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Bridging Centrality in Scale-Free Network 

Using Bridging Node as the Boundary of Clustering 

 

By 

Hind Ali Ahmad Eid 

Supervisor  

Dr . Subhi Ruzieh 

Abstract  

Graph theory is one of the most popular fields in mathematics because if 

it's important applications in solving many problems in the real world and 

under standing many natural phenomena. 

This work focuses mainly on studying the scale-free networks and their 

properties. Moreover, it deals with the study of clustering methods and 

developing a new a new clustering algorithm by using the properties of 

scale-free networks. Bridging centrality of the graph together with 

Betweenness centrality and bridging coefficients will also be investigated. 

Finally we will illustrate how bridging centrality is used in clustering. 

This will result in a new algorithm of clustering that is called Highest 

Bridging Centrality Cut algorithm (HCRC algorithm). We concluded that 

the HCRC algorithm depends on bridging centrality of the nodes. 
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Chapter One 
Introduction 

 
1.1 Graph Theory   

       In mathematics and computer science, graph theory is the study of 

graphs: mathematical structures used to model pair wise relations between 

objects from a certain collection. 

In the real world graph theory and its applications can solve many 

problems such as computer networks, airplane lines, and many other kinds 

of networks. 

By using graph theory applications we can minimize the cost and 

maximize the benefits. For example we can find the shortest path between 

any two nodes in any graph.  There are many different algorithms which 

can solve this problem, and when we say shortest path we don't mean the 

distance only.  When we deal with weighted graphs, graphs where edges 

are assigned weights, we may evaluate a lot of objectives like the minimum 

cost, the maximum profit, the minimum distance between two locations 

and many other objectives related to maximizing or minimizing problems.  

And we can use graph theory applications in organizing steps for solving 

some problems such as those related to computer  applications, by finding 

the critical path, and many other applications. 
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1.2 Main Definitions in Graph Theory 

1.2.1 Graph 

A graph G is an ordered pair (V (G), E (G)) where V (G) is a set of 

nodes (vertices), and E (G) the set of edges, where the number of vertices is 

the order of the graph and the number of edges is the size of graph G, 

G(p,q) is a graph with order p and the size of the graph = q.  

  

Figure (1.1): Graph G (5, 7) 

Graph G(5, 7) in Figure(1.1) is a graph of order = 5( it has five Vertices 

( or nodes)) and of size = 7 (it has seven Edges) the set of Vertices 

V={1,2,3,4,5}, and the set of Edges E={a,b,c,d,e,f,g}. 

 

1.2.2 Definitions  

Let G (p,q) be a graph with order p and size q: 

A loop: is an edge whose end vertices are the same vertex.       

Multiple edges: are two or more edges joining the same pair of vertices.   

  

A simple graph: is a graph   which has neither loops nor multiple edges. 

A complex graph: is a graph   which has loops or multiple edges or both. 

     A walk: an alternating sequence of vertices and edges, beginning and 

ending with a vertex. 
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A trail: is a walk in which no edge is repeated. 

A path: is a walk in which no vertex is repeated. 

A closed walk: is a walk of the form ( a , b , c , … , a). 

A cycle: is a closed path. 

Degree of node: is the number of nodes that are adjacent to this node. 

Connected Graph: is the graph that has a path between any two nodes. 

Disconnected graph: if there is a pair of nodes in graph has no path 

between them the graph is called disconnected graph. 

An isolated vertex: is a vertex with degree 0. 

An end vertex: is a vertex with degree 1. 

Adjacent: two vertices v, w of a graph G are adjacent   if there is an 

edge between them, and we can say v and w are neighbors, the set of nodes 

that are adjacent to node v is N(v). 

Example 1.1: 

 

Figure (1.2): Graph G (7,9) 

Considering the graph in Figure (1.2) 

(A,C,D,B,C,E)  is a walk.  (B,C,D,B,E) is a trail. 

(A,E,C,B,D) is a path.  (A,B,C,E,A) is a cycle. 

F is an end vertex, G is an isolated vertex. 
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The degree of node C (DEG(C)) = 4, Ne(C)={A,B,D,E}. 

The graph G in Figure (1.2) is disconnected graph. 

There are different kinds of graphs depending on the kinds of 

application we deal with.  We will deal with two kinds of graphs according 

to the concept adopted.   

The first concept of that is related to the weights of the edges in the 

graph. According to this concept a graph is either weighted or unweighted. 

1- A weighted graph is when the edges in this graph have values or 

weights, these values may be lengths, costs, periods or of other 

different types, these values are called weights.  We may for 

example have a graph whose vertices are the cities in some 

country and the weights are the distances between the 

neighboring cities.  

2- AN unweighted graph: may be thought of as a weighted graphs 

with all weights being equal to one.  An example is a computer 

network. 

 

Figure (1.3): (a) Weighted Graph (b) Unweighted Graph 

The other concept when dealing with graphs concerns the direction.  

Here we look at two types of graphs.   

1- A directed graph each edge has a specified direction.  
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2- Undirected graph, we consider that edges to have no restricted 

direction and the move can be in either one of the two directions. 

 

 

Figure (1.4): (a) Directed Graph. (b) Undirected Graph 

 

 There are some special types of graph such as: 

- The complete graph G (p, q) every vertex is adjacent to every other 

vertex.  The degree of a vertex in such a case is p-1.   Such a graph, 

where all vertices have the same degree is called a regular graph.  

Thus the complete graph is a (p-1)-regular graph.  

 

Figure (1.5): Complete Graph. 

 

- Star: the graph take the shape of the star, one node adjacent to all 

other nodes (degree of this nodes equal (p-1)). And the other nodes 

have degree equal one. 
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Figure (1.6): Star Graph. 

- The complete bipartite graph K(m, n) is a simple graph where the 

vertex set V(G) is partitioned into two classes of sizes m and n 

respectively and where every vertex in one class is adjacent to 

every vertex in the other class.  Besides that, any two vertices in the 

same class are non adjacent.  Such a graph clearly has size q = mn.  

In general a graph is . 

 

Figure (1.7): Complete Bi-Partite Graph. 

- N-partite if  is a simple graph where the vertex set V(G) is 

partitioned into n classes of sizes m1, m2, …, mn  respectively and 

where every vertex in any class can be adjacent to any vertex in any 

other classes.  Besides that, any two vertices in the same class are non 

adjacent.  Such a graph clearly has size q =   m1 m2 … mn  
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Figure (1.8): 4-Partite Graph.  

- The P-cycle Cp is a graph that takes the shape of cycle and every 

vertex has degree equal to two. 

 

Figure (1.9): 6-Cycle Graph. 

- The path is a graph that takes the shape of line.   Each vertex has 

degree equal two except the first vertex and the last vertex each of 

which has degree equal one 

 

 

Figure (1.10): Path Graph. 
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Adjacency Matrix: The adjacency matrix of a graph G is an n x n matrix 

A = a(i,j) in which the 
⎩
⎨
⎧

=
wiseother

adjacenareiandinodes
jia

0
1

),(  

Distance Matrix: The distance matrix of a graph G is an n x n matrix D 

= d(i,j) in which the entry 
⎩
⎨
⎧

=
wiseother

adjacenareiandinodesl
jid

0
),(  , l is the 

distance between nodes I and j. 

Example (1.2) 

 

Figure (1.11): Directed Graph G. 

Adjacency matrix is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01100
10010
10011
01101
00110

)(GA  

 

The distance matrix is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0171100
1700190
110064
0196012
004120

)(GD  

 

1.3 Scale-Free Network 

1.3.1 Definition 

Scale-free network is a complex connected graph (network) with the 

property that the number of links k originating from a given node exhibits  
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a power law distribution YkkP −~)(  where y is the degree exponent 

that varies between 2 and 3.[20] 

 

1.3.2 History of Scale-Free Network 

  In 1999 the physicist Albert-Laszlo Barabasi and his colleagues at 

the university of Notre Dame mapped the connectedness of the Web.  To 

their surprise, the Web did not have an even distribution of connectivity 

(so-called "random connectivity").  Instead, some network nodes had 

many more connections than the average. In seeking a simple categorical 

label, Barabási and his collaborators called such highly connected nodes 

"hubs".  In physics, such right-skewed or heavy-tailed distributions often 

have the form of a power law.  I.e., the probability P(k) that a node in the 

network connects with k other nodes was roughly proportional to k−γ, and 

this function gave a roughly good fit to their observed data. 

10 

 After finding that a few other networks, including some social and 

biological networks, also had heavy-tailed degree distributions, Barabási 

and collaborators coined the term "scale-free network" to describe the 

class of networks that exhibit a power-law degree distribution. Soon after, 

Amaral et al. showed that most of the real-world networks can be 

classified into two large categories according to the decay of P(k) for 

large k.[20] 
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1.4 Clustering 

Clustering is grouping similar data items together. 

There are different clustering algorithms. We can divide clustering 

algorithm into two main categories: 

1- Hierarchical clustering.  This Proceeds successively by either 

merging small clustering into larger ones or splitting larger clustering. 

2- Partitioned clustering.  This attempts to directly decompose the data 

set into a set of disjoint clusters.   

Each type has different algorithms. A bridging node refers to a node 

whose removal disconnects the network. 

Many scientist study clustering algorithms and they obtain different 

algorithms, in 1999 Erez Hartuv and Ron Shamer reach to new clustering 

algorithm called Highly Connected Subgraph clustering algorithm, this 

algorithm depend on the connectivity of the graph (the connectivity of the 

graph G  (or edges connectivity) is the minimum number of edges whose 

11 

removal disconnect the graph). After that they modify this algorithm by 

repeating the algorithm several time until no new cluster appears, because 

some times the graph has more than one minimum cut and the algorithm 

may chose the wrong cut. 

In our thesis we apply this algorithm on scale-free network but the result 

was not suitable, exactly in scale-free network there are many end points. 
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1.5 Bridging Centrality 

Bridging centrality is a concept used to identify bridging nodes in scale-

free networks. The bridging centrality of node v, ( )(vCR ), is the product of 

the betweenness centrality of the node v, ( )(vCB ), and the bridging 

coefficient of a node v, ( )(vBC ) (The bridging coefficient of a node 

determines the extent of how well the node is located between high degree 

nodes, The betweenness centrality is a measure of the global importance of 

a node that assesses the proportion of a shortest path between all node pairs 

that pass through the node of interest). 

In 2006 a group of scientist (Woochang Hwangy ,Young-rae 

Choy, Aidong Zhangy, and Murali Ramanathan) study the Bridging 

Centrality in scale-free network, and they reach to a result that bridging 

nodes lying between highly connected modules in scale-free networks. 

(Bridging node: is a node that lies between  modules in the graph and its 

removal disconnect the graph, the bridging node have high bridging 

centrality), in the last of there research the question was if it is possible 

to reach to a new algorithm of clustering depend on bridging centrality.   

 

1.6 Highest Bridging Centrality Cut Algorithm 

After deep studying for clustering method and bridging centrality of the 

node in scale- free network, and several iteration we can reach to a new 

clustering algorithm depend on the bridging centrality, we called this 

algorithm Highest Bridging Centrality (CR) Cut algorithm IHCRC algorithm. 
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Chapter Two 

Scale-Free Network 

 

2.1Scale-Free Network  

2.1.1 Definition 

Scale-free network is used to give small number of edges high 

degree so that these nodes are adjacent to 70% or more of the nodes in the 

network and large number of nodes with small degree) 

 

                                 

Figure (2.1): Random and Scale-Free Network. 

In Figure (2.1) in scale-fee network we can see that the red nodes are    

adjacent to 70% of all other nodes(the green nodes), in random network 

red points are adjacent to only 10% of all other nodes the.  
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2.1.2 Comparison Between Random and Scale-Free Network 

By studying the properties of scale-free network we can find that there 

are some differences between random and scale-free network: 

1 Scale-free network is more robust against failure[3]: 

This means that if we remove some nodes in random way, scale-free 

networks are more likely to be connected than random networks. 

Example (2.1): 

     Figure (2.2): (a) Random Network, (b) Scale-Free Network  

If we delete some nodes in random way, the scale-free net work may be 

more connected than the random network. 
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Figure (2.3): Difference (1) between Random and Scale-Free Network. 

In Figure (2.4) if we cut the same nodes from random and scale-free 

network, random network split to more components than scale-free 

network. 

2- Scale-free networks are more vulnerable against non-random attacks 

[3]: 

If we remove nodes that have the highest degree, the network will be 

quickly disintegrated. 

Because in scale-free network the nodes that have high degree are 

adjacent to 70% of all nodes, then in removing these nodes, the network 

will break down into many components (the network will be 

disconnected). 

Example (2.2) 

Consider the Network in Example (2.1)  
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Figure(2.4): Difference(2) Between Random and Scale-Free Network. 

  After removing central nodes we find that the scale-free network 

becomes disconnected but a random network stays connected.  

3- A scale-free network has a shorter average path length than that in a 

random network [3]:  

Example (2.3) 

Figure (2.5): Different (3) Between Random and Scale-Free Network. 

a
b
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To compute the shortest path between each pair of nodes we use Floyd's 

algorithm. 

Floyd's algorithm computes the shortest path between any two nodes in 

the graph in weighted graph. Here we use this algorithm to compute the 

shortest between each pair of nodes in unweighted graph, by giving each 

edge weight to one.  

Algorithm (2.1): Floyd's algorithm [17] 

if  i=j     then Lij(0)=0 

If nodes i and j are adjacent Lij(0)=length of edge ij  

else Lij(0) = ∞ 

for k=1:n 

for i=1:n  

for j=1:n 

Lij(k+1) = min(Lij(k) , Lik(k)+Lkj(k)) 

End 

End 

End 



  
 

17 

S=L(n)   

 /* S : the array of shortest path s.t. S(i,j)=shortest path between nodes i and j */ 

To compute the average shortest path we use the following algorithm 

Algorithm (2.2): Compute Average Shortest Path 

Sum=0; 

for i=1:n 

  for j=1:n 

       sum=sum+S(i,j); 

end  

end 

Average=sum/(n*n); 

  

S1 is the length of the shortest path for the random network in Figure 

(2.6) showed in the following matrix: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0362213546734665756
3051322435645776645
6504653124578667534
2140211324534665534
2362013546512443556
1251102435623554645
3231320213445556423
5413542013567556423
4322431102356445312
6544653320154243312
7655564431043132423
3473124655401332465
4584235764310221354
6766455542132021334
6766455544332201132
5675346653221110243
7655564433443312021
5433542211265334201
6544653322354423110

1S

 

Average shortest path between nodes in the random network = 3.55   

S2 is the length of the shortest path for the scale-free network in Figure 

(2.6) showed in the following matrix: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0232212342234354445
2032212342234354445
3301323453345465556
2210212342234354445
2232012342234354445
1121101231123243334
2232210142234354445
2232212142234354445
3343323102332132223
2232212320232132223
2232212342012354445
3343323433101243334
4454434322210132223
3343323211321021112
5565545433543201334
4454434322432110223
4454434322432132023
4454434322432132201
5565545433543243310

2S

 

The average shortest path between nodes = 2.80 
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2.2 Power Law Distribution  

     Power Law distribution is a polynomial relationship that exhibits the 

property of scale invariance.  

                          )()( kk xOaxxf +=                                              (2.1) 

 

Where a, k are constant, and )( kxO is an asymptotically small function of 

x.[20] 

of node's degree is characterized by the degree distribution P(K) which 

gives the probability that a randomly selected node has exactly k edges . 

   Albert-Laszlo Barabasi, Zoltan Dezso, Erazsebt Ravasz, Soon-Hyung 

Yook and Zoltan Oltv reach to a result that for most large networks, 

including the World-Wide Web, Internet, metabolic and protein networks, 

language or sexual networks, the degree distribution follows a power-law 

distribution [6]: 

                             
γ−≈ kkP )(  

      inkkP γ−≈)(    , where inγ  is different from one graph to another. 

outkkP γ−≈)(   , where outγ  is different from graph to another. 

In the following table we can see the scaling exponents characterizing 

the degree distribution of several scale-free networks, for which P(k) 

follows a power-law . We indicate the size of the network and its average  
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degree by K For directed networks we list separately the in-degree 

( inγ )and out-degree ( outγ  ) exponents, while for the undirected networks, 

marked with a star [6]  

TABLE (2.1): Values of  inγ  , outγ  and K  For Some Scale-Free 

Networks. [6] 

Network Size K  inγ  outγ

WWW 325,729 4.51 2.45 2.1 

WWW 4X107 7 2.38 2.1 

WWW 2X108 7.5 2.72 2.1 

Internet , domain * 
3,015-

4,389 

3.42-

3.76 

2.1-

2.2 

2.1-

2.2 

Internet , router * 3,888 2.57 2.48 2.48 

Internet , router * 150,000 2.66 2.4 2.4 

Movie actors * 212,250 28.78 2.3 2.3 

Coauthors ,SPIRES 

* 
56,627 173 1.2 1.2 

Coauthors , neuru. * 209,293 11.54 2.1 2.1 

Coauther , math * 70,975 3.9 2.5 2.5 

Metabolic, E.coli 778 7.4 2.2 2.2 

Protein, S. cerev.* 1870 2.39 2.4 2.4 

Ythan estuary * 134 8.7 1.05 1.05 

Silwood park * 154 4.75 1.13 1.13 
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Citation 783,339 8.57  3 

Phone-call 53X106 3.16 2.1 2.1 

Words, conccurence! 460,902 70.13 2.7 2.7 

Words, synonyms! 22,311 13.48 2.8 2.8 

Protein, S. Cerev* 9,85 1.83 2.5 2.5 

Comic Book 

Characters 
6,486 14.9 0.66 3.12 

E-mail 59,912 2.88 2.03 1.49 

Protein Domains* 876 9.32 1.6 1.6 

Prot. Dom. 

(PromDom)* 
5995 2.33 2.5 2.5 

Prot. Dom. (Pform)* 2478 1.12 1.7 1.7 

Prot. Dom. 

(Prosite)* 
13.60 0.77 1.7 1.7 

From this table we can see clearly that values of  inγ  , outγ  and K  

depend on the type and size of network. 

2.3 Clustering  

2.3.1 Definition: 

Clustering is grouping similar data items together [15] . 

Clustering motivation:  

1- To provide automated tools to help in constructing categories or 

taxonomies [15]. 

2- To minimize the effects of human factors in the process [15]. 
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2.3.2 Clustering Methods 

There are many different methods (algorithms) for clustering. These 

may be divided into two basic types: 

1- Hierarchical clustering. 

2- Partitioned clustering.   

 

   2.3.2.1 Hierarchical Clustering 

Hierarchical clustering Proceeds successively by either merging 

small clustering into larger ones or splitting larger clustering [15].  We 

can divide hierarchical clustering into two main type: Agglomerative 

method, and Divisive method [12][9]. 

I- Agglomerative hierarchical method: clusters are successively 

merged until one cluster remains [9]. 

There are many different Agglomerative method of clustering. The main 

difference between them is in how to compute the distance between any 

two clusters.   Some of these methods are: 

a- Single linkage method: The distance between two clusters is 

based on the points in each cluster that are nearest together[9]. 

                        
                           ),(min ji

Cj
Ci

KL xxdD

L

k

∈
∈

=                                           (2.2) 

b- Complete linkage method: The distance between two clusters is 

based on the points in each cluster that are furthest apart[9]. 
                         ),(max ji

Cj
Ci

KL xxdD

L

k

∈
∈

=                                               (2.3) 
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c- Centroid linkage method: The distance between clusters is defined 

as the (squared) Euclidean distance between cluster centroids KX  

and LX  [11] . 

                             
2

LKKL XXD −=                                           (2.4) 

 Where KX  is the center of subgraph K and LX  is the center of subgraph 

L. 

d- Average linkage method: The distance between clusters is the 

average distance between pairs of observations [11]. 
                        ∑∑

∈ ∈

=
K LCi Cj

ji
KL

KL xxd
nn

D ),(1                                       (2.5) 

Where nL is the number of nodes in subgraph L, and nK is the number of 

nodes in subgraph K.  

Algorithm(2.3): Agglomerative algorithm (single linkage method)[16] 

1. Begin with the disjoint clustering having level L(0) = 0 and 

sequence number m = 0. 

2. Find the least dissimilar pair of clusters in the current clustering, 

say pair (r), (s), according to 

 

d[(r),(s)] = min d[(i),(j)] 

 

where the minimum is over all pairs of clusters in the current clustering. 

3. Increment the sequence number : m = m +1. Merge clusters (r) and 

(s) into a single cluster to form the next clustering m. Set the level of 

this clustering to 
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L(m) = d[(r),(s)] 

4. Update the proximity matrix, D, by deleting the rows and columns 

corresponding to clusters (r) and (s) and adding a row and column 

corresponding to the newly formed cluster. The proximity between the 

new cluster, denoted (r,s) and old cluster (k) is defined in this way: 

d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)] 

5. If all objects are in one cluster, stop. Else, go to step 2. 

Example (2.4): [16] 

We apply agglomerative  algorithm (single linkage method) to cluster some 

Italian cities. The distances in kilometers between these cities given in the 

matrix. 

  

Figure (2.6): Map of Italian Cities. 
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In step 0 we have 6 items each item has only one component, we 

called each item cluster. 

The matrices show the distance in kilometer between the cities. Form 

the adjacency matrix we find that the closest pair of clusters is MI and TO.  

In step 1 we cluster MI and TO into one item the distance between the 

new item and the other items = minimum distance between MI or TO and 

any other nodes. 



  
 

 

Figure (2.7): Step 1 We Cluster MI and TO in One Item. 

 BA FI MI/TO NA RM 

BA 0 
66

2 
877 

25

5 

41

2 

FI 
66

2 
0 295 

46

8 

26

8 

MI/TO 
87

7 

29

5 
0 

75

4 

56

4 

26 

NA 255 468 754 0 219 

RM 412  268 564 219 0 

In step 2 the closest pair of clusters is NA and RM, we cluster them in 

one cluster. 

 



  
 

 

Figure (2.8): In Step 2 We Cluster RM and NA In to One Item. 
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In step 3 the closest pair of clusters is BA and NA\RM 
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Figure (2.9): Step3 We Cluster BA With NA\RM Into One Item. 
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In level 4 the closest pair of clusters is BA\ NA\RM and FI 

 

Figure (2.10): In Step 4 We Cluster FI With BA\NA\RM.   
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28 

In the last step we have two clusters, which will be clustered into one 

cluster. 

II -    Divisive hierarchical methods: begin with all objects in one cluster.  

Groups are continually divided until there are many clusters [9]. 

Figure (2.11): Steps of Hierarchal Clustering Using Agglomerative and Divisive Method. 

If we apply Divisive method on the graph that we explain in Example 

(2.4) we start considering all the cities in one cluster then start dividing 

the graph until we each city become a cluster.   

 

2.3.2.2Partitioned Clustering 



  
 

Partitioned clustering, attempts to directly decompose the data set into 

a set of disjoint clusters [15].    
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K-means clustering method is  a nonhierarchical clustering method , 

which aims to partition n  observation into k  clusters in which each 

observation belongs to the cluster with the nearest center [4][21] . 

There are several variants of the k-means clustering algorithm, but most 

variants involve an iterative scheme that operates over a fixed number of 

clusters, while attempting to satisfy the following properties[5]:  

1. Each class has a center which is the mean position of all the samples 

in that class.  

2. Each sample is in class whose center is closest to. 

Algorithm (2.4): Main Algorithm in k-Means Clustering [1] 

1. Place K points into the space represented by the objects that are 

being clustered. These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of 

the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This 

produces a separation of the objects into groups from which the metric 



  
 

to be minimized can be calculated.  
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Example (2.5) 

Cluster the following point into 3 clusters 

{A1(3,5) , A2(5,2) , A3(1,7) , A4(12,1) , A5(10,1), A6(5,11), A7(4,4), 

A8(7,10), A9(9,12), A10(10,3)}.  

Where the distance between 2 nodes is : 

2
21

2
21 )()( yyxxd −+−=   

Iteration 1 

We choose 3 nodes in random way and consider each point as a center 

of cluster. Suppose that A1,A3, and A10 are center. 

Points 
Dist mean1 

(3,5) 

Dist mean 2 

(1,7) 

Dist mean 3 

(10,3) 

Cluste

r 

A1(3.5) 0 2.8284     7.2801     1 

A2(5.2) 3.6056     6.4031     5.0990     1 

A3(1,7)) 2.8284       0 9.8489     2 



  
 

A4(12,1) 9.8489    12.5300    2.8284     3 

A5(10,1) 8.0623    10.8167    2.0000     3 

A6(5,11) 6.3246     5.6569     9.4340     2 

A7(4,4) 1.4142     4.2426     6.0828     1 

A8(7,10) 6.4031     6.7082     7.6158     1 

31 

A9(9,12) 9.2195     9.4340     9.0554     3 

A10(10,3) 7.2801     9.8489        0 3 

cluster 1 contain nodes : A1 (3,5) ,A 2 (5,2) , A7 (4,4) , and A8 (7,10) 

cluster 2 contain nodes : A3 (1,7) , and A6 (5,11)  

cluster 3 contain nodes: A4(12,1), A5(10,1) ,A9(9,12) ,and A10 (10,3)  

 



  
 

Figure (2.12): Graph of the Nodes IN Example (2.5), Nodes Colored in Red are the 

Centers of the Cluster.  

center of cluster 1 =((3+5+4+7)/4, (5+2+4+10)=(4.75, 5.25) 

center of cluster 2 =((1+5)/2,(7+11)/2) = (3 , 9) 

center of cluster 3 =((12+10+9+10)/4,(1+1+12+3)/4) =(10.25, 4.25) 
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Iteration 2 

Points 
Dist mean 1 

(4.75,5.25)

Dist mean2 

(3,9) 

Dist mean 3 

(10.25,4.25) 
Cluster

A1(3.5) 1.7678    4   7.2887    1 

A2(5.2) 3.2596    7.2801    5.7118    1 

A3(1,7)) 4.1382    2.8284    9.6501    2 

A4(12,1) 8.4039   12.0416    3.6912    3 

A5(10,1) 6.7546   10.6301    3.2596    3 

A6(5,11) 5.7554    2.8284    8.5513    2 

A7(4,4) 1.4577    5.0990    6.2550    1 

A8(7,10) 5.2559    4.1231    6.6049    2 

A9(9,12) 7.9765    6.7082    7.8502    2 

A10(10,3) 5.7118    9.2195    1.2748    3 

cluster 1 contain nodes : A1 (3,5) ,A 2 (5,2) ,and A7 (4,4)  

cluster 2 contain nodes: A3(1,7), A6 (5,11), A8 (7,10) ,and A9 (9,12)  



  
 

cluster 3 contain nodes : A4 (12,1) , A5 (10,1),and  A10 (10,3)   
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Figure (2.13): Clusters in Iteration Two, the Point Colored in Red are the Centers of 

the Clusters. 

center of cluster 1 = (4 , 3.6667) 

center of cluster 2 = (5.5 , 10) 

center of cluster 3 = (10.6667 , 1.6667) 

Iteration 3 



  
 

Points 
Dist mean 1 

(4,3.6667)

Dist mean2 

(5.5 , 10) 

Dist mean 3 

(10.6667,1.6667) 
Cluster 

A1(3.5) 1.6667 5.5902     8.3600     1 

A2(5.2) 1.9437     8.0156     5.6765     1 

A3(1,7)) 4.4845     5.4083    11.0403     1 

A4(12,1) 8.4327    11.1018    1.4907     3 

34 

A5(10,1) 6.5659    10.0623    0.9428     3 

A6(5,11) 7.4012     1.1180    10.9189     2 

A7(4,4) 0.3333     6.1847     7.0632     1 

A8(7,10) 7.0079     1.5000     9.1043     2 

A9(9,12) 9.7183     4.0311    10.4669     2 

A10(10,3) 6.0369     8.3217     1.4907     3 

cluster 1 contain nodes : A1 (3,5) , A2 (5,2) , A3(1,7), and A7 (4,4)  

cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9(9,12)  

cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , and A10 (10,3)  



  
 

 

Figure (2.14): Cluster of Iteration Three. 
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center of cluster 1 = (3.25 , 4.5) 

center of cluster 2 is (7 , 11) 

center of cluster 3 is (10.6667 , 1.6667) 

Iteration 4 

Points 
Dist mean1 

(3.25 , 4.5) 

Dist mean 2 

(7 , 11) 

Dist mean 3 

(10.6667 , .6667) 

Cluste

r 

A1(3.5) 0.5590    7.2111    8.3600     1 

A2(5.2) 3.0516    9.2195    5.6765     1 



  
 

A3(1,7)) 3.3634    7.2111    11.0403     1 

A4(12,1) 9.4240   11.1803    1.4907     3 

A5(10,1) 7.6035   10.4403    0.9428     3 

A6(5,11) 6.7315    2  10.9189     2 

A7(4,4) 0.9014    7.6158    7.0632     1 

A8(7,10) 6.6568    1 9.1043     2 

A9(9,12) 9.4505    2.2361    10.4669     2 

A10(10,3

) 
6.9147    8.5440    

1.4907     
3 

    cluster 1 contain nodes : A1 (3,5) , A2 (5,2) , A3 (1,7), and A7 (4,4)   

cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9 (9,12)   

 cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , A10 (10,3)  
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Figure (2.15): Cluster of Iteration Four. 

We repeat the same iteration until no new centers for the cluster appear. 

In this example we reach to the following three clusters: 

   Cluster 1 contain nodes: A1(3,5), A2(5,2), A3(1,7) ,and A7 (4,4) . Center 

of cluster 1 is: (3.25 , 4.5). 

Cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9 (9,12). 

 Center of cluster two is: (7 , 11) . 

Cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , andA10 (10,3) . 

 Center of cluster three is: (10.667 , 1.667). 
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Chapter Three 

 Bridging Centrality 
3.1 Bridging Centrality    

 A bridging node is a node located between modules.  It is a node that 

connects densely connected components in a graph.  The bridging nodes 

in a graph are identified on the basis of their high value of bridging 

centrality relative to other nodes in the same graph(or a concept and 

formula to identify bridging nodes in scale-free networks).  Bridging 

centrality of a node measures the global and local features of a node, 

respectively.  Bridging centrality of node v, ( )(vCR ), is the product of the 

betweenness centrality of a node v, ( )(vCB ), and the bridging coefficient 

of a node v, ( )(vBC ) .[13] 

                          )(*)()( VCVBCVC BR =                                 (3.1) 

     To evaluate Bridging Centrality, we need to evaluate the bridging 

coefficient (BC) and betweenness centrality (CB).   

 

3.2 Bridging Coefficient  

 The bridging coefficient of a node determines the extent of how 

well the node is located between high degree nodes. 

                                         
∑
∈

−

−

=
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1
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)()(

vNi
iD

vDVBC                                  (3.2) 

 The symbol D(v) denotes the degree of node v (number of nodes 

directly connected to node v), and  N(v)  denotes the neighbors of node v  
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(is the set of nodes that are adjacent to node v). [13] To evaluate 

bridging coefficient, we need to find the degree of each node.  From the 

adjacency matrix we can find the matrix Ne which is (n, 1) matrix where 

Ne(i,1) = deg(i) ).  Then from A and Ne we find the vector  BC, where 

BC(i) equal the bridging coefficient  for node i. 

We write the following algorithm to compute BC(v) for Vv∈ . 

Algorithm (3.1): BC Algorithm. 

function [bc] 

//first we find Ne for the graph 

for i=1:n 

    Ne(i)=0; 

    for j=1:n 

        if A(i,j)==1; 

        Ne(i)=Ne(i)+1; 

        end 

    end 

end 

//finding BC for each node 

for i=1:n 

    t=0; 

    for j=1:n 

        if A(i,j)==1  

            t=t+1/Ne(j); 

        end 
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    end 

    BC(i)=(1/Ne(i))/t; 

End 

 

3.3 Betweenness Centrality  

 The betweenness centrality is a measure of the global importance of 

a node that assesses the proportion of a shortest path between all node 

pairs that pass through the node of interest. 

                       ))2(*)1((
)(

,,

−−= ∑
∈
≠≠

nn
v

C
Vvts

vts st

st
B σ

σ                     (3.3) 

 

Where σst denotes the number of shortest path from s to t  and  σst(v) 

denotes number of shortest paths from s to t that pass through node 

v .[13] 

⎩
⎨
⎧ +<

=
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tvdvsdtsd
V

vtsv

GGG
st σσ

σ
*

),(),(),(0
)(                              (3.4) 

The number (n-1)*(n-2) gives the number of pairs in the graph 

excluding vertex v .  

Betweenness Centrality is important in the analysis of social network 

but is costly to compute.  The following algorithm is called "The faster 

algorithm" written by Ulrik Brandes  and is applied to compute CB  in 

unweighted undirected  graph.  

The algorithm is [7]  
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Algorithm (3.2): Faster Algorithm to Find CB  

CB[v]=0  ,v ∈ V; 

for s ∈ V do 

   S is empty stack; 

   P[w] is empty list  , w ∈ V; 

   σ[t]=0  , t ∈ V ; σ[s]=1; 

   d[t]=-1 ,t ∈ V;  d[s]=0; 

    Q is empty queue ; 

   Enqueue (s,Q); 

   while Q not empty do 

        dequeue(v,Q); 

         push (v,S); 

         for w ∈ N(v) do 

             if d[w]<0 then  

                enqueue(w,Q); 

                 d[w]=d[v]+1; 

              end 

             if  d[w]=d[v]+1 then  

                  σ[w]= σ[w]+ σ[v];  

                   append(v,P[w]) 

              end 

         end 

    end 

    δ[v]=0 , v ∈ V; 
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while S not empty do 

          pop(w,S); 

           for v ∈ P[w] do  

            δ[v] = δ[v]+( σ[v]/ σ[w])*(1+ δ[w]); 

           end 

           if w ≠ s then 

               CB[w]= CB[w] + δ[w]; 

           δ[w] 

           end 

     end 

end 

 After deep study of this subject, we reached to another algorithm 

that depends on two main matrices.  The first of which is the  matrix (S1) 

where  S1(i,j) = number of shortest path  from node i to node j ,(i , j ∈V) 

and the second matrix is (S2) where S2(i,j) = length of shortest paths from 

node i to j,( i , j ∈ V). 

 Algorithm (3.3): CB Algorithm 

function [cb] 

compute Num  % this array contain number of shortest path between  

                   any two nodes we assume that this array was computed%  

compute L % this array contain length of shortest path between  

                   any two nodes we assume that this array was computed% 

//calculate Bridging Centrality (CB) 

for i=1:n 
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    s=0; 

    for j=1:n 

        if j~=i 

        for k=1:n 

            if k~=i  

                if  L(j,k)<L(j,i)+L(i,k) 

                    t=0; 

                else 

                    t=Num(j,i)*Num(i,k)/Num(j,k); 

                end 

                s=s+t; 

            end 

        end 

        end 

    end 

    CB(i,1)=s/((n-1)*(n-2)); 

End 

      Our algorithm is easier to understand by any average person with little 

information about programming as a math student.   But Ulrik Brandes 

algorithm needs deep understanding of data structure to understand. 

Example (3.1): 

We apply our Algorithms Algorithm(3.1) to compute BC and 

Algorithm(3.3) to compute CR on the graph in Figure(3.1). 
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Figure (3.1): Simple Graph  

Here we show how we compute BC and CR for nodes 2 and 3 : 

First (BC) 

To compute BC we need the adjacency matrix and the degree of each node, 

the adjacency matrix is: 
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The vector Ne contain the degree of each node, the vector is: 
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We compute BC for the other way in the same way 

Second (CB): 

To compute CB we need two arrays: One- (Num) this array contain number 

of shortest path between any two nodes. Two- (L) this array contain length 

of shortest path between any two nodes. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011132
102211
120111
121011
311101
211110

Num  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011122
102212
120111
121011
211101
221110

L  

Here we will compute CR for nodes 2 and 3: 

10)(211)1,2()2,3(1)1,3(13
2

10)(321)6,2()2,1(2)6,1(6

11
1

1*1)(211)5,2()2,1(2)5,1(5

00)(211)4,2()2,1(1)4,1(4
00)(211)3,2()2,1(1)3,1(3

)(2
)(11
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=⇒=⇒=+=+<===
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=+=⇒==⇒=+=+<==

=⇒=⇒=+=+<==
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2
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4

2
2
1

2
3

2
1

2
1*1)(211)3,2()2,4(1)3,4(3

2
2
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2
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2
3

2
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2
1

2
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2
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2
1

2
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2
7

2
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2
1

2
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2
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1
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2
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2.0
5*4

4)2( ==BC
 

6
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6
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2
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3
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=⇒=⇒=+=+<==

=⇒=⇒=+=+<===

3
6
50)(212)2,3()3,5(1)2,5(2
6
50)(312)1,3()3,5(2)1,5(15
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sttrueLLLk

sttrueLLLk
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stfalseLLLk
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3
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3
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3
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3
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3
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3
4

2
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6
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2
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2
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6
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5
6
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083333.0
4*5

3
5

)3( ==BC  

017857.0214286.0*083333.0)3(
0375.01875.0*2.0)2(

==
==

R

R

C
C  

We compute BC, CB, and CR for the other nodes in the same way, and we 

reach to the following result: 

033333.0)6(333333.0)6(10.0)6(
028571.0)5(857143.0)5(033333.0)5(
017857.0)4(214286.0)4(083333.0)4(

0.0)1(444444.0)1(0.0)1(

===
===
===

===

RB

RB

RB

RB

CBCC
CBCC
CBCC

CBCC

 

Example(3.2)[13]  

 

Figure (3.2): Random Unweighted Graph  
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We apply our Algorithms: Algorithm (3.1) to compute BC and 

Algorithm (3.3) to compute CR on the graph in Figure(3.1)  

     The six nodes that have the highest values of Bridging centrality are:  

49 

Table( 3.1): Values of CR  , BC , CB For the Graph in Figure (3.1). 

Node v 

Deg(v

) CB(v) BC(v)       CR(v)

E 2 0.53333 0.85714 0. 45713 

B 2 0.15555 0.85714 0.13333 

D 2 0.15555 0.85714 0.13333 

F 3 0.47777 0.22222 0.10617 

A 4 0.65555 0.10000 0.06555 

J 3 0.21111 0.16666 0.03519 

We compute CB(v), BC(v) and CR(v) by using our algorithm. 

From these result we arrange the nodes according to the values of the 

coefficients in an descending order as follows: 

1- Bridging Coefficient  : E, B, D, F, J, A 

2- Betweenness Centrality : A, E, F, J, D, B 

3- Bridging Centrality: E, B, D, F, A, J.   

Vertex A has the highest degree, thus it has the highest Betweenness 

Centrality.   From the graph we can see that vertex A lies in the center of 

the graph, and the number of shortest paths that pass through this node is 

the highest. Vertices E, D and B have  the highest value of Bridging 

Coefficient , from the definition of  bridging node ,node E is bridging 

node in this graph, A and F are also bridging nodes 
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 From this result and after studying many examples, we see that 

there will be a relation between bridging node and clustering.  Our goal is 

to expire this kind of relation.  This work will appear in the next chapter. 

 

 

3.4 Special Cases: 

In the following cases we use V = number of nodes in the graph.  

 

3.4.1. Complete Graph  

    We state the values of Bridging Centrality (CR) Bridging Coefficient 

(BC) and Betweenness Centrality (CB) in the case of the complete graph 

a- The betweenness centrality 0)( =vCB for all v∈V 

Proof: 

In complete graph every node is adjacent to all other nodes.   This 

means that length of a shortest path between any two nodes is equal to 

one.  

dG(s,t) = 1  for all s, t ∈ V  s ≠ t] 

dG(s,v) + dG(v,t) = 2 

From equation(3.4) σst(v) = 0  for all s, t ∈ V. 

Then  from equation(3.3) 0)( =vCB for all v∈V. 

b- The bridging coefficient  is  
                                        

1
1)(
−

=
n

vBC                                    (3.5) 

Proof : 
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∑
∈

−

−

=

)(

1

1

)(
)(

vNi

iD
vDBC  

VvnvD ∈∀−= 1)(  

1
1)1(

1
)1(

1
1
)1()( 1

11

−
=−=

−
=

−
−
−

= −
−−

n
nn

n
n

nvBC    

c-  The bridging centrality is 0)( =vCR   for all v∈V 

Proof : 

)(*)()( vCvBCvC BR =  

0)( =vCB    for all Vv∈  in complete graph  

 0)( =vCR   for all Vv∈ in complete graph 

 

3.4.2. Complete Bi-partite Graph 

We state the values of Bridging Centrality (CR) Bridging Coefficient 

(BC) and Betweenness Centrality (CB) in the case of the complete bi-

partite graph. 

 

Let    n1 = order of V1 and  n2 = order of V2.  Then we have the 

following:  

a-  
)2)(1(

)(*)1(*)/1(
)(

−−

−
=

nn
nnn

vC jji
B         iVv∈                                  (3.6) 

Proof: 

Let 1Vv∈     then: 

⎪
⎩

⎪
⎨

⎧

∈∈
∈
∈

=

21

21

12

,1
,
,

VtVs
Vtsn
Vtsn

stσ   
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And 
⎪
⎩

⎪
⎨

⎧

∈∈
∈
∈

=

21

2

1

,0
,1
,0

)(
VtVs

Vts
Vts

vstσ         

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈∈

∈

∈

=⇒

21

2
1

1

0

,1
,0

)(

VandtVs

Vts
n

Vts
v

st

st

σ
σ  

))1)(1((

)
)(

(

)(
2,

−−=⇒

∑
≠≠
∈

nn

v

vC vts
Vts st

st

B

σ
σ

 

There are ( )1(* 22 −nn ) pairs of 2, Vts ∈ , then: 

)2(*)1(

)1(*)(*)1(
)(

22
1

−−

−
=

nn

nnn
vCB  

In the same way we prove CB for node 2Vv∈  as follow: 

)2(*)1(

)1(*)(*)1(
)(

11
2

−−

−
=

nn

nnn
vCB  

i

jj
i

B Vv
nn

nnn
vC ∈

−−

−
=⇒

)2(*)1(

)1(*)(*)1(
)(  

 

b- Bridging Coefficient : 

i
j

i Vv
n
n

vBC ∈= 2)(                                                     (3.7) 

Proof : 

Let 1Vv∈  

∑
∈

−

−

=

)(

1

1

)(
)(

vNi
iD

vDBC  

{ }
1

2

2

)(
,)(

)(

niD
ViivN

nvD

=
∈=

=
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2
2

1

2
1

2

*1

1
)(

n
n

n
n

n
vBC ==⇒  

c- Bridging Centrality : 

)(*)()( vCvBCvC BR =  

))(2)(1(
)1(

)(
j

j
R nnn

n
vC

−−

−
=        1Vv∈                                (3.8) 

 

3.4.3. Start graph  

  We state the values of Bridging Centrality (CR) Bridging Coefficient 

(BC) and Betweenness Centrality(CB)  in the case of the star graph. 

We consider the star as a special case of the bipartite  

n1 = 1, n2 = (n - 1) 

For the center: 

a- Betweenness Centrality 

 

CB(v) = 
)2)(1(

)(*)1(*)/1( 221

−−
−
nn

nnn          

CB(v) = 
)2)(1(

)1(*)2(*)1/1(
−−

−−

nn
nn

       

CB(v) = 1     

b- Bridging Coefficient  2
2

1)(
n
nvBC =         

2)1(
1)(
−

=
n

vBC                                                           (3.9) 

c- Bridging Centrality: 

2)1(
1)(
−

=
n

vCR                                                          (3.10) 

For the other nodes 



  
 

53 

a- Betweenness Centrality 

CB(v) = 
)2)(1(

)(*)1(*)/1( 221

−−
−
nn

nnn          

 

CB(v) = 
)2)(1(

)1(*)11(*))1/(1(
−−
−−

nn
n      ⇒   CB(v) = 0 

b- Bridging Coefficient  

2
1

2)(
n
nVBC =  = 

1
)1( −n  )1()( −=⇒ nvBC                                    (3.11) 

c- Bridging Centrality : 

CR(v) = 0 

3.4.4. Cycle graph 

      We state the values of Bridging Centrality (CR) Bridging Coefficient 

(BC) and Betweenness Centrality (CB)  in the case of the cycle graph 

a- Betweenness Centrality 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−

−
−

−−

−+−

=

∑

∑

−

=

−

=

oddisn
nn

in

evenisn
nn

inn

vC
n

i

n

i

B

,
)2)(1(

)
2

1(2

,
)2)(1(

)
2

(2)1
2

(

)(
2

3

1

1
2

2

                                         (3.12) 

We reach to this result by several iteration with different weight of 

graphs. 

Example (3.3): 

 

Figure (3.3): 5-Cycle Graph.  



  
 

54 

The adjacency matrix for the graph is: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01001
10100
01010
00101
10010

A  

The number of shortest path between any pair of nodes given in the array 

(Num) and the length of shortest path between any pair of nodes given in 

array (L). 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01111
10111
11011
11101
11110

Num      and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01221
10122
21012
22101
12210

L  

     Compute CB for node (1): 

      The maximum shortest path in Figure (3.3) = 2 (the maximum shortest 
path =

2
)1( −n ), each pair of nodes have only one shortest path between, the 

shortest paths that pass through node (1) are: the path from node 2 to node 

5, and the path from node 5 to node 2, there are two shortest paths pass 
through node 1(or  

2
)1( −n  shortest path pass from node1). Then: 

2
1
0

1
0

1
1

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

)1(
.....

)1()1()(

4,5

4,5

4,2

4,2

3,2

3,2

1,,
1

=+++++++++++=

+++=∑
∈
≠≠ σ

σ
σ
σ

σ
σ

σ
σ

Vts
ts st

st v

 

 
166667.0

)25)(15(
2)1( =

−−
=BC  
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In the same way we compute CB for the other nodes in the graph and we 

find that they have the same value. 

Example (3.4): 

 

Figure (3.4): 6-Cycle Graph. 

The adjacency matrix for the graph is: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010001
101000
010100
001010
000101
100010

A  

The number of shortest path between any pair of nodes given in the array 

(Num) and the length of shortest path between any pair of nodes given in 

array (L). 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011211
101121
110112
011011
121101
112110

Num      and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

012321
101232
210123
321012
232101
123210

L  

     Compute CB for node (1): 

      The maximum shortest path in Figure (3.3) = 3 (the maximum shortest  
path =

2
n ), each pair of nodes have either one pr two shortest path between,  
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the shortest paths that pass through node (1) are the path between each pair 

of the following: (2,5),(5,2),(2,6),(6,2),(3,6), and (6,3)  there are six  

shortest paths pass through node 1(or  n shortest path pass from node1), 

four pairs have two shortest path one pass through node 1. 

 Then: 

20.0
)26)(16(

4)(

4
1
1

1
1

2
1

2
1

2
1

2
1)(

1,,
1

=
−−

=

=+++++=∑
∈
≠≠

vC

v

B

Vts
ts st

st

σ
σ

 

In the same way we compute CB for the other nodes in the graph and we 

find that they have the same value. 

We apply the same operation for cycle graph gave order (7,8,9,10) until we 

reach to the result in equation (3.12).  

 

b- Bridging Coefficient  

      5.0)( =vBC  

Proof : 

∑
∈

−

−

=

)(

1

1

)(
)(

vNi
iD

vDBC  

D(v) = 2  for any vertex  v   in  the Cycle. 

5.0

2
1

2
1

2
1

)( =
+

=vBC  

c- Bridging Centrality: 

CR(v) = BC(v) * CB(v)  
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3.4.5. Path graph  

We state the values of Bridging Centrality (CR) Bridging Coefficient (BC) 

and Betweenness Centrality(CB)  in the case of the path graph 

 

 

a. Betweenness Centrality : 

)2)(1(
)1)((2)(

−−
−−

=
nn
iinvC iB                                                      (3.13) 

where   v   denotes the number of nodes 

 

 

Proof : 

      In the path any node v is in the shortest path between any two nodes 

that lie on the different side of v, and there is only one shortest path 

between any two nodes. Node v divides the path into two parts: 

     Part one contains (i-1) nodes, while part two contains (n-i) nodes.   

Each node in part one has only one shortest path to any node in part two,  
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and the opposite is true, and this path (shortest path) passes through 

node v. 

))2(*)1((
)(

)(
,,

−−= ∑
∈
≠≠

nn
v

vC
Vvts

vts st

st
B σ
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Vts
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st ∈∀= ,1
)(

σ
σ  and from different part 

⇒
)2)(1(
)1)((2)(

−−
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b- Bridging Coefficient  

⎪
⎩

⎪
⎨

⎧
−==

==
=

otherwise
nvv

nvv
vBC

5.0
)1(,2333333.0
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Proof : 

       In path D(1) = 1, D(n) = 1 , D(v) = 2  for all other nodes. 

∑
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Chapter Four 

Clustering Analysis in Unweighted Graphs 
4.1 Unweighted Graph  

An unweighted graph is a graph whose edges have no values.   When 

we deal with unweighted graph we consider the weight of each edge to 

be equal to one.  When we want to apply the method of cluster to this 

type of graph, the clustering methods that we saw in chapter two are not 

suitable because they depend on the weight of the graph. There are other 

methods of clustering that depend on the properties of the graph not on 

the weight of the graph, such as the connectivity of the graph as in HCS 

clustering algorithm. 

 

4.2. Highly Connected Subgraph Clustering Algorithm  

Highly Connected Subgraph (HCS) algorithm of clustering depends 

on the connectivity of the graph. 

Connectivity of the graph G, denoted by k(G), is the minimum 

number of edges whose removal gives a disconnected graph.  The set of 

removed edges is called a cut. If k(G)=L,  then the graph G is called an 

L-connected graph. 

  HCS algorithm identifies highly connected Subgraph as cluster (We 
consider the graph highly connected if k(G) >

2
N , but single vertices are  

 

not considered clusters and they are grouped in a singleton set 

(S)[11][19] . 
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Algorithm (4.1): HCS Clustering Algorithm[19] 

HCS(G(V,E)) 

begin 

 (H, H’,C)        MINCUT(G) 

 if G is highly connected 

  then return (G) 

 else 

  HCS(H) 

  HCS(H’) 

 end if 

end 

The running time of HCS algorithm is 2X*f(N,E) where X denotes 

the number of clusters and f(N,E) denotes the time complexity of 

computing a minimum cut in a graph with N vertices and E edge) [19]. 

 

Example (4.1) 

(a)  
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(b)  

(c)  

 

(d)  

Figure(4.1): An Example on HCS Clustering Algorithm  

We apply HCS clustering algorithm on the graph on Figure(4.1) 

  (a) the graph. 

(b) minimum cut edges are denoted by broken line. 

 (c) after first cut the first Subgraph is highly connected 
( 5.23,5.2

2
5,3)( >==Hk ) this is the first cluster. 

 (d) after the other minimum cut there are 3 subgraph each subgraph is 

highly connected then there are 3 cluster. 
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4.2.1 Properties of HCS Clustering [19]: 

In this respect, we note the following observations: 

1- The diameter of every highly connected graph is at most two. 

 The diameter of connected graph G, diam(G), is the maximum distance 

between any two vertices in the graph G. 

2- Any two vertices are either adjacent or share one or more common     

neighbors. 

3- It shows a strong indication of homogeneity. 

4- Any non-trivial set split by the algorithm has diameter at least three. 

 

4.2.2 Modified HCS Algorithm  

  When there are several minimum cuts in the graph, the algorithm 

might choose a minimum cut which is not best from a clustering point 

view.  In many cases this process will break the cluster into singletons 

[11]. 

Consider Graph (4.1) again. If we choose another cut, and consider 

vertices with minimum degree, the result will be as the following: 

(a)     (b)  
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(c)         (d)  

 

Figure (4.2): Applying HCS Clustering Algorithm To the Graph in Figure (4.1). 

 We can see that the three nodes which form cluster 2 in the previous 

example are taken as singletons, in HCS clustering algorithm there is no 

rule to choose the best minimum cut. To solve this problem we modify 

HCS algorithm as the follows: 

Perform several iteration of the HCS algorithm until no new cluster is 

found [19] . 

 

4.3 HCS Analysis  

    After we study HCS clustering algorithm, and apply it to many 

algorithms we reach to the following result.  

     First: The HCS clustering algorithm depends on the connectivity of 

the graph, inn the following graph k (G) = 1  

  

Figure (4.3) Random Unweighted Graph 
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   If we apply HCS clustering algorithm, most of the nodes in the graph 

will be taken as singletons.   

Second: It is clear that the cut will be for the edge E.  If we cut this  

edge, the result will be 2 clusters, C1(1,2,3,4,5) , C2(6,7,8,9,10)).   But 

when we look at C1 we find that 1)1( =Ck  and 5)1( =CN  (N(C1)= 

number of nodes in C1) which gives 
2

)1( NCk < .   This means that C1 is 

not highly connected and we can't consider it as a cluster in HCS 

algorithm and the same thing is true for C2. 

   So I see that can modify HCS algorithm as follows: 

1- The edge that we chose to cut must be between two nodes whose 

degrees are greater than one. 

2- Give more properties for the cluster. 

 

4.4 Properties of Cluster  

     In all method of clusters the main point was how to decide the 

number of clusters, and when we can consider the subgraph a cluster. 

   After deep studying to different methods of clustering we find that the 

cluster must have one of these properties: 

Suppose P is a subgraph, and N is the order of P :  
1- Connectivity of graph (

2
)( NPk > ). 

2- The maximum shortest path between any two nodes must be at most 

2 ( 2)( ≤Pdiam ) . 
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3- When the average clustering coefficient of the nodes in the graph  

equal zero and there is a node adjacent to at least 40% of the nodes and 

the other nodes have degree at most 2 and )(Pdiam is not greater than 4 

( 4)( ≤Pdiam )in this case we consider the subgraph a cluster . 

Clustering coefficient (C): is the number of triangle around the node 

divide by number of expected triangle  

∑
−

=

= 1

1

d

i

i

tC                        (3.1) 

Where d is the degree of node, t number of triangle around the node. 

(in Figure(4.3) the walk (7, 9, 10, 7) is a triangle around node 7, the 

expected triangles around node 7 are(7,9,10,7), (7,9,8,7), (7,9,6,7), 
(7,10,8,7), (7,10,6,7), (7,8,6,7). 

6
1)7( =tCoefficienClustering ). 

 

4.5 Analysis   

    In the previous chapter we discussed the bridging nodes and we saw 

that the bridging node lies between modules and it has the highest 

bridging centrality. 

     Scale-free network is a graph that has a small number of nodes with 

high degrees and these nodes are adjacent to nearly 70% of other  nodes.  

The other nodes have small degrees.  When we apply any clustering 

method to this kind of graph we find that each of the nodes that have 

high degree lies in a cluster and the bridging nodes in this kind of graph 

is very clear.  Consider the following graph. 
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Figure (4.4): Scale-Free Network.  

Figure (4.4) presents a scale-free network where the gray nodes have the 

highest bridging centrality.  If we cut the edges between these nodes, 

referring bold edges, we will have an isolated graph and each part can 

be considered a cluster. 

From that result we find that we can reach to isolated modules if we 

cut the edges between the nodes that have high bridging centrality and 

these modules can be considered clusters when we deal with scale-free 

network.  

 

4.6 Highest Bridging Centrality Cut Algorithm  

    After deep studying of clustering method and several iterations, we 

reach to a new algorithm for clustering that depends on bridging 

centrality, CR, of the nodes in the graph.   This algorithm computes the 

bridging centrality for each node and then finds the highest 25% of 

values (x=max(CR)-(max(CR)-min(CR))/4).   Then for each node that has 

CR greater than x, it finds the highest CR for its neighbor and cuts the  
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edges between these two nodes. But there is the main condition for cut:  

we can't cut an edge between two nodes one of them having 0=RC . 

The module P  is defined as a cluster if it satisfies one of the 

following properties : 

 1-    ( 2)( ≤Pdiam ) . 

2 -   Average clustering coefficient= 0  and there is a node adjacent to at 

least 40% of the nodes and the other nodes have degree at most two.   In 

this case we consider the subgraph as a cluster. 

We called this algorithm Highest Bridging Centrality Cut algorithm 

(HCRC Algorithm). 

Algorithm (4.2): The HCRC Clustering Algorithm: 

HCRC(G) 

 CR  array contain bridging centrality /*CR(i)=bridging 

centrality 

                                                                            for node i*/ 

x=max(CR(i)) – (max(CR(i)-min(CR(i))/4 

for i=1:N //N number of nodes in the graph 

if CR(i)>=x  

 cut the edge between node i and max(CR(neighbor of i)) 

end  

end 

 t=number of parts that the graph split into  

for i=1:t 

if P(i) is a cluster //the properties of  the cluster that we discuss  
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   P(i) is a cluster 

Else 

   HCRC (P(i)) 

end 

end 

     Example (4.2): 

A  

B  

 

C 
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D 

Figure (4.5): Applying HCRC Algorithm for Clustering. 

Applying   HCRC algorithm: 

(A) Step 1: 

Compute CR for each node: 

Node 1 2 3 4 5 6 7 

CR 0.008527 0.0 0.0 0.0 0.0 0.0 0.0 

Node 8 9 10 11 12 13 14 

CR 0.000000 0.101504 0.092552 0.015363 0.0 0.0 0.145092 

Node 15 16 17 18 19 20 21 

CR 0.170526 0.017105 0.0 0.0 0.0 0.042857 0.0 

127895.0)
4

0.0170526.0(170526.0 =
−

−=x  

There are two nodes having values of  CR  greater than 0.127895.  These 

nodes are 15 and 14. 

Ne(15) = {10,16}    ,  max(CR) = 0.092552   and this is for node 10. 

Then we cut the node between nodes 15 and 10. 

 

 



  
 

70 

Ne(14) = {10 , 11 , 16} , max(CR) = 0.092552 and this is for node 10. 

Then we cut the node between node 14 and 10. 

The symbol Ne(i) denotes the neighbors of node i, i.e the set of nodes 

that are adjacent to node i. 

   After cutting these two edges the graph still consist of one part.   

(B) Step 2  

compute CR for the graph  

Node 1 2 3 4 5 6 7 

CR 0.008224 0.0 0.0 0.0 0.0 0.0 0.0 

Node 8 9 10 11 12 13 14 

CR 0.0 0.37218 0.37218 0.035338 0.0 0.0 0.65311 

Node 15 16 17 18 19 20 21 

CR 0.0 0.017193 0.0 0.0 0.0 0.042857 0.0 

489433.0
4

)0.065311.0(65311.0 =
−

−=x  

Ne(14) = {11 , 16}  , max(CR) = 0.035338 and this is for node 11. Then 

we cut the edge between nodes 14, 11. 

After step 2, we find that the graph splits into 2 parts, P1 and P2.  we 

note that  P1  is not cluster(it doesn't satisfy any of clusters properties 

that we apply) while P2  is a cluster and it satisfies the third property. 

(C) Step 3: 

Compute CR for P1 . 
Node 1 2 3 4 5 6 7

CR 0.01189 0.0 0.0 0.0 0.0 0.0 0.0 

Node 8 9 10 11 12 13  
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CR 0.0 0.251748 0.251748 0.027146 0.0 0.0  

188811.0
4

)0.0251748.0(251748.0 =
−

−=x  

Ne(9) = {1 , 11} , max(CR) = 0.027146  and this value is for node 11. 

The we cut the edge between nodes 9 and 11. 

Ne(10) = {1 , 11} , max(CR) = 0.027146 and this is for node 11.  The we 

cut the edge between nodes 10 and 11. 

We see that P1 splits into 2 parts P11 and P12 where each of them is a 

cluster and it satisfies the second property. 

Here we stop. 

 

4.7 Properties of HCRC Algorithm  

    After making the comparison between HCRC algorithm and several 

different algorithms we find that this algorithm has the following 

properties: 

1- The average running time of this algorithm is smaller than other 

algorithms. 

2- The cluster is homogeneous if it satisfies properties one or two. 

3- Property 3 gives the algorithm more validity exactly when we deal 

with scale-free network.  This is because in scale-free network, when 

we apply clustering method some modules of the graph will have 

one center and the other nodes will have degree at most two. This is 

well seen in the following graph. 
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Figure (4.6): Small Unweighted Undirected Graph 

If we want to split this graph by applying any of the clustering methods, 

the result will be very small parts, consisting of two nodes.  

So the third condition gives this algorithm more validity for properties 

of clusters.  

 

4.8 Comparison Between HCS Algorithm and HCRC 

Algorithm  

After applying HCS algorithm and HCRC algorithm to many 

different networks, we find that there are several differences 

between these two algorithms. 

    1- Applying to scale-free network 

We can't apply HCS algorithm to scale-free network because of  the 

following reasons:  

 a- The minimum cut in scale-free network is equal to one.  So applying 

this algorithm will result in many singletons. 

 b- The number of clusters will be very large and the average size will 

be very small, because the clusters must be highly connected. 

HCRC algorithm is  suitable for scale-free network. 

2- Applying to random network 
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Both HCS algorithm and HCRC algorithm are suitable for random 

networks. 

3- Running time  

 HCRC algorithm running time is smaller than the HCS algorithm 

running time. 

    The running time for HCS algorithm = 2X*f(N,E) and the modified 

HCS algorithm will take at least twice this time and depending on the 

different clusters hat occur in each iteration  

     We can't give main equation to the running time of HCRC algorithm 

because it depends on the place of bridging nodes in each iteration. 

 

Example (4.3) 

 

Figure (4.7) random unweighted graph   
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Figure (4.8): Apply HCS Algorithm to Graph in Figure (4.7), 

 When we apply HCS algorithm to the graph on Figure (4.7) the 

minimum cut comes to be equal to two. There are many minimum cuts. 

The first iteration A we get two clusters.  The second  iteration B we get 

two clusters, one is new. The third iteration C we get three clusters but 

there is no new cluster.  Then we have three clusters. 

 

Figure (4.9): Apply HCRC Algorithm to the Graph in Figure (4.7)  

When we apply HCRC clustering algorithm to the graph in Figure (4.7) 

the highest 25% of CR are the edge between nodes 4 and 10, and the  
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edge between nodes 4 and 6, in the second iteration the highest 25% of 

CR are the edges between nodes 9 and 2, and the edge between nodes 5 

and 7. We reach to the same clusters that we reach to when we use HSC 

clustering algorithm only in two steps. 

 

4.9 Conclusion  

The main purpose in this thesis was to find new clustering algorithms 

depending on the Bridging Centrality of the graph. 

    There are different clustering algorithms depend on the weight of the 

graph. We can split these algorithms into two main categories: 

Hierarchical clustering algorithm (such as Single linkage method)  and 

Partitioned clustering algorithm (such as K-means algorithm) these 

methods are suitable for weighted graphs.  

     But when we want to cluster unweighted graphs we must deal with 

other algorithms which depend on the properties of the graph not on the 

weight of the edges. One of these algorithms was Highly Connected 

Subgraph (HCS) algorithm of clustering, that algorithm depends on the 

connectivity of the graph. In this algorithm we cut the number of edges 

whose removal disconnects the graph, and identifies highly connected 

subgraph as cluster. But single vertices are not considered clusters and 

they are grouped in a singleton set (S). Some times when there are 

several minimum cuts in the graph, the algorithm might chose a 

minimum cut which is not best from a clustering point view.  In many  
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cases this process will break the cluster into singletons. Modified HCS 

algorithm solve this problem by performing several iteration of the HCS 

algorithm until no new cluster is found. 

       But if we apply this algorithm to scale-free network in most times 

the minimum cut will be equal to one, so we will have many single 

nodes. To solve this problem we suggest some conditions on the cut and 

on the properties for the cluster.  

        After deep studying and iterations we reach to a new algorithm for 

clustering. This algorithm depends on the Bridging Centrality of the 

graph. This algorithm cut the edges between the nodes that have highest 

Bridging Centrality. And we define the subgraph as a cluster if it 

satisfies one of the conditions that we defined in sectio (4.4).         

Example(4.4)  

Large unweighted graph  

By applying HCRC Algorithm on large graph. 
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Figure (4.10): Large Unweighted Scale-Free Network Example (4.4) step1. 
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Figure (4.11): Large Unweighted Scale-Free Network Example (4.4) Step2. 
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Figure (4.12): Large Unweighted Scale-Free Network Example (4.4) Step3. 
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Figure (4.13): Large Unweighted Scale-Free Network Example (4.4) Step 4. 
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Figure (4.14): Large Unweighted Scale-Free Network Example (4.4) Step 5. 
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Figure (4.15): Large Unweighted Scale-Free Network Example (4.4) Step 6. 
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Figure (4.16): Large Unweighted Scale-Free Network Example (4.4) Step 7. 
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Figure (4.17): Large Unweighted Scale-Free Network Example (4.4) Step8. 
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Figure (4.18): Large Unweighted Scale-Free Network Example (4.4) Step 9. 
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When we apply HCRC clustering algorithm the clustering will be as 

following: 

Step1: when we calculate CR for all the nodes in Figure (4.13) we find that 

the highest 25% of CR is for node (60) we cut the edge between this node 

and the highest CR of its neighbors. The graph split into two parts 1P  and 2P  , 

but we can't consider one of then a cluster. 

Step 2: we calculate CR to the two parts we reach to in step1, in part one we 

find that the highest 25% of CR is for nodes (58,65,66,75,70) we cut the 

edges between these nodes and the nodes that have highest CR of there 

neighbors. And in 2P  we find that the highest 25% of CR if for node (30). 

We repeat this operation until each sub graph consider as a cluster, satisfy 

the properties in section(4.4) 

In this example we reach to 13 clusters. 
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Appendices 

 

Appendix (A) 

My Matlap Programs: 

 

 program to find CR(Bridging centrality) 

Clc 

clear all 

n=input('enter number of nodes in the graph: '); 

A=enter(n); 

BC=BC(A,n); 

CB=CB(A,n); 

for i=1:n 

    CR(i)=CB(i)*BC(i); 

end 

fprintf('CB\t\t\tBC\t\t\tCR\n'); 

for i=1:n 

    fprintf('%f\t%f\t%f\n',CB(i),BC(i),CR(i)); 

end 

 

Note: A = enter(n) is a function to enter the adjacency matrices.  

You can choose the kind of graph (star, tree, bipartite, line, or 

random graph). BC(A,n) is a function to find Bridging coefficient od  
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the graph. CB(A,n) is a function to find Betweenness Centrality of 

the graph. 

 

Function Enter  

function [A]=enter(n)    

fprintf('1- star \n2- Cycle \n3- Complete graph \n4- Path \n5- Complete 

Bi-partite \n6- Random graph\n') 

s=input('Enter number of graph kind\n'); 

if s==1 

    A=zeros(n); 

    A(1,:)=1; 

    A(:,1)=1; 

    A(1,1)=0; 

    else if s==2 

             A=zeros(n); 

             A(1,2)=1; 

             A(1,n)=1; 

             A(n,1)=1; 

             A(n,n-1)=1; 

             for q=2:(n-1) 

                 A(q,q-1)=1; 

                 A(q,q+1)=1; 

             end 

        else if s==3 
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                A=zeros(n); 

                for k=1:n 

                    A(k,:)=1; 

                    A(k,k)=0; 

                end 

            else if s==4 

                    A=zeros(n); 

                    A(1,2)=1; 

                    A(n,n-1)=1; 

                    for r=2:(n-1) 

                        A(r,r-1)=1; 

                        A(r,r+1)=1; 

                    end 

                else if s==5 

                        x1=input('number of nodes in part one'); 

                        x2=n-x1; 

                        A=[zeros(x1),ones(x1,x2);ones(x2,x1),zeros(x2)]; 

     

                    else if s==6 

                            for t=1:n 

                                for l=t:n 

                                    fprintf('entry %d %d:',t,l) 

                                    A(t,l)=input(''); 

                                    A(l,t)=A(t,l); 
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                               End 

                            end 

                        end 

                    end 

                End 

            end 

        end 

end 

End 

 

Function to find Bridging Coefficient 

function [BC]=BC(A,n) 

for i=1:n 

    N(i)=0; 

    for j=1:n 

        if A(i,j)==1; 

        N(i)=N(i)+1; 

        end 

    end 

end 

%BC 

for i=1:n 

    t=0; 

    for j=1:n 
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   if A(i,j)==1  

            t=t+1/N(j); 

        end 

    end 

    BC(i)=(1/N(i))/t; 

End 

 

Function to find Betweenness Centrality 

function [CB]=CB(A,n) 

Num=A;%number of shortest path 

L=A;%length of shortest path 

for k=2:n-1 

     B=A^k; 

    for i=1:n 

        for j=1:n 

            if Num(i,j)==0  

                Num(i,j)=B(i,j); 

                L(i,j)=k; 

                Num(j,i)=Num(i,j); 

                L(j,i)=L(i,j); 

            end 

            if i==j 

                Num(i,j)=0; 

                L(i,j)=0; 
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            End 

        end 

    end 

end 

%calculate Bridging Centrality (CB) 

for i=1:n 

    s=0; 

    for j=1:n 

        if j~=i 

        for k=1:n 

            if k~=i 

                if L(j,k)<L(j,i)+L(i,k) 

                    t=0; 

                else 

                    t=Num(j,i)*Num(i,k)/Num(j,k); 

                end 

                s=s+t; 

            end 

        end 

        end 

    end 

    CB(i,1)=s/((n-1)*(n-2)); 

End 
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Floyd's Algorithm  

Clc 

clear all 

n=input('Enter number of vertices\n'); 

 

for i=1:n 

    for j=1:n 

        fprintf('entry %d %d',i,j) 

        A(i,j)=input(''); 

     end 

end 

for i=1:n 

    for j=1:n 

        if A(i,j)==0 && i~=j 

            I(i,j,1)=Inf; 

        else  
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            I(i,j,1)=A(i,j); 

        end 

    end 

end 

%%%%%%%%%%%%% 

for k=1:n 

    for i=1:n 

        for j=1:n 

            if I(i,j,k)<(I(i,k,k)+I(k,j,k)) 

                I(i,j,k+1)=I(i,j,k); 

            else 

                I(i,j,k+1)=I(i,k,k)+I(k,j,k); 

            end 

        end 

    end 

end 

I 



  
 

99 

Appendix (B) 

The Adjacency Matrix For Small Unweighted Graph in Figure(3.1) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01100000000
10010000000
10010000000
01101000000
00010010000
00000010000
00001101100
00000010010
00000010010
00000001101
00000000010

A  
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Appendix (C) 

The Adjacency Matrix For Unweighted Graph in Figure (4.2) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010000000000000000000
100001000000000000000
000001000000000000000
000001000000000000000
000001000000000000000
011110110000000000000
000001000001000000000
000001000011000000000
000000000010000000000
000000000010000000000
000000011101100000000
000000110010000000001
000000000010000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000001111111110

A
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Appendix (D) 

The Adjacency Matrix For Large Unweighted Graph in Figure (4.13) 

Column 1-30: 

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Column 31-60: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1



  
 

106 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0



  
 

107 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Column 61-90: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1; 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0];
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 التجسير المرآزي في الشبكات الحرة

 باستخدام عقدة الجسر آمرجع للتجميع

  إعداد

  هند علي احمد عيد

  إشراف

  صبحي رزية. د

  

  الملخص

وذلك لأهمية تطبيقاته في , الرسوم هو احد اشهر المواضيع في الرياضيات نظرية

ودراسة بعض  آما ان استخدام هذه التطبيقات يساعدنا في فهم, حل الكثير من المشاآل

  .الظواهر الطبيعية

بالاضافة . يرآز هذا العمل بشكل اساسي على دراسة الشبكات الحرة وخصائصها

الى انه رآز على دراسة طرق التجميع مع محاولة التوصل الى خوارزمية جديدة 

وآذلك التجسير المرآزي لكل عقدة في . للتجميع مستخدما خصائص الشبكات الحرة

  .الشبكة

وبعد , ير المرآزي يعتمد على البينية المرآزية وآذلك معامل التجسيران التجس

دراسة عميقة لهذه القيم في الشبكات الحرة لاحظنا وجود علاقة بين هذه القيم لعقدة 

  .معينة وموقعها في الشبكة

في النهاية تمكنا من ايجاد العلاقة بين قيمة التجسير المرآزي لكل عقدة وموقعها 

مكنا من ايجاد خوارزمية جديدة للتجميع تعتمد على التجسير المرآزي وت, في الشبكة

  . لكل عقدة
 



  
 

 

  جامعة النجاح الوطنية   

  آلية الدراسات العليا   

  

  

  

  

  

  

 التجسير المرآزي في الشبكات الحرة

 باستخدام عقدة الجسر آمرجع للتجميع

  

  
  إعداد

  هند علي احمد عيد

  

  إشراف 

  صبحي رزية. د

  

  

ذه ا  دمت ه ي     ق تير ف ة الماجس ى درج ول عل ات الحص تكمالا لمتطلب ة اس لاطروح

ابلس           ة في ن ة النجاح الوطني ا في جامع ة الدراسات العلي , الرياضيات المحوسبة بكلي

  .فلسطين

م2010     




