figures (Fig. 6 and Fig. 7), we can conclude that the impurity plays a
significant role in controlling the magnetic properties of the nanomaterials, by flip the
magnetic susceptibility sign as result the material shows a diamagnetic to paramagnetic

shift depends on the impurity profiles (strength, position, and stretch).
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Figure 6

M vs. B for a) different impurity strengths, b) different impurity stretches, ¢) different impurity
positions, and d) differentvtemperatures, where all other parameters have been fixed
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Figure 7

x vs. B for a) different temperatures and b) different impurity stretches ¢) FWHM of y as
function of T

wy=4 meV w,=6meV Vp=32meV d=10nm
4- e -

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

6'V"v"'\7"vw"v"""v"'x
wy=4 meV w,=6meV Vp=16meV T=2K

b)

05 10 15 20 25 30 35 40
B(T)

52



0.4
- |we=4 meV w,=6meV Vo=32meV d=10nm )
T
e
f’ 1
_.___c'
0.3 T
I.’
s
—_— ""
- -
m 0.2 v
| -7
g
/"
/.’
, p
0.1, /x
s
,‘.’,
rd
s
0_0.-/ . . . . . . . . . . 1 . . |
0 1 2 3 4
T(K)

To investigate further the effect of the temperature on the magnetic susceptibility of
the QD, the full width at half maximum of the spectral line of the susceptibility
(FWHM) is shown as a function of temperature in Fig 7(c). One can see that the

temperature changes the spectral linewidth linearly.

To investigate the effects of the SOI terms on the energy spectra and the magnetic
properties of the InAs QD system, we have first, plotted the Rashba and Dresselhaus

parameters as a function of the induced electric field in Fig.8(a). According to Egs.

11 and 12, the ratio between Rashba and Dresselhaus for InAs Z—R = 0.015 E'/3, the

D

dashed line in Fig.8(a) indicates the range for the electric field in which the
Dresselhaus SOl dominates over Rashba SOI, where the solid line (higher electric
field ) for which the Rashba has the main contribution in the spin splitting energy,
the point between the two regions at, E = 3.04 x 103 V/cm, the two parameters

became equal.

53



Figure 8

a) Rashba to Dresselhaus ratio (ag/ap) vs. the electric field. RSO and DSO couplings become
equal at the electric field, E = 3.04 x 103 V/cm. b) The energies of the low-lying states as a
function of the magnetic field strength c) Ground state energy d) The statistical average energy
of the lateral QD as a function of the magnetic field strength for different electric field values.
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Figure 8(b) illustrates the eigenenergies for the low-lying states at E = 2 x 10° V/cm,
for isotropic quantum dot in the absence of the impurity, it can be seen that the most
contribution is attributed to Rashba, while the Dresselhaus SOI has minor contribution

at this particular value of the electric field.

The shifting in the ground state energy is apparent In Fig. 8(c), even at zero magnetic
fields, which is attributed to the SOI (primally Rashba SOI). In contrast, the cusp is
shifted to a larger magnetic field value as the spin-orbit interaction (i.e., electric field) is
increasing, which results in more significant shifting in the state |0,0 > relative to the
first excited state, making the crossing/ anticrossing of the states appears at a larger

magnetic field.

For low temperatures, the statistical average energy has been plotted in Fig. 8(d), and
the same cusps (corresponding to the ground state energy cusps) appeared, which again
attributed to the high probability of the electron being localized in the ground state,

To investigate the effect of the SOI on the magnetic properties of the QD system, the
magnetization (M) and magnetic susceptibility (x) have been plotted in Fig. A.9(a) and
A.9(b), respectively; the plot shows an expected shift in the peaks of the curves
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corresponding to the previously mentioned change in the ground state energies
crossings/ anticrossing, where the magnetic phase transition still presents.

3.4 Effective Lande g factor

In Fig. 9(a) the effective Lande g factor has been plotted as a function of the magnetic
field, at a fixed value of the electric field, for different SOI cases. For ap = 0 case
(solid line), even ap # 0, the curves show a constant value for the Lande g factor,
which matches the value of the bulk InAs material, since the Dresselhaus SOI has a
minor contribution to small band gap semiconductors. For the dashed line, the presence
of RSOI enhances the value of the g factor due to the more significant separation of the

states with different spin orientations, AE = E T —E |
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Figure 9

Effective Lande' g factor vs.a) magnetic fields b) electric field c)wg d ) anisotropy of QD
without impurity (a—g ) and in presence of acceptor impurity (hand 1)
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For fixed parameters,B = 1T, w, = w, = 8 meV, the two types of SOI can be
manipulated by changing the electric field strength. The SOI strength effect on the
Lande g factor has been investigated in Fig 9(b). In the first case, we neglected the
Dresselhaus effect a;, = 0, the Rashba SOI enhanced the g value as the electric field
increases, which is clearly shown in the dashed line in the figure. This result shows the
role of the Rashba SOI in the area of spintronics devices. On the other hand, by
neglecting the Rashba effect @i = 0, the Dresselhaus SOI slightly reduces the absolute
value of g as the electric field increases, as shown in the solid line in the figure. The
combined effect displayed in the dotted points shows the dominance of the Rashba SOI

effect over the Dresselhaus SOl one.

The size of the symmetric quantum dot (w, = w, = w,) significantly affects the value
of the g factor at a fixed value of the electric field, as shown in Fig. 9(c), at a particular
value of the confinement strength (which is inversely proportional to quantum dot size),
the g factor curve has its maximum value, for example, at E = 10 x 103V /cm the g
factor has a peak value g = 1.64g, for w, = 8.15meV, the numerical data also given in
Table 4, this peak value of the g factor became smaller and shifted to smaller

confinement strength when the electric field decreased.
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Table 4

Absolute value of g factor as function of the confinement strength for fixed magnetic field value

Wo g
9o
2 0.635964
3 1.04601
4 1.336727
5 1.507444
6 1.593824
7 1.629756
7.6 1.636783
7.7 1.637212
7.8 1.637463
7.9 1.637545
8 1.637469
8.1 1.637244
8.2 1.63688
9 1.629859
10 1.614154
11 1.594399
12 1.572875
13 1.550874

In Fig. 9(d) and Fig. 9(e), the effect of anisotropy of the QD has been investigated. For a

fixed quantum dot area (w, X w,), the g factor has been plotted as a function of the

ratio of y to x confinement strength (%). The figure shows an interesting behavior for
different values of x-direction confinement strength. In Fig. 9(c), the anisotropy slightly
enhances the absolute value of the g factor; then the anisotropy reduces the value of the
g factor as the quantum dot extends to be an elliptical shape. To show the geometric

symmetry of the ratio effect, we plot in Fig. 9(e) the g factor as a function of the
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Log(Z—i), the figure exhibits an expected symmetry around w, = w,, equivalent to

Log(Z—z)=0.

In Fig. 9(f and g) , the g factor shows different behavior with respect to the anisotropy
of the QD. In Fig. 30(f), for E=7x10°V/cm and [w, X w, = 8.25 meV, the

anisotropy enhances the g factor value as |L0g (—y)

w
Wy

increases, whereas, for E = 7 X

105V /cm Jowx X w, = 5meV, the anisotropy decreases the g factor value as

[Log (32)

partially discussed in Ref (S. Prabhakar et al., 2011), as the anisotropy of the

increases, as shown in Fig. 9(g). This conclusion has been previously

confinement potential increases, the |g| decreases.

From figures 9(c - g), one can observe the combined effects of the electric field, the
confinement strength, and the anisotropy of the quantum dot on the absolute value of
the effective Lande g factor. In practice, the value of the g factor is considered an
important key by manipulating the relaxation time on the quantum computing area (de
Sousa & Das Sarma, 2003), so further investigation about how to enhance or reduce the
value by external parameters is considered a hot research subject and may be

investigated in future work.

The presence of an acceptor impurity in the QD has been studied and shown in Figs. 9(h
and i). In Fig 9(h), the on-center impurity slightly increases the g factor of symmetric
QD with low confinement potential; however, the g factor decreases as the confinement

potential strengthens.

For symmetric QD, the impurity profile (strength and stretch) effect has been shown in
Fig. 9(i) as a function of the magnetic field. For a fixed value of d, the g factor can be
increased as the impurity strength increases at a low magnetic field value (before the
crossing/ anticrossing occurs. By the way, the more considerable value of d gives a

similar effect by increasing the g factor.

3.5 The density of state DOS

The density of state has been studied to describe the system responses to Hamiltonian
parameters, like the magnetic field, electric field, confinement anisotropy, and impurity

profile.
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In Fig. 10(a), at B = 0 and for the fixed value of the x-direction confinement strength
w, = 4meV, the density of state has been plotted as a function of the energy; for the
isotropic case (dashed line), the energy spectra are given by (nx +n,+1 )hwx the

figure shows an increasing state degeneracy as the energy increase; for example, the
states |0 0,- > |0 0,— > are degenerate with energy Aw, since the spin degeneracy
remains in  the absence of the magnetic field, the  states

|0 1,- > |0 1,— > |1 0,- > |1 0,— >are degenerated states with energy 2Aw,, and

|02 > |02 > |1 1,2 > |1 1,— > |2 0,1 > |2 0,— > are degenerate states

with energy 3hw,, and so on. By contrast, for the anisotropic case, the degeneracy has
been partially lifted, and two-state degeneracy remains since the different spin states
have the same energy at zero magnetic fields in the absence of the SOI. Accidentally, at

E, = 17meV there are four degenerate states, namely
(|30 >|02 >|30 >,|0,2,—%>), the same behavior is shown at

E, = 21meV since w, = 1.5 w,.

In Fig. 10(b), the presence of the external magnetic field totally removes the degeneracy
of the states, so DOS gives one at each value of the energy spectra, with also increasing
on the ground state due to increasing of the canonical momentum, equivalently Kinetic
energy, in the Hamiltonian, the larger separation between to two different spin states,
due to large value of the bulk g factor of the InAs material.

The presence of the electric field as a source for the SOI significantly affects the DOS
of the system, as shown in Fig. 10(c), even at zero magnetic fields. At the fixed electric
field value E = 3 * 10°V/cm the RSOl dominates the Dresselhaus SOI, which shifts
the states to lower energy eigenvalue, for example, the first peak of the red line in the
figure (at E,, = 4.7 meV ). On the other hand, the presence of SOI electric field

partially removes the degeneracy of the higher states n,, n, > 1.
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The presence of the acceptor impurity also affects the DOS plot, as shown in Fig. 10(d);
at zero magnetic fields, the 2-spin fold degeneracy is still present, where the impurity
split the states, in specific, the impurity added positive energy for each state unequally,
with no significant effect at the states with odd quantum numbers (which have a node at
the impurity location).

In Fig. 10(e), the DOS has been plotted versus the energy for E = 3 x 10° V/cm , we
notice from the figure that the anisotropy of the confinement potential partially removes
the degeneracy of the states, whereas the spin degeneracy remains, as shown in the
dashed black lines. In addition, as the magnetic field is turning on, the spin degeneracy

is also lifted; this split is due to the Zeeman term in the Hamiltonian.

The combined effect of the impurity, SOI, and anisotropy of the quantum dot has been
investigated in Fig. 10(f). There are accidentally degenerate states and a particular value
of the energy for on-center impurity, while the presence of an off-center impurity totally

removes the state’s degeneracy.

In conclusion, the density of states (DOS) in a quantum system is influenced by various
factors, including the Hamiltonian terms and parameters that govern the system's
behavior. These factors interact in complex ways, leading to significant correlations

with the DOS and affecting the system's physical properties.

The presence of a magnetic field is one such influential factor. In the case of an
isotropic quantum dot, the magnetic field removes the spin degeneracy of the Fock-
Darwin states, causing them to split. This spin splitting alters the DOS and introduces
energy level spacings that depend on the strength of the magnetic field. Consequently,

the DOS exhibits distinctive features related to the presence of the magnetic field.

The anisotropy of the parabolic confinement potential also has a substantial impact on
the system's DOS. This anisotropy breaks the degeneracy associated with spatial
guantum numbers, resulting in different energy levels for states with different spatial
distributions. However, the spin degeneracy remains unaffected by the anisotropy of the
confinement potential. Consequently, the DOS shows distinct variations due to changes

in the spatial quantum numbers, while the spin degeneracy is preserved.

Furthermore, the introduction of impurities in the system can significantly manipulate

the DOS. Impurities add or subtract energy unequally for each state, leading to a
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modification of the DOS profile. The presence of impurities can create localized states
within the energy spectrum, thereby altering the overall DOS distribution. The specific
energy levels affected by the impurity depend on the impurity's characteristics and its

interaction with the surrounding quantum system.

Additionally, the spin-orbit interaction (SOI) plays a crucial role in shaping the energy
spectra and, consequently, the DOS. The SOI intertwines the spin and spatial quantum
numbers, resulting in a mixing of these quantum degrees of freedom. This mixing
modifies the energy levels and introduces additional splitting and shifts in the energy
spectrum, further influencing the DOS distribution. The presence of SOI can give rise to

phenomena such as spin-orbit splitting and spin textures that impact the DOS.

In summary, the combined effect of Hamiltonian terms and parameters strongly
correlates with the density of states in a quantum system. The magnetic field removes
spin degeneracy, the anisotropy of the confinement potential affects the spatial quantum
numbers, impurities manipulate specific energy levels, and the spin-orbit interaction
mixes the spin and spatial quantum numbers, all of which significantly modify the
density of states. Understanding and controlling these effects are essential for
comprehending the behavior of quantum systems and designing devices with desired
electronic properties.
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Chapter Four

Conclusions
In this work, the anisotropic quantum dot Hamiltonian has been solved using the

diagonalization method in the presence of a perpendicular magnetic field and Gaussian
impurity, considering both types of spin-orbit interaction: Rashba and Dresselhaus spin-

orbit interaction.

The diagonalization process has been carried out using the one-dimensional harmonic
oscillator basis to find the eigen solutions of the InAs QD for different cases. All the

Hamiltonian matrix elements have been calculated in a closed analytical form.

In the computational process, the issue of convergence has been ensured, and the
obtained numerical results have been tested. Using the closed analytical expression for
the matrix elements significantly reduced the computational time and gave more

accurate energy spectra.

The results of the energy spectra match the Landau level spectra in the case of the
isotropic quantum dot, in the absence of the impurity and SOI, while as the quantum dot

stretched in the y direction, the degeneracy of the landau level is partially removed.

The presence of the acceptor impurity significantly affects the eigen solution of the
system, specifically causing an interesting crossing between the states and changing the
ground state. Furthermore, the impurity's strength, position, and spatial stretch have

been investigated.

As a second step, the obtained eigenenergies have been used to calculate the statistical

average energy as a function of the system parameters and temperature.

The magnetic properties of the system (magnetization and magnetic susceptibility) of
InAs QD have shown a diamagnetic-paramagnetic phase transition due to the impurity
presence. This transition strongly correlates with the impurity profiles (strength,

position, and influence domain), magnetic field, and temperature.

In applications, the magnetic phase transition (diamagnetic to paramagnetic transition)
should be considered when estimating the applicability of material to be involved in

future technologies such as switching devices and magnetic sensors.

71



In addition, the effective Lande g factor of the system has been studied. The result
shows the strong dependence of g* on the SOI interaction, the quantum dot confinement

strength, and the isotropy of the quantum dot in addition to the magnetic field.

Finally, to physically describe each system parameter's effect on the energy spectra, we
calculate the density of state of the system. The plots show the breaking of the harmonic
oscillator symmetry as the magnetic field is tuning on, where the anisotropy of the

confinement potential also breaks the symmetry.
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List of Abbreviations

Abbreviation Meaning
soc Spin-Orbit Coupling
QD Quantum Dot
N Spin-Orbit Interaction
DOS Density of states
2D Two-dimension
1D One-dimensional
0D Zero-dimension
k, Z -wave vector
g Effective Lande g factor
EDM Exact diagonalization method
M Magnetization
X Magnetic susceptibility
n Principal quantum number
W, Cyclotron frequency
Q Effective frequency
m; Angular quantum number
A Vector potential
B Magnetic field
E Electric field
Wy Isotropic radial confinement frequency
Wy x direction confinement frequency
wy y direction confinement frequency
m* Effective mass
m Free electron mass
h Reduced Plank constant
p Momentum
e Electron charge
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Abbreviation Meaning
Vs Impurity strength
X0, Yo Impurity location

d Impurity stretches

Ug Bohr magneton

ag Rashba coefficient

ap Dresselhaus coefficient
o Pauli matrices
) Kronic Delta
Y Wave function
Z Partition function
r Broadening factor

E;g Ground state energy

FWHM The full width of half maximum

M Magnetization
X Magnetic susceptibility
(E) Average energy
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Appendices
Appendix A

Figures

Figure A.11

Concept of spin transistor illustrating the analogy between photon polarization (top) and

electron spin (bottom). (Datta, 2018)
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Figure A.12

Energy dispersion vs. wavevector for the one dimension, the solid line represents the
spin-independent Hamiltonian while the red dashed (blue dashed) line denotes Zeeman

(Rashba) splitting.
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Figure A.13

The effect of the dimensionality on the density of states yields a different change in the system

properties
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Figure A.14

Fock-Darwin energy levels (n, m;) of an isotropic quantum dot as a function of the magnetic
field B (in Tesla) with confinement of wy =4 meV.
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Figure A.15

Flowchart for the dissertation.
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Convergence tests for the spectra and partition function.
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Figure A.17

Probability density |1p|? for the wavefunctions of the low-lying states |0,0 ),|1,0 ), and |0,1 ),
in the presence of on-center impurity with profiles (from up to down)
(Vo,d):(0,-),(24,10),(32,10) and (32, 20) in meV and nm, respectively.

> Higher probability

Figure A.18

Probability density |3p|? for the wavefunctions of the low-lying states, the top panel for V =
0 and the other two panels in the presence of an off-center impurity with

Vo =32meV and d = 10 nm, located at (xg,yq ): (22,0),(0,22) from up to down,
respectively.

81




Figure A.19

a) M vs. B and b) y vs. B for different electric field strengths for lateral QD
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