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1. Abstract 
 
 
Typical games use peripherals such as the mouse and keyboard to control the 
game play course. Even though the high quality of the game's graphics give some 
feel of reality, moving the mouse and clicking a button to hit a target is far 
different from holding a playing gun, aiming at the target and pulling the trigger! 
 
The purpose of this project is to introduce an arcade game model with increased 
degree of interactivity using a camera-projector based system. 
 
This project is mainly oriented towards games requiring minimum amount of 
controls. Examples of such games would be some kinds of gun-games and board 
games. However, games requiring more complex controls can be supported by 
adding the suitable peripherals to support such games. 
 
 
This project implements two examples of the games the model can support: 
 
1. The Bull's-Eye Game (a still target) 
 
2. Bird-Hunt (moving targets) 

 
 
The application consists mainly of two threads:  
 
1. The OCV Thread: 

 
Responsible for capturing the video frames from the camera and processing them 
using OpenCV to detect and locate a LASER blob,  then  reporting it to other 
modules to check if the shot has hit any object and take action accordingly. 

 
2. The OGL Thread: 
 

Responsible for graphics generation using OpenGL. 
 
 
1.1 The OCV Thread functionality: 
 

Figure1 shows the OCV thread's flow chart. The functional blocks are explained 
below. 
 
 
#2. Splitting the red channel: the captured image consists of three 8-bit channels 

(RGB). Since the gun uses a 630-680nm Class II-A Red LASER, the channel of 
interest would be the R channel. It's split from the captured RGB channel into a 
new 8-bit grayscale (monochrome) channel. 
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#3. Threshold Filtering: The LASER blob is the brightest light spot in the red channel. 
Pixel values less than a predefined THRESHOLD value are filtered out. The 
threshold value is adjustable, and is set to 254 at program initialization. Any pixel 
values less than or equal to this value will be nullified, while only the value 255 
passes the filter. The LASER spot will be the brightest in the red channel, 
therefore it will have pixel values of 255 and pass the filter. 

 
The disadvantage of this method is that if there are any other bright light sources 
or illuminant objects that reflect light perfectly in the range of the camera view, 
they cause noise since bright light has color components of all three channels. 
 
Despite the disadvantage, this is the method with least computational overhead I 
could use to filter-out pixels not belonging to a LASER blob from a frame.  

 
 
 
#4. Blob-Extraction Algorithm: This algorithm is implemented in the Blob Extraction 

Library (cvBlobsLib), which is part of Intel's OpenCV. It's used here to find the 
blob caused by the LASER gun in the image. For more on cvBlobsLib, refer to the 
Appendix. 

 
 
#5. Check blob dimensions: If the blobs dimensions are above or below those that 

would usually be produces by a LASER spot, ignore this blob. It could be caused 
by a LASER shot wile the gun was being moved swiftly so that it appeared to the 
camera as a curve instead of a spot, or it could be caused by another source of 
light. In any such abnormal case, the resulting connected shape should not be 
considered a gun-shot. 

 
Perfectly spot-like blobs, however, can hardly be produced since the gun usually 
tends to move slightly as the player pulls the trigger. Therefore, deformed blob 
shapes are accepted within a predefined error range. 
 

#6. Button Mode: This mode is engaged when the player accesses the game's menu. 
The menu system is explained in more detail in section "OGL's Button Mode". 

 
#7. Shot Reporting: the shot is reported to the OGL thread through global variables 

for further processing and drawing. This is explained in more detail in the OGL 
section. After a shot is reported, OCV sleeps for an amount of time predefined by 
(HIT_SLEEP_TIME). This method was used as a temporary solution to prevent a 
continuous emission of LASER causing a series of shots. This problem was 
solved by hardware by implanting circuitry inside the LASER gun to allow only 
one LASER burst per shot. The construction and operation of the LASER gun is 
explained in detail in section "LASER Gun Construction and Operation". 
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1.2 OCV and the Camera's Frame Rate Limitation: 
 
 

OCV runs in an infinite loop to detect the blob as soon as it occurs. Since the 
processor speed is much higher than the camera's frame rate, the same frame used 
to be tested several time until a new frame arrives from the camera in the earlier 
implementation. This used to degrade the overall performance, since OCV in that 
case captures the CPU for more time than is actually needed. This problem was 
solved by having OCV sleep for a period of time equal to about one frame time, 
i.e. 
(1/Frame Rate). This way, OCV won't capture the CPU until a new frame arrives 
from the camera.  
 
The Camera: 
 
The camera used in this project is a 640X480 pixel 30 FPS CMOS-Sensor 
Webcam. Even though it gave only about 15 FPS during tests, the response time 
(time between pulling the trigger and observing the reaction) was hardly 
noticeable by human and thus acceptable. 
Using a higher Frame Rate camera would even give faster response. 
 
 
Problems with the Camera: 
 
The major problem with using this type of webcams is that they give a curved 
image at the edges. A straight object near an edge would look curved. This drifts 
the locations of blobs seen near the edges. 
Using a higher-quality digital camera solves this problem. 
 
Another problem is that the used webcam, of course, does not support optical 
zooming, not even digital! This causes the problem described in the next section. 
 
 
Camera-Projector Calibration: 
 
This has been a challenging task during the testing of the project. The Projector is 
to be positioned far enough from the screen to give a large enough image. 
The camera has to be positioned such that the captured image exactly bounds the 
projector's output image. This task is not easy, having to place the camera very 
close to the screen while the projector is away from it, both connected to the same 
machine. 
 
A digital camera with optical zoom can solve this problem. 

 
1.3 The OGL Thread functionality: 
 

This thread uses OpenGL to generate the game's graphics. While the OCV 
thread works the same for both the two games implemented in this project, OGL 
works differently as each game has its own graphics. OGL's functionality is 
explained though the two games operation in the next section. 
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2. The games: 

 
2.1. The Bull's Eye Game: 
 

This game is an exact implementation of the real bull's eye game. The OGL 
thread generates a bull's eye that is projected on the wall through the projector. 
The camera is calibrated such that it captures a full view of the projected scene. 
The player is to aim at the bull's eye and make the allowed number of shots. 
OCV detects the shots -- as explained in section 1.1 "The OCV Thread 
functionality"--, passes their coordinates to OGL through global variables and 
signals OGL. 
 
As soon as OGL gets the signal, it does the following: 

 
1. Draws a bullet pierce wherever a shot was located in the bull's eye. 
 
2. Calculates a score between 0 and 10 according to how close the shot is to 

the center of the bull's eye. 
 
3. Displays the last bullet's score, total number of shots made so far, and the 

average score.  
 
Note: The image processing and graphics generation are performed in real 

time. 
 
Refer to the Appendix for information about OpenCV's real-time operation.  
 
 
 

 
2.2. The Bird Hunt Game: 

 
This game demonstrates the ability of the model to handle more interactive 
games involving moving-targets. 
 
OCV functions the same as described in the Bull's Eye game, where the OGL 
operates differently.  
It defines and initializes the target objects (birds in this game), loads their 
graphics into main memory for fast operation and determines the number of 
objects and overall object motion speed depending on the selected game's 
difficulty level. 
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Once object initialization and graphics loading is done, the game starts and OGL 
handles moving the objects around. OGL performs the following actions as it receives 
a shot signal from OCV: 
 

1. Checks if the shot has hit any of the target objects by testing for intersection 
between the blob coordinates and each object's coordinates. 

 
2. If a target has been hit, OGL changes the hit object's course from a horizontal 

chaotic motion (the simulated motion of flying bird) to a vertical fall-down 
motion. 

 
Once the falling object reaches the ground, it's marked 'dead' and seizes to be 
displayed. 
 
When all objects have been hunted down, OGL moves to the next level of the 
game by doing the following: 
 

1. OGL reincarnates dead objects. Dead objects are reincarnated by being 
remarked as 'alive' and by resetting some of their parameters such as position 
and speed. This step saves the time that would be wasted if the objects were 
to be recreated and reinitialized from the beginning. 

 
2.  Adds more objects to increase difficulty. 
 
3.  Increases the motion speed of all objects to increase difficulty. 

 
 
The player has limited time to hunt all targets. There is a variety of ways this time 
limitation can be implemented. Some of which are: 
 

1. Time limitation remains the same through all levels. 
 

2. Time limitation is increased slightly in conjunction with the game level 
number. 
 

3. Time limitation is a function of the score achieved in the previous level. 
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3. OGL's Button Mode: 
 
Entering the button mode is equivalent to using the menu in a traditional game. The 
player can access the game's menu while in the game by shooting the menu "Shoot-
Button" in the lower right corner of the screen.  
 
This displays a large cube and two large arrows beneath it. The cube displays the 
current menu selection. When an arrow is shot, the cube rotates left or right displaying 
the next menu item. Selecting the current menu item is done by shooting the cube 
itself. 
 
The available menu items are: 
 

1. Restart Game 
2. Player's Name Entry 
3. Level Selection 
4. Exit Game 
5. Back 

 
 

Entering the player's name is done the same way a menu item is selected. The 
cube face displays the current letter, selecting a different letter is done by shooting 
the left and right arrows, and printing a letter is done by shooting the cube while 
displaying the desired letter. When done entering the name, the player can choose 
to go back to the previous menu. 
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4. LASER Gun Construction and 
Operation: 

 
 
The laser gun is responsible for emitting a surge of LASER light that will be 
viewed as a red blob by the camera whenever the trigger is pulled. 
 
Figure2 shows a diagram of the LASER gun. 
 
 

 
 
 
When the trigger is pulled, the metal contacts conduct causing the trigger pin on 
the Edge-Triggered Monostable Multivibrator to go low. This causes the output go 
high for a period of time T set by the RC network composed of R1 and C1, then 
go off even if the trigger remains pulled. 
 
Figure3 shows the circuit diagram for the Edge-Triggered Monostable 
Multivibrator. 
 
 
The ON time is define by the following equation: 
T = 1.1 X R1 X C1 
 
R1 is a variable resistor that is used to adjust the ON time T. 
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T is adjusted so that it equals at least one Frame Time. Since used camera's 
Frame Rate is about 15 FPS, T must equal at least 1/15 seconds in order for the 
camera to be able to capture the laser blob. 
 
The values selected for R1 and C1 are 10K and 47 uF respectively, so the 
maximum value for T  is  
T = 1.1 X 10K X 47 uF = 0.517 seconds which equals 7.755 Frame Times. 
 
The Power Pack consists of 6 LR44  1.5V Button Cell Batteries stacked back to 
head forming a 9V power source. 
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5. The Implementation: 
 
This project was developed using Visual C++ using the following libraries: 
 
- The Microsoft Foundation Classes (MFC). 
- Open Source Computer Vision Library (OpcnCV). 
- Open Source Graphics Library (OpenGL). 
- Developer's Image Library (DevIL). 
 
 
Explanation of the project's code is beyond the scope of this document. 
The code for the project is extensively commented and easy to understand. 
 
 
Why OpenCV: 
 
Intel's OpenCV implements more than 300 Image Processing and Computer 
Vision functions and is specially designed for the Intel Microprocessor families. It 
is optimized using the microprocessor's MMX and SSE instructions to perform 
Image Processing in real time. 
The reasons for using OpenCV in this project are: 
 

1. The necessity for real time performance. 
 
2. All of the needed image processing functions are implemented in OpenCV. 
 
3. The Computer System used to develop and test this project is an Intel  

Microprocessor based system. 
 
 
 
Why OpenGL: 
 
Perhaps OpenGL is not the best graphics library for game development, but it's 
sufficient for the purpose of this project. In addition, it was the graphics library I 
had been familiar with upon starting this project. 
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7. Appendix 
 
 
 
7.1 OpenCV 
 

OpenCV means Intel® Open Source Computer Vision Library. It is a 
collection of C functions and a few C++ classes that implement many popular 
Image Processing and Computer Vision algorithms. 
 
OpenCV also uses Intel's IIP Library to achieve higher performance. 

 
7.2 IPP 
 

Intel Integrated Performance Primitives (IPP) library is a large collection of 
low-level computational kernels highly optimized for Intel architectures, 
including the latest Pentium®, Itanium®, and XScale® processors. It consists of 
multiple domains that reside in separate dynamic libraries: signal and image 
processing, matrix processing, audio and video codecs, computer vision, 
speech recognition, cryptography, data compression, text processing, etc. 

 
 
7.3 Blob extraction library 

A library to perform binary images connected component labelling. It also 
provides functions to manipulate, filter and extract results from the extracted 
blobs. 

Algorithm 

The algorithm is based on Dave Grossman's code with some few additions. 
Dave Grossman explained his code in this post:  

I first saw this algorithm about 30 years ago in a presentation by Gerry Agin at 
SRI International (then called Stanford Research Institute). I have been unable 
to find it in any journal articles, so I implemented it by memory. The basic 
idea is to raster scan, numbering any new regions that are encountered, but 
also merging old regions when they prove to be connected on a lower row. 
The computations for area, moments, and bounding box are very 
straightforward. But the computation of perimeter is very complicated. The 
way I implemented it was in two passes. The first pass converts to run code. 
The second pass processes the run codes for two consecutive rows. It looks at 
the starting and ending columns of a region in each row. It also looks at their 
colors, whether or not they were previously encountered, and whether a region 
is new or old, or a bridge between two old regions. There are lots of possible 
states, but I deal explicitly with the only states that are important. There are 8 
of these states:  
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I think this might be the paper, W. Synder and A. Cowart, “An iterative 
approach to region growing,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 1983.  

W. Synder is a professor at NCSU and explains the algorithm and how to 
implement it in one pass in his book "Machine Vision".  

At each stage, the algorithm is scanning through two consecutive rows, termed 
LastRow and ThisRow. During this scan, it sees a region in each row. In Cases 
1-4, the region in LastRow starts 2 or more columns before the region in 
ThisRow. In Case 1, the region in LastRow ends one or more columns before 
the region in ThisRow starts. Therefore, these regions are NOT connected. In 
Case 2, the region in LastRow starts before the region in ThisRow, but the 
LastRow region continues at least to the column just before the region in 
ThisRow starts. Or it continues further, but it ends before the region in 
ThisRow ends. Therefore, if these regions have the same color, then they are 
connected.  

RickyPetit changed my code to provide 4 or 8 connectivity. I had used 6/2 
connectivity, which meant that at a corner like this 01 10 the 0's are connected 
but the 1s are not connected. In other words, the connectivity of a pixel is 
given by this mask: 110 1X1 011 i.e., pixel X is connected to the 6 pixels with 
a 1 but is not connected to the 2 pixels with a 0. This introduces a slight bias in 
favor of regions that slope to the left, but I consider it preferable to using 
either 4-connectivity or 8-connectivity.  

 

7.4 Developer's Image Library (DevIL) 
 

Developer’s Image Library was previously called OpenIL, but due to 
trademark issues, OpenIL is now known as DevIL. DevIL is an open source 
programming library for programmers to incorporate in to their own programs. 
DevIL loads and saves a large variety of images for use in a software 
developer’s program. This library is capable of manipulating images in 
various ways and passing image information to display APIs, such as OpenGL 
and Direct3D. 

 
 
 
 
 


