

 ̨ ﷽

An-Najah National University

Faculty of Engineering and Information Technology

Computer Engineering Department

Software Graduation Project

An Najah Rank

Prepared by:
-Momen Odeh -Noor Aldeen Abu Shehadeh

Supervised by:

Dr. Samer Arandi

Submitted on:

22th, January 2024

Presented in partial fulfillment of the requirements for Bachelor degree in

Computer Engineering.

 2

Dedication

 Dedication to loving memory of our grandmother, our loving parents, family, friends and

for everyone who believed and loved us.

 3

Acknowledgment

 We extend our deepest gratitude and appreciation to the individuals who have played a

significant role in our graduation project. Their guidance, support, and unwavering belief in

our abilities have been invaluable throughout this journey.

We would like to thank our supervisor Dr. Samer Arandi a lot for his helpful, kind, patience

and taking care of us, and for making everything simple. He was always inspiring and

encouraging us to move.

We would also like to thank all the teachers and teacher’s assistant in the Department of

Computer Engineering, and we feel proud to be students in it, as this helps us to improve our

educational level as well as improve our skills.

 4

Disclaimer

 This report was written by students at the Computer Engineering Department, Faculty of

Engineering, An-Najah National University. It has not been altered or corrected, other than

editorial corrections, as a result of assessment and it may contain language as well as content

errors. The views expressed in it together with any outcomes and recommendations are solely

those of the students. An-Najah National University accepts no responsibility or liability for the

consequences of this report being used for a purpose other than the purpose for which it was

commissioned.

 5

Table of content

Dedication .. 2

Acknowledgment ... 3

Disclaimer .. 4

Table of content ... 5

List of Figures .. 6

List of tables ... 9

Abstract .. 10

Chapter 1: Introduction .. 11

▪ Statement of the problem .. 11

▪ Objective ... 12

▪ Scope of the work ... 13

▪ Importance of the work ... 14

▪ Organization of the report ... 15

Chapter 2: Theoretical Background and Previous Work ... 16

Chapter 3: Methodology .. 17

3.1 Planning:... 18

3.2 Analysis: ... 18

3.3 Design: ... 21

3.4 Implementation: ... 30

3.5 Deployment: ... 70

3.6 Testing: ... 71

3.7 Constraints:... 73

Chapter 4: Result and Analysis .. 74

Chapter 5: Discussion .. 75

Chapter 6: Conclusions and Recommendation .. 76

Future Works : ... 77

References .. 78

 6

List of Figures
Figure 1: Software Development Life Cycle ... 17

Figure 2: Agile Methodology .. 17

Figure 3: UML Diagram .. 19

Figure 4: User Stories ... 20

Figure 5: React ... 21

Figure 6: React Bootstrap .. 21

Figure 7: React JSS .. 21

Figure 8: React Router ... 22

Figure 9: Flask python .. 22

Figure 10: MySQL ... 22

Figure 11: Pandas ... 23

Figure 12: SocketIO .. 23

Figure 13: GitHub ... 23

Figure 14: Trello ... 23

Figure 15: Docker ... 24

Figure 16: Docker Compose ... 24

Figure 17: AWS CloudFormation .. 24

Figure 18: AWS EC2 .. 25

Figure 19: AWS S3 .. 25

Figure 20: AWS RDS ... 25

Figure 21: VS Code ... 25

Figure 22: pycharm .. 26

Figure 23: MySQL Workbench ... 26

Figure 24: Postman .. 26

Figure 25: Docker Desktop ... 26

Figure 26: Draw io .. 26

Figure 27: Restful Architectural Style .. 27

Figure 28: AXIOS library ... 27

Figure 29: Microservice Architectural pattern ... 27

Figure 30: Project Structure ... 28

Figure 31: Flask Mai ... 29

Figure 32: pyJWT .. 29

Figure 33: Flask-Cors .. 29

Figure 34: sign up .. 30

Figure 35: verification code ... 30

Figure 36: email verification message ... 31

Figure 37: log in ... 31

Figure 38: forget password .. 32

Figure 39: verification code for reset password ... 32

Figure 40: verification code message for reset password .. 32

Figure 41: set new password .. 32

Figure 42: User account settings .. 33

Figure 43: Password settings ... 33

 7

Figure 44: Create new Chat ... 34

Figure 45: Chatting notification ... 34

Figure 46: See chatting notification pop-up ... 35

Figure 47: Chatting conversations ... 35

Figure 48: pending professors in admin page .. 36

Figure 49: approve professor ... 36

Figure 50: all professors in the system ... 37

Figure 51: all students in the system .. 37

Figure 52: Students statistics ... 38

Figure 53: Viewing student profiles from the admin side. ... 38

Figure 54: Manage Courses in administration page ... 39

Figure 55: Create course .. 39

Figure 56: Manage course details .. 40

Figure 57: Manage course moderators ... 40

Figure 58: Manage students in course .. 41

Figure 59: Manage contests ... 41

Figure 60: Create contest ... 42

Figure 61: Manage contest details ... 42

Figure 62: Add challenge to contest .. 43

Figure 63: Manage challenges in contest ... 43

Figure 64: Manage challenges ... 44

Figure 65: Create challenge ... 44

Figure 66: Manage challenge details ... 45

Figure 67: Add test case to challenge .. 45

Figure 68: Manage test cases in challenge .. 46

Figure 69: All courses page ... 46

Figure 70: Course view ... 47

Figure 71: Manage students in course .. 47

Figure 72: Contest view ... 48

Figure 73: Contest Grades .. 48

Figure 74: Problem description .. 49

Figure 75: Students submissions from professor side .. 49

Figure 76: View student submissions .. 50

Figure 77: Last submission for student can do manual mark ... 51

Figure 78: Start calculate similarity ... 51

Figure 79: Received notification when similarity calculated ... 52

Figure 80: Code similarity page ... 52

Figure 81: Code Similarity view 1 ... 53

Figure 82: Code similarity view 2 .. 53

Figure 83: students leaderboards .. 54

Figure 84: Add new test case when there is a submission for challenge ... 54

Figure 85: After add test case and run it on all student submission ... 55

Figure 86: The submission after add new test case .. 55

Figure 87: Student profile from student side ... 56

 8

Figure 88: Notifications when add new course or contest or challenge... 57

Figure 89: All notification page ... 57

Figure 90: Course view before contest start in student side ... 58

Figure 91: Course view after contest start in student side ... 58

Figure 92: Contest view in student side ... 59

Figure 93: when run code and there is a compile error ... 59

Figure 94: Challenge view and run code in student side ... 60

Figure 95: submit code not pass all test cases .. 61

Figure 96: Submit the code .. 61

Figure 97: Student submissions in student side ... 62

Figure 98: Conversation responsive ... 63

Figure 99: Chatting responsive .. 63

Figure 100: create course responsive ... 63

Figure 101: Profile responsive ... 64

Figure 102: Notification responsive ... 64

Figure 103: Create challenge responsive ... 64

Figure 104: Socket IO .. 65

Figure 105: Students excel file... 65

Figure 106: Add new test case diagram ... 67

Figure 107: Calculate similarity operation ... 68

Figure 108: Moss similarity result ... 68

Figure 109: Moss similarity details .. 69

Figure 110: Deployment process ... 70

 9

List of tables
Table 1: Supported languages .. 66

Table 2: Manul testing table .. 71

 10

Abstract

One of the most important skills for any programmer is problem-solving skills, and there are

many websites that can be used to train these skills, such as HackerRank, Codeforces, LeetCode,

etc.

At An-Najah National University, professor always strive to improve students' problem- solving

skills in many subjects such as computer programming, data structures, algorithms, and object-

oriented programming by assigning problem-solving assignments and quizzes using problem-

solving websites. However, they face several challenges in using these websites, such as

difficulty tracking student submissions, an inability to directly identify code similarities among

students' submissions, and the inability to manually mark incorrect answers.

We built this project by creating a web application with React JS as the frontend and Flask

Python as the backend. We used Docker to containerize the application, allowing easy

deployment on the cloud or any local server. Additionally, we leveraged several services from

Amazon Web Services (AWS), including S3 for storage, RDS for the MySQL database engine,

and EC2 for deploying the web application.

 11

Chapter 1: Introduction

▪ Statement of the problem

 The problem-solving skills are one of the most important skills in the workplace, so

An-Najah National University strives to improve these skills in our students by

incorporating problem-solving tasks into many courses using external problem-solving

websites. However, these websites lack essential features that would simplify the

problem-solving process and make solution grading more efficient. This emphasizes the

increasing importance of a web application to address all these challenges.

One of the primary challenges lies in the difficulty of efficiently tracking and managing

student submissions. This hinders the seamless monitoring of individual progress and the

timely assessment of assignments. Additionally, there is a limitation in directly

identifying code similarities among the submissions, making it challenging to address

potential collaboration or plagiarism issues effectively.

Another notable challenge is the absence of a streamlined mechanism for manually

marking incorrect answers. This deficiency impedes the ability of professors to provide

targeted feedback, hindering the learning process for students.

 12

▪ Objective

 The purpose of our work is to create a web application for problem-solving that is

easy to use for both students and professors. We aim to achieve this by incorporating

new features not available in other problem-solving web applications. The objectives of

our work are as follow:

• Registration and login for both students, professors and admin on the web

application.

• Professors can create new courses and enroll students in them by simply

uploading the excel file exported from any zajel course.

• Professors can add contests to their courses. For each contest, the professor

provides challenges, and each challenge should have a set of input test cases

along with the expected correct output. The system will automatically evaluate

the challenges based on the provided output test cases. Additionally, each contest

has a designated starting and ending date, during which it will be available to the

students.

• Professors can view a list of students who have submitted challenge, their grades,

and the similarity of their submissions. They can also review the submissions and

optionally manually mark last submission that was found incorrect by the system.

• The professor can also track the progress of the student submission, i.e. they can

see the changes from the first version the students submit to the last (hopefully)

correct answer.

• Students can access their homepage on the system which shows information

about the assignments and quizzes in current or previous courses. The student

can start solving the assignments/quizzes assigned to them by writing code in

their preferred programming language, such as C, C++, Java, Python, JavaScript,

or REGX directly in the browser. They can then run the code to check if it passes

or fails test cases.

• The student can also view the status for each assignment/quiz, their score and

general performance.

• User receive notification when a related event occurs.

• Any user can make chatting with other user.

 13

▪ Scope of the work

• Frontend using React JS: We developed the frontend using React JS, building

the user interface with the React JS library, utilizing React Bootstrap as the UI kit,

React Router, and incorporating React-JSS for styled components.

• Backend using Flask python: We developed the backend using Flask python

microservices framework.

• Database using MySQL: We chose the MySQL database because our data is

relational. Subsequently, we generated the tables using MySQL Workbench.

• Amazon Web Services (AWS): We utilize various services from AWS, using the

S3 service for storing files and images, the RDS service for the MySQL database

engine, and the EC2 service for deploying the web application.

• DevOps: We generated a portable copy of our project that can be easily deployed

on any device using Docker and Docker Compose technologies.

• Testing: After building our project, we conducted manual tests to ensure that

everything worked correctly.

 14

▪ Importance of the work

 The An-Najah Rank web application has many features that enhance usability and

includes new functionalities. Here are the reasons that explain why this web application

is important:

• Easy to use: The web application is user-friendly for all users, including admin,

professors, and students. And that appear in simplicity of user interface.

• Check plagiarism: We have added a 'calculate similarity' feature that can check

the similarity between student code submissions.

• Show all submissions: We can easily to traversing student submissions by

viewing all last submissions of students in one place and can traverse all

submissions on any student easily.

• Manual Marking: We have added a manual marking feature that allows

professor to remarking the last submission of any student.

• Flexibility of test cases: The professor can adjust the final grade of challenge by

adding new test case that will automatically run the new test case on the last

submission code and adjust the final grade based on all results.

• This web application is implemented specifically for educational use: We

have customized many features for this purpose, such as limiting the

programming languages that can be used to solve the challenge. Professors can

easily add students by uploading an Excel sheet.

 15

▪ Organization of the report

The report is structured in a logical and systematic manner to effectively present

the information related to the project. The organization of the report is as follows:

• Introduction: This section provides an overview of the project, highlighting the

problem statement, objectives, and the importance of the work. It sets the context for the

rest of the report.

• Theoretical Background and Previous Work: In Chapter 2, It presents a

comprehensive review of existing research, studies, and relevant literature related to An

Najah Rank, automation techniques, and similar projects. This section helps establish the

project's context and highlights any gaps in the existing knowledge.

• Methodology: Chapter 3 explains the materials and methods used throughout the

project. It provides a detailed description of the experimental setup, the Web application

development process. The chapter outlines the steps taken to achieve the project

objectives.

• Results and Analysis: Chapter 4 presents the results obtained from the project. It

includes the outcomes of the process using the An Najah Rank web application, as well

as any relevant data or measurements. The results are analyzed and interpreted to draw

meaningful conclusions.

• Discussion: Chapter 5 focuses on the discussion of the results. It provides a

comprehensive analysis of the findings, highlighting the features, benefits, and

limitations of the An Najah Rank web application. The chapter also addresses any

challenges faced during the project and offers recommendations for future

improvements.

• Conclusion and Recommendation: chapter6 concludes report by summarizing the key

findings, reiterating the significance of the work, and highlighting its potential impact. It

may also include a reflection on the overall project experience and suggestions for

further research.

• References: A list of all the references cited throughout the report is provided in the

References section, following the conclusion.

 16

Chapter 2: Theoretical

Background and

Previous Work

These days, there are many problem-solving web applications, such as LeetCode, CodeForces,

and HackerRank. However, these web applications are not completely suitable for educational

purposes. Therefore, we built a problem-solving web application that combines solving

problems for students and adds the educational features needed for professors, making the

process more straightforward.

 17

Chapter 3: Methodology

In our project, we diligently adhere to the Software

Development Life Cycle (SDLC), a systematic approach that enables cost-effective and time-

efficient software development. SDLC guides our development teams through essential stages

such as planning, design, development, testing, deployment, and maintenance. This structured

process not only aims to design and build high-quality software but also minimizes project risks

through forward planning. By following SDLC, we ensure that the software meets customer

expectations during production and beyond, contributing to the overall success and reliability of

our projects.

Figure 1: Software Development Life Cycle

In our project, we have embraced the Agile methodology as the guiding framework for

our software development process. Agile is a dynamic and iterative approach that prioritizes

flexibility, collaboration, and customer satisfaction. Unlike traditional linear models, Agile

promotes adaptability to changing requirements and a continuous feedback loop, allowing us to

respond promptly to evolving project needs.

Figure 2: Agile Methodology

 18

3.1 Planning:
We met with our supervisor, Dr. Samer Arandi, to discuss the project features

and decide which ones will be implemented. During our meeting, we explored various

problem-solving websites to gain insights and ideas for the project.

Our collaboration extended beyond the existing features as we explored new

functionalities to enhance the project. This discussion not only provided a clearer vision

for the project but also facilitated the identification of potential innovative features to

meet both current and future user needs.

3.2 Analysis:
In the initial phase of our software project, thorough analysis was conducted to

gather and document project requirements through stakeholder engagement and user

feedback sessions. This process involved crafting user stories to delineate specific

functionalities and envisioning the system's architecture through Unified Modeling

Language (UML) diagrams.

 19

3.2.1 UML Diagram:

Figure 3: UML Diagram

 20

3.2.2 User Stories:

Figure 4: User Stories

 21

3.3 Design:

3.3.1 Tools:

3.3.1.1 Frontend tools:

3.3.1.1.1 React JS:

React is a declarative, efficient, and flexible JavaScript library for building user

interfaces. It makes it easy to compose complex UIs from small and isolated pieces of

code called components.

In our project we used ReactJS as the front-end technology due to the easiness of

learning, rich set of user-interface, community support, and the fast development of

software. In addition, it offers the capability to reuse already built components.

Figure 5: React

3.3.1.1.2 React Bootstrap:

This UI kit contains many ready components that can be used directly with some

customization for style. Additionally, this UI kit provides components that can make the

design responsive easily.

Figure 6: React Bootstrap

3.3.1.1.3 React JSS:

Is a library that enables styling React components using JavaScript. Providing powerful

features such as:

- Dynamic Theming - allows context-based theme propagation and runtime updates.

- Function values and rules are updated automatically with any data that passed as probs.

Figure 7: React JSS

 22

3.3.1.1.4 React Router:

 React Router enables "client side routing".

Client side routing allows your app to update the URL from a link click without making

another request for another document from the server. Instead, your app can immediately

render some new UI and make data requests with fetch to update the page with new

information.

This enables faster user experiences because the browser doesn't need to request an

entirely new document or re-evaluate CSS and JavaScript assets for the next page. It also

enables more dynamic user experiences with things like animation.

Figure 8: React Router

3.3.1.2 Backend tools:

3.3.1.2.1 Flask python:

Flask is a lightweight and user-friendly Python web framework that streamlines backend

development. While originally designed for simplicity, Flask proves versatile for

building microservices. It provides a simple way to create and deploy dynamic web

applications; it enables developers to focus on the application logic rather than worrying

about the underlying infrastructure. Moreover, it offers a great deal of freedom and

control over application development. Its integration with Python libraries and

technologies makes it easy to integrate with a wide variety of software development

tools and solutions.

Figure 9: Flask python

3.3.1.2.2 MySQL Database:

MySQL is an open-source relational database management system (RDBMS).

Figure 10: MySQL

 23

3.3.1.2.3 Pandas:

Pandas is a software library written for the Python programming language for data

manipulation and analysis. In particular, it offers data structures and operations for

manipulating numerical tables and time series.

Figure 11: Pandas

3.3.1.2.4 SocketIO:

Flask-SocketIO is an extension for Flask that facilitates low-latency, bidirectional

communication between the server and clients using WebSockets. It allows real-time,

interactive features to be implemented in Flask applications by enabling seamless

communication between the server and connected clients.

Figure 12: SocketIO

3.3.1.3 DevOps tools:

3.3.1.3.1 GitHub:

Git is open-source version control software, used for managing and tracking file

revisions. You can use Git with any file type, but it’s most often used for tracking code

files.

GitHub is an online software development platform. It's used for storing, tracking, and

collaborating on software projects.

Figure 13: GitHub

3.3.1.3.2 Trello:

Trello is the visual tool that empowers your team to manage any type of project,

workflow, or task tracking. Add files, checklists, or even automation: Customize it all

for how your team works best.

Figure 14: Trello

 24

3.3.1.3.3 Docker:

Docker is a software platform that uses OS-level virtualization to deliver software in

packages called containers. It allows you to build, test, and deploy applications quickly.

Docker packages software into standardized units called containers that contain

everything the software needs to run, including libraries, system tools, code, and

runtime. By using Docker, you can quickly deploy and scale applications into any

environment and be confident that your code will run.

Figure 15: Docker

3.3.1.3.4 Docker Compose:

Compose is a tool for defining and running multi-container Docker applications. With

Compose, we use a YAML file to configure the application's services. Then, with a

single command, you can create and start all the services from your configuration.

Figure 16: Docker Compose

3.3.1.3 AWS CloudFormation:
AWS CloudFormation is Amazon Web Services’ (AWS) native IaC tool. It enables you

to define infrastructure resources using YAML or JSON templates, ensuring automation

and consistent deployments in the AWS environment.

Figure 17: AWS CloudFormation

 25

3.3.1.4.1 AWS EC2:

Amazon Elastic Compute Cloud (Amazon EC2) provides on-demand, scalable

computing capacity in the Amazon Web Services (AWS) Cloud. Using Amazon EC2

reduces hardware costs so you can develop and deploy applications faster.

Figure 18: AWS EC2

3.3.1.4.2 AWS S3:

Amazon Simple Storage Service (Amazon S3) is an object storage service that offers

industry-leading scalability, data availability, security, and performance.

Figure 19: AWS S3

3.3.1.4.3 AWS RDS:

Amazon Relational Database Service (Amazon RDS) is a web service that makes it

easier to set up, operate, and scale a relational database in the AWS Cloud.

Figure 20: AWS RDS

3.3.1.5 Development tools:

3.3.1.5.1 VS Code:

 Used for React development.

Figure 21: VS Code

 26

3.3.1.5.2 pycharm:

 Used for Flask development.

Figure 22: pycharm

3.3.1.5.3 MySQL Workbench:

 Used for building and monitoring database.

Figure 23: MySQL Workbench

3.3.1.5.4 Postman:

 Used for test backend APIs.

Figure 24: Postman

3.3.1.5.5 Docker Desktop:

 Used for managing images and containers.

Figure 25: Docker Desktop

3.3.1.5.6 Draw io:
 Used for design UML diagram.

Figure 26: Draw io

 27

3.3.2 Architecture:

3.3.2.1 Architectural Style:
We used RESTful architectural style, which is a design approach for networked

applications prioritizing simplicity, scalability, and loose coupling. It utilizes a stateless

client-server model with principles such as statelessness, a uniform interface, and

resource-based interactions. Key advantages encompass simplicity, scalability, and a

consistent interface.

Figure 27: Restful Architectural Style

To send requests from the frontend to the backend, Axios, a popular JavaScript library,

is commonly used in React applications. Axios simplifies the process of making

asynchronous HTTP requests to external resources, particularly APIs. It is favored for its

simplicity, flexibility, and notable features, including automatic JSON data

transformation in responses.

Figure 28: AXIOS library

3.3.2.2 Architectural Pattern:
We used Microservices architectural pattern, which is particularly beneficial for large and

complex applications where different functionalities can be developed and maintained

independently.

Figure 29: Microservice Architectural pattern

 28

3.3.2.3 Project Structure:

Figure 30: Project Structure

We divide the project into 3 containers:

1- Frontend container: Handles client requests and returns the UI to the client.

2- Database container: Manages requests from the Frontend container. If the request is

related to code operations, it passes the request to the Backend container and returns the

response to the Frontend container.

3- Backend container: Handles code operation requests, such as compiling and running

code.

 29

3.3.3 Security:

3.3.3.1 Authentication:
To use the web application, you must have an account. To obtain one, you need to

register on the system and confirm your registration by entering the valid verification

code received via email. When a user log in into the system, we authenticate their

information. If the authentication is successful, we generate a token and return it to the

frontend.

3.3.3.2 Autherization:
After logging in, each request to the backend should include a token. In the backend, the

system first checks the validity of the token. If the token is valid, it is passed to the API;

otherwise, an unauthorized response is returned. Upon receiving a request, the API

checks the user's role, which is extracted from the token. If the user has the necessary

access rights to the API, the request is processed; otherwise, an unauthorized response is

returned.

3.3.3.3 CORS policies:
In the backend, we enable the CORS policy for the frontend address, so any received request

from another address will be rejected.

3.3.3.4 : Library used:

Figure 31: Flask Mai

Figure 32: pyJWT

Figure 33: Flask-Cors

 30

3.4 Implementation:

3.4.1 User Features:

3.4.1.1 Registration:
After entering their information, the user can choose to sign up as a professor.

Subsequently, upon email verification, their request will appear on the admin page for

acceptance or rejection. If the request is accepted, the user can log into the system;

otherwise, they will not be allowed to access the system. For non-professor accounts,

after email verification, users can log into the system.

Figure 34: sign up

Figure 35: verification code

 31

Figure 36: email verification message

3.4.1.2 Sign in:

Figure 37: log in

 32

3.4.1.3 Forget password:

Figure 38: forget password

Figure 39: verification code for reset password

Figure 40: verification code message for reset password

Figure 41: set new password

 33

3.4.1.4 Account Settings:

Figure 42: User account settings

Figure 43: Password settings

 34

3.4.1.5 Chatting:

Figure 44: Create new Chat

Figure 45: Chatting notification

 35

Figure 46: See chatting notification pop-up

Figure 47: Chatting conversations

 36

3.4.2 Admin features:

Figure 48: pending professors in admin page

Figure 49: approve professor

 37

Figure 50: all professors in the system

Figure 51: all students in the system

 38

Figure 52: Students statistics

Figure 53: Viewing student profiles from the admin side.

 39

3.4.3 Professor Features:

Figure 54: Manage Courses in administration page

Figure 55: Create course

 40

Figure 56: Manage course details

Figure 57: Manage course moderators

 41

Figure 58: Manage students in course

Figure 59: Manage contests

 42

Figure 60: Create contest

Figure 61: Manage contest details

 43

Figure 62: Add challenge to contest

Figure 63: Manage challenges in contest

 44

Figure 64: Manage challenges

Figure 65: Create challenge

 45

Figure 66: Manage challenge details

Figure 67: Add test case to challenge

 46

Figure 68: Manage test cases in challenge

Figure 69: All courses page

 47

Figure 70: Course view

Figure 71: Manage students in course

 48

Figure 72: Contest view

Figure 73: Contest Grades

 49

Figure 74: Problem description

Figure 75: Students submissions from professor side

 50

Figure 76: View student submissions

 51

Figure 77: Last submission for student can do manual mark

Figure 78: Start calculate similarity

 52

Figure 79: Received notification when similarity calculated

Figure 80: Code similarity page

 53

Figure 81: Code Similarity view 1

Figure 82: Code similarity view 2

 54

Figure 83: students leaderboards

Figure 84: Add new test case when there is a submission for challenge

 55

Figure 85: After add test case and run it on all student submission

Figure 86: The submission after add new test case

 56

3.4.4 Student Features:

Figure 87: Student profile from student side

 57

Figure 88: Notifications when add new course or contest or challenge

Figure 89: All notification page

 58

Figure 90: Course view before contest start in student side

Figure 91: Course view after contest start in student side

 59

Figure 92: Contest view in student side

Figure 93: when run code and there is a compile error

 60

Figure 94: Challenge view and run code in student side

 61

Figure 95: submit code not pass all test cases

Figure 96: Submit the code

 62

Figure 97: Student submissions in student side

 63

3.4.5 Sample of responsive design:

Figure 98: Conversation responsive

Figure 99: Chatting responsive

Figure 100: create course responsive

 64

Figure 101: Profile responsive

Figure 102: Notification responsive

Figure 103: Create challenge responsive

 65

3.4.6 Features details:

3.4.6.1 Socket IO:
Socket.IO is a real-time web application framework that enables bidirectional

communication between clients and servers. It is built on top of the WebSocket protocol

but provides additional features, such as support for fallback mechanisms like long

polling, which ensures compatibility with various browsers and network conditions.

Socket.IO simplifies the implementation of real-time, event-driven applications by

offering a simple and flexible API for handling communication between the server and

connected clients.

Figure 104: Socket IO

3.4.6.2 Students excel file:
When a professor creates a course, they should upload an Excel file downloaded from

Zajel. The Excel file must be in .xlsx format. Subsequently, we extract all student

university numbers from this file and add the students to the course.

Figure 105: Students excel file

 66

3.4.6.3 Code operation:
We have built a backend server capable of compiling and running code. This was

achieved by installing the necessary compilers or interpreters for the languages intended

to run code. We can now compile and execute code using command lines within our

code.

Table 1: Supported languages

Language Compiler/Interrupter

C/C++

Java

Python

JavaScript

 67

3.4.6.4 Add new test case after there is a submission for challenge:
The professor is able to add or update test cases. They can then run these test cases on a

specific contest selected from the user interface, applying them to all related

submissions. The grades are subsequently updated based on the results of the new test

cases. Once all operations are completed, a notification is sent to the user, informing

them that the operation has finished successfully.

Figure 106: Add new test case diagram

3.4.6.5 Manual mark:
The professor can view all student submissions for a specific challenge. For each user,

all submissions can be displayed. Afterward, the professor can manually mark the latest

submission by assigning a new grade. To streamline this process, we have added a

percent grade for each test case, and the total grade is calculated out of 100.

3.4.6.6 Similarity:
One of the most important features added to the system is calculating code similarity.

We decided to use an open-source service to perform this task. Initially, we considered

Turnitin, but after thorough research, we discovered that it is not suitable because it is

customized for checking text similarity, not coding similarity. Further investigation led

us to Moss (Measure Of Software Similarity), an automatic system designed for

determining the similarity of programs.

Moss, developed in 1994, stands for Measure Of Software Similarity. It functions as an

automatic system specifically tailored for assessing the similarity of programming code.

Its primary application has been in detecting plagiarism in programming classes. Unlike

general-purpose plagiarism detection tools, Moss is optimized for identifying similarities

in coding structures and logic.

The Moss algorithm is considered a significant improvement over other cheating

detection algorithms known to date. Users can submit a list of files in various

programming languages, and Moss produces HTML pages listing pairs of programs with

 68

similar code. It highlights individual passages in the programs that appear the same,

facilitating a quick and efficient comparison of the submitted files.

Figure 107: Calculate similarity operation

To use Moss service must send all code files that needs to calculate similarity for it that

downloaded from AWS S3 service then after calculate similarity Moss return result as

HTML files as shown in figures below:

Figure 108: Moss similarity result

 69

Figure 109: Moss similarity details

Now, we retrieve data from Moss in the form of HTML files and proceed to analyze the data

using the pandas library. The analyzed data is stored in arrays. Next, we calculate the total

similarity for each file by collecting all similarity data associated with that file. We extract all

lines with similarity, and the total similarity is computed by dividing the total number of lines

with similarity by the total number of lines in the file. Now, after performing these steps for all

files, we store the final results in the database. Subsequently, a notification is sent to the

professor to inform them that the similarity has been calculated successfully.

3.4.6.7 Statistics:
We have implemented a feature in the student profile that displays the number of problems the

student has solved in each category out of the total challenges. Additionally, it shows a success

rate, indicating the percentage of solved challenges out of all challenges for that student. In

contests and challenges, statistics are provided, showing success rates and maximum scores.

Furthermore, on the admin page, there is a statistics section showcasing the best students in the

entire system who have solved the largest number of problems.

 70

3.5 Deployment:

Figure 110: Deployment process

In the deployment structure for the frontend, Nginx serves as a crucial web server, playing a key

role in handling the dynamic runtime of the React application.

In the database and backend deployment structure optimized for APIs, Flask serves as the

foundational framework, responsible for handling application logic and dynamically generating

content. Gunicorn is employed as the WSGI server, efficiently managing communication and

concurrent requests through multiple worker processes. While Nginx, traditionally recognized as

a reverse proxy for web applications, is considered optional in this API-centric setup, it remains

a valuable component for potential load balancing and additional security measures. The refined

architecture emphasizes a modular separation of concerns, with Flask managing API routes,

Gunicorn overseeing WSGI interactions, and Nginx, when utilized, contributing to load

balancing and potential security enhancements. This streamlined structure establishes a

dependable, scalable, and secure foundation specifically designed for deploying a Flask backend

focused on API functionalities in production environments, combining the strengths of Flask,

Gunicorn, and Nginx for optimal performance and security.

 71

3.6 Testing:
Testing is a critical phase in the software development lifecycle aimed at ensuring the

quality, reliability, and functionality of a software product. The primary objective of

testing is to identify defects or issues within the application, allowing developers to

address them before the software is deployed to end-users. After implementing the

project, we conduct manual testing for all features in the system to ensure that all

features work correctly.

Table 2: Manul testing table

Feature Name Status Failure Description

Sign Up Pass

Verification Code
Fail

Error solved when the role is a professor;

fetching result two times causes an error.

Admin Approve Professor Pass

Forget Password Pass

Update Info
Fail

Error occurs when updating or adding an

image, no synchronization between events.

Create Challenge Pass

Update Challenge
Fail

Error when updating tags, and initially, there

are no tags.

Add Test Case Pass

Update Test Case Pass

Remove Test Case Pass

Create Course Pass

Create Contest Pass

Update Course Pass

Update Contest Pass

Add Challenge in Contest Pass

Get All Courses

Fail

When the role is a professor, there is nothing

to retrieve; retrieves courses for students

when there are no moderators. Update SQL

statements to retrieve course moderators

only, not the owner.

Get Specific Course Pass

Get Specific Contest Pass

 72

Get Specific Challenge Pass

Notification Pass

Add Moderator Pass

Remove Moderator Pass

Run Code Pass

Submit Right Code
Fail

Problem retrieving student university number

in the backend.

Profile Statistics
Fail

Problem when there is more than one

submission pass.

Contests Statistics
Fail

Problem when there is more than one

submission pass.

When No Sample Test Case
Pass

Submit Compile Error Code Pass

Manual Mark Pass

Submit When Time Ends Pass

Update End Time of Contest
Fail

Problem appears when the start time is

greater than the current time.

Calculate Similarity

Fail

Error 'NoneType' object is not subscriptable

(the /file-Similarity API in excluded_routes).

Add Test Case When There

Are Submissions
Pass

Chatting Pass

After that we resolve the failures then we deploy the project again and ensure all features works

correctly.

 73

3.7 Constraints:
In our AWS environment, not all services come without costs; certain services like RDS,

EC2, and Elastic IP Addresses require payment. Additionally, there are limitations

associated with the free tier services. Another challenge we face involves a third-party

API we use for similarity calculations. This API is not entirely within our control, and its

occasional unavailability may disrupt our similarity calculation processes, potentially

affecting the availability of the similarity feature system.

 74

Chapter 4: Result and

Analysis

 In our project, we have successfully developed a user-friendly problem-solving web

application that stands out in competition with other similar platforms. The implementation

of this web application provides our professors with a seamless mechanism to effortlessly

track student submissions. They can also calculate the similarity of student submissions with

ease by simply clicking a button, revealing similarity scores for all submission files.

Moreover, the system facilitates professors in adding new test cases even after submissions

have been received for a specific challenge. When incorporating a new test case, professors

have the flexibility to choose the contest for which they want to run the code on existing

submissions.

Furthermore, the system extends its functionality by allowing professors to perform manual

marking for the last submission of each student. Alongside these advanced features, our

application offers fundamental capabilities such as creating challenges, contests, and courses,

and effectively managing them. The inclusion of notification features ensures timely updates

for both professors and students, enabling users to track new events. Additionally, the

application provides a chat feature for seamless communication. Students can submit code

and monitor their submissions.

 75

Chapter 5: Discussion

 In our project, the software development life cycle starts with planning and collecting

requirements, continuing through testing and deployment. Throughout these phases, we adhere

to the agile methodology. We establish criteria for maintainability, scalability, and other key

attributes to ensure the software meets the highest standards. This iterative and collaborative

approach allows us to respond effectively to changing requirements and deliver a product that

aligns with both user expectations and industry best practices.

In traditional deployment processes, migrating servers or switching hosting providers typically

involves laborious server configuration, including the setup of dependencies and ensuring

compatibility. This procedure is not only time-consuming but also prone to errors.

Docker streamlines this process by encapsulating the application and its dependencies into a

container, along with a Dockerfile specifying the necessary environment. This containerization

results in a standardized and reproducible deployment environment. When transitioning to a

new server or changing hosting providers, deploying the Docker container simplifies the

deployment task, ensuring that the application runs consistently across diverse environments.

Essentially, Docker abstracts the intricacies of the underlying infrastructure, offering a more

portable and efficient method for deploying applications. This proves especially advantageous

when quick transitions or replications of deployment environments are required, saving time and

mitigating the risks associated with configuration discrepancies.

 76

Chapter 6: Conclusions

and Recommendation

 In conclusion, the process of building a web application is a multifaceted journey that

traverses various crucial phases, each playing a pivotal role in the project's success. From the

planning stages to the final deployment, every step demands a substantial investment of effort

and effective management processes. The challenges encountered throughout the development

cycle underscore the necessity of a well-structured approach, emphasizing the importance of

adhering to best practices.

A cornerstone of successful web application development lies in robust requirements gathering

and meticulous planning. This foundational phase sets the tone for subsequent stages, aligning

the development team with project goals. The design and prototyping stages further refine the

vision, ensuring that the application's interface and user experience resonate seamlessly with

end-users.

During the development phase, the actual coding and programming come to life. The adoption

of agile methodologies enhances adaptability, fostering iterative development to accommodate

evolving requirements. good testing is integral to identifying and rectifying issues, ensuring a

reliable and bug-free application.

Deployment marks the culmination of development efforts, releasing the application to users.

Automation and containerization technologies streamline this process, promoting consistency

across different environments. Post-deployment, a continuous feedback loop, along with

iterative improvements, enables the application to evolve in response to user needs.

In essence, by following a well-structured and adaptive approach, incorporating best practices,

and prioritizing user feedback, developers can realize a web application's full potential and

deliver enhanced value in a shorter timeframe. The challenges inherent in the development

journey become opportunities for growth, leading to the creation of a resilient and user-centric

web application.

 77

Future Works :
1- Support time complexity calculation for the submission code of the challenge.

2- Support creating a challenge related to image processing.

 78

References

• React. Available: https://react.dev/learn .

• React Bootstrap. Available: https://react-bootstrap.netlify.app/docs/getting-

started/introduction .

• React JSS. Available: https://cssinjs.org/react-jss/?v=v10.3.0 .

• React Router. Available: https://reactrouter.com/en/main/start/tutorial .

• Flask python. Available: https://flask.palletsprojects.com/en/3.0.x/ .

• Pandas. Available: https://pandas.pydata.org/docs/user_guide/index.html .

• flask SocketIO. Available: https://flask-socketio.readthedocs.io/en/latest/ .

• Docker. Available : https://docs.docker.com/guides/get-started/ .

• Docker Compose. Available: https://docs.docker.com/compose/ .

• AWS. Available: https://docs.aws.amazon.com/?nc2=h_ql_doc_do .

• AXIOS library. Available: https://axios-http.com/docs/intro .

• Flask Mai. Available : https://pythonhosted.org/Flask-Mail/ .

• NGINX. Available :

https://nginx.org/en/docs/?_ga=2.53640360.1813303284.1705009802-

144038734.1703448924 .

• GUNICORN. Available : https://docs.gunicorn.org/en/stable/ .

• pyJWT. Available : https://pyjwt.readthedocs.io/en/stable/ .

• Flask-Cors. Available : https://flask-cors.readthedocs.io/en/latest/ .

• Moss. Available :

https://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf .

• Subprocess management. Available :

https://docs.python.org/3/library/subprocess.html .

https://react.dev/learn
https://react-bootstrap.netlify.app/docs/getting-started/introduction
https://react-bootstrap.netlify.app/docs/getting-started/introduction
https://cssinjs.org/react-jss/?v=v10.3.0
https://reactrouter.com/en/main/start/tutorial
https://flask.palletsprojects.com/en/3.0.x/
https://pandas.pydata.org/docs/user_guide/index.html
https://flask-socketio.readthedocs.io/en/latest/
https://docs.docker.com/guides/get-started/
https://docs.docker.com/compose/
https://docs.aws.amazon.com/?nc2=h_ql_doc_do
https://axios-http.com/docs/intro
https://pythonhosted.org/Flask-Mail/
https://nginx.org/en/docs/?_ga=2.53640360.1813303284.1705009802-144038734.1703448924
https://nginx.org/en/docs/?_ga=2.53640360.1813303284.1705009802-144038734.1703448924
https://docs.gunicorn.org/en/stable/
https://pyjwt.readthedocs.io/en/stable/
https://flask-cors.readthedocs.io/en/latest/
https://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
https://docs.python.org/3/library/subprocess.html

