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Dr. Khalid Adarbeh

Abstract

Let A be a commutative ring with 1. In 1998, David F. Anderson and Philip
S. Livingston associated to A a graph I'(4) and they called it the zero divisor
graph of A. The vertices of I'(A4) is the set Z(A)* = Z(A) — {0}, where
Z(A) denotes the set of all zero divisors of A, and for x # y in Z(A)*, the
vertices x and y are adjacent if and only if xy = 0 [3]. In this thesis, we
provide a study of the effect of some basic ring theoretic properties of a ring
A on it’s zero divisor graph (I'(A)) by reproducing and illustrating using new
examples, the main work done in [3, 12]. Moreover, in the last chapter, we
investigate for the first time, the interplay between the ring-theoretic
properties of some special rings; such as Boolean, K —Boolean, and
nilpotent rings; and the graph theoretic properties of their zero divisor

graphs.
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Chapter One

Introduction of the zero divisor graph

Introduction:

In this chapter, we recall some basic information from graph theory and also
from ring theory that will be used frequently in this master thesis. We start

by the definition of a ring.

Definition 1.1: A ring A is an algebraic structure which consists of a set A
with two binary operations addition (4) and multiplication (.) such that:
1) (4,+) is abelian group.
e <+ isassociative.
e A has an additive identity called 0 (0 + x = x for all x € A).
e Each element x of A has an additive inverse called -x (x + —x = 0).
e The addition is commutative (x + y = y + x for every x,y € A).
2) Multiplication is associative (x(yz) = (xy)z, V x,y,z € A).

x(y+2z)=xy+xz

(x+y)z =xz+yz’vx’y'z €

3) Multiplication distributes over addition{

A.

4) If A contains a multiplicative identity, then it is called the unity and is
denoted by 1 (i.e. x.1 = 1.x = x, Vx € A). In this case the ring is called
a ring with unity.

5) If the multiplication is commutative (xy = yx, Vx,y € A), then A is

called a commutative ring.



Examples of rings are:

1. The set of integers (Z), real numbers (R), and rational numbers (Q) is
under the usual addition and multiplication of reals.

2. The set Z,, ={0,1,2,...,n — 1} under the addition and multiplication
modulo n.

3. If A is any ring, then the polynomial ring A[X] which consists of all
polynomials with coefficients from A under the usual addition and
multiplication of polynomials.

4. The set of all n X n matrices with real entries under the usual addition
and multiplication of matrices is a non-commutative ring.

5. Cartesian product of any two rings under the component wise addition
and multiplication is a ring.

Throughout this thesis, our rings are commutative with 1.

Now, we recall the definition of the graph.

Definition 1.2: A graph G consists of vertices which are connected by edges.
The vertices are denoted by V(G) and the edges are denoted by E(G). We
denote a graph G by the pair G = (V, E), where the elements of V are the
vertices of G; VV(G) and those of E are the edges of G; E(G). [8]

In this thesis, we are interested in studying a special kind of graphs. Those
graphs are issued from commutative rings, and to introduce the definition of

these graphs, we need the following ring theory definition:
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Definition 1.3: Let A be a commutative ring with 1. An element a of A is
called a zero divisor if there is a non zero element b of A such that ab = 0.
The set of all zero divisors of A is denoted by Z(A).
In 1998, David F. Anderson and Philip S. Livingston associated to a ring A
a graph I'(A) called the zero divisor graph of A, which mainly depends on

the set Z(A). Next is the definition:

Definition 1.4: Let A be a commutative ring with 1. The non-zero, zero
divisor graph of A; denoted by I'(A); is the graph with vertices Z(A)* =
Z(A) — {03}, and for x # y in Z(A)", the vertices x and y are adjacent if and
only if xy = 0. The edge set of ['(4) is E(F(A)) = {xy:x,y inV(T'(A)) and
xy = 0}. [3]

For more details about the zero divisor graph of rings, we refer the reader to
[5,8,16,21].

To make things moreclear, we provide the following example which displays

the zero divisor graph of Zs.

Example 1.5: The ring Z¢={0,1,2,3,4,5} under addition and
multiplication module 6 has the three distinct vertices: 2,3 and 4. Where 2
Is adjacent to 3, and 3 is adjacent to 4, while 2 is not adjacent to 4. Below is

a sketch of I'(Zg).

It deserves to mention that the zero divisor graph of a commutative ring was
first introduced by Beck [4] who was interesting in coloring a graph with

vertex set is the whole of the ring A, which makes sense, as he defined two
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vertices to be adjacent if and only if their product is zero and according to
this definition, every element of A is a member (vertex) of the graph and is
adjacent to zero.

Next, we recall the definitions of connected and complete graphs.

Definition 1.6: Let I" be a graph.

1. Tis called connected if there is a path between any two vertices.

2. T is called complete if any two distinct vertices are adjacent. We usually
denote the complete graph by K,,. Where n is the number of the graphs
vertices.

It is very clear that I'(Z) is connected and not complete (2 is not adjacent

to 4). ButI'(Z,s5) is a connected and complete graph. Below is the zero

divisor graph of Z, (see example 1.5)

5 18
10 MED
I'(Z2s)

Below are some basic definitions related to a connected graph G.

Definition 1.7 [13] : Let G be a connected graph.

1. The length from point x to point y; L(x,y), is the number of edges when
we move from x to y. (The number of edges of a path, and the path of
length n is denoted by P™).[19]

2. The distance d(x, y) between two vertices x and y is the minimum of the
lengths of all x — y paths of G. That is (d(x,y) = min{L(x,y): x,y €
V(G)}). By [3], d(x,y) = oo if there is no path between them.
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3. The eccentricity of a vertex x in G is the maximum distance from x to
any vertex in G denoted by e(x). e(x) = max{d(x,y) : y € V(G)}.

4. Theradius of G; rad(G), is the minimum eccentricity among the vertices

of G. (rad(G) = min {e(x) : x € V(G)}).

5. The diameter of G; diam G, is the maximum of the possible distances
between all the vertices, (diam(G) = max{d(x,y) : x,y € V(G)}).

6. The center of G is the set of vertices that have minimal eccentricity.

7. The open neighborhood of a vertex x in G is the set N(x) = {y:xy €
E(G)} while the closed neighborhood of a vertex x in G is the set N[x] =
N(x) U{x}.

The following example illustrates the above mentioned definitions.

Example 1.8: Take this graph (G):

There is only one edge between a and b and hence, d(a,b) = 1. While
d(b,e) = 2, which is the maximum distance between any two distinct
vertices thus diam(G) = 2.

It is very clear that the maximum distance from a to all other vertices is 1,
and hence e(a) = 1. Similarly, we deduce that e(b) =e(c) =e(d) =
e(e) = 2. So, the radius of the graph is r(G) = 1. Lastly, since a is the only

vertex with eccentricity equals the radius, {a} is the center of the graph.
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It is clear that the open neighborhood of the vertex c; N(c) = {a}, and hence
the closed neighborhood of c¢; N[c] = {c,a}. We finish the example by
notifying that the graph in this example can be realized as a zero divisor
graph.

To provide an example of a disconnected graph. We appeal to the following

definition.

Definition 1.9: Let A be a commutative ring. The complement graph T(A) is
defined on the same vertex set but two distinct vertices x and y are adjacent
if and only if xy # 0.[7]

The following is an example of disconnected zero divisor graph.

Example 1.10: Take the ring Z,,. Below is a sketch of T(Z,,). It is clear
that there is no path between 5 and 2, hence d(5,2) = oo. Which implies that

the graph is disconnected.

5"

2

Definition 1.11: Adominating setfor agraph Gis asubset D of
vertices such that every vertex not in D is adjacent to at least one member

of D.



Example 1.12: Take this graph.

C
In this graph the dominating set D = {a, c}, note that any vertex not in D is
adjacent at least one vertex in D. Also, {d, b, e} is another dominating.
Next, we introduce the definition of perfect graphs. For this purpose we need

the following definition.

Definition 1.13: Let G be a contented graph:

1. The chromatic number of a graph Gdenoted by y(G), is the minimum
number of colors required to color the vertices of G such that any two
adjacent vertices have different colors.

2. The cligue number of graph G denoted by w(G), is the size of the largest

complete subgraph of G.

Definition 1.14: A subgraph of a graph is any subset of vertices together

with any subset of edges containing those vertices.

Definition 1.15: Let G = (V,E) be any graph, and let S ¢ V be any subset
of vertices of G. Then the induced subgraph is the graph whose vertex set is
S and whose edge set consists of all the edge in E that connecting pairs of
vertices is S.( An induced subgraph is a subgraph maximal with respect to

the number of edges).
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Definition 1.16: A perfect graph is a graph G for which every induced

subgraph H has chromatic number equal to its clique number.

Example 1.17: Take this graph:

In this graph, chromatic number equals 2, and the clique number equals 2,
hence this graph is a perfect graph.

Chapter two of this thesis is a reproducing of the work done by Anderson
and Livingston in [3]. It consists of five sections: In the first section we
provide several examples of zero divisor graphs for different rings and
through these examples, we illustrate the effect of some basic properties of
rings, such as finite rings and integral domains on the zero divisor graph of
these rings. The second section contains the conditions under which the
graph is finite.

The third section provides a graph that contain vertex adjacent to every other
vertices. In the fourth section, we focused on the complete and the connected
graphs. The fourth section also contains some properties of complete and
complete bipartite graph. The fifth section provides a cycle zero divisor
graph and discusses some properties cycle graph such as a girth.

Chapter three is devoted to study more properties of the zero divisor graph
of commutative rings. The first section, is just a recalling of the definition of

the ring of Gaussian integers modulo n, Z,,[i] , in addition to the fact that A
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Gaussian prime integer is a unit multiple of one of the following: (1 + i) or
(1— i), A prime integer g in Z which g = 3 (mod 4). And a + ib
,a—- ib, where p = a® + b? and p is a prime integer in Z which p =
1 (mod 4). In the second section, the concepts of the center, median and the
radius of the graphs are provided along with an illustrative example. Section
3.2 also contains the effect of the Noetherianity of ring on its zero divisor
graph radius. The third section is about the domination and the 2-packing
number of zero divisor graph and the relation with the radius. The last section
is mainly a bout the perfect zero divisor graph .

The literature is very rich with the ring theoretic notions that are defined in

terms of or depends on its zero divisors.

Definition 1.18: Let A be a commutative ring.

1. A is called a Boolean ring if x2 = x for all x € A. (Notice that if x? = x,
then x(x — 1) = 0. So, if x # 1, it will be a zero divisor).[20]

2. Ais called a k — Boolean ring if x?* = x for all x € A, Where k is a
positive integer. [25]

3. A is called a nilpotent ring if every element of A is nilpotent, where a
nilpotent element is an element x such that there is a positive integer
m such that x™ = 0.

In the last chapter, we investigate the interaction between the ring theoretic

properties of the last mentioned rings and their zero divisor graphs. For

example, in the first section, we will see that Boolean and K —Boolean rings
share the property that their zero divisor graph contains a vertex which is

adjacent to all other vertices if and only if A = Z, X Z,. Also, their zero
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divisor graphs are not complete. In the second section, we focus on the zero
divisor graph of a nilpotent ring where we will see that those zero divisor
graphs has diameter at most 2 and has a vertex adjacent to every other vertex.

We will now show some basic definitions related to algebra.

Definition 1.19: Let A be a commutative ring. Then

1) I c A is called an ideal if it is closed under subtraction and ra € I
wheneverr € Aand a € 1.

2) A proper ideal P of A is called prime if whenever xy € P, then x € P or

y € P.

Definition 1.20: Let A be a commutative ring with unity. And let I c A be

an ideal. Then I is annihilator ideal if Vx € I: ax = 0 where a € A.

Definition 1.21: The rings of integers and integers modulo n will be denoted

by Z and Z,,, respectively, and E. will be the finite field with r elements.
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Chapter Two

Some Properties of The Zero Divisor Graph

of A Commutative Ring

Preview

This chapter displays the interaction between the ring theoretic properties of
a ring A and the graph theoretic properties of I'(4). Most of the results are

inhanceing and reproducing results in [3] and the examples.

2.1 Examples.

In this section we provide some examples of graphs of different rings as well
as the conditions under which the graph of a ring will be finite. Now we need

the following example:

Example 2.1.1. Consider the ring Z,, = {0,1, ...,9}. 2,5 are adjacent, since
2 x5 =0 and 5,4 are adjacent, since 5 X 4 = 0. 2 and 3 are not adjacent,

since 2 X 3 = 6 # 0. Below is a sketch of I'(Z,,).

The following example determines a necessary and sufficient conditions for

a ring to have empty zero divisor graph.

Definition 2.1.2: An Integral domain is anonzero commutative ring in

which the product of any two nonzero elements is nonzero.


https://en.wikipedia.org/wiki/Zero_ring
https://en.wikipedia.org/wiki/Commutative_ring
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A is integral domain (ID) if Z(A) = {0}.

Example 2.1.3. If A is an integral domain, then Z(A) = {0}, and hence I'(A)
iIs empty. Actually, the converse of the last fact is also true. i.e., A is an
integral domain if and only if I'(A) is the empty graph.

The following is an example of a zero divisor graph of one vertex.

Example 2.1.4: Take the ring Z,. The non-zero zero divisor graph of Z, is
Z*(Z,)={2}. Below is a sketch of T'(Z,).

20

Next, we recall the definition of an isomorphism of rings:

Definition 2.1.5. If A; and A, are rings then a ring homomorphism is a map
f:A; — A, suchthat f is:

1)f(a+b)=f(a)+ f(b)forallaand b in A;.

2)f (ab) = f(a)f(b) forall a and b in A;.

3f (14,) = La,-

If the ring homomorphism is bijection (one-one and onto), then it is called
a ring isomorphism. It is obvious that isomorphic rings have the same graph.
This fact follows directly from the fact that the zero divisor property is
preserved under the isomorphism (indeed, if ¢: A —» S and x € Z(A), then
3 y such that xy = 0, it is clear that ¢ (xy) = @(x)@(y) = 0, thus ¢ (x) €
Z(S). But this does not mean that non isomorphic rings cannot have the same

graph. The following is a counter example to the last statement.
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Example 2.1.6: The rings Zq and Z, X Z, have the same graph. Indeed,
Z*(Zy) = {3,6}, where 3 and 6 are adjacent, and Z*( Z, X
Z,)={(1,0), (0,1)}, where (1,0) and (0,1) are adjacent. Below are the graphs:
S © ol ©n
But it is obvious that Zq and Z, X Z, are not isomorphic since they have
different cardinalities.

The possible graphs with three vertices are:

1) ——e
2)
-
3) ~—
4) - .

So, the possible connected graphs with three vertex are the first and the second
graph. The following example ensure that these two graphs can be realized as

a graph.

Example 2.1.7: casel. The zero divisor set of Zg is {2,4,6}. It is clear that

24 =0,4.6 =0in Zg. Below are the graphs.
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[ o]
=N
[

Zy[X)Y]

Xxvre) The zero

Case 2. For this case, we consider the polynomial ring

0,x.x =x2 =

divisor set of this ring is{x, ¥, x + y} and it is clear that {xy

0,y2=0,x24+y=0,y2+x =0, x2 + 2xy + y2 = 0}. Hence the zero

.. Z,[X,Y] .
divisor graph Of—(XZ,XY,YZ)IS

Xty v

The following graphs are the possible disconnected graphs of 3 vertices.

It can be easily notified from the examples 2.1.4, 2.1.6 and 2.1.7 that every
connected graph with less than four vertices can be realized as I'(A) for some
ring A. This observation fails in the situation of four vertices graphs.

Next we are interested in dealing with the situation of four vertices graphs.

It is well known that there are twelve graphs with four vertices,
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.
g)

L ] -
9
? ]L, S
F ]
E ; 10) |:.
5) 1D >~<
|

» .
»

Notice that the graphs from 1 — 7 are connected, and from the connected

0

|

ones, only three can be realized as I'(A), for some commutative ring A.
Below are the details:
The following example proves that the graphs from 1-3 can be realized as

zero divisor graphs.

Example 2.1.8: The following graphs are connected with 4 vertices and can

be realized as zero divisor graphs as shown:
(0.3)

{1,0) {0.c) qgﬂj-:iﬂ?i 10 XED

Z, X F, Zs X Zs Zye
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The possible graphs of with 4 vertices cannot be realized as a zero divisor

graph is:
b d
a C a d [ — h

We provide the proof of the first two cases:

Case 1: The graph I, with vertices {a,b,c,d} and edges:a—b , a—c ,
a—d , b—c ,cannotbe realized as T'(4).

b d

Suppose that T'is T'(A) for some commutative ring A. It is clear that
(a+c)b =ab+ cb =0.Hence (a+ c) is adjacent to b or b or zero, and
sothata+c€{0,a,c,b). Ifa+c=aorc,thenc =0o0ra=0.whichis
a contradiction. Similarly, the contradiction holds if (a + ¢) = 0. So, the
only possible value for a + ¢ is b. Now (a + ¢) = b. Similarly,(b + d)a =
ba + da = 0, implies that (b + d) € {0,a,b,c,d}. If b+ d = b or d, then
d = 0or b = 0, that is a contradiction. If (b + d) = 0, then c(b) = c(—d)
which implies that cd = 0, which is a contradiction with ¢ not adjacent to d.
If (b +d) =a,then c(b+d) =ca= 0 Hence cd = 0, contrudiction. So,
we end with only one possibility b +d = c. Lastly, b=a+c=a+b+d
impliesthat b =a+ b +d, and hence a+d =0 or d = —a. Thus bd =
(—a)b = 0 Which is a contradiction with b not adjacent to d. Therefore T’

can not be realized as I'(4) ]
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Case 2: The following graph also cannot be realized as a zero divisor graph:

b c
aZd

If theedgesare:a—b , a—c, a—d, c—d, b—c. ltisclearthat (a+
b)c = ac + bc =0,s0 (a+b) €{0,a,b,c,d}. If a+ b =athen b =0,
which is acontradiction. Similarly, if a + b = b then a = 0, which is a
contradiction. Ifa + b = ¢ , then d(a + b) = dc = 0 implies that db = 0.
Which is a contrudiction. Similarly, if a + b = 0, contrudiction. Now take
a+b=d. Itis clear that (b + d)a = ba + da = 0, then (b + d) either
{0,a,b,c,d}. If b+ d = b ord or 0, which is a contradiction. Thenb + d =
cor b+d=a. Ifb+d=cthenc=b+a+b =a+ 2b, hence ¢ —
a = 2bthen 2bd = (c —a)d which implies that 2bd = cd — ad and
2bd = 0. Hence bd = 0, and hence there is an edge between b and d , which
Is a contradiction. Lastly, if b+d =athen b+a+b =a then b =0,
contradiction ]

The following example describes two complete zero divisor graphs of four

vertices.

Example 2.1.9: The non-zero zero divisors of Zs X Zs IS Z*(Z3 X
Z3)={(1,0), (0,1),(2,0),(0,2)}, and the non-zero zero divisors of Z,s is
Z*(Zy5) = {5,10,15,20} . Below is the sketch of the zero divisor graphs of
the mentioned rings. It is clear from the sketch that I'( Z,5 ) is complete

but I'(Z; X Z3) is not complete.
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(1:0)r (0.1) 5 15
10 [ 12[}

The following is an example of a zero divisor graph of five vertices.

02) 2.0)

Example 2.1.10: Take the ring of Z, x Z,. The non-zero, zero divisors
Z*(Z, x Z,) = {(1,2),(0,2), (1,0), (0,1), (0,3)}. Hence the graph takes this

form.
(1.2)

(0,3) a(0.2) (0.1)

(1.0)

The following is an example of a zero divisor graph of eleven vertices.

Example 2.1.11: Consider the ring Z, X Z,. The non-zero zero divisors is

1(0,1), (0,2), (0,3), (1,0), (2,0), (3,0), (1,2), (2,1), (2,2), (3,2), (2,3) }-

(3.2

(0.3)

(0.1) (0.2)

g (12

2.2

e (2.3)

(3.0)

(1.0)y (2.0}

(2.1)

The following is an example of infinite zero divisor graph.
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Example 2.1.12: Consider the ring A =7Z, X Z, X Z, X ..., an infinite
number of times. It is clear that the vertex a = (1,0,0 ....) is adjacent to
every other vertex with the first coordinate is zero. Hence, a adjacent to an

infinite number of vertices. Thus, the zero divisor graph is infinite.

2.2 Finite zero divisor graph:

This section provides the necessary and sufficient conditions under which a
ring A will have a finite zero divisor graph. We start by the following main

theorem.

Theorem 2.2.1. Let A be a commutative ring. Then I'(A4) is finite if and only
if either A is finite or an integral domain. Especially, if 1 < |[I'(4)] < oo,

then A is finite and not a field.[3]

Proof: If A is an integral domain, then as we shown in example 2.1.3,
I'(A) = @ which is finite. If A is finite then trivially Z(A) is finite and the
graph is finite.

Suppose that I'(A) = Z*(A) is finite and nonempty, and suppose that A is
infinite. There are nonzero x, y in A such that xy = 0. Let I = ann(x). Then
I is contained in Z(A), and hence I is finite (since Z(A) is finite). But xy =
0 implies that y € ann(x), and consequently, ry € I for all r € A. Now A is
infinite and | is finite force the existence of i € I such that the set J={r € A\
ry=i} is infinite. But for anyr,s€jJ, (r—s)y=ry—sy=i—i=20
which implies that (r — s) € ann(y). Lastly, J is infinite set implies that

ann(y) is also infinite. We finish by observing that the infinite set ann(y)
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Is contained in Z(A) which is a contradiction with Z(A) is finite. Thus A
must be ﬁnite.l

The special case of finite graphs that form a closed geometric figure with n-
sides are called n-gon. So the triangle is a 3-gon, the square is a 4-gon,...etc.
We can use example 2.1.7 and 1.17 to observe that the zero divisor graph of
aring can be a triangle (3-gon) or a square (4-gon). Now, the question if the
zero divisor graph of a ring can be n-gon where n > 5 is answered negatively

below.

Proposition 2.2.2: There is no ring A for which I'(4) is an n-gon for any

n > 5.[17]

Proof: Indeed by examples 2.1.7 and 1.17 the graph can be a triangle or a
square.

First take the case n = 5. Suppose that Z(A) = {0,a, b, c,d, e}. The edges
a—b,b—c,c—d,d—e, e—a,and no other zero divisor relation,
ab = 0 implies that (—a)b =0, and consequently, a = —a. Similar
arguments lead to e = —e, .... Thus, —x = x for all xin Z(A). Now (b +
e)a = ba+ea =0, hence (b + e) belongs to {0,a,b,e}. If b+ e =b or
e,then b = 0 or e = 0, that is a contradiction. If b + e = 0,then b = —e =
e, contradiction. Lastly, if b + e = a, thenin view of (b + e)a = 0, we have
a®* = 0. Similarly, x> =10 for all x in Z(4). Thus, Z(4) = nil(4) =
{0,a,b,c,d,e}. Now, A being finite implies that Z(A) is the unique prime
ideal of A, hence Z(A) = ann(x) for some x in Z(A). Thus, nil(4) =

ann(x) for some non zero x in Z(A). But |ann(x)| = 4, at case x = a, the
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ann(a) = b,e,a,0. Similar for every non zero x in Z(A), which is a
contradiction with the fact that nil(4) = ann(x) and cardinality of

|nil(A)| = 6. The case for n > 5 is similar.

2.3 I'(A) has a spanning tree which is a star graph:

This section provides the ring theoretic conditions that must be satisfied by
a ring A to have a zero divisor graph I'(A) which has a vertex adjacent to

every other vertex. We start by the following preliminary lemma:

Lemma 2.3.1: Let A be a ring in which there is a element x with x? = x.

Then A = Ax®A(1 — x).

Proof: It is clear that A = Ax@A(1 —x) as if r € 4, then r =rx +
r(1 — x). Remains to show that Ax N A(1 — x) = {0}. Forthatlety = ax =
b(1—-x) € AxNnA(1 —x). Then xy = xax = xb(1 —x). Hence xy =
ax? = b(x — x?%). But x = x2, implies that ax? = ax and b(x — x2) = 0,
Which leads to xy =y = 0}

The following theorem provides necessary and sufficient conditions for a
ring A to have a zero divisor graph in which there is a vertex adjacent to all

other vertex.

Theorem 2.3.2) Let A be a commutative ring. Then there is a vertex of A
which is adjacent to every other vertex if and only if either A = Z, X F

where F is an integral domain, or Z(A) is prime ideal.[3]
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Proof: Suppose that Z(A) is not an annihilator ideal. Let 0 # a € Z(A) be
an element which is adjacent to every other element. Notice that a? # 0, (if
a € ann(a), then Z(A) =1 would be an annihilator ideal. Thus I is
maximal among annihilator ideal and hence is prime). If a* # a, then a?® is
a zero divisor in ann(a), thus a® = a®.a = 0 since ann(a) is prime. This
implies that a € ann(a), which is a contradiction.

Thus a* = a, and consequently, A = Aa®A(1 — a) (by lemma 2.3.1). So,
we may assume that A = A; X A,, and (1,0) is adjacent to all nonzero—zero
divisor. Forany 1 # ¢ € A4, (c,0) is a zero divisor, since (c,0)(0,b) =0
forall b € A,.Butthisimpliesthat (c,0) = (c¢,0)(1,0) = 0, contradiction.
Unless ¢ = 0, hence A; = Z,.

If A, is not an integral domain, then there is a non zero b € Z(A,). Then
(1,b) must be a zero divisor. But (1,b) can not adjacent to (1,0), a
contradiction. Thus A, must be an integral domain. (Note that if Z(A) is an
annihilator ideal, then it is certainly maximal among annihilator ideals and
hence is prime).

If A = 7Z, X F for F an integral domain. Then the element (1,0) is adjacent
to every other vertex, since each has the form (0, a) where a is non-zero. If
Z(A) = ann(x) for some non zero x € A, then x is adjacent to every other
Vertex.l

In proving the previous theorem, if a vertex x of I'(A) is adjacent to every

other vertex then either x is idempotent or Z(4) = ann(x).
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Definition 2.3.3: Let A be a commutative ring. A is Noetherian if it satisfies
the following three equivalent conditions:[2]
1) Every ideal in A is finitely generated.
2) Every non empty set of ideals in A has maximal element.

3) Every ascending chain of ideals in A is stationary.

Example 2.3.4: The real numbers, and the complex numbers, are a
Noetherian ring.
The following is a corollary of Theorem 2.3.2 which concerns with the

Noetherian case.

Corollary 2.3.5) Let A be a commutative Noetherian ring. Then I'(A) has a
vertex a adjacent to all other vertex if and only if either A = Z, X F, where

F is an (Noetherian) integral domain or Z(A) is an (prime) ideal of A.

Proof: This is a direct consequence of the fact that in the Noetherian context,

Z(A) is an annihilator ideal if and only if it is an prime ideal.[10]

2.4 Complete zero divisor graph:

This section is about the complete zero divisor graphs. We will see different
ring theoretic properties of the rings that have complete zero divisor graph.

For x,y in Z(A), define x~y if xy = 0 or x = y. The relation ~ is always
reflexive and symmetric, but not transitive in general. This relation can be
used to characterize the complete zero divisor graphs through the following

proposition.[3]
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Proposition 2.4.1: The ~ is transitive if and only if I'(4) is complete.

Proof: Suppose that ~ is transitive and x~y ,y~z. Then x~z. Note that xy =
yz = xz = 0. It is clear that any two vertices are adjacent. Thus, the graph
IS complete.

Conversely, assume that I'(4) is complete. If {x,y, z} any vertices in the
graph, then xy =yz =xz = 0. Which implies that x~y, y~z and
x~z .Thus the relation ~ is transitive.|]

The following is an illustrative example to Proposition 2.4.1

Example 2.4.2: 1t is very clear that the relation ~ in proposition 2.4.1 is not
transitive over Z(Zg). Indeed,2 X 4 = 0,4 X 6 =0,but2x 6 =4 # 0 and
2 # 6. Thus, by Proposition 2.4.1, I'(Zg) is not complete.

The following theorem provides another characterization of a complete zero

divisor graph.

Theorem 2.4.3) Let A be a commutative ring. Then I'(A) is complete if and
only if either A = Z, X Z, or xy =0 forall x,y € Z(A).[17]

proof: < By definition.

=Suppose that I'(A) is complete. Then xy = 0 for all x, y distinct elements
in Z(A). We have to show that either (Z(4))?2 =0 (xy =0 for all x,y €
Z(A))orA =7, X Z,. 1f (Z(A))? # 0, then since I'(A) is complete we must
have an element x € Z(A) such that x* # 0, we claim that x*> = x. On the
contrary assume that x* # x. Then again since I'(4) is complete, x° =

x*.x = 0. So that x3+ x* = 0, and hence x?(x +x2) = 0. But x2 # 0
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implies that x + x*> € Z(A). Now, if x4+ x*=x, then x* =0 which
contradicts the assumption. So x + x* # x and since I'(A) is complete, we
have 0 = x(x + x?) = x? + x3 = x2, a contradiction again. Thus x = x?
and this implies that A = Ax@A(1 — x). (by lemma 2.3.1)

So we have A = A; X A,. We finish the proof by showing A; = A, = Z,.
If A; # Z,, then there is a € A; with a # 1. Now both of (a, 0) and (1,0)
are in Z(A, X A,) and I'(A) being complete forces (a, 0)(1,0) = (0,0) and
hence a = 0. So A; can have only two elements 0 and 1 and thus 4, = Z,.

In a similar way we show that 4, = Zz.l

Remark 2.4.4: If we exclude the case A = Z, X Z,, then in view of theorem
2.4.3,T'(A) is complete if and only if all the vertices are adjacent, even if
they are not distinct, equivalently I"'(A4) is complete if and only if xy = 0 for
all (not necessarly distinct) x,y € Z(A) ; Or I'(A) is complete if and only if
(Z(A)?=0.

The following corollary is an easy consonance of proposition 2.4.1. It gives

an equivalent definition for the complete graphs in the language of relations.

Corollary 2.4.5) Let A be acommutative ring. Forx,y € Z(A) define x~*y
if xy = 0.The relation ~* is an equivalence relation if and only if I'(A) is

complete and A % Z, X Z,.

Proof: Suppose that the relation is equivalence, let x,y € Z(A). Then xy =
0. But the relation is equivalence implies that yx = 0. Now by definition of

relation x2 = 0. Hence I'(4) is complete.|
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Definition 2.4.6: A bipartite graph is a graph whose vertices V can be divided
into two independent sets (there is no vertices in the same set are adjacent)

X and Y and every edge connects one vertex in X to one vertex in Y.[23]

Definition 2.4.7: In bipartite graph if every vertex in X adjacent to every
vertex in Y, then the graph is called a Complete Bipartite graph.[23] If X
have nelements, Y have m elements then the complete bipartite graph
denoted by K™™ [3]

If the complete bipartite graph takes the form K1™, then it is called a star

graph.

Example 2.4.8: Inthering A = Z5 X Zs. It is clear that the graph is complete

bipartite graph. And the ring A = Z, X Z- is a star graph. Below the sketch.

AN AN

Vi Vil Zaxds
The following lemma proves that the graph of a product of two rings is a

complete bipartite graph if and only if each ring is an integral domain.

Lemma 2.4.9: Let A = A; X A,. Then A is a complete bipartite graph if and

only if A; and A, are integral domains.[6]

Proof: If A=A, X A,, where A; and A, are integral domains, then

Z(A; xA,)=CuUBwhere C = {(x,00\x € A;*}and B ={(0,y)\y €
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A,*}. Hence the vertex set of A; X A, is a union of two disjoint sets of
vertices. Moreover, (x,0)(0,y) = (0,0) forall x € A;*and y € A,* implies
that each vertex in C is adjacent to each vertex in B. Lastly, there is no other
adjacency in I'(A; X A,) since both of A; and A, are domains
((x,0)(y,0) = (0,0) ifand only if x = 0 or y = 0).

Now if A; is not an integral domain, then there exist x,y € Z*(A;) such
that xy = 0. Lastly, we have the 3-cycle (x,0) _(y,0)_(0,1) _(x,0),s0 A

IS not a complete bipartite graph.

2.5 Cycle and line graphs zero divisor:

This section describes the graphs which is cycles or line graphs. And displays
the relationship between the cycle graph and the girth values of the graph.

Recall that a subgraph of a graph is any subset of vertices together with any
subset of edges containing those vertices. An induced subgraph is a subgraph
maximal with respect to the number of edges. If an induced subgraph is itself
complete, it is called a clique. The number of vertices in a maximal clique of

a graph I' is denoted by cl(I").

Definition 2.5.1: A path of length n from a vertex a to a distinct vertex b
Is a sequence of n + 1 distinct vertices, a = vy, v4, ..., v, = b, such that v;
and v;,, are adjacentfor0 <i <n —1.

If in a graph I' there are vertices x and y such that d(x,y) = oo (no path

between x and y). We say that the graph is disconnected.
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Definition 2.5.2: If x = y in a path x = v, v4, ..., v, = y, then we call that

figure 1

the graph a cycle graph.

In figurel, the sequence a — b — ¢ — d is an example of a path of length 3,
the sequence b — c —d — b defines a cycle of length 3.

This sequence a — b — ¢ — d — a in figurel, is a cycle of length 4.

A cycle of length three is called a triangle, and a cycle of length four is a
square, and so on. The cycle b — c —d — b in the figurel is a triangle, and
acyclea—b —c—d —ainfigurel is asquare. Itis clear that the graph has
diameter one and girth three.

The line graph L(G) of a graph G is defined to be the graph whose vertex
set constitutes of the edges of G, Where two vertices are adjacent if the
corresponding edges have a common vertex in G (A graph with points

connected by lines).[15]

Remark 2.5.3: The line graph I;, can be realized as I'(4) ifand only if n <
3.[3]

Proof: Suppose that n = 4, and a — b — ¢ — d is the only edge such that
ab =0, bc =0, cd =0. Now, b(a+ c) = ba+ bc =0, hence (a+~c) is
adjacent to b or b or zero, so that (a + ¢) € {0,a,b, c}. If (a + ¢) = 0, then
a = —c. Clearly that da = —cd then da = 0, contradiction. If (a +c¢) =
a, then ¢ = 0.Which is a contradiction. Similarly, if (a +c) = c, thena =

0, contradiction. Now, a + ¢ = b. Itis clear that c(b + d) = cb + cd = 0,
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hence (b + d) is adjacent to c or c or zero, so (b +d) € {0,c,b,d}. if b +
d = 0,then b = —d, clearly that ab = —ad then ad = 0, a contradiction. If
(b + d) = b then d = 0, a contradiction. Similarly, if (b + d) = d. Now, if
(b+d)=c then a+c+d = c implies that a = —d, hence ca = —cd
implies that ca = 0. Contradiction with ¢ not adjacent to a. Similarly, inn >

5, therefore we must have n < 3 |}

Proposition 2.5.4: Every graph G containing a cycle satisfies g(G) <
2diam(G) + 1.[19]

Proof: Suppose that C is a shortest cycle in a graph G. Assume that g(G) >
2diam(G) + 2, then C has two vertices x and y such that d(x,y) in C at
least diam(G) + 1. Inagraph G, x and y have a less distance, so any shortest
path P between x and y is not a subgraph of a cycle C. Thus, the distance
fromxtoyinG, d(x,y) < diam(G). And the distance from x to y in C at
least diam(G) + 1. Together (d(x,y) in G and in C) they form a cycle
shortest than C. Which is a contradiction |

By examples we note that I'(A) is always connected with diam(I'(4)) < 3,
(diam (I')= sup{d(x, y): x and y are distinct vertices of T). The following

theorem prove it.

Theorem 2.5.5) Let A be a commutative ring, then I'(A4) is connected and
diam(I'(A)) < 3. Furthermore, if I'(A) contains a cycle, then g(I'(4)) <
7.[3Thm 2.3]
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Proof: Let u,v € Z*(A) be distinct. If uv =0, then d(u,v) = 1.
Hence diam(I'(A)) < 3. Now suppose that uv # 0. Ifu® = v*> = 0, then
u —uv — v isapath of length 2. Thus d(u, v) = 2 and diam((I'(4)) < 3.
If u>=0and >v =0 , then b € Z*(A) — {u, v} such that bv = 0. If
bu = 0,thenu — b — v is apath of length 2. And if bu # 0 thenu — bu —
v is a path of length 2, in either case d(u, v) = 2 and diam((I'(4)) < 3.
Similarly if u® # 0, v* = 0. Lastly, ifu® # 0,v*> # 0,uv # 0:thend a,b €
Z*(A) —{u,v}suchthatau = bv = 0. Ifa = b thenu — a — v is a path of
length 2. Andifa # b,thenab = 0orab # 0.Ifab = 0,thenu —a — b —
v is a path of length 3. And if ab # 0 then u — ab — v is a path of length 2.
Then d(u,v) < 3 in all cases. Hence diam((I'(A)) < 3. Furthermore, if a
graph contains a cycle, then by proposition 2.5.4, g(G) < 2diam(G) + 1.
Which implies that g(G) < 2(3) + 1. Hence g(G) < 7}

As a consequence of theorem 2.5.5 For a,b € Z*(A), either ab = 0, or
ac =cb =0 for some c € Z*(A) —{a, b}, or ac; = c,c, = c,b =0 for

some distinct ¢;,c, € Z*(R) — {a, b}.

Example 2.5.6: InA = Z,c all paths show that diam(I'(4)) = 1. And
in A = Zg the path 2 — 3 — 4 shows that diam(I'(A)) = 2. And in A =
Z, X T, the path (0,3) — (1,0) — (0,2) — (1,2) shows that diam(I"'(A)) =
3.

Now we call that a ring A is Artinian if A satisfies the descending chain

condition of ideals, that is no infinite descending sequence of ideals.
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The following theorem explain that If I'(A) contains a cycle when A be a
commutative Artinian ring, then the girth of I'(A) can not be grater than or

equal 5.

Theorem 2.5.7) Let A be a commutative Artinian ring. If I'(A) contains a

cycle, then gr(I'(4)) < 4.[3]

Proof: Suppose that I"'(A) contains a cycle, A is a commutative Artinian ring.
Then A is a finite direct product of Artinian local rings [14, thm 8.7]. Now

we have three cases:

Case 1: Suppose that A is local with unique maximal ideal M + 0. Then M =
ann(x), for some x # 0 in M [10 thm82]. If there are y,z € M*—{x} with
yz = 0,then y — x — z — y is a triangle (cycle) in this case gr(I'(4)) = 3.

Other wise, I'(A) contains no cycle, contradiction.

Case 2: Suppose that A = A; X A,. If |A;| =3 and |4,| = 3 , we may
choose a; € A; —{0,1} then (1,0) — (0,1) — (a4,0) — (0,a,) — (1,0) is a

square (cycle), in this case gr((I'(4)) < 4.

Case 3: Suppose that A = Z, X A,. If |Z(A,)| < 2, then I'(A) contains no

cycle, contradiction. Hence, we must have |Z(4,)] = 3.

Since I'(A) is connected, there are two distinct vertices x,y € Z(4,) — {0}
such that xy = 0. Thus (0,x) — (1,0) — (0,y) — (0, x) is a triangle (cycle),
in this case gr(I"(4)) = 3. Thus, in all cases gr(I'(4)) < 4
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Corollary 2.5.8: Let A be a finite commutative ring. Then A has gr(I'(A)) =
4 if and only if: A = F X K, where F, K finite fields and |F|, |K| = 3. For
example: Z; X Zs. Or A = F X D , where F is finite field with |F| = 3 and

D is finite ring with |Z(D)| = 2. For example: Z3 X Z,.

Corollary 2.5.9: Let A be a finite commutative ring. Then A has gr(I'(4)) =
oo, ifandonlyif: [I'(A)| < 2,|I'(A)| = 3and I'(4) is not complete. Or 4 =
Z, X F,where F is a finite field or finite ring with |Z(F)| = 2. For example:

7, X T,
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Chapter Three
The Central Sets and The Radius of The Zero Divisor Graph

of Commutative Ring

Preview

This chapter display some properties of the zero divisor graph for a
commutative ring. We define the ring of Gaussian integers modulo n, Z,,[{].
The center, the median, and the radius are determined. And we compute the
domination and k —domination number and the 2 — packing number of
I'(A), where A is an Artinian ring. Perfect zero divisor graphs I'(A) are

investigated.

3.1 The ring of Gaussian integers modulo n We start this section by the

definition of the Gaussian integers.

Definition 3.1.1: The set of Gaussian integers denoted by, Z[i], is defined
by Z[i] = {a + bi:a,b € Zandi = \/—1}.

Remark 3.1.2: The set Z[i] is a subring of the ring of complex numbers under

the usual addition and multiplication of complex numbers.

Definition 3.1.3: A prime element P of a commutative ring A is an element
which neither zero nor unit (has a multiplicative invers) and if Pdivides xy,
where x,y € A then P divides x or P divides y. The prime elements of a

Gaussian ring are called the Gaussian prime.
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If x is a prime integer, then x = 2 or x = 1 mod 4 or x = 3 mod 4. In this
thesis, p denotes a prime integer which is p = 1 mod 4 and g denotes a
prime integer which is g = 3 mod 4. [6]

The following fact describes the Gaussian prime integer.

Fact 3.1.4. A Gaussian prime integer is a unit multiple of one of the
following:[12]

)@+ dor(1—-1).

(2) A prime integer q in Z which g = 3 (mod 4).

(3)a + ibanda - ib, where p = a®* + b? and p is a prime integer in Z
which p = 1 (mod 4).[6]

Now, p and p; denote prime integers which are congruent to 1 modulo 4,

while g and g; denote prime integers which are congruent to 3 modulo 4.

Definition 3.1.5: Let n be a natural number greater than 1 and let < n > be
the principal ideal generated by n in Z[i], and let Z,, = {0,1,2, ...,n — 1} be
the ring of integers modulo n. Then the factor ring Z[i]/< n > is
isomorphic to Z,[i] = {a+ ib: a,b € Z,}. Clearly, Z,[i] is a ring
under addition and multiplication modulo n. This ring is called the ring of
Gaussian integers modulo n.

Recall the Chinese remainder theorem by definition:

Definition 3.1.6: Let x4 ... ... x, be ideals of a commutative ring A, with x; +

x; = A, forevery i # j. Then forevery a; ... ... a, € Athereexista € A such

thata = a;mod x; for1 <i < n.
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Theorem 3.1.7: If n = psuch that (p = 1 mod 4) or n = q,q, such that
(q; = 3 mod 4), then I'(Zy[i]) is complete bipartite graph .[6, Lemmal6]

Proof: Suppose that n = p. Nowp = 1 (mod 4), implies that p = a* +
b, then Z,[i] = Z[i]/< p >= Z[i]/< a® + b*> > = Z[i]/< a + bi ><
a—bi> = Z[i]/<a+bi>X Z[i]/<a—bi> , henceZ,[i] is a
product of two integral domain. By lemma 2.4.9 I'(Z,[{]) is a complete
bipartite graph.

If g, and g, are two primes such that q; = 3 (mod 4), for each j, then
Lq,q,[1] = Zg, [i] X Zg,[i] (by definition 3.1.6), is a direct product of two
fields. Which implies that I'(Z, 4,[i]) is a complete bipartite graph. So If
n = porn = g4y, then I'(Z,[i]) is complete bipartite graph.l

In any complete bipartite graph it is clear that any vertex v, ecc(v) = 2.
Hence by theorem 3.1.7 if n = p or n = q,q,, then for every vertex in

I'(Z,[i]), ecc(v) = 2.Hence, the center of I'(Z,[i]) is V(I'(Z,[i])-

3.2 THE CENTER MEDIAN AND THE RADIUS OF I'(A)

This section describes some of the characteristics of each center, median and
radius, and shows the relationship between center, median and radius. As
well as the relationship between the diameter and the radius.

We start by recalling some basic definitions. For a connected graph G, let v
be any vertex in a graph G. Then the degree of v, deg(v) is the number of
vertices adjacent to v. The minimum degree of G denoted by §(G) is defined
by min{deg(x) : x € V (G)}. A graph in which all vertices have the same

degree is called a regular graph. The distance d(u, v) between two vertices
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u and v is the minimum of the lengths of all u — v paths of G. The
eccentricity of a vertex v in G is the maximum distance from v to any vertex
in G. The radius of G, rad(G), is the minimum eccentricity among the
vertices of G.The set of vertices with minimal eccentricity is called the center

of the graph, and this minimum eccentricity value is the radius of G.

Definition 3.2.1: The minimum eccentricity from all the vertices is called

the radius of the Graph G.

Definition 3.2.2: If the eccentricity of a vertex of a graph is equal to its

radius (e(V) = r(V)), then this vertex is a central point of the graph.

Definition 3.2.3: The center of the graph is defined to be the set of all central

points.
Example 3.2.4: Consider the graph:
. <
d L=
C -
& O

f

In this graph, the distance between vertex e to vertex d is 1(d(e,d) = 1) as
we have one edge between them. There are many paths from d to e

e da,ab,be

- df,fg.ge

« de (this is the shortest path so that is considered for distance between the
vertices)

e df,fc,ca,ab,be
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e da,ac,cf,fg,ge
In the above graph, the eccentricity of a is 3. Since the distance from a to b
is 1 (ab),
Fromatocis1 (ac),
Fromatodis1 (ad),
From a to e is 2(ab — be) or (ad — de),
Fromato f is 2 (ac — cf) or (ad — df),
Fromatogis3 (ac —cf — fg)or(ad —df — fg).
So the eccentricity is 3, which is a maximum distance from vertex a to any

vertex (the distance between ag which is maximum).

Similarly,
e(d) = 2
e(g) =3
e(b) = 3
e(e) =3
e(c) = 3
e(f) = 3

In the above graph the radius r(G) = 2, which is the minimum eccentricity
for d. And the diameter of a Graph d(G) = 3, which is the maximum
eccentricity.

In the example, d is the central point of the graph. Since e(d) = r(G) =

2. We say that {d} is the centre of the Graph.
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Lastly, the Girth of the graph is 4 (number of edges in the shortest cycle of
G), thisis the shortestcycleinG:a—c—f—d—-—aord—f—-—g—e—d
ora—b—e—d—al
If Z(A) is an ideal, then the graph has a vertex which is adjacent to every
other vertex (by theorem 2.3.2). In this case the radius equal zero if the graph
has exactly one vertex (in this case the graph has no edge), for example Z,,
and the radius equal one if |Z * (A)| = 2. Hence if Z(A) is an ideal then the
radius at most one.
The following theorem describes the radius of a Noetherian commutative

ring.

Theorem 3.2.5: Let A be a commutative Noetherian ring with identity that is

not integral domain. Then the radius of I"'(A) is at most 2. [22]

Proof: Assume that A is not an integral domain and Z(A) is not an ideal
(otherwise, the graph has a vertex which is adjacent to every other vertex and

hence the radius at most1). Now we have two cases:

Casel: Suppose A is reduced (it has no non-zero nilpotent elements). Now,
Z(A) = U}, p;, where each P; is a minimal prime of A. Since Z(A) is not
an ideal, n > 2 (otherwise, Z(A) = P; which is an ideal). Forj = 1,...,n,
choose 0 # y; en{P; /i = 1,..,j- 1,j + 1,..,n}, thisy; exist since P;
Is @ minimal prime ideal of A. Let x € Z(A). Thenx € B, forsome 1 <
m < n. Clearly, xy,= 0 since xy, €nP; = nil(R) = {0}
[14propl.8]. So that if j # m, then y,,,y; = 0. Thus, d(y;,x) = 1(if j =

m) or d(y;,x) = 2, (ifj # m). Hence, the radius of I"(A) is at most 2.
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Case2: Suppose A is not reduced ( nil(4) # 0). Z(A) = Ui, p;, where
each P; is a minimal prime of A. Foreachi =1,...,N, thereis0 # a; € A
such that P; = ann(a;) [10thm 86]. Choose 0 # v € nil(A) SN P, =N

ann(a;) where i =1,...,N. Hence, va; = 0 for eachi = 1,..,N. Let

x € Z(A). Then x € P; for some j. Thus, either we have this path x - v
and in this case xv = 0. Or we have this path x — a; - v and in this case
xv *+ 0.

Hence, the eccentricity of v is at most 2. Lastly x being arbitrary implies that

the radius of I'(4) at most 2 ]

Corollary 3.2.6: Let A be a commutative Noetherian ring with identity.
1) The radius of I'(A) is zero if and only if the graph has exactly one vertex.
2) The radius of I'(A) is one if and only if either A = Z, X B, where B is an

integral domain, or Z(A) is an ideal of A. [22]

Proof:

1) The radius is zero specially when the graph has exactly one vertex. Since
the graph has no edges hence the diameter of the graph is zero.

2) Clearly that any graph G with radius 1 necessarily has at least one vertex
adjacent to all other vertices of G. (by theorem 2.3.2) This case comes true if
and only if either A = Z, X B, where B is an integral domain, or Z(A) is an

ideal of A.
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Example 3.2.7: rad(Z,) = 0 and rad(Z, X Z,) = 1.
The following theorem describes the center of any ring of the form A =
A; XX A, X F; XX E,.Where A; is a commutative Artinian local

ring with identity that is not a field and each F; is a field.

Theorem 3.2.8: Let n and m be positive integers. Let A = A; X---
X A, X F; XX E,,whereeach A; isacommutative Artinian local ring
with identity that is not a field and each F; is a field. Foreachj = 1, ... ,m.
define the ideal [; = {0} X--x {0} X F; X {0} X--x {0}. Then the
center of I'(4) is J(R) U (U7 ;) - {(0,0, ..., 0)}. [22Thm 3.6]

Proof. Leta = (a4, ...,an, by, ..., b)) € V(I'(A)). By Corollary 3.2.6, it is
enough to show d(w,a) < 2 for every element w in the above union. For
eachi = 1,...,n, let M; be the maximal ideal of A;. Then J(A) = (M; X -
=X M, x{0} x---x {0}). Let x =(xq,..,%,,0,..,0) € J(A)™*.
Without losing generality, say x # a. If each x;a; = 0in 4;, then d(x,a) =
1. Suppose forsome 1 < j < n, a; € M; butx;a; # 0. Since 4; is local,
I'(A;) has radius 1 (4; has a vertex which is adjacent to all other vertex).
Thus, there is some nonzero y; € A; with eccentricity 1. Define y =
(0,..,0,y;,0,..,0) € A. (Clearly, x#y and a # y). Then y €
V (I'(A)), and e(y;) = 1, hence y; adjacent to every other vertex. So ya =
yx = 0then we have this path x — y - ainT" (A). If each a; isa unitin 4;,
and b, = Oforsomel < k < m.Definez = (0,...,0,1,0,...,0), where

the nonzero input is the identity of F;. Clearly z # x, z # a, then we have

thispathx — z — ain Tl (A). Hence,d(x,a) < 2.
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Letv € [; forsomej = 1,..,m,sayv # a. lf b = 0, thenva = 0and
d(v,a) = 1.Ifsome other b, = 0, definey =(0,...,0,1,0,...,0), where
the nonzero input is the identity of F,,. Theny # v,y # aandv — y —
a is a path in I (A). If every by, is nonzero, some entry a, must be a zero-
divisor of A;, forsome 1 < h < m. Choose a nonzero ¢, € A, such that
apc, = 0. Define c =(0,...,0,¢p, ...,0,...,0). Then ¢ # v, ¢ # a, and
v — ¢ — aisapathin " (A). Hence, inall cases, d(v,a) < 2.

Now, suppose z = (d4,...,dy, f1, -, fm) Ot an element of the union
above. In all possible cases, we have a vertex w € V(I'(A)) such that
d(z,w) > 2. Note that this means wz # 0Oand ann(w) N ann(z) =
{0}, otherwise, d(z, w) is one or two. Now we have three cases:

Case 1. There are index 1 < i<j < m such that f; # 0 and f; # 0.
Definew =(1,...,1,0,1,...,1), where zero is in index place n + i. Then
wz # 0andann(w) = I;. Thus,ann(z) N ann(w) = {0}.

Case 2. For some index 1 < i < n, d; is a unit of A;. Choose r to be a
nonzero zero-divisor of A;. Definew =(1,..,1,r,1,...,1). Thenwz # 0
and ann(w) € {0} x...{0} x A; X {0} X ..x {0}. Thus, ann(w) N
ann(z) = {0}

Case 3. Each d; € M; fori = 1,...,n, with some d; # 0, and f; # 0 for
some index 1 < j < m. Definew =(1,...,1,0,1,...,1), where 0 is in
index place n + j. Then wz # 0 and ann(w) = I;. Thus, ann(w) N
ann(z) = {0}. Since d(z,w) > 2 in any case, z cannot be in the center

of ' (4) ]
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Definition 3.2.9: The status of a vertex a, denoted s(a), is the sum of the

distances from a to the other vertices of G. s(a) = Y.{d(a,b): b € V(G)}.

Definition 3.2.10: The median of a graph G is the set of vertices with
minimal status. If the graph G has no edges, then the median of G is V(G).
By the definition of the zero-divisor graph, deg(a) = |ann(a)| — 2 if

a?=0, otherwise deg(a) = |ann(a)| — 1.

Example 3.2.11: Consider the ring A = Z, X Z, X Z,. The zero divisor of
this ring is {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1)} and it is graph
iIs shown below. It is very clear that the median of I'(A) is the set

{(1,0,0), (0,1,0), (0,0,1)}.

(0.1.0) (1;0:1)

(1.1.0)
(0.0.1»

(1.0.0) (0.1.1)

The following theorem explains the relationship between the center, median

and the radius of the zero divisor graph of a finite commutative ring.

Theorem 3.2.12: Let A be a finite commutative ring which is not an integral
domain. Then:[22]

1) If the radius of the I'(4) is at most 1, then the median and center of I'(A)
are equal.

2) If the radius is two, then the median is a subset of the center.

Proof: If the radius is zero, then the graph has exactly one vertex. Hence the

result is clear (the median and the center is V(I"(4)).
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1) In any connected graph of radius1, we have a vertex x or some of vertices
which is adjacent to every other vertex, those vertices are in the center. So,
the distance between x (in the center) to any vertices is 1, hence the (s(x) =
|Z = (A)| — 1). Which implies that any vertex in the center has a minimal
status and contains in the median. So the center and the median are equal.
2) Suppose that the radius of I'(A4) is equal 2. Then (By corollary3.2.6) A is
not isomorphic to Z, x F for any finite field F and A is not ideal. Suppose
that A = A; XX A, X F; XX F, be the Artinian decomposition of
A. Let z be a vertex of I'(A) that is not in the center z =
(aq,..,a,,bq,...,by). Suppose that x is in the center. We will prove that
s(x) < s(z). Note that if x is in the center of I'(A4), then the ecc(x) is 2
because the radius is 2. Hence,
s(x) = deg(x) + 2(1Z x (A)| — 1- deg(x)) = 2|Z » (A)| —
deg(x) — 2. ()
Clearly that the equation (*) means that every vertex of the median must have
the same degree. Since z is not in the center, there is some vertex u such that
d(z,u) = 3. Hence,
s(z) > deg(z) + 2(|Z+(A)| — 1-deg(z) = 2|Z*A| - deg(z) —
2 (**) we have three cases:
If the d(x,z) = 1, then there is a vertex y such that d(z,y) > 2, since y not
in the center. Suppose that d(x, z) = 2.
Case 1: b; # 0 and b # 0 for some 1 <i < j < m, Let x =
(0, ...,0,1, ...0) where 1 is the identity of F;. Then x is in the center of I'(4)

and ann(z) c ann(x). Since neither x nor z is nilpotent, this means
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deg(z) = |ann(z)] — 1 < |ann(x)| — 1 = deg(x), By (*) and (**),
s(z) > s(x).

Case2:b; # Oforsomel < j < m.Suppose that M; is the maximal ideal
of A;, each a; € M; with some a;, # 0 forsome 1 < k < n. Letx =
O, ...,0,a,0,...,0). Then x is in the center of I'(A) and ann(z) C
ann(x). Therefore deg(z) = |ann(z)| — 1 < |ann(x)| — 1 =
deg(x). Hence, By (*) and (%), s(z) > s(x).

Case 3: g; isaunitin 4; forsome 1 < i < n. Let ¢ be a nonzero element
of the maximal ideal of 4;,and letx = (0,...,0,¢,0,..,0). Then x is in the
center of I'(A) and ann(z) < ann(x). Therefore, deg(z) = |ann(z)| —
1 < |ann(x)| — 1. Hence deg(z) < deg(x). By (*) and (x%), s(z) >
s(x).

Hence, in each possible cases there is a vertex x of the center with s(x) <
s(z). Hence, z cannot be in the median. Therefore, the median is subset of
the center.l

The following theory explains the relationship between the diameter and the
radius of I'(A).

Theorem 3.2.13: Let A be a commutative Artinian ring with identity that is
not a domain.[22]

(1) The radius of I'(A) is zero if and only if the diameter of I"'(A) is zero if
and only if the graph has exactly one vertex.

(2) If the radius of I'(4) is 1, then the diameter of I'(A) is 1 if and only if

I'(A) is complete. Otherwise, the diameter is 2.
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(3) If the radius of I'(A) is 2, then the diameter of I'(A4) is 2 if and only if
A = F;, X F,,where F; and F, are both fields and both not isomorphic to Z..
Otherwise, the diameter of I'(A4) is 3.

Proof:

(1) This case is clear (in this case the graph has no edges and has only one
vertex).

(2) If the radius of I'(A4) is 1, then the diameter is at most 2 (since the graph
has a vertex which is adjacent to all other vertex), and if the diameter equal
3 that is a contradiction, (since for any y in the center of I'(4) and for any
vertices a and b, there is a path (a — y — b)). The diameter is 1 if and only
if all the vertices of I'(4) are adjacent (the graph is complete). Suppose the
radius of I'(A) is 2. Then the diameter is 2 or 3. If A = F; X F, where F;
and F, are fields and not isomorphic to Z,, then (by lemma 2.4.9) I'(4) is a
complete bipartite graph that is not a star graph. It is customary to verify that
such a graph has a diameter of 2.

Next, assume A % F; x F, where F; and F, are both fields and both not
isomorphic to Z,. Consider the Artinian decomposition A = A; X ... X A, X
F, X ...X E,. In all possible cases, there is an element not in the center
of I'(A). (Note that if n = 0 and m = 2and F;, = Z, or F, = Z,, then

I'(A) is a star graph and has radius 1.)

Case 1. n > 1land m > 1. Letx #0€ M;. Let Y = (x,0,...,0,1,0, ...0),
where the entry in position n + 1 is the identity of F;. Then y is a zero-divisor

but is not in the center since there is a vertex E such that d(y, E) > 2.
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Case2.n = 0andm = 3. Then A=F, X ..xE,. Then (0,1,...,1) isa

zero-divisor but is not in the center.

Case3.n = 2andm = 0.Foreachi =1,...,n,choose x; # 0in M;. Let
z=(1,x4,...,%,). Then z is a zero-divisor but is not in the center.

Hence, in all these remaining cases, the center is not the entire vertex set of
I'(A). Therefore, the diameter is greater than the radius, which means that

the diameter of I"(4) is 3}

3.3 MULTIPLE DOMINATION AND 2-PACKING OF I'(A)

This sections about domination set and the k-dominating set, it describes k-
tuple and 2-packing set and cardinality of each one. And it shows the
relationship between the radius and the domination number and the
relationship between 2-packing number and domination number.

Recall that for a connected graph G, the dominating setof
agraph G = (V, E) is asubset D of I such that every vertex not in D is
adjacent to at least one vertex of D. The number of vertices in a smallest
dominating set for G called a domination number of G, y(G).

Figures (a)—(c), there is an examples of dominating sets for a graph G. In
every example, each white vertex is adjacent to at least one blue vertex, and
it is said that the white vertex is dominated by blue vertex. There is a
dominating set with 2 vertices in examples (b) and (c). And in example (a)
dominating with 3 vertices, and we note that there is no dominating set with

only 1 vertex for this graph.
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I g

(c)
Definition 3.3.1: A set B is a k-dominating set for a graph A, if each vertex
in V(A)\B is dominated by at least k vertices in B, the minimum cardinality

of k-dominating set is denoted by yk(A).

Definition 3.3.2: The set B is a k-tuple dominating set for a graph A if each
element in V(A4) is dominated by at least k vertices in B. The minimum

cardinality of a k-tuple dominating set is denoted by y X k(A).

Definition 3.3.3: A subset E of a vertex setV(A4) of a graph A isa 2 —
packing setif every x,y € E, N[x] n N[y] =@. The maximum

cardinality of 2-packing denoted by p(A4).

Theorem 3.3.4: Let A be a commutative Artinian ring with identity that is
not a domain. If the radius of A is at most one, then the domination number
of A is one. If the radius is two, then the domination number is equal to the

number of factors in the Artinian decomposition of A. [22]

Proof: It is clear that if the radius is zero, then the domination number is one

since the graph has exactly one vertex.
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If the radius of I"'(A) is 1, then there is a vertex which is adjacent to every
other vertex. These vertices is an element of the center and forms a
dominating set. Hence, the domination number is 1. Suppose the radius of
rA)is2.LetA = A; X A, x---x A, X F; X F, x---x F, be the
Artinian decomposition of A. For each i = 1,2,...,n. Define y; =
(0,..,0,x;,0,..,0) where x; in the center of I'(A;). For each j =
1,2,..,m. Definez; =(0,..,0,1,0,...,0), where the entry in coordinate
n + jisthe identity of F;. LetS = {y,, ..., ¥n, 21, ... Zp }. Note that all the
elements of S are adjacent. Suppose that w = (a4, ... ,ay, by, ..., byy) 1S @
vertex of I'(A). Then some coordinate of w is a zero-divisor of the respective
coordinate ring. If a; is a zero-divisor of A; forsome 1 < i < n such that
a;x; = 0, then w is adjacentto y;. If b; = 0 forsome1 < j < m, thenw
is adjacent to z;. Thus, any element of V(A) is adjacent to some element of
S. Hence, S is dominating set of I'(A). Again, suppose the radius of I'(4) is
2, and assume B is a dominating set for I'(A). Then |B| = 2 since the radius
is 2 then I'(A) has no vertex adjacent to all others. Hence, assumen + m >
3 (if n + m < 3 that is a contradiction since |B| = 2). For each k =
1,..,n + m, define ¢, = (1,1,..,1,0,1,...,1), where the 0 entry is in
coordinate k. Every t, is a vertex of I'(A), for each k, either t,, € B orthere
is an element of the form (O, ...,0,s,0,...,0) € B adjacent to t,, where
Sk E(RH*If1 < k <nands, € (F_)*iIfn+1<k<n+m

Thus, B must contain at least n + m elements
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The following theorem describe the k-domination number of I'(A) such that

A is a commutative Artinian ring.

Theorem 3.3.5. Let A be a commutative Artinian ring with unity that is not
a domain, A = A; X A, X---xX A, X F; X F, X---X F,. Suppose
that if n = 1, then k < |center(I'(4;)I,j = 1,...,n, and if m = 1,
then k < |F*[, j = 1,...,m. Then the k-domination number is equal to

k(m + n).[13 Thm3.1]

Proof: If Aislocaland k < | center(I'(A))|, then the radius of I"'(A) equal
1 since the graph has a vertex which is adjacent to every other vertices.
Hence each vertex in the center of I'(A) dominates all other vertices, then
we have yk(I'(4)) = k.

If Aisnotlocal, let A= A; X A, X---X A, X F; X F, X---X Fp.
Let ¥; = {y;}f=1. Where y;; = (0,0,...,0,%,0,...,0) such that x;, €
center(l'(A)) and j = 1,...,n. And Z; = {z4}foq, Where zg, =
(0,0,...,0,uy,0,...,0) such that ug; € EE* ands = 1,...,m. LetD =
Yi,.%,... Y, 2,25, ..., 2. Suppose that w =
(aq,ay, ...,ay, by, by, ..., by,) is @ vertex of I'(A). If a; is a zero-divisor for
some 1 < i < n such that a;x; = 0, then w is adjacent to Y;, if b; = 0 for
some 1 < j <m, then w adjacent to z;. Thus, any element of V(I"(4)) is
adjacent to k element of D. Hence, D is a k-dominating set of I'(4) So,
yk(I'(A)) < k(m + n).

Now, let =(,1...,1,0,1,...,1) where 0 is in the ith position. Then

N(ri)= {(0,0,...,O,xl-,0,...,0),Wherexi S Ai*, |f1§1 < nandxi €
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F;* otherwise}. Assume D is any k-dominating set of I'(A). Since D’
contain at least k vertices adjacent r; for each i. Note that N[r ;] n N[r;] =
@, for i #j. Thus, if D" is a k-dominating set, then |D’| = k(m + n),

hence equality holds.l

Corollary 3.3.6: Let A be a commutative Artinian ring with unity that is not
a domain, then the 2 —packing number p(I'(A)) = y(I'(4)).[13,
coro.3.3]

Proof: y(I'(A)) = m + n (by the above theorem 3.3.5 since K = 1).

If A is local then I'(A) has avertex which is adjacent to all other vertices.
Any set with two elements is not 2-paking set so the only 2-paking set are
the singleton. Let S = {x,y} where x and y any two vertices in A, then
N[x] n N[y] is not empty. So it is not a 2-paking set, so the maximal 2-
paking set have one element, which implies that p(I'(A)) = 1. Now,
suppose that A is not local.

LetA = Ay X A, X--- X A, X F;, X F, X---X F, wheren + m >
2 is the Artinian decomposition of A. Let r, = (1,1,...,1,0,1,...,1)
where 0 is in the ith position. N(r;) = {(0, ...,0,x;,0, ...,0) where x; € A;*
if 1<i<mn,and x; € ;* if 1<i<m. Since N[r;] N N[r;] =@ for
every j # i.Thus,thesetR = {r;: i = 1,2,...,n + m}isa 2-packing set

with p(T'(A)) = m + n vertices. Thus p(T'(A)) = y(F(A)).l
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3.4 PERFECT ZERO DIVISOR GRAPH

In this section, we discuss when the graph is perfect graph. And display
several situation of imperfect graph. We start by recalling the definition of
clique number and the chromatic number and then the definition of perfect
graph.

The definition of a perfect graph connecting chromatic number and clique
number. Recall that the chromatic number of a graph G is the minimum
number of colors required to color the vertices of G such that any two
adjacent vertices have not the same color. The cliqgue number of graph G is

the size of the largest complete subgraph of G.

Definition 3.4.1: A perfect graph is a graph G for which every induced
subgraph H has chromatic number equal to its cliqgue number. For every H <

G, w(H) = y(H). Otherwise, G is called an imperfect graph.

Example 3.4.2: Take the graph of a 5-cycle, The chromatic number of the
graph is 3, while the cliqgue number is 2. Hence, the graph of a 5-cycle is not

perfect (imperfect).
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Now, in the graph of a 4-cycle, the chromatic number and the clique number
of the graphs are 2. Thus, the chromatic number and the cliqgue number are

equal. Hence the graph of a 4-cycle is perfect.

Lemma 3.4.3: The graph ¢ = (V,E) is bipartite graph if and only if G has
no cycles of odd length.[11Thm 2.5]

Proof: Suppose G = (V, E) is bipartite and let v,, ..., vy_1, Vi, v be acycle
of odd length in G. Suppose v; € L. Then v, € R, since there is an edge
between {v,,v, }. Then v; € L, since {v;,v, } are adjacent vertices.
Continuing this way, we see that if i is odd, then v; € L, and if i is even
then v; € R, see the below sketch. Thus, since v, € L, then v, and v,,
are adjacent containing in L, which is a contradiction. Hence G has no cycle
of odd length.

Suppose G has no cycles of odd length. We may assume that G is connected.
Choose any vertex u, € V. Foreveryvertexv € V, let p, be any path from
U, to v, and let d,, be its length. And p,, be any path from u, to u, and let d,,
be its length, the Set L = {v € V |d,iseven}andletR = {v € V|d, is
odd}. Clearly V.= L U R is a partition of V. We now show that G is
bipartite.

If not, then there are two vertices u and v adjacent such that both u,v € L
or both u,v € R. In either case, there is a closed path (cycle) in G given by

Pus {u, v}, vy, (from u, to u, then u to v, then v to u,), whose total length is



53
d, + d, + 1 which is odd (because u and v in the same set), then G also

has a cycle of odd length. This is a contradiction.]]

The following result is from reference [13] where the authors didn’t proof it

here | am providing a proof of it.
Proposition 3.4.4: No cycle of odd length at least 5 is perfect.[13]

Proof: If the graph has odd cycle of length 3, then the graph is perfect since
the graph is complete, hence the chromatic number and clique number are
equal 3. Suppose that G has no cycle of odd length, (By theorem 3.4.3) G is
bipartite graph. In bipartite graph there is two disjoint vertex sets V; and V,
such that every edge connects a vertex in V; to a vertex in V,, then chromatic

number and clique number are equal 2. Hence G is perfect.l

Definition 3.4.5: A graph is called slightly triangulated if it contains no
induced odd cycle of length at least five and every induced subgraph H

contains a vertex whose neighborhood in H does not contain a P,.[13]

Definition 3.4.6: If the graph G contains no Cg, P, or a complement of Py

as an induced subgraph, then the graph G is called a murky graph.[13]
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This results are proved in [18,24]. | mentioned them here since they will be
used in proving more than one result. Namely, Theorem 3.4.8 and Theorem

3.4.10.

Theorem 3.4.7 :

(1) If G is slightly triangulated graph, then G is perfect.[24]

(2) If G is murky graph, then G is perfect.[18]

The following theorem describes that the product of three integral domain is

perfect.

Theorem 3.4.8:1f A = A; X A, X A3, where A,, A, and A5 are integral
domains, then I"(A) is a perfect graph.[13 Thm5.6]

Proof: Suppose that A = A; X A, X A;. Where A;,A, and A5 are integral
domains. Then it easy to check that I'(A) is a slightly triangulated graph.
Now, any P, path of I"'(A) is one of the following:

(x1,0,x3) — (0,¥2,0) — (21,0,0) — (0, w;, ws)

(x1,%2,0) — (0,0,y3) — (0,2,0) — (wy,0,ws)

Or (x1,x2,0) — (0,0,y3) — (21,0,0) — (0, w, w3)

Where x;,v;,z; ,w; € A;*. Hence I'(A) has no induced odd cycle C,,, of
length at least 5 and there is no vertex v € I'(A) such that N(v) contains
a P,. Which implies that I"(A) is a slightly triangulated graph and thus I"(4)
1S perfect.l

The following is a direct consequence of Theorem 3.4.8 and the Chinese

remainder theorem in definition 3.1.6.
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Corollary 3.4.9: If n = a,a,as, where a,, a,, a; are primes, Then I'(Z,,)

IS perfect.

Proof: If n = ajaa;, then Z, = Z g,4, = Zq, X Zg, X L, (By Chinese
Remainder Theorem), it is clear that every Z,, is an integral domain since
a; is a prime, hence ( by theorem 3.4.8) I'(Z,,) is perfect.l

Note that, if A = A; X A, X A3 X A, where A; is an integral domains for
everyi, then I'(A) is not a slightly triangulated graph since
N((1,0,0,0)) contains (0,1,0,0) — (0,0,1,0) — (0,0,0,1) —
(0,1,1,0) P, as an induced subgraph. Then the next theorem insures that

I'(A) is perfect.

Theorem 3.4.10: If A = A; X A, X A; X A, where A; is an integral domain

fori=1, 2, 3and 4, then I'(A) is perfect.[13. Thm5.8]

Proof: Let x = (x;), v = (1), 2z = (z;)), w = (W), u = (y;), v =
(v;) € Z*(A).Suppose that x — y — z — w — u is an induced Ps
subgraph of I'(4). Then x has at least two non-zero components (if x has
one non-zero component x = (x4, 0,0,0) that implies wu # 0 since xw # 0
and xu # 0 hence w; # 0 and u; # 0then wu # 0, a contradiction). So, we

have two cases:

Case 1: x has exactly two non-zero components, x = (x4,x,,0,0). Theny =
(0,0,y5,0),y = (0,0,0,y,) or y =(0,0,y3,v,). Clearly, yw # 0 and
yu # 0. Ify =(0,0,y3,0) then w; #+ 0 and u; # 0, then uw # 0, which

Is a contradiction. Similarly if y = (0,0,0,y,). While if y = (0,0, y3,v,4),
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then z = (2,,0,0,0) or z = (0,2,,0,0) or z = (24,2,,0,0). If z =
(z4,0,0,0) then w; =0, since zw = 0. If z = (0,z,,0,0) then w, = 0,
since zw = 0. If z = (z4,2,,0,0) then w; = w, = 0. Which implies that
w = (0,0,ws,w,). Now, itis clear that wu = 0 then u; = u, = 0, implies

that u = (u4,u,, 0,0). Hence uy = 0, which is a contradiction..

Case 2: x has exactly three non-zero components, x = (x4, x5, x3,0). Then
y = (0,0,0,y,). Clearly, yw # 0 and yu # 0, we have w = (0,0,0,w,)
and u = (0,0,0,u,) hence wu # 0,which is a contradiction. Now, it is easy
to see that I'(A) has no Cs or P4 as an induced subgraph. Moreover the
complement of I'(A) has no induced P, path. Letx — y —z — w — u —

v be an induced path of the complement of I'(A). Then we have three cases:

Casel: x has exactly one non-zero component x;. Then y; # 0 (in a
complement graph x and y adjacent if xy # 0). We have one of the
following:

1) If y has only one non zero components y = (y,,0,0,0), itis clear that
yz # 0,then z; # 0. But xz = 0, which is acontradiction.

2) If y has only two non zero components y = (y;,¥,,0,0), then z =
(0,25,23,z4)0rz = (0,25,23,0)0rz = (0,2,,0,2,),(z; = 0sincex; #
0). Now, if z = (0, z,,z5,2,), it clear that yu = uz = 0(not adjacent
vertices) , then u = (0,0,0,0), contradiction. And if z = (0,z,,23,0), by
above path yu = 0 and zu = 0 implies that u; = u, = u3 =0, thenu =
(0,0,0,uy)andwy =0, zw # 0, uw # 0 impliesthatw = (0,0, w;, w,)

and vw =0, vy = 0 thenv = (0,0,0,0), which is a contradiction. If z =
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(0,2,,0,z4), wy =0 then w = (0,0,ws,w,) and wv = yv = 0 implies
that v = (0,0,0,0), which is a contradiction.

3) If y has three non-zero components, say y = (y;1,¥2,V3,0), then yw =
0 then w = (0,0,0,w,) and zw # 0 then z = (0,0,0,z,). Butuz = uy =

0 implies thatu = (0,0,0,0), a contradiction.

Case 2: x has exactly two non-zero components = (x4, x,,0,0) . Thenxu =
0 hence u; = u, =0, and zx = 0 then z = (0,0, z3, z,), and zu = 0 then

us = u, = 0. Henceu = (0,0,0,0), a contradiction.

Case 3: x has exactly three non zero components x = (x4, x5, x3,0). Then
xz = 0thenz, =z, = z3 = 0impliesthat z = (0,0,0,z,). Andxw =0
then w = (0,0,0,w,) but uw = 0, then u = (0,0,0,u,). Which implies
that uz # 0, a contradiction. So, I'(A) is a murky graph and hence it is

perfect.l

Corollary 3.4.11: If n = t t,tst,, Wheret,,t,, ts, t, are primes, then

I'(Zy,) is perfect.

Proof: The proof is a direct consequence of the Chinese remainder theorem

and the previous theorem (3.4.10).'

The following theorem shows that if A = A; X A, X A3, where A; and A,

are non-integral domains, then the graph is imperfect graph.

Theorem 3.4.12: IfA = A; X A, X A5, where A; and A, are non-integral

domains, then I'(A) is imperfect.[13]
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Proof: Letx,y € Z*(A,)suchthatxy =0inA;.And a,b € Z*(A,) such
that ab = 0 in A,. Then we have an induced Cs subgraph of I'(4)
(1,0,0) — (0,a,1) — (x,b,0) — (y,0,1) — (0,1,0) — (1,0,0). Which
implies that I"(A) is imperfect, (I"(A) has a cycle of length 5 ).|

The following theorem shows that the product of two imperfect graph is

imperfect.

Theorem 3.4.13: If A = A; X A, and I'(4;) is an imperfect graph for j =

1 or 2, then I'(A) is imperfect.[13]

Proof: Assume that A = A; X A, and I'(A,) is imperfect graph.
Then I'(A,) has an induced odd cycle of length at least five. If n is an odd
integer, then u; — u, — uz — - - —u, is a cycle of length n of I'(4,) if and
only if (0,u;) —(0,uy) —(0,u3) —--—(0,u,) is a cycle of length n
of I'(A). Hence I'(4) is imperfect |}

Theorem 3.4.14: If A =[[}L; 4;,n =5, then I'(A) is imperfect.[13]

Proof: By induction.

If n =75, thenI"(4) has odd cycle of length at least five (1,0,1,1,0) —
(0,1,0,0,1) - (1,0,0,1,0) — (0,0,0,0,1) — (0,1,0,0,0) — (1,0,1,1,0).

Hence, I'(A) is imperfect graph .

Assume that [T¥_, 4;,k = 5 is imperfect graph, then (by theorem 3.4.13)

i-‘:llAi = (]_[{-‘ZlAi) X Ap4q 18 imperfect.l
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Chapter Four

The Zero divisor Graph of Some Special Rings

Preview

In this chapter we investigate the zero divisor graph of Boolean , k —
Boolean, and nilpotent rings. The effect of these notions on some basic
graph theory properties such as the completeness, the diameter, and having
a vertex adjacent to all other vertices for the zero divisor graph are displayed

in this chapter.

4.1 The zero Divisor Graph of Boolean and k-Boolean rings

In this section, we discuss the zero divisor graph of Boolean and k-Boolean

rings. We start by recalling the definition of Boolean ring.

Definition 4.1.1: Let A be a ring. Then A is called a Boolean ring if x? = x

for every x € A.

Remark 4.1.2: It is clear that if A is Boolean, then x(x — 1) = 0 forany x €
A. Which implies that if x # 1, then x and (x — 1) are zero divisors. i.e.,

V(T (A) = A\{0,1}.

Example 4.1.3: Consider the ring A = 7Z, X Z,. It is clear that if x is an

element in A, then x? = x. So that A is Boolean and the vertices of A are

V(I (4)) = A\{(0,0), (1,1)} = {(0,1), (1,0)}.
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In [1], Ali Mohammadian proved that if A is finite Boolean ring with
cardinality |A| > 4. Then I'(4A) contains no vertex adjacent to all other
vertices of the graph. In the following theorem, we lift their result to any
ring (possibly infinite). Moreover, the following theorem characterizes the
Boolean rings that have vertex which is adjacent to all other vertices.

Theorem 4.1.4: Let A be any Boolean ring. Then I'(4) contains a vertex
adjacent to all other vertices of the graph ifand only if A = Z, X Z,.

Proof: Suppose that A is Boolean ring and a vertex x is adjacent to all other
vertices of I'(4). Let y € Z(A) \ {0,x}. Then we have x(x + y) = x% +
xy = x # 0, (xy = 0 as x adjacent to all other vertices). Which implies that
x + y is anonzero-divisor of A. Thus x + y = 1 is the identity of A, (As
we remarked before example 4.1.3 all the elements of A are zero divisor or
unit). But y was arbitrary, which impliesthat A = {0,1,x,1 — x}. Now, A
being Boolean implies that (x + 1)2 = x + 1 whichtendsto x? + 2x + 1 =
x+2x+1=x+1.Thus 2x = 0. The last equality insures that x = 1 — x
and consequently |A| = 4. Remains to show that A = Z, X Z,. For this
consider the map f:A->7Z, XZ,, f(0)=1(0,0),f(1)=(11),f(x)=
(1,0)and (1 — x) = (0,1) ]

Example 4.1.5: This graph has a vertex adjacent to all other vertices. By

theorem 4.1.4. A in not Boolean ring.

=
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In 1992 Vasantha Kandasamy introduced the k — Boolean rings as a
generalization of the Boolean notion. He define the k — Boolean ring as
following.
Definition 4.1.6: Let A be a ring with identity. Then A is called a

k—Boolean ring if x?¥ = x for all x € A, Where k is a positive integer.

Remarks 4.1.7:

1. Itis clear that if A is a k — Boolean ring, then (x(x?*~1 —1) = 0 for
all x in A.

2. Itis trivial that if £k = 1 in definition 4.1.6, then we have the Boolean

rings.[25]
Proposition 4.1.8: Every Boolean ring is k—Boolean ring.[25]

Proof: Let A be a Boolean ring. Then x? = x for every x in A. Now x(x? =
x) implies that x3 = x? = x, and hence (x> = x). Similarly x* = x,x> =
x,..., thus x™ = x for any n. So x?* = x for any k. Hence 4 is ak —
Boolean ring.l

The following theorem proves that if A isa k — boolean ring with [A] > 4.
Then the zero divisor graph of A contains no vertex adjacent to all other

vertices. It is very clear that this theorem is a generalization of theorem 4.1.4.

Theorem 4.1.9: Let A be any k — Boolean ring. Then I'(A) contains a
vertex which is adjacent to all other vertices if and only if A = Z, X Z, if

and only if A is Boolean.
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Proof: Suppose that a vertex x is adjacent to all other vertices of I'(A). Let
y € Z(A)\{0,x}. Then we have x(x?*"1 + y) = x?* + xy = x # 0.
Which implies that x2*~1 + y is a nonzero-zero divisor of A. Thus x2¢~1 +
y =1 is the identity of A. But, y was arbitrary implies that A =
{0,1,x,1 — x2%=1}. Now, A being k — Boolean implies that (x2*¥1)2k =
x2k=1 which tends to (x**2)k = (x**x~2)% = (x2x2)%k = 1. Thus
x2%=1 = 1. Which implies that x2*~1 # 1 — x2¥~ and consequently |A| =
4. Remains to show that A = Z, X Z,. For this consider the map f: A -
Ly XLy, £(0) = (0,0),f(1) = (1,1), f(x) = (1,0) and f(1 — x**71) =
(U8 |

Remark 4.1.10: Observes that there is no k — Boolean which is not

Boolean with vertex adjacent to all other vertices.

After we discussed the effect of the Booleanity and k —Booleanity of the
rings. On the property of having a vertex which is adjacent to all other
vertices, we would like to see the effect of these notions on another graph
theory property; namely, the completeness. In the following corollary we
appeal to theorem 4.1.4 and theorem 4.1.9 to show that the zero divisor
graph of a (k) — Boolean ring is never complete.

Corollary 4.1.11: Let Abe a (k) — Boolean ring with |A] > 4. Then I'(A)
cannot be a complete graph.

Proof: Suppose that A is a (k) — Boolean ring and I'(A) is a complete
graph. Then (by definition of complete graph) every vertex inI'(A) is

adjacent to all other vertices. But I'(4) contains no vertex adjacent to every
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other vertices unless A = Z, X Z, (by theorem 4.1.4 and theorem 4.1.9).

which is a contradiction.l

4.2 The zero Divisor Graph of nilpotent ring

nilpotent rings. For example, in Corollary 4.2.4, we observe that the diameter
of zero divisor graph of a nilpotent ring is mostly 2. We start by recalling

the definition of nilpotent ring.

Definition 4.2.1: Let A be a ring. An element x of A is called nilpotent if
there exists integer number n > 0 such that x™ = 0. If every element in A

is nilpotent, then A is called nilpotent ring.

Remark 4.2.2: If A is nilpotent ring, then every element of A is either zero

or a zero-divisor.

Proof: Suppose that A is nilpotent ring. Let x € A be nilpotent element and
let n> 0 be the minimal integer such that x™ = 0. If n = 0 then either
x = 0or1l = 0. Which impliesthat A isazeroring, hencex = 0.Ifn =
1, thenx = 0. If n > 1and x # 0, then0 = x" = x.x™ 1 with n —
1 > 0and x™ 1 # 0 by minimality of n. Thus x is a zero-divisor.| The
following lemma is an enhancement of a result was proved by D.F. Anderson

and A.D. Badawi in [5]

Lemma 4.2.3: Let A be a ring with Z(A) = Nil(A). Then diam I'(A) <
2.[5 lemma2.1]
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Proof: Suppose that x,y € Z(A) such that xy # 0 and x,y € Nil(A)* and
suppose the diam I'(A) = 3, Then there exist two vertices x and y such that
d(x,y) = 3. Letn = 2 be the least positive integer such that x™ = 0 and
m = 2 be the least positive integer such that y™ = 0. The d(x, y) = 3, then
we have u € Z(A) such that xu = 0 and yu # 0. It is clear that yxu = 0.
thenyx =0 or yx +# 0 € Z(A). But yx # 0. Thus we have this path of
length 4: y —y™ 1 —xy —x™1—x. Which is a contradiction with
(Theorem 2.5.5). Hence diam I'(A) < 2}
As a particular case of Lemma 4.2.3, one may deduce the following
corollary.
Corollary 4.2.4: Let A be a nilpotent rings. Then diam I'(4) < 2.
Proof: This is a direct consequence of lemma 4.2.3 and the fact that

Nil(A) = Z(A) in the nilpotent rings.}
By theorem 2.5.5, the diameter of any ring is mostly 3. But in the case of R
is a ring with Z(A) = Nil(A) (particularly, when A is nilpotent
ring), diam I'(A) # 3 (by the lemma 4.2.3).
Moreover, one can go further and describes the rings A with Nil(A) = Z(A)
and : 1) diam I'(A) = 0.

2)diam I'(A) = 1.

3)diam '(A) = 2

as it is shown in the following theorem.

Theorem 4.2.5: Let A be a ring with Z(A) = Nil(A). Then exactly one of

the following three cases must occur.[5 ,Theorem 2.2]
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(1) |Z(A)*| = 1. In this case, A is isomorphic to Z, or Z,[X] / (x*) , and
diam I'(A) = 0.

(2) |Z(A)*| = 2and Z(A)? = 0. Inthis case, I'(A) is a complete graph, and
diamI'(A) = 1.

(3) Z(A)? # {0}. In this case, diam I'(4) = 2.

Proof:

1) If |Z(A)*| = 1, then A = Z, or Z,[X] / (x*)[3]. Which implies that
diam I'(A) = 0, because the graph has only one vertex.

2) If Z(A)? =0, then xy = 0 for every x, y in Z(A). Hence I'(4) is a
complete graph. Which implies that the diam I'(A) = 1 (because the
graph is complete). Since the |Z(A)*| = 2 (if |Z(A)*| = 1, then
the diam I'(A) = 0).

3) Suppose that Z(A4)% # {0}. Then (by remark 2.4.4) the graph not
complete. Hence the diam I'(A) = 2 (by lemma 4.2.3) |

The following Proposition proves that if A is a nilpotent ring. Then the zero
divisor graph of A contains a vertex adjacent to all other verticesProposition
4.2.6: Let A be a nilpotent ring. Then I'(4) contains a vertex which is

adjacent to all other vertices of the graph.

Proof: Suppose that A is nilpotent ring and x,y € Z*(A) such that I'(A)
has no vertex which is adjacent to all other vertices. Let n be the least
positive integer such that x™ = 0 and m be the least positive integer such

that y™ = 0. Thus xx™ 1y™~1 = 0, and we have two cases:
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Case 1: If x»"1ym~1 =0, then x™" 1, y™~1 € Z(A). Hence we have this

path x — x™1 — y™m~1 — y of length 3.

Case 2: If x" " 1y™~1 € Z(A) it is clear that x"~1y™~1y = 0. Similarly,
yy™ 2y = 0 implies that yy™~2 = y™m~1 € Z(A). Thus we have this path
x —x"ym-l —y — ym=1 of length 3.

In both cases we have a contradiction with lemma 4.2.3. Hence I'(4)

contains a vertex which is adjacent to all other vertices of the graph. |

Example 4.2.7: Take this ring Zg. The zero divisor of this ring is {2,4,8} it
Is clear that Z(A) is a nilpotent element and I"'(Zg) has a vertex {4} adjacent

to every other vertex. Below are the graph.
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