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Abstract 

The anisotropic quantum dot (QD) Hamiltonian has been solved using the 

diagonalization method in the presence of a perpendicular magnetic field and Gaussian 

impurity, considering both types of spin-orbit interaction (SOI): Rashba and 

Dresselhaus. The diagonalization process has been carried out using the one-

dimensional harmonic oscillator basis. 

The acceptor impurity's presence significantly affects the system's eigensolution, 

specifically causing an interesting level crossing between the states and changing the 

ground state order. Furthermore, the impurity's strength, position, and spatial stretch 

have been investigated, and the result shows that the impurity plays an important role in 

manipulating the QD properties. 

The magnetization and magnetic susceptibility as important quantities of the QD system 

made from InAs are studied. The results show a diamagnetic-paramagnetic phase 

transition at low temperatures due to the impurity presence. This magnetic transition 

strongly correlates with the impurity profiles (strength, position, and influence domain), 

magnetic field, and temperature. As the strength of the impurity increases, the 

diamagnetic-paramagnetic transition occurs at a lower value of the magnetic field. 

In addition, the effective Lande factor g of the system has been studied. The result 

shows that, as the electric field increases, the Rashba SOI increases |g|, while the 

Dresselhaus SOI reduced |g| of the QD. Furthermore, in the presence of both types of 

SOI, increasing the electric field enhances the |g| since in the InAs material, the Rashba 

SOI dominates the Dresselhaus SOI. The result emphasizes the role of Rashba SOI in 

spintronics devices. 
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The confinement strength effect on the g has been investigated, the g shows a peak 

value at particular confinement strength. In addition, the anisotropy of the QD shows a 

significant role in controlling g. 

The density of states of the system has also been computed to physically describe the 

impact of each system parameter on the energy spectrum. As the magnetic field turns 

on, the figures demonstrate how the anisotropy of the confinement potential also causes 

the harmonic oscillator symmetry to be broken. 

 
Keywords:  Quantum dot; Magnetic properties; Rashba spin-orbit interaction; 

Dresselhaus spin orbit interaction; Lande g factor; Computational physics; Density of 

states; 
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Chapter One 

Introduction 

Spin-orbit coupling (SOC), one of the most critical consequences of Dirac's theory for 

particles in condensed matter physics, is widely believed to play an important role in 

electronic devices such as spintronic transistors. In addition to heterostructure 

confinement and external fields, SOC significantly manipulates the density of states of 

the system to show different physical properties compared to a bulk system. Adding 

impurities (donor or acceptor impurities) to the low-dimensional system also can 

manipulate the system properties. 

1.1 Quantum confinement  

Quantum-confined structures, known as Nanostructures, are classified according to their 

degree of spatial confinement. In the quantum well, the carrier has the freedom to move 

in a two-dimensional space where the motion in the third spatial dimension is confined, 

while in the quantum wire, the carrier is confined to move freely in one dimension only, 

the ultimate quantum structure being a system that confines carriers in all three 

dimensions. These quantum structures are termed quantum dots (QDs). A QD is a 

nanometer-scale structure of narrow-band gap semiconductors (such as GaAs), 

frequently surrounded by a wider-band gap semiconductor (such as AlGaAs). One of 

the fundamental properties of QDs which is of considerable importance in dealing with 

those nanostructures, is their capacity to confine carriers in all three directions, 

presenting a discrete spectrum of energy spectra similar to that of pure atoms that gave 

quantum dots the name of "artificial atoms" (Ashoori, 1996). 

QDs have a size similar to the electron and hole wave functions, which allows for 

efficient spatial confinement of these charge carriers. Typically, their size falls in the 

range of a few to tens of nanometers. The charge carriers' quantum confinement is a 

semiconductor nanostructure's primary physical property. Spatial confinement occurs in 

ways that significantly alter material characteristics. First, it moves the bulk 

semiconductor's conduction and valence bands, allowing its forbidden bandgap to 

expand. Second, quantum confinement alters the electronic density of states of the 

nanostructure dramatically. Therefore, a significant change in the system's physical 

properties will take a place (Reimann & Manninen, 2002). 
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The discrete energy spectra in the QD strongly depend on the dot size, material type, 

and QD shape; a smaller size means larger confinement. 

The relationship between dot size and confinement can be intuitively understood by 

considering the spatial constraints imposed on the charge carriers. In a larger quantum 

dot, electrons have more space to move around, and their energy levels are less discrete. 

However, when the dot size is reduced, the available space for electrons becomes 

limited, resulting in a higher degree of localization. Consequently, the energy levels 

become more discrete, forming distinct energy states that are well-separated from each 

other. 

Moreover, in addition to dot size, other factors such as the material type and QD shape 

also play crucial roles in determining the discrete energy spectra. The material 

properties, including the band structure and electronic properties, influence the energy 

levels that can be occupied within the quantum dot. Different materials exhibit varying 

energy gaps between their electronic bands, which further impact the discrete energy 

levels within the QD. 

1.2 Spintronics 

Spintronics, also known as spin electronics, is an expanding field of nanoscale 

electronics in which the spin and charge of an electron are utilized to convey 

information. It is considered one of the most promising area of research, given its 

diverse applications (Bader & Parkin, 2010). 

The common objective of spintronics is to comprehend the interaction of particle spin 

and its surroundings and find a practical way of controlling electronic properties, such 

as current, by spin or magnetic field, as well magnetic properties gate voltages or 

electric currents. In addition, to comprehend the core logic of spin, such as relaxation of 

spin (how spins vanish and arise) and spin transit (how spins move in semiconductors 

and metals). It is fundamentally important as basic physics concerns because of their 

demonstrated value as phenomena in electronic technology (Hu & Xiang, 2020; Wolf et 

al., 2001; Žutić et al., 2004). 

Electronic devices use an electron's elementary charge to move it. The electrical 

conductivity of a semiconductor may be modified by applying a voltage to it, resulting 

in the realization of a controlled switch. These switches are the foundation of every 
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hardware logic system. Electrons carry angular momentum, known as "spin," in 

addition to charge. The Stern-Gerlach experiment quantifies this inherent feature of 

electrons, demonstrating that the spin has two possibilities, down or up, depending on 

the measurement devices; this is equivalent to the digital states "1" and "0," raising the 

possibility that the spin might be used to represent binary memory states. A spin field-

effect transistor (see Fig. A.1), for example, would switch its logic state from off to on 

by changing the magnetic field orientation (Dieny et al., 2020; Schliemann et al., 2003). 

Spintronics is essential in the memory field to meet the demands of high storage 

capacity, compact size, and fast response. New devices that mix logic, sensor, and 

storage applications are also available. Furthermore, these "spintronics" technologies 

may lead to quantum computers and quantum computing based on solid-state electrical 

devices, altering the future of information technology (Yakout, 2020). Fig. A.1 shows a 

schematic presentation for a spin transistor where the electron moves from the source to 

the drain according to its spin orientation; the applied voltage controls the electron 

transition. 

1.3 Spin-orbit interaction 

As the name suggests, spin-orbit interaction (SOI) is a link between an electron's spin 

dynamics and its orbital motion in space. 

According to the theory of special relativity, when the inertial frame of reference 

changes, electric and magnetic fields are Lorentz transformed. Thus, an electron 

traveling through an electric field "sees" a moving electric field, which is caused by 

moving charges, in its rest frame. These flowing charges – or electrical current – 

generate an "internal magnetic field" in the electron's rest frame. This "internal magnetic 

field" connects back to the electron's spin. The magnitude and direction of this internal 

magnetic field are determined by the electron's velocity and travel direction in a 

material, therefore, SOI produces a k-dependent internal magnetic field, where k 

represents the electron's wave vector. 

When comparing the Zeeman effect to the spin-orbit interaction (SOI), it becomes 

evident that the latter has a distinct influence on the behavior of electronic spins in 

materials. While the Zeeman effect is responsible for the splitting of energy levels based 

on the interaction between the spin and an external magnetic field, the spin-orbit 
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interaction goes beyond the direct influence of an applied magnetic field, as shown in 

Fig. A.2. 

The lack of structural inversion symmetry of the confinement potential of electrons in a 

quantum heterostructure, also known as Rashba SOI (Rashba, 1960), and lack of crystal 

inversion symmetry, also known as Dresselhaus SOI (Dresselhaus, 1955), are the two 

primary "sources" of the electric field that lead to SOI. 

1.4 Density of states 

The density of states (DOS) of a system in condensed matter and solid-state physics 

refers to the proportion of states that the system will occupy at each energy. The number 

of states in a unit of energy is known as the density of states. Which is typically an 

average over the space and time domains of the many states in which the system exists. 

The distribution of these states is theoretically represented by a probability density 

function. The dispersion relations of the system's attributes are directly correlated with 

the density of states. High DOS for a given energy level indicates that numerous states 

are open for occupation. 

The DOS of the matter is often continuous. Whereas, the density distribution is discrete 

in isolated systems, such as atoms or molecules in the gas phase. Therefore, the local 

densities of states are frequently used to show the local variations of DOS. 

The DOS is dependent upon the dimensional limits of the structure itself. The units of 

DOS in a system characterized by three orthogonal parameters (3 Dimensions) are 

                 , in a two-dimensional system, the units of DOS are 

               , in a one-dimensional system, the units of DOS are 

                .  

The distribution of electrons varies as dimensionality is decreased, as demonstrated by 

calculations of the density of states for small structures. For example, compared to bulk 

semiconductors, quantum wires have a DOS greater at some energy, and QDs have 

electrons that are quantized at specific energies. 

The density of states represents the number of permitted electron (or hole) states per 

volume at a given energy level and is derived from the principles of quantum 

mechanics. It is simple to demonstrate that, concerning dimensionality, the dependence 
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of the density of states on system energy considerably changes. Table 1 and Fig. A.3 

illustrate how the DOS changes for bulk (3D), 2D, 1D, and 0D systems. 

Table 1 

The effect of spatial confinement on DOS as a function of energy   

System Dimensionality DOS vs. E 

Bulk 3D      √  

Quantum well 2D               

Quantum wire 1D 
     

 

√ 
 

Quantum dot 0D                

 

There exist finite energy ranges in a real structure (which is not exactly 2-D) over which 

the energy independence holds (the derivation holds for each single, well-separated 

possible value of   ). A staircase is what a quantum well's density of states looks like. 

The density of state functions becomes ever more limited when semiconductor 

dimensionality is more constrained to 1-D (quantum wire) and 0-D (QD). 

1.5 Literature survey 

Researchers have shown a particular interest in low-dimensional systems, and a 

considerable number of theoretical research have been carried out to investigate the 

impact of external fields on thermal, magnetic, and optical properties (Ali et al., 2022; 

Avetisyan et al., 2016; Baghdasaryan et al., 2018; Boda & Chatterjee, 2016; Bzour et 

al., 2017; Castano-Yepes et al., 2019; Chakraborty & Pietiläinen, 2005; Datta & Ghosh, 

2011; Elsaid, Abu Alia, et al., 2020; Elsaid, Shaer, et al., 2020; Gumber et al., 2015; 

Gumber et al., 2016; Jha et al., 2014; Khordad, 2017; Stufler et al., 2005). The presence 

of impurities has been discovered to have a significantly influence on system 

modification (Boda & Chatterjee, 2016; Datta & Ghosh, 2011; Elsaid et al., 2019; 

Kandemir & Cetin, 2005; Yahyah et al., 2019). 

Numerous theoretical studies have been devoted to solve the Schrodinger equation for 

the QD system using various approaches, such as the variational approach (Ciftja & 

Faruk, 2005; Kandemir & Cetin, 2005; Shaer et al., 2016), the 1/N expansion method 
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(Yahyah et al., 2019; Yaseen et al., 2019), and the exact diagonalization method (Ali et 

al., 2019; Alia et al., 2019; Sharma et al., 2019). 

Shaer et al. have studied the two electrons in a GaAs QD system using the variational 

method and investigated the thermal and magnetic properties of the system. The 

magnetic susceptibility shows an oscillatory behavior due to the Coulomb interaction 

between the two electrons, which caused the ground state changing (Shaer et al., 2016; 

Shaer et al., 2019).  

The exact diagonalization method was used to study the magnetization and magnetic 

susceptibility of a donor impurity in parabolic GaAs QD by Alia et al. (Alia et al., 

2019). The computed results show that the electric field can tune the magnetic 

properties of the QD GaAs medium by flipping the sign of its magnetic susceptibility 

from diamagnetic to paramagnetic. In addition, the magnetic susceptibility transition 

has shown to be strongly correlated to Hamiltonian parameters such as magnetic field, 

electric field, donor impurity, and Rashba SOI. 

The electrical properties of elliptical quantum dot in the presence of the Rashba spin-

orbit interaction and a perpendicular external magnetic field have been investigated (S. 

Avetisyan et al., 2012). The research has shown that when the quantum dots anisotropy 

increases, the Fock-Darwin spectra strongly depend on the Rashba spin-orbit coupling, 

even without the magnetic field. It is discussed how the anisotropy contributes to this 

strong influence. Since the resulting dipole-allowed optical transitions conspicuously 

display the significant spin-orbit-coupling effect, it can be directly observed 

experimentally. 

The effect of the spin-orbit interaction on the electron magnetization and magnetic 

susceptibility of parabolic InAs QD has been investigated by Voskoboynikov et al. 

(Voskoboynikov et al., 2003), where the work gives a theoretical investigation of the 

influence of spin-orbit interaction on electron magnetic properties of tiny semiconductor 

QDs at low temperatures, these properties exhibit quite exciting behavior. The sudden 

variations in magnetization and susceptibility at low magnetic fields are attributable to 

the alternate crossing of the spin–split electron levels in the energy spectrum, primarily 

caused by spin-orbit interaction. 
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Hosseinpour (Hosseinpour, 2020) provided a brief investigation of the influence of 

Rashba SOI and Gaussian impurity on the thermal properties of an asymmetric QD. The 

Rashba SOI was considered when the author calculated the doped QD’s internal energy, 

heat capacity, and entropy. It has been shown that Rashba coupling, Gaussian impurity 

parameters, and applied fields may manipulate thermal properties and that increasing 

the electric field and Rashba coupling strength lowers the internal energy. Entropy 

(internal energy) drops due to changes in some factors, such as the magnetic field and 

intensity of the confinement potential. In different work, Hosseinpour (Hosseinpour & 

systems, 2020) has studied the nonlinear optical properties of QDs in the presence of the 

Rashba SOI, and in this work she shown a significant impact of the Rashba SOI on the 

system's optical properties.  

Prabhakar et al. (S. Prabhakar et al., 2011) investigated the change in an electron's 

Lande' g factor by anisotropic gate potentials and magnetic fields in InAs QDs. For both 

isotropic and anisotropic QDs, the author tried to offer analytical formulations and 

numerical simulations of the change in the Lande' g factor in this study. The authors 

demonstrated that the Rashba spin-orbit coupling significantly affects the fluctuation of 

Lande' g factor with electric fields using both analytical approaches and numerical 

simulations. In particular, significant Rashba spin-orbit interaction demonstrates that the 

electric-field tunability covers an extensive range of g factor values. 

The study also uncovers a significant finding that, if the area of the symmetric and 

asymmetric QD is kept equal, the anisotropic gate potential leads to a quenching effect 

in the orbital angular momentum that minimizes the variance in the electric field and 

magnetic field tunability of the Lande' g factor. 

In a separate study, Madhav et al. (Madhav & Chakraborty, 1994) have investigated the 

electronic properties of anisotropic quantum dots in a magnetic field. They authors have 

calculated the energy spectra and pair-correlation function of a two-electron system to 

analyze the impact of inter-electron interaction on isotropic and anisotropic QDs. 

In Ref (de Sousa & Das Sarma, 2003), the effective Lande g factor have been studied 

and the spin-flip time of a heterojunction of III-V semiconductor QDs. The results have 

shown that the Lande g factor is highly sensitive to the Rashba and Dresselhaus spin-

orbit interactions. In addition, the study highlights a strong sensitivity of g and    to dot 
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radius and magnetic field, providing opportunities for the development of a QD spin 

quantum computer, where external gates may control the spin-orbit coupling to engineer 

the g factor and spin-flip time. 

For a single uncapped InAs self-assembled quantum dot, anisotropy of the spin-orbit 

interaction (SOI) is investigated in Ref (Takahashi et al., 2010). The SOI energy is 

calculated from anticrossing or SOI-induced hybridization between the ground and 

excited states with opposing spins. 

1.6 Research gap 

The purpose of this section is to demonstrate, in great detail, the main differences 

between this work and previously published results related to the QD research field. By 

conducting a comprehensive analysis and comparison, we aim to highlight the unique 

contributions and advancements offered by our study, shedding new light on the 

understanding of QDs. 

As mentioned earlier, numerous publications seek to investigate the QD magnetic 

properties, where the authors usually solve the single electron Hamiltonian and study 

the system properties. 

Some studies have focused on the GaAs / AlGaAs QD properties and have included 

spin-orbit interaction effects in some of these studies. However, the Rashba coupling 

parameter in GaAs material is small compared to InAs material, which has a relatively 

small band gap. Another critical point is that the effective Lande g factor for the InAs 

material is larger than the GaAs Lande g factor (             while            ); 

as a result, the spin-dependent terms in InAs material are expected to have a more 

significant effect, therefore, more expected application in the future. Hence, it will be 

exciting to study the SOC for this material in QD form. 

 Another important point, in this work, we deal with both Rashba and Dresselhaus spin-

orbit interaction, and each of them has a different source, so to have a wide picture of 

the spin-orbit interaction, the QD. Hamiltonian has included both (Rashba and 

Dresselhaus) spin-orbit terms jointly. 

Rashba and Dresselhaus spin-orbit interactions were not previously studied together for 

the InAs QD sample. However, as mentioned before, the higher value for the InAs g- 
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factor gives the SOC a significant contribution to the system properties; therefore, it 

may be acceptable to be an excellent candidate for spintronics technology. 

The parabolic potential is the most common model to describe the QD confinement, and 

most previous studies deal with the isotropic potential; however, in the present work, we 

choose the anisotropic model expected to be closer to experimental results.  

Additionally, in Ref (Kahraman & Bulutay, 2021) the authors presented atomistic 

computations within an empirical pseudopotential framework for the electron s-shell 

ground state g tensor of InGaAs quantum dots (QDs) embedded to host matrices that 

grant electronic confinement. The results shown that low Indium concentration offers 

limited g-factor tunability under shape or confinement variations. 

Supported by the recent experimental result of Camenzind et al. (Camenzind et al., 

2021), we aim to theoretically calculate the effective Lande g- factor for the InAs 

material. 

The study investigates the combined effects of anisotropic parabolic potential, Gaussian 

impurity, external fields, and spin-orbit interaction on the magnetic and electronic 

properties of InAs QD. 

1.7 Research objectives 

The spin-orbit coupling is critical factor in determining a material's applicability to the 

spintronics technology. The high g-factor for InAs material is a significant point that 

demonstrates the impact SOI on the properties of the QDs.  

The main objectives of this research project can be summarized as follows: 

1. To solve a single electron Hamiltonian confined in an asymmetric QD in the presence 

of SOI, magnetic fields, and Gaussian impurity by using the diagonalization technique 

and computing the eigenenergies and eigenfunctions. 

2. To study the behavior of the electron density as an important quantity that reflects the 

effects of the applied fields and the spin-orbit interactions on the electron behavior. The 

Gaussian impurity potential, which is included in the Hamiltonian, has additional 

important effects on the behavior of the spectroscopic properties of the confined 

electron. 
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3. To study the magnetic quantities of the QD material like magnetization M and the 

magnetic susceptibility χ. We shall investigate, further, the effects of all physical 

quantities on the magnetic phase transition from paramagnetic to diamagnetic, in 

particular, the effect of the electric field as it plays an important role in controlling the 

magnetic behavior of the QD nanomaterial that has significant applications in the field 

of spintronics.  

4. To calculate the electron Lande g-factor of an electron confined in the InAs QD, an 

important factor in controlling the spin of the electrons in the field of spintronics. The 

electron g-factor is highly affected by the spin-orbit (SOI) interaction terms (Rashba and 

Dresselhaus) and the applied electric field terms, which are included explicitly in the 

QD Hamiltonian.  

5. To investigate further the density of states of the anisotropic QD, considering the 

significant effects of external fields (magnetic and electric fields) and Gaussian 

impurity. 

1.8 Structure of the dissertation 

The dissertation contains four chapters divided as follows: 

Chapter 1- Introduction: Chapter one includes a general introduction about the 

quantum confinement of the charge carriers, spintronics, spin orbit interaction, density 

of states. In addition, it provides the main differences between current research and 

previous ones in the research gap section, furthermore, a literature review for previous 

works related to the quantum dot confinement, numerical methods and spin orbit 

interaction studies. 

Chapter 2- Theory: In the second chapter, we explain, in details, how to construct the 

Hamiltonian based on effective mass theory for an electron in anisotropic quantum dot, 

including the effect of an external applied magnetic field, taking into consideration the 

presence of acceptor Gaussian impurity and spin orbit interaction terms. Furthermore, 

the numerical method for solving Schrodinger equation using exact diagonalization 

method. And the physical meaning for the calculated properties: energy spectra of the 

electon, wave functions, probability density, statistical average energy, effective Lande 

g factor, density of states, magnetization, and magnetic susceptibility. In addition, in the 
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theory section, we show all the necessary mathematical expression and steps to simplify 

the Hamiltonian matrix. 

Chapter 3- Results and discussion: In this section, the calculated results will be shown 

in figures and tables with physical and mathematical investigation for the quantum dot 

physical properties, in addition to physical properties, we will provide some 

computational output for advantages of using closed analytical expressions. 

Chapter 4- Conclusion: Chapter four includes the conclusions from the research with 

the results from chapters 3.  
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Chapter Two 

Hamiltonian Theory and Computation Method 
 

2.1 QD Hamiltonian 

Starting from the Hamiltonian of an electron in the presence of a magnetic field which 

was discussed by Landau in 1930, following that work,  ̂ can be written as, 

 ̂  
        

   
                                                        

Where 

   
 

 
 

 

  
 

 

  
   ,  is the momentum operator  

  is the vector potential corresponding to magnetic field along the  -direction 

   is the effective mass of the electron in InAs material 

e is the electron charge 

 the quantity (  -   ) is known as canonical (total) momentum. Using the symmetric 

gauge and defining    
  

 
,  the eigenenergies were found to be, 

         |  |         
 

 
                                             

Where   
  

 
,               , and                n and    represent the radial and 

azimuthal quantum numbers, respectively.  

When a magnetic field is applied perpendicular to a conducting plane, the motion of 

electrons becomes quantized into discrete energy states known as Landau levels. Each 

Landau level represents a set of allowed energy eigenstates for the electrons in the 

system. The energy spacing between adjacent Landau levels is constant and depends 

solely on the strength of the magnetic field. 

As an extension to the previous Hamiltonian, the single electron in a circular QD 

confined in parabolic potential in the presence of a magnetic field is presented by the 

following Hamiltonian, 

 ̂  
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The above Hamiltonian was solved by Fock and Darwin (Darwin, 1931; Fock, 1928). 

Similar to Landau's work, the energy spectra were found as follows,  

         |  |            
 

 
                                          

where       √  
  

  
 

 
  , as special case, if      , the energy solution given in Eq. 

(4) will match the landau energy given by Eq. (2). 

The Fock-Darwin states arise from the combined effects of the harmonic oscillator 

potential and the magnetic field on the charged particle's motion. The harmonic 

oscillator potential, characterized by its quadratic potential energy term, confines the 

particle in two dimensions, while the magnetic field introduces a quantization of the 

particle's orbital motion. 

The Fock-Darwin states can be thought of as a two-dimensional analogue of the one-

dimensional harmonic oscillator states. They are characterized by the following 

properties: 

 Energy quantization: Similar to the one-dimensional harmonic oscillator, the 

Fock-Darwin states exhibit quantized energy levels. These energy levels depend 

on the strength of the magnetic field, the frequency of the harmonic oscillator 

potential, and the particle's effective mass. 

 Radial and azimuthal quantum numbers: The Fock-Darwin states are labeled by 

two quantum numbers: the radial quantum number, which determines the number 

of radial nodes in the wavefunction, and the azimuthal quantum number, which 

specifies the angular momentum of the particle. 

 Landau level structure: The Fock-Darwin states exhibit a Landau level structure, 

with each Landau level corresponding to a different energy eigenstate. Each 

Landau level can accommodate multiple states with different azimuthal quantum 

numbers but the same energy. 

 Oscillation pattern: The Fock-Darwin wavefunctions exhibit characteristic 

oscillatory behavior both radially and azimuthally, reflecting the confinement and 

quantization of the particle's motion in the harmonic oscillator potential and 

magnetic field. 
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Fig. A.4 and Eq. 4 show that at    , the spectrum matches the symmetric harmonic 

oscillator energies, and the degeneracy becomes larger with a higher energy level, while 

as    , the energy levels converge to Landau level. 

In the isotropic potential case, the energy levels of the system possess a       |  |  

    fold degeneracy. Here, n represents the principal quantum number and|  | denotes 

the magnetic quantum number. This degeneracy arises due to the rotational symmetry of 

the potential, which allows for multiple states with the same energy. 

To be closer to a real application, we introduce the asymmetric harmonic oscillator 

confinement potential (heterostructure confinement) representing the restriction of the 

motion of the charge carrier, such potential given by 

            
 

 
  (  

      
   )                                    

Where      ,  

The potential plot given in Fig. 1(a and b) shows the broken potential circular symmetry 

in the case of      . As an expected result, the solution of such a system is quite 

similar to the isotropic potential case, except that the     |  |     fold degeneracy 

will be lifted due to broken symmetry. This result was previously reported in Ref 

(Madhav & Chakraborty, 1994).  

2.2 Gaussian impurity  

In the semiconductor field, impurity is considered a very important factor in 

manipulating the system properties, and the Gaussian impurity model was considered a 

successful model to reflect the physical effect of impurity mathematically,  

              
 
(      

        
 )

                                      

where (        denotes impurity position and the positive (negative) value of     

corresponds to an acceptor (donor) impurity potential strength where    is a tunable 

parameter to impact impurity stretch. 

The Gaussian impurity model provides a mathematical framework to describe the 

behavior of impurity atoms within a semiconductor. In this model, the impurity atoms 

are represented by Gaussian-like potential profiles. These profiles represent the spatial 

distribution of the impurity charge or potential energy within the QD. 
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The Gaussian shape of the impurity potential arises due to the distribution of charge or 

potential energy associated with the impurity atom. The model assumes that the 

impurity atom is localized, and the charge or potential energy associated with it 

decreases smoothly and symmetrically away from the impurity site. 

One of the key advantages of the Gaussian impurity model is its simplicity, which 

makes it computationally tractable. The model provides a reasonable approximation for 

many impurity-related phenomena, especially when the impurity concentration is 

relatively low. 

The presence of the impurity (donor or acceptor) plays an essential role by changing the 

potential shape, therefore, expected to change the probability distribution of the charge 

carrier resulting in a significant change of the system properties. 

Density plots of the effective potential for different cases of impurity types and 

positions are demonstrated in Fig. 1, the effective potential for isotropic case (c, d, and e 

) and anisotropic case (f, g, and h) in the presence of acceptor impurity (c, d, f, and g) 

and donor impurity (e, and h), the impurity positions are: (0,0), (1,0), (0,1), (0,0), (0,1), 

(1,1) in c, d, e, f, g and h, respectively. 

Up to now, our Hamiltonian describes the spin-independent properties, so we still have 

to take care of spin contribution, the normal Zeeman effect due to interaction between 

the electron spin and external magnetic field, expressed by the Hamiltonian, 

 ̂        
 

 
                                                          

where,    ,    ,   is the material Lande g factor   Bohr magneton, and spin Pauli 

matrices, respectively. 

The inclusion of this term allows us to investigate the influence of the external magnetic 

field on the spin states and energy levels of the electron. The Zeeman effect leads to the 

splitting of energy levels based on the orientation of the electron's spin relative to the 

magnetic field direction. 
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Figure 1 

Density plot for the confinement potential for the isotropic and anisotropic case without 

impurity (a and b) and in presence of the impurity (c-h) 

 
 

 

 

𝜔𝑥  𝜔𝑦    𝑚𝑒𝑉                                         𝜔𝑥    𝑚𝑒𝑉  𝜔𝑦    𝑚𝑒𝑉  

    c)                                                         d)                                                     e)  

 

 

 

 

 

 

   

 

 

   f)                                                       g)                                                         h)   

a)                                                                          b) 
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The magnitude of the Zeeman effect depends on the Lande g-factor, which represents 

the ratio between the magnetic moment of the electron and its spin angular momentum. 

Different materials and systems can exhibit different g-factors, leading to variations in 

the strength and behavior of the Zeeman effect. 

2.3 Spin-orbit interaction 

The spin-orbit interaction (SOI) arises from the coupling between the intrinsic spin 

angular momentum of electrons and their orbital angular momentum. This interaction 

plays a crucial role in various physical phenomena, particularly in condensed matter 

systems. The SOI term incorporates the effects of both Rashba and Dresselhaus spin-

orbit interactions, which are two prominent mechanisms responsible for spin-orbit 

coupling in solid-state materials. 

The Rashba spin-orbit interaction arises in systems with structural inversion asymmetry. 

It can occur at interfaces or surfaces of materials or in heterostructures where the lack of 

inversion symmetry breaks the degeneracy between spin-up and spin-down states. The 

Rashba effect is typically characterized by a linear momentum dependence of the spin-

orbit coupling strength. In the presence of an electric field gradient, the Rashba 

interaction leads to a spin-dependent potential that couples the electron's spin and 

momentum, resulting in spin splitting and influencing electronic transport properties. 

On the other hand, the Dresselhaus spin-orbit interaction arises due to the lack of bulk 

inversion symmetry in materials, such as zinc-blende crystals. It can be present in 

systems with structural asymmetry, such as quantum wells or nanowires. The 

Dresselhaus effect is described by a linear and cubic momentum dependence of the 

spin-orbit coupling strength. Similarly, to the Rashba interaction, the Dresselhaus 

interaction leads to spin splitting and affects the electronic band structure, transport 

properties, and spin dynamics in the material. 

When considering the SOI term, which encompasses both the Rashba and Dresselhaus 

contributions, we take into account the combined effect of these two mechanisms. The 

SOI term quantifies the strength and nature of the spin-orbit coupling in the system, 

providing a framework to describe the interplay between the electron's spin and its 

orbital degrees of freedom. 

Mathematically, the Hamiltonian term includes the effects of Rashba and Dresselhaus 

SOI can be written as, 
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 ̂    ̂   ̂                                                          

 ̂   
  

 
[         ]                                               

 ̂   
  

 
[         ]                                            

 ̂   consists of the Rashba interaction, whose strength is characterized by the parameter 

   and the Dresselhaus interaction with a strength characterized by   . The electric 

field E of the quantum well-confining potential affects these coupling 

characteristics.(i.e., E = −∂V/∂z) along the z direction at the interface in a heterojunction 

as (de Sousa & Das Sarma, 2003) 

                                                          

         (
    

  
*
   

                                           

where the Dresselhaus coefficient                , Rashba coefficient             

and effective mass               is considered for InAs QD, where    is the free 

electron mass. 

2.4 Exact diagonalization method   

The total Hamiltonian of an electron which is presented in InAs anisotropic doped 

quantum dot under the presence of external magnetic and electric fields, is given by:  

 ̂  
  
 
   

 

  

   
  con        imp       ̂     ̂ eeman              

The analytical solution of the above full Hamiltonian is unobtainable. So, we will apply 

the Exact Diagonalization Method (EDM) as an efficient technique to solve the desired 

QD Hamiltonian. The EDM is extremely useful for obtaining accurate estimates of the 

quantum system's energies and related quantities. Moreover, contrary to other methods, 

except the computer power, the obtained results from the EDM are unaffected by 

approximations or limitations. It involves constructing the Hamiltonian matrix in a 

chosen basis and diagonalizing it to find the eigenvalues and eigenvectors. 

To apply the Exact Diagonalization Method, we start by selecting a suitable basis to 

represent the quantum states of the system. The choice of basis depends on the specific 
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problem and the symmetries involved. Typically, a basis set that spans the relevant 

Hilbert space is chosen, and the Hamiltonian is expressed in terms of this basis. 

Once the Hamiltonian matrix is constructed, it is diagonalized using numerical 

algorithms such as the Lanczos algorithm or the Davidson algorithm. These algorithms 

iteratively find the eigenvalues and eigenvectors of the Hamiltonian matrix, allowing us 

to determine the energy spectra and corresponding wavefunctions of the system. 

The advantage of the Exact Diagonalization Method is that it can provide accurate 

results for small to moderate-sized systems. However, as the dimension of the Hilbert 

space increases, the computational requirements grow exponentially, making it 

challenging to apply the method to larger systems. 

As a first step, we need to construct a Hamiltonian matrix with elements evaluated as 

follows: 

〈 〉   ⟨      | ̂|   
   

   ⟩                                          

In this work, these matrix elements           
   

     will be obtained in the simplest 

closed-form to reduce significantly the computational time needed for the 

diagonalization process. 

To diagonalize that matrix and compute the eigensolution, we have to solve the 

eigenvalue equation |⟨      | ̂|   
   

   ⟩     |   , and obtaining the eigenvalues 

and eigenstates. 

The one-dimensional Harmonic oscillator wave functions will be used as bases to 

construct the total wave function;  

       ∑         ̃     (  ̃  )                                   

   

 

where  

      
 

√    
(
  ̃

√ 
*

 
 
  

  ̃
   

      ̃        ̃   
    ̃
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√    
(
  ̃

√ 
*

 
 
  

  ̃
   

   (  ̃ )            ̃  (
    ̃

 
)

 
 

               

the effective frequencies,   ̃ and   ̃ given as  

  ̃   √  
  

  
 

 
                                                

  ̃   √  
  

  
 

 
                                                

The matrix terms of the full Hamiltonian can be obtained in a closed analytical form in 

two different ways, as explained: 

1) we can express the position and momentum operators in terms of ladder operators of 

a one-dimensional harmonic oscillator, shown as:  

   
  ̃

√ 
( ̂  

 

    ̃
  ̂)                                          

  
  

  ̃

√ 
( ̂  

 

    ̃
  ̂)                                         

 

And then simplify the matrix elements with the help of relations: 

  |  ⟩  √  |    ⟩                                                       

  
 |  ⟩  √    |    ⟩                                                 

where q can be either   or   coordinate. 

The previous ladder operator's technique is expected to be the most efficient approach 

when dealing with the terms that have a linear dependence on the coordinate of 

momentum, i.e., the SOI terms. 

2) Evaluating the integrals using Hermite polynomial orthogonality and recurrence 

relations are given as, 

∫  
 

  

           
   

   √                                      
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The last technique will be efficient when the Gaussian impurity Hamiltonian is 

evaluated   

2.5 Hamiltonian matrix elements  

To complete the diagonalization process, the matrix elements for the Hamiltonian  

 ̂   ̂   imp       ̂   ̂                                  

Where  

  ̂   
  
 
   

 

  

   
  con        ̂ eeman                    

can be expressed as  

⟨      | ̂|   
   

    ⟩

  ⟨      | ̂ |   
   

    ⟩  ⟨      | ̂   |   
   

    ⟩

 ⟨      | ̂ |   
   

    ⟩

 ⟨      | ̂ |   
   

    ⟩                                                            

Since the well-known quantum numbers       for the one-dimensional harmonic 

oscillator will not be long as good quantum numbers, we prefer to use a new notation 

        for the x and y dimensions, respectively. The first term on the right-hand side 

above can be expanded as, 

⟨    | ̂ |       ⟩

 ⟨    |
  

    
 

  
 

 

 
  (       )  

 

 
 ((  

  
  

 

 
)    (  

  
  

 

 
)  + |       ⟩  

 (     ⁄      ̃        ⁄      ̃  
 

 
     )                

  ⟨    |
 

 
  (       )|       ⟩                                                                          
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To simplify the last term in the above equation, the position and momentum can be 

expressed in terms of the previously mentioned ladders operators as,  

 ̂  √
 

    ̃
(     

 )                                               

 ̂    √
    ̃

 
(     

 )                                          

⟨      |
 

 
  (       )|   

   
   ⟩

 
 

 
    ((√

  ̃

  ̃
 √

  ̃

  ̃
)(√    √                  

 √  √                )

 (√
  ̃

  ̃
 √

  ̃

  ̃
)(√  √                  

 √    √                ),                                                   

Now, to find the matrix element of the Gaussian impurity term 

⟨      | ̂   |   
   

   ⟩

    ⟨     ̃        ̃   | 
 
      

 

  

  
 
      

 

  |      ̃         ̃   ⟩                                         

Which can be evaluated by separating the integral into independent x and y integrals as  

⟨      | ̂   |   
   

   ⟩           

where 
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     ⟩

  ∫  
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     ⟩

  ∫  
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With constants   
  ̃

(     
      )

    and   
  ̃

(     
      )

             

to simplify the integrations, we use the transformations: 

  
    

 ̃  
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,     
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   *

     
 

, 

yields 

      ∫  
  

  

     
         

           
 
                           

      ∫  
  

  

  (  
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Where    
  

     ,    
  

     ,   
  

  ̃

  
 ,   

  
  ̃

  
 ,       and       

With the help of the relation (Grandshteyn & Ryzhik, 1980) 

∫  
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]                          

It's now easy to write  
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     ∑  

   (    )

   

                                                 

     ∑  
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where 

                          
    

 
                                     

                          
    

 
                               

With        
       and        

       

Finally, the impurity matrix element will be evaluated using the relation: 

⟨      | ̂   |   
   

   ⟩

     ∑  

   (    )

   

∑  

   (    )

   

                                        

To evaluate the spin-orbit interaction terms: Rashba and Dresselhaus, we expand the 

vectors cross product, as 

    
  

 
[        ]  

  

 
[  (      )            ]          

   
  

 
[        ]  

  

 
[  (      )            ]                 

Recalling that for the vector potential, we chose the symmetric gauge   

 

 
           , so equations (45 and 46) can be expressed respectively as,  

   
  

 
(  (   

  

 
 *    (   

  

 
 *)                            

   
  

 
(  (   

  

 
 *    (   

  

 
 *)                             

It is appropriate to use ladder operators for the momentum, position, and spin angular 

momentum, 
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as a result, the matrix element for Rashba Hamiltonian is evaluated to be in terms of the 

system’s parameters and quantum numbers as follows :    

  

 √  
 (       (               (

  

  ̃
       ̃)√  

              ( 
  

  ̃
       ̃)√    

              (
  

  ̃
       ̃*√  

             (
  

  ̃
       ̃*√    )

         (               ( 
  

  ̃
       ̃)√  

              (
  

  ̃
       ̃)√    

              (
  

  ̃
       ̃*√  

             (
  

  ̃
       ̃*√    )+                  

From Eq. (51), one can see the missing of the states with different quantum numbers for 

the basis harmonic oscillators (                                 and 

same for y quantum numbers, (                                where 

all the above contributions are taken into account for different spin orientations, 

mathematically     . 

And for the Dresselhaus Hamiltonian, going ahead with same procedures, the result is 

will be quite similar for the Rashba Hamiltonian, mathematically, the Dresselhaus term 

give a contribution when      and  (                            

     or (                                

After simplification, the term will be: 
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Now, combining all the energy matrix elements, our energy matrix      is ready for 

diagonalization and extracting the desired quantum dot energy. These obtained energy 

spectra are used to investigate the dependence of system properties of the QD on the 

tunable physical parameters. 

2.6 Quantum dot properties: magnetic and electronic  

From the exact diagonalization output, one can use sufficient single electron’s energy 

spectra to calculate the partition function using canonical definition 

The partition function, denoted by Z, is a fundamental quantity in statistical mechanics 

that characterizes the equilibrium properties of a system. It is defined as the sum over all 

possible states of the system, weighted by their Boltzmann factors. In the case of a 

quantum system, the partition function is obtained by considering the energy spectra of 

single electrons within the system, mathematically, 

𝑍  ∑     

 

 

                                                        

        , where    is a Boltzmann constant. 

The average energy can be calculated by using the standard statistical expression: 
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 ⟨ ⟩   
     𝑍 

  
                                                    

This expression allows us to determine the average energy as a function of the 

temperature and the system's energy levels. 

The average energy, denoted by ⟨E⟩, is defined as the expectation value of the energy 

operator over all possible states of the system. It represents the average value of the 

energy that the system possesses. 

To comprehend the magnetic properties of materials, it is essential to investigate how 

they interact with an external magnetic field. When a magnetic field is applied, it 

influences the energy levels of the electrons within the quantum dot, leading to changes 

in the average mean energy of the system. By quantifying the relationship between the 

applied magnetic field and the resulting changes in energy, the magnetization can be 

determined. 

The magnetization (M) of QD, a key feature that indicates the response of the material 

to an external magnetic field can be calculated by taking the derivative of the average 

energy with respect to the magnetic field. This calculation is crucial in understanding 

the magnetic properties of the materials:  

   
  ⟨ ⟩

  
                                                                                  

Similar to this, the magnetic susceptibility ( ) may categorize a material as diamagnetic 

when, (   ). and paramagnetic when (   ). 

By using the derivate of magnetization (M) with respect to the magnetic field, it is 

possible to determine the material's magnetic susceptibility 

                                               
  

  
                                                                

It is worth mentioning that the exact derivative in analytical form is unobtainable since 

the result of the diagonalization process will give us the numerical values for the energy 

spectra, so we deal with the definition of the derivative; for example, the magnetization 

can be computed using the following definition,  

      
    

⟨       ⟩  ⟨    ⟩ 
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In the same manner, magnetic susceptibility can be calculated. 

In addition to previous quantities, the effective Lande g factor (    
     will be 

computed for the low-lying state using the relation 

    
  

                  

   
                                                    

The electronic density of state (DOS) for a QD is another quantity that can reveal much 

important information about the electronic structure of nanomaterial, which is given as 

the sum of a series of δ functions as, 

        
 

 
∑   

                                                 

which we numerically calculated with a Gaussian distribution as, 

       
 

√    
∑ 

 

   *
       

 

   
+                                

where Γ is the broadening factor, and    is the energy of the system, which was shown 

a result of the diagonalization process. 

 The algorithm of our work can be visualized by the scheme given in Fig. A.5. 

2.7 Convergence tests  

The completeness of the wavefunctions in the one-dimensional harmonic oscillator 

implies that any function, including the arbitrary wave function can be expressed 

precisely as a linear combination of the basis wavefunctions. This property allows us to 

decompose complex wave functions into simpler components, facilitating the analysis 

and understanding of quantum mechanical systems. 

The wavefunctions, or basis, of the one-dimensional harmonic oscillator are considered 

as a complete set so that any function can be expressed in terms of a linear combination 

of them, yielding that any arbitrary wave function  , can be written as, 

          
   

∑              (    )                             

 

   

 

Ideally, we have to construct a matrix with infinite dimension for the Hamiltonian to get 

the exact energy spectra, but in practice, the size of the basis, and hence the dimension 
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of the Hamiltonian matrix, has to be large enough to ensure the convergence of the state 

vectors we are interested in. As N becomes large, any further increase of the Hilbert 

space dimension will not have a noticeable effect on the calculated low-lying excited 

states, so it is sufficient to take the value of N to ensure that the highest desired energy, 

let us call it   , converges to a specific value as N increases, and this convergence 

condition is given mathematically as, 

|    𝑁         𝑁 |     𝜖                                      

Here, 𝜖   represents the maximum energy value tolerance and depends on our 

calculation's desired accuracy. For this reason, the numerical method is called exact 

diagonalization method. 

We aim to calculate the energy for low-laying states and then use these energies to 

investigate the temperature-dependent properties, mainly the partition function ( ). The 

 -expression is also an infinite sum over the system energies (ideally, the sum over all 

the energy spectra of the system), as given later by Eq. (27). The second critical stage is 

to ensure the issue of convergence at any temperature value; we have to test the effect of 

larger states above   , by applying the condition:  

𝑍       𝑍             𝜖                                           

𝜖   represents the maximum tolerance in the partition function value. It is worth 

mentioning here that as the temperature increases, the electron has a chance to be in the 

higher state, so the higher state ( ) must be increased, and more energy states will be 

included in the partition function to ensure the converged results, therefore, to have 

acceptable accuracy in the new    , we should reinvestigate the convergence condition 

given by Eq. (62) and increase the Hilbert space dimension (N). Our two-stage 

convergence test is summarized in Fig. A.6. 

Since the total Hamiltonian in this project contains the combined effects of many 

physical terms (anisotropic confinement potential, impurity, external magnetic field, 

and spin orbit interaction effect) we can fix or neglect, temporarily, one or more terms to 

compare the result and ensure the accuracy of our code and method. One of the essential 

quantitative checks is taking the isotropic case (by setting       ) so, and neglecting 

the impurity term, the calculated energies using exact diagonalization method in case, 
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the parabolic quantum dot, will give the same energy are expected to match the 

analytical energy given by Eq. (4). 
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Chapter Three 

Results and Discussions 

This chapter presents the computed numerical results for the energy spectra, 

magnetization, magnetic susceptibility, effective g factor, and density of state for InAs 

anisotropic QD presented in the perpendicular magnetic field, taking into account the 

doping process with acceptor impurity, which has been modeled to Gaussian form. The 

material  parameters for InAs in this work have been chosen to be :             

and    = -15 (Sanjay Prabhakar et al., 2011). 

3.1 Hamiltonian matrix and diagonalization  

In Fig.2, the Hamiltonian matrix has been displayed to investigate the effect of each 

term on the system's electronic properties; as previously mentioned, the isotropic 

(circular) quantum confinement in the spatial direction has an analytical solution in 

terms of the used HO bases, so as expected result to give a contribution to main 

diagonal of the Hamiltonian as shown in Fig. 2(a), the value of the energy equals the 

two-dimensional harmonic oscillator energy. The presence of the magnetic field causes 

a new mixing between the eigenstates as appeared in the last term in Eq. 30, so mixing 

the state with      ,        and     , so from this point, the well-known   , 

   will not be longer a good quantum numbers to describe the system states; this 

remark can be seen in Fig. 2(b). it's worth mentioning here that the solution for the 

anisotropic HO is previously discussed; the analytical solution has been found using 

appropriated canonical transformation with new rotated bases, for the interested reader 

can refer to (S. Avetisyan et al., 2012). The SOI terms: Rashba and Dresselhaus give a 

new mixing between the state and the interesting remark that the SOI mixes the states 

with a different spin as shown in Fig. 2(c) and d, finally, the on-center Gaussian 

impurity contributed to mixing the states, as shown in Fig. 2(e) the combined matrix for 

the above matrix terms has been collected in Fig 2(f). 

from Fig. 2(f), one can see that the combined effect of the Gaussian impurity and the 

both type of the SOI, give more contribution for the of diagonal terms, means they 

significantly mixed the original harmonic oscillator’s states, as result a higher matrix 

dimension is required to ensure the convergence issue. 
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Figure 2: 

Hamiltonian matrix for the anisotropic quantum dot a) the diagonal term b) mixing term 

⟨    |
 

 
  (       )|       ⟩ c) Rashba SOI d) Dresselhaus SOI e) on center impurity 

elements f) the total Hamiltonian matrix 
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Another crucial point is that using a closed analytical form for evaluating the 

Hamiltonian matrix elements significantly speeds up computation processes. For 

instance, the impurity matrix element term in Eq. 34 was calculated using the numerical 

integration method, and using the output from Eq. 44. the computation time and the 

matrix elements values for some low-lying states are given in Table 2. 

For example, the analytical evaluation of the matrix element of the impurity 

〈   |     |   〉 is 62 times faster than the numerical integration. It is worth to mention 

that in case of on center impurity, the impurity Hamiltonian is even in each spatial 

dimension, so it's expected to get zero contribution if at least the bra and ket of the x or 

y harmonic oscillator basis have different parity as 〈   |     |   〉 and 〈   |     |   〉. 

In case the impurity Hamiltonian makes zero contribution, numerical integration 

methods often require a considerable amount of time to ensure accurate zero values. 

This is because numerical integration involves discretizing the problem domain and 

evaluating the integrand at multiple points, which can be computationally expensive. It 

requires a fine-grained sampling to capture the small variations in the integrand that 

may lead to non-zero values, even when the impurity Hamiltonian is expected to 

contribute nothing. 

However, when a closed analytical expression is available, the computation time can be 

significantly reduced. Analytical expressions provide a direct mathematical formula or 

equation to calculate the desired quantity without the need for numerical 

approximations. By substituting the necessary variables and parameters into the 

analytical expression, the result can be obtained promptly, often with a lower 

computational cost compared to numerical methods. 

The basis-functions with       were taken from      for each direction in the linear 

variational calculation. The direct product of the basis gave a 30 X 30-dimensional 

space. We confirmed that the basis functions cover the two-dimensional space, at least 

in expressing the observables under investigation. A larger number of basis functions 

were used in the convergence test. Table 3 shows the eigenenergies for the ground and 

the first two excited states for a range of basis functions. 
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Table 2 

On-center impurity matrix element for                                   using 

numerical integration and closed form given in Eq 44 

 Numerical matrix elements Analytical matrix elements 

(    )          Time (sec) element value  

(arb. unit) 

Time (sec) element value  

(arb. unit) 

1,1,1,1 0.019907 1.56501869 0.0003211 1.565019 

1,1,1,2 0.002576 0 0.0002766 0 

1,1,1,3 0.057623 -0.742598035 0.0003056 -0.7426 

1,1,2,1 0.032559 0 0.0003129 0 

1,1,2,2 0.071604 0 0.0003115 0 

1,1,3,1 0.066772 -0.474280457 0.0003008 -0.47428 

1,1,3,2 0.133869 0 0.0003289 0 

1,1,3,3 0.215458 0.225045131 0.0003257 0.225045 

1,2,1,1 0.002405 0 0.0002741 0 

1,2,1,2 0.024303 1.150427913 0.0003658 1.150428 

1,2,1,3 5.461316 0 0.0003951 0 

1,2,2,1 0.081158 0 0.0002921 0 

1,2,3,1 0.155340 0 0.0003213 0 

1,2,3,2 0.098687 -0.348639 0.0003433 -0.34864 

1,2,3,3 6.420399 0 0.0004045 0 

2,1,1,1 0.040773 0 0.0002983 0 

2,1,1,3 0.11347 0 0.00036 0 

2,1,2,1 0.026372 1.241433 0.0003509 1.241433 

2,1,2,2 0.002800 0 0.0003636 0 

2,1,2,3 0.089877 -0.58906 0.0003739 -0.58906 

2,2,1,1 0.088176 0 0.0003478 0 
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Table 3 

 The low-lying state energies for different basis numbers at                         
                and      

Dimensional space G. S 1
st
 excited state 2

nd
 excited state 

    10.2834 12.9467 20.3453 

      10.0443 11.0118 11.3830 

      10.0311 10.9846 11.3798 

      10.0140 10.9043 11.3779 

      10.0093 10.9008 11.3766 

      10.0025 10.8960 11.3750 

      10.0025 10.8960 11.3750 

      9.9996 10.8938 11.3747 

      9.9995 10.8938 11.3746 

      9.9995 10.8938 11.3746 

      9.9995 10.8938 11.3746 

      9.9995 10.8938 11.3746 

      9.9995 10.8938 11.3746 

 

3.2 Energy spectra and electron probability 

In Fig. 3 (a and b), we have shown the Fock-Darwin states of a single electron in the 

absence of impurity (     , for circular QD Fig. 3(a) and elliptical QD Fig. 3(b). The 

figures show quite similar behavior of the energies as a function of B, except that the 

degeneracies of the states are lifted at B=0 due to different confinement strengths in x 

and y directions; this result has been previously reported in Ref (Siranush Avetisyan et 

al., 2012). At     the most characterized feature of the figures is that the Fock 

Darwin levels are split due to Zeeman interaction into two substates corresponding to 

different spin orientations. This separation between the two sublevels shows linearly 

behavior with the applied magnetic field as |     |. Fig. 3(c and d) highlights the effect 

of an on-center gaussian impurity on the state's energies of the system as a function of 
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 . An interesting level crossing between the ground state and the first excited state has 

appeared at a particular B. In the isotropic (anisotropic) potential case, this crossing 

occurs at               .   

We have studied the dependence of low-lying states on the impurity profiles (strength, 

influence domain, and position). Fig. 3(e, f, g) shows the effect of the acceptor impurity 

domain on the level crossing; as d increases, the intersection point occurs at a lower 

magnetic field value. Also, by comparing Figs. 3(d, e, and h), it is revealed that 

increasing the impurity strength for a fixed influence domain moves the crossing to a 

lower B value. 

In Fig. 3(i and j) we plot the low-lying states as a function of impurity strength (Fig. 

3(i)) and impurity domain (Fig. 3(j)). The on-center impurity affects the ground state 

(|    ⟩) more than other states, and this increase in the ground state energy makes the 

levels cross. As    increases, the repulsive force between the impurity and the electron 

increases; as a result, the electron is pushed from the center to be at a higher energy 

state. In the same way, as d increases, the impurity effect is speared from the center, so 

the electron is being pushed further away. Another observation is that when d increases, 

the excited states are also significantly affected by the impurity potential. 

To explain this observation, the electron probability density has been plotted in Fig. A.7 

for different impurity profiles (strength, position, and domain). As the top panel shows, 

in the absence of impurity, the electron in the state |    ⟩ has a higher probability of 

being at the center of the quantum dot. Since,      . The first excited state (|    ⟩   

has a node in the x-direction, while the state |    ⟩ is the second excited state (which has 

a node in the y-direction), These distinct nodal patterns in the excited states underscore 

the different behaviors resulting from the anisotropic nature of the confinement 

potential in the x and y directions. In the presence of an on-center impurity, the charge 

density distributes away due to electron-impurity repulsion, so the electron has a greater 

probability of being further from the center, while for the excited states |    ⟩ and |    ⟩ 

the electron probability at the center is zero, so the presence of the impurity has an 

insignificant effect on these excited states' probability, therefore, a minor effect on the 

state's energy, especially for low values of d. 
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Figure 3 

Low-lying state energies of the QD: (a - h) as a function of B, (i) as function of     and (j) as 

function of d. 

 

 

a) 

b) 



40 
 

 

 

 

 

c) 

d) 



41 
 

 

 

 

 

e) 

f) 



42 
 

 

 

 

 

 

 

g) 

h) 



43 
 

 

 

 

 

 

i) 

j) 



44 
 

As the impurity strength increases, the probability becomes less at the center, so the 

electron is obligated to be at a higher confined point due to the parabolic well in the x 

and y directions. On the other hand, for a larger value of d (bottom panel of Fig. A.7), 

the effects of impurity on the excited states are apparent, and the effects on the state 

|    ⟩ and |    ⟩ varies due to the isotropy of the QD. 

From Fig. 4(a), it is clear that the       increases as the impurity strength increases, and 

the cusp, which corresponds to the crossing, shifts to the left towards a lower magnetic 

field due to available repulsive energy as the strength increases. In Fig. 4(b), the effect 

of the impurity domain on the      has been displayed. As d increases, more cusps 

appear in the     . For example, two cusps for           correspond to the two 

crossings in Fig. 3(c). 

In Fig. 4(c and d), we have displayed the effect of impurity position on the energy level 

for the four low-lying states. From these two plots, we can conclude that the off-center 

impurity position affects the states with a larger probability of the electron being at the 

impurity position; when the impurity is located at x (y) = 22 nm from the origin, the 

energy of the state |    ⟩ (|    ⟩) is significantly affected, while the sates |    ⟩  |    ⟩   

are minorly affected due to their node at        , whereas the third excited state 

|    ⟩ is more affected by the on-center impurity than the lower excited states due to its 

electron probability at    . 

The electron's probability density was calculated and plotted in Fig. A.8 for the previous 

four orbits (ground state and the first, second and third excited states) for anisotropic 

quantum dot (                   in presence and absence of impurity to 

support the result of Fig. 4 and make it more understandable. The density extends 

perpendicular to the axis, which contains the impurity. for example, as the impurity 

located at (22 nm,0), which approximately the position of the anti-node of the first 

excited state |    ⟩ of the harmonic oscillator basis at given system parameters and the 

electron has a high probability to be there, the electron is pushed away from the 

impurity location and the probability density is redistributed to be extended in the y- 

direction, so the electron has a larger probability to be at further point from the origin, 

As a consequence, the energy value increases, on other hand. 
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Figure 4 

     as a function of B for different impurity profiles (a and b), Impurity position effect on the 

low-lying energy state (c and d) 
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3.3 Magnetic properties of the Quantum dot system 

The average statistical energy has been plotted in Fig.5 in the presence of on-center 

impurity for different temperatures, and the figure shows that the 〈 〉 is very similar 

to the ground state energy at low temperatures    ,      has cusps at the level 

crossings, where the states are degenerate.  

In Fig. 5(b). The average statistical energy has been plotted as a function of T for 

different numbers of states. The results show that at low temperatures, there is no need 

to take a greater number of states since, at low temperatures, the probability of the 

electron to be in the higher states is neglectable. However, as the temperature increases, 

an interesting phenomenon occurs. The electron now possesses a notable probability of 

occupying higher energy states. Consequently, to ensure proper convergence and 

accuracy in describing the system's statistical energy, the summation must be extended 

to larger values of 𝑁   . By including a greater number of states, the calculation 

encompasses a wider range of possible electron configurations, thereby accounting for 

the increased likelihood of the electron residing in higher energy levels at elevated 

temperatures. 

These results highlight the crucial role of temperature in determining the necessary 

number of states to consider for an accurate representation of the system's statistical 

energy. It showcases the importance of carefully selecting 𝑁   . based on the 

temperature regime of interest to effectively capture the behavior of the electron in 

different thermal conditions. 

Numerically, when the temperature (T) is within the low range (T < 20 K), it is 

observed that the average energy curves exhibit a high degree of similarity regardless of 

the chosen value for 𝑁   . In this regime, the system's behavior is such that the 

probability of the electron occupying higher energy states is significantly diminished at 

these lower temperatures.  

However, as the temperature enters the higher range (T > 20 K), a distinct change in 

behavior is observed. At these elevated temperatures, the electron gains a substantial 

probability of occupying higher energy states. As a consequence, the convergence of the 

average energy curves becomes dependent on the value of 𝑁   . 
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Figure 5 

a) 〈 〉 vs. the magnetic field for fixed impurity profiles b) 〈 〉 vs. the T for different      
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The dependence of the magnetization on the magnetic field and the impurity profile was 

studied in Fig. 6. The results show the presence of oscillation in the magnetization curve 

due to the intersection of the low-lying states' energies. In Fig. 6(a), the effect of the 

impurity strength is shown; the increase in the impurity strength pulls the intersection in 

the energy levels shown in previous figures towards a lower magnetic field value, as 

expected. 

The influence of impurity extension has been investigated in Fig. 6(b). It is noticed that 

there are many peaks in the magnetization curve at larger values of d due to the 

occurrence of multiple cusps in the ground state energy curves, which appeared in  Fig. 

5(b). 

The effect of the impurity's position was investigated in Fig. 6(c) since the major effect 

on magnetization is attributable to the ground state at temperatures near zero. As a 

result, the impurity's existence away from the center reduces the oscillation peaks hight. 

The results revealed that when the impurity was positioned away from the center, there 

was a noticeable reduction in the height of the oscillation peaks. This observation 

indicates that the presence of the impurity, when situated at a distance from the central 

region, influences the magnetization characteristics, leading to a dampening effect on 

the oscillation amplitudes. 

In Fig. 6(d), the effect of the temperature has been illustrated. For    ,  At the level 

crossings, the magnetization is discontinuous; consequently, the susceptibility diverges. 

On the other hand, at finite temperatures, thermal excitations make the magnetization a 

continuous and smooth function, and the susceptibility then has the spectral line form 

with a temperature dependence linewidth, as presented in Fig. 7(a). The number and 

position of the peaks depend on the impurity profile, as shown in Fig. 7(b).  

From the previous figures (Fig. 6 and Fig. 7), we can conclude that the impurity plays a 

significant role in controlling the magnetic properties of the nanomaterials, by flip the 

magnetic susceptibility sign as result the material shows a diamagnetic to paramagnetic 

shift depends on the impurity profiles (strength, position, and stretch). 
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Figure 6 

  vs. B for a) different impurity strengths, b) different impurity stretches, c) different impurity 

positions, and d) different temperatures, where all other parameters have been fixed  
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Figure 7 

  vs. B for a) different temperatures and b) different impurity stretches c) FWHM of   as 

function of T 
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To investigate further the effect of the temperature on the magnetic susceptibility of 

the QD, the full width at half maximum of the spectral line of the susceptibility 

(FWHM) is shown as a function of temperature in Fig 7(c). One can see that the 

temperature changes the spectral linewidth linearly. 

To investigate the effects of the SOI terms on the energy spectra and the magnetic 

properties of the InAs QD system, we have first, plotted the Rashba and Dresselhaus 

parameters as a function of the induced electric field in Fig.8(a). According to Eqs. 

11 and 12, the ratio between Rashba and Dresselhaus for InAs 
  

  
           , the 

dashed line in Fig.8(a) indicates the range for the electric field in which the 

Dresselhaus SOI dominates over Rashba SOI, where the solid line (higher electric 

field ) for which the Rashba has the main contribution in the spin splitting energy, 

the point between the two regions at,               V/cm, the two parameters 

became equal. 

 

 

 

  

c) 
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Figure 8 

a) Rashba to Dresselhaus ratio (     ) vs. the electric field. RSO and DSO couplings become 

equal at the electric field,               V/cm.  b) The energies of the low-lying states as a 

function of the magnetic field strength c) Ground state energy d) The statistical average energy 

of the lateral QD as a function of the magnetic field strength for different electric field values. 
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Figure 8(b) illustrates the eigenenergies for the low-lying states at             , 

for isotropic quantum dot in the absence of the impurity, it can be seen that the most 

contribution is attributed to Rashba, while the Dresselhaus SOI has minor contribution 

at this particular value of the electric field. 

The shifting in the ground state energy is apparent In Fig. 8(c), even at zero magnetic 

fields, which is attributed to the SOI (primally Rashba SOI). In contrast, the cusp is 

shifted to a larger magnetic field value as the spin-orbit interaction (i.e., electric field) is 

increasing, which results in more significant shifting in the state |     relative to the 

first excited state, making the crossing/ anticrossing of the states appears at a larger 

magnetic field. 

For low temperatures, the statistical average energy has been plotted in Fig. 8(d), and 

the same cusps (corresponding to the ground state energy cusps) appeared, which again 

attributed to the high probability of the electron being localized in the ground state,  

To investigate the effect of the SOI on the magnetic properties of the QD system, the 

magnetization (   and magnetic susceptibility ( ) have been plotted in Fig. A.9(a) and 

A.9(b), respectively; the plot shows an expected shift in the peaks of the curves 

d) 
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corresponding to the previously mentioned change in the ground state energies 

crossings/ anticrossing, where the magnetic phase transition still presents. 

3.4 Effective Lande g factor  

In Fig. 9(a) the effective Lande g factor has been plotted as a function of the magnetic 

field, at a fixed value of the electric field, for different SOI cases. For       case 

(solid line), even     , the curves show a constant value for the Lande g factor, 

which matches the value of the bulk InAs material, since the Dresselhaus SOI has a 

minor contribution to small band gap semiconductors. For the dashed line, the presence 

of RSOI enhances the value of the g factor due to the more significant separation of the 

states with different spin orientations,           
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Figure 9 

 Effective Lande' g factor vs.a) magnetic fields b) electric field c)   d ) anisotropy of QD 

without impurity ( a – g ) and in presence of acceptor  impurity ( h and I ) 
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For fixed parameters,                , the two types of SOI can be 

manipulated by changing the electric field strength. The SOI strength effect on the 

Lande g factor has been investigated in Fig 9(b). In the first case, we neglected the 

Dresselhaus effect     , the Rashba SOI enhanced the g value as the electric field 

increases, which is clearly shown in the dashed line in the figure. This result shows the 

role of the Rashba SOI in the area of spintronics devices. On the other hand, by 

neglecting the Rashba effect     , the Dresselhaus SOI slightly reduces the absolute 

value of g as the electric field increases, as shown in the solid line in the figure. The 

combined effect displayed in the dotted points shows the dominance of the Rashba SOI 

effect over the Dresselhaus SOI one.  

The size of the symmetric quantum dot            significantly affects the value 

of the g factor at a fixed value of the electric field, as shown in Fig. 9(c), at a particular 

value of the confinement strength (which is inversely proportional to quantum dot size), 

the g factor curve has its maximum value, for example, at              the g 

factor has a peak value          for             the numerical data also given in 

Table 4, this peak value of the g factor became smaller and shifted to smaller 

confinement strength when the electric field decreased.   

 

i) 
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Table 4 

Absolute value of g factor as function of the confinement strength for fixed magnetic field value 

   |
 

  
| 

2 0.635964 

3 1.04601 

4 1.336727 

5 1.507444 

6 1.593824 

7 1.629756 

7.6 1.636783 

7.7 1.637212 

7.8 1.637463 

7.9 1.637545 

8 1.637469 

8.1 1.637244 

8.2 1.63688 

9 1.629859 

10 1.614154 

11 1.594399 

12 1.572875 

13 1.550874 

In Fig. 9(d) and Fig. 9(e), the effect of anisotropy of the QD has been investigated. For a 

fixed quantum dot area         , the g factor has been plotted as a function of the 

ratio of y to x confinement strength  
  

  
 . The figure shows an interesting behavior for 

different values of x-direction confinement strength. In Fig. 9(c), the anisotropy slightly 

enhances the absolute value of the g factor; then the anisotropy reduces the value of the 

g factor as the quantum dot extends to be an elliptical shape. To show the geometric 

symmetry of the ratio effect, we plot in Fig. 9(e) the g factor as a function of the 
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 , the figure exhibits an expected symmetry around      , equivalent to 

    
  

  
 =0. 

In Fig. 9(f and g) , the g factor shows different behavior with respect to the anisotropy 

of the QD. In Fig. 30(f), for               and  √              , the 

anisotropy enhances the g factor value as |   (
  

  
)| increases, whereas, for     

           √           , the anisotropy decreases the g factor value as 

|   (
  

  
)| increases, as shown in Fig. 9(g). This conclusion has been previously 

partially discussed in Ref (S. Prabhakar et al., 2011), as the anisotropy of the 

confinement potential increases, the | | decreases. 

From figures 9(c - g), one can observe the combined effects of the electric field, the 

confinement strength, and the anisotropy of the quantum dot on the absolute value of 

the effective Lande g factor. In practice, the value of the g factor is considered an 

important key by manipulating the relaxation time on the quantum computing area (de 

Sousa & Das Sarma, 2003), so further investigation about how to enhance or reduce the 

value by external parameters is considered a hot research subject and may be 

investigated in future work. 

The presence of an acceptor impurity in the QD has been studied and shown in Figs. 9(h 

and i). In Fig 9(h), the on-center impurity slightly increases the g factor of symmetric 

QD with low confinement potential; however, the g factor decreases as the confinement 

potential strengthens. 

For symmetric QD, the impurity profile (strength and stretch) effect has been shown in 

Fig. 9(i) as a function of the magnetic field. For a fixed value of d, the g factor can be 

increased as the impurity strength increases at a low magnetic field value (before the 

crossing/ anticrossing occurs. By the way, the more considerable value of d gives a 

similar effect by increasing the g factor. 

3.5 The density of state DOS 

The density of state has been studied to describe the system responses to Hamiltonian 

parameters, like the magnetic field, electric field, confinement anisotropy, and impurity 

profile. 
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In Fig. 10(a), at     and for the fixed value of the x-direction confinement strength  

       , the density of state has been plotted as a function of the energy; for the 

isotropic case (dashed line), the energy spectra are given by (        )    the 

figure shows an increasing state degeneracy as the energy increase; for example, the 

states |    
 

 
 ⟩  |     

 

 
 ⟩ are degenerate with energy     since the spin degeneracy 

remains in the absence of the magnetic field, the states 

|    
 

 
 ⟩  |     

 

 
 ⟩  |    

 

 
 ⟩  |     

 

 
 ⟩ are degenerated states with energy     , and 

|    
 

 
 ⟩  |     

 

 
 ⟩  |    

 

 
 ⟩  |     

 

 
 ⟩, |    

 

 
 ⟩  |     

 

 
 ⟩ are degenerate states 

with energy     , and so on. By contrast, for the anisotropic case, the degeneracy has 

been partially lifted, and two-state degeneracy remains since the different spin states 

have the same energy at zero magnetic fields in the absence of the SOI. Accidentally, at 

          there are four degenerate states, namely 

(|    
 

 
 ⟩  |    

 

 
 ⟩  |     

 

 
 ⟩  |     

 

 
 ⟩), the same behavior is shown at  

           since          . 

In Fig. 10(b), the presence of the external magnetic field totally removes the degeneracy 

of the states, so DOS gives one at each value of the energy spectra, with also increasing 

on the ground state due to increasing of the canonical momentum, equivalently kinetic 

energy, in the Hamiltonian, the larger separation between to two different spin states, 

due to large value of the bulk g factor of the InAs material. 

The presence of the electric field as a source for the SOI significantly affects the DOS 

of the system, as shown in Fig. 10(c), even at zero magnetic fields. At the fixed electric 

field value             the RSOI dominates the Dresselhaus SOI, which shifts 

the states to lower energy eigenvalue, for example, the first peak of the red line in the 

figure (at            ). On the other hand, the presence of SOI electric field 

partially removes the degeneracy of the higher states        .   
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Figure 10 

DOS vs. Energy for isotropic and anisotropic quantum dot 
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The presence of the acceptor impurity also affects the DOS plot, as shown in Fig. 10(d); 

at zero magnetic fields, the 2-spin fold degeneracy is still present, where the impurity 

split the states, in specific, the impurity added positive energy for each state unequally, 

with no significant effect at the states with odd quantum numbers (which have a node at 

the impurity location). 

In Fig. 10(e), the DOS has been plotted versus the energy for               , we 

notice from the figure that the anisotropy of the confinement potential partially removes 

the degeneracy of the states, whereas the spin degeneracy remains, as shown in the 

dashed black lines. In addition, as the magnetic field is turning on, the spin degeneracy 

is also lifted; this split is due to the Zeeman term in the Hamiltonian. 

The combined effect of the impurity, SOI, and anisotropy of the quantum dot has been 

investigated in Fig. 10(f). There are accidentally degenerate states and a particular value 

of the energy for on-center impurity, while the presence of an off-center impurity totally 

removes the state’s degeneracy.  

In conclusion, the density of states (DOS) in a quantum system is influenced by various 

factors, including the Hamiltonian terms and parameters that govern the system's 

behavior. These factors interact in complex ways, leading to significant correlations 

with the DOS and affecting the system's physical properties. 

The presence of a magnetic field is one such influential factor. In the case of an 

isotropic quantum dot, the magnetic field removes the spin degeneracy of the Fock-

Darwin states, causing them to split. This spin splitting alters the DOS and introduces 

energy level spacings that depend on the strength of the magnetic field. Consequently, 

the DOS exhibits distinctive features related to the presence of the magnetic field. 

The anisotropy of the parabolic confinement potential also has a substantial impact on 

the system's DOS. This anisotropy breaks the degeneracy associated with spatial 

quantum numbers, resulting in different energy levels for states with different spatial 

distributions. However, the spin degeneracy remains unaffected by the anisotropy of the 

confinement potential. Consequently, the DOS shows distinct variations due to changes 

in the spatial quantum numbers, while the spin degeneracy is preserved. 

Furthermore, the introduction of impurities in the system can significantly manipulate 

the DOS. Impurities add or subtract energy unequally for each state, leading to a 
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modification of the DOS profile. The presence of impurities can create localized states 

within the energy spectrum, thereby altering the overall DOS distribution. The specific 

energy levels affected by the impurity depend on the impurity's characteristics and its 

interaction with the surrounding quantum system. 

Additionally, the spin-orbit interaction (SOI) plays a crucial role in shaping the energy 

spectra and, consequently, the DOS. The SOI intertwines the spin and spatial quantum 

numbers, resulting in a mixing of these quantum degrees of freedom. This mixing 

modifies the energy levels and introduces additional splitting and shifts in the energy 

spectrum, further influencing the DOS distribution. The presence of SOI can give rise to 

phenomena such as spin-orbit splitting and spin textures that impact the DOS. 

In summary, the combined effect of Hamiltonian terms and parameters strongly 

correlates with the density of states in a quantum system. The magnetic field removes 

spin degeneracy, the anisotropy of the confinement potential affects the spatial quantum 

numbers, impurities manipulate specific energy levels, and the spin-orbit interaction 

mixes the spin and spatial quantum numbers, all of which significantly modify the 

density of states. Understanding and controlling these effects are essential for 

comprehending the behavior of quantum systems and designing devices with desired 

electronic properties. 
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Chapter Four 

Conclusions 
In this work, the anisotropic quantum dot Hamiltonian has been solved using the 

diagonalization method in the presence of a perpendicular magnetic field and Gaussian 

impurity, considering both types of spin-orbit interaction: Rashba and Dresselhaus spin-

orbit interaction. 

The diagonalization process has been carried out using the one-dimensional harmonic 

oscillator basis to find the eigen solutions of the InAs QD for different cases. All the 

Hamiltonian matrix elements have been calculated in a closed analytical form. 

In the computational process, the issue of convergence has been ensured, and the 

obtained numerical results have been tested. Using the closed analytical expression for 

the matrix elements significantly reduced the computational time and gave more 

accurate energy spectra. 

The results of the energy spectra match the Landau level spectra in the case of the 

isotropic quantum dot, in the absence of the impurity and SOI, while as the quantum dot 

stretched in the y direction, the degeneracy of the landau level is partially removed. 

The presence of the acceptor impurity significantly affects the eigen solution of the 

system, specifically causing an interesting crossing between the states and changing the 

ground state. Furthermore, the impurity's strength, position, and spatial stretch have 

been investigated. 

As a second step, the obtained eigenenergies have been used to calculate the statistical 

average energy as a function of the system parameters and temperature.  

The magnetic properties of the system (magnetization and magnetic susceptibility) of 

InAs QD have shown a diamagnetic-paramagnetic phase transition due to the impurity 

presence. This transition strongly correlates with the impurity profiles (strength, 

position, and influence domain), magnetic field, and temperature.  

In applications, the magnetic phase transition (diamagnetic to paramagnetic transition) 

should be considered when estimating the applicability of material to be involved in 

future technologies such as switching devices and magnetic sensors.  
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In addition, the effective Lande g factor of the system has been studied. The result 

shows the strong dependence of    on the SOI interaction, the quantum dot confinement 

strength, and the isotropy of the quantum dot in addition to the magnetic field. 

Finally, to physically describe each system parameter's effect on the energy spectra, we 

calculate the density of state of the system. The plots show the breaking of the harmonic 

oscillator symmetry as the magnetic field is tuning on, where the anisotropy of the 

confinement potential also breaks the symmetry.  
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List of Abbreviations 

Abbreviation Meaning 

    Spin-Orbit Coupling 

   Quantum Dot 

    Spin-Orbit Interaction 

    Density of states 

   Two-dimension 

   One-dimensional 

   Zero-dimension 

   Z -wave vector  

  Effective Lande g factor 

    Exact diagonalization method 

  Magnetization 

  Magnetic susceptibility 

  Principal quantum number  

   Cyclotron frequency  

  Effective frequency  

   Angular quantum number 

  Vector potential  

  Magnetic field 

  Electric field 

   Isotropic radial confinement frequency  

   x direction confinement frequency 

   y direction confinement frequency 

   Effective mass 

   Free electron mass 

  Reduced Plank constant  

  Momentum 

  Electron charge 
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Abbreviation Meaning 

   Impurity strength  

      Impurity location  

  Impurity stretches 

   Bohr magneton 

   Rashba coefficient  

   Dresselhaus coefficient  

  Pauli matrices 

  Kronic Delta  

  Wave function 

𝑍 Partition function 

  Broadening factor 

     Ground state energy 

     The full width of half maximum 

  Magnetization 

  Magnetic susceptibility 

〈 〉 Average energy 
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Appendices 

Appendix A 

Figures 

Figure A.11 

Concept of spin transistor illustrating the analogy between photon polarization (top) and 

electron spin (bottom). (Datta, 2018)  

 

 

Figure A.12 

Energy dispersion vs. wavevector for the one dimension, the solid line represents the 

spin-independent Hamiltonian while the red dashed (blue dashed) line denotes Zeeman 

(Rashba) splitting.  
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Figure A.13 

The effect of the dimensionality on the density of states yields a different change in the system 

properties  

 

 

Figure A.14 

Fock-Darwin energy levels (    ) of an isotropic quantum dot as a function of the magnetic 

field B (in Tesla) with confinement of           .  
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Figure A.15 

 Flowchart for the dissertation.  

 

 

Figure A.16 

Convergence tests for the spectra and partition function. 
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Figure A.17 

Probability density | |  for the wavefunctions of the low-lying states |    ⟩ |    ⟩  and |    ⟩, 
in the presence of on-center impurity with profiles (from up to down   
                              and         in meV and nm, respectively. 

 

Figure A.18 

Probability density | |  for the wavefunctions of the low-lying states, the top panel for    
  and the other two panels in the presence of an off-center impurity with 

                     ,  located at                           from up to down, 

respectively. 

 

 

Higher probability 
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Figure A.19 

a)   vs. B and b)   vs. B for different electric field strengths for lateral QD 
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قطة كمية مطعمة غير متماثمة من مادة زرنيخ الخهاص المغناطيدية والإلكترونية لن
 مع تأثير ارتباط الغزل والمدار: دراسة حدابية (InAs) الإنديهم

 اعداد
 أييم أنهر أحمد شاعر 

 إشراف
 د. محمد خميل الدعيد أ.

 

 الممخص

غيخ متساثلة تحت تأثيخ مجال مغشاطيدي  (quantum dot) تػ حل دالة هاملتؽن لشقطة كسية
 exact) قطخية السرفؽفةبطخيقة ( Gaussian impurity) غاوسيةمعامج وبؽجؽد شائبة 

diagonalization method) ارتباط ارتباط الغدل والسجار، مع الأخح بالاعتبار كلا الشؽعيؼ مؼ :
 Dresselhaus spin orbit) وارتباط دريديلهؽس( Rashba spin orbit interaction)رشبا 

interaction)تست عسلية الحداب باستخجام الستحبحب التؽافقي احادي الأبعاد . (harmonic 

oscillator) كاقتخان بشائي . 

والطاقة  للإلكتخون  الاحتساليةالسخخجات مؼ عسلية السرفؽفة القطخية لحداب الكثافة  استخجامتػ 
وكثافة السدتؽيات  (Lande g factor) سة معامل لانجيالإحرائية والخرائص السغشاطيدية وقي

 الكسؽمية.للشقطة 

وسية يؤثخ بذكل كبيخ على الحل السسيد لجالة هاملتؽن، بحيث اأظهخت الشتائج أن وجؽد الذائبة الغ
يؤدي الى تقاطع مدتؽيات الطاقة بالتالي تغيخ تختيب السجار الأرضي. بالإضافة تػ دراسة تأثيخ 

، و إستشتاج مجى أهسية الذؽائب بتغييخ والتحكػ ئبة ) القؽة ، السؽقع، حيد التسجد (متغيخات الذا
 بخرائص الشقطة الكسؽمية.

قسشا بجراسة الخرائص السغشاطيدية ) التسغشط، والشفاذية السغشاطيدية( لهحه الشقطة الكسؽمية، 
مغشطيدية عشج درجات حخارة ولاحعشا وجؽد طؽر انتقالي للسادة مؼ حالة الجيامغشاطيدية الى البارا

مشخفزة بؽجؽد الذائبة السدتقبلة للالكتخونات، ووجج أن ظخوف الطؽر الانتقالي يعتسج بذكل كبيخ 



 ج 
 

على متغيخات الذائبة، حيث أن قيسة السجال السغشاطيدي الحي حرل عشجه الانتقال يقل بديادة 
 تخكيد الذائبة.

لانجي بحالة وجؽد كلا الشؽعيؼ مؼ ارتباط الغدل بالإضافة الى ذلغ، تػ دراسة اعتسادية معامل 
والسجار على قؽة السجال الكهخبائي، وتبيؼ ان زيادة قيسة السجال الكهخبائي يعدز مؼ القيسة السطلقة 

نتيجة تأثيخ رشبا، ويقلل مؼ القيسة السطلقة للسعامل نتيجة دريديلهؽس. ونعخا  لسعامل لانجي
زيادة السجال الكهخبائي تعدز قيسة معامل لانجي للشقطة  لديطخة تأثيخ رشبا تػ استشتاج ان

 الكسؽمية.

مؼ جهة أخخى، تبيؼ أن معامل لانجي يأخح قيسة ععسى عشج قيسة محجدة لجهج الحرخ، وهحه 
 حؽظ على مجى تساثل الشقطة الكسؽمية.ملالقيسة تعتسج بذكل 

ات في الشعام على مجارات واخيخا، تػ حداب كثافة السدتؽيات لتؽضيح تأثيخ كل مؼ الستغيخ 
الطاقة، وأظهخت الشتائج أن عجم التساثل في أبعاد الشقطة الكسؽمية يؤدي إلى اختلال الانتعام 

 السعخوف في تساثل الستخدد الستحبحب .

: نقطة كسؽمية، الخرائص السغشاطيدية، ارتباط الغدل والسجار، معامل لانجي، كممات مفتاحية
 ، تأثيخ رشبا، تأثيخ دريديلهؽس.سدتؽياتحاسؽبية، كثافة ال ءفيديا

 


