
An-Najah National University

Faculty of Graduate Studies

Bridging Centrality in Scale-Free Network
Using Bridging Node as the Boundary of

Clustering

By

Hind Ali Ahmad Eid

Supervisor

Dr . Subhi Ruzieh

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Computational Mathematics, Faculty of Graduate Studies, at

An-Najah National University, Nablus, Palestine.

2010

III

Dedication

I would like to present my thesis to my parents to mother-in-law,

to my husband Haytham Halabi , and to my daughters Haneen

and Azzah .

IV

Acknowledgement

First of all I would like to thank my supervisor Dr. Subhi Ruzieh

efforts and important guidance for the completion of this thesis.

V

 الاقرار

:تحمل العنوان انا الموقع ادناه مقدم الرسالة التي

Bridging Centrality in Scale-Free Network
Using Bridging Node as the Boundary of

Clustering
الشبكات الحرةالتجسير المرآزي في

للتجميعة الجسر آمرجع عقدباستخدام
رة اليه باستثناء ما تمت الاشا, اقر بأن ما اشتملت عليه هذه الرسالة انما هي نتاج جهدي الخاص

أو أي جزء منها لم يقدم من قبل لنيل اية درجة علمية أو بحث , وأن هذه الرسالة آكل, حيثما ورد

.لدى أية مؤسسة تعليمية أو بحثية أخرى

Declaration

The work provided in this thesis, unless otherwise references, is

the researcher's own work, and has not been submitted elsewhere

for any other degree or Qualification.

Student's name: اسم الطالبة :

Signature: التوقيع:

Date :التاريخ :

VI

Table of Content

no Content Page

 Dedication III

 Acknowledgement IV

 Declaration V

 Table of Content VI

 Table of Tables IX

 Table of Figures X

 New Accomplish XII

 Abstract XIII

Chapter One

Introduction
1

1.1 Graph Theory 1

1.2 Main Definitions in Graph Theory 2

1.2.1 Graph 2

1.2.2 Definitions 2

1.3 Scale-Free Network 8

1.3.1 Definition 8

VII

1.3.2 History of Scale-Free Network 9

1.4 Clustering 10

1.5 Bridging Centrality 11

1.6 Highest Bridging Centrality Cut Algorithm 11

Chapter Two

Scale-Free Network
12

2.1 Scale-Free Network 12

2.1.1 Definition 12

2.1.2
Comparison Between Complex and

Scale-Free Network
13

2.2 Power Law Distribution 19

2.3 Clustering 21

2.3.1 Definition 21

2.3.2 Clustering Method 22

2.3.2.1 Hierarchical Clustering 22

2.3.2.2 Partitioned Clustering 28

Chapter Three

Bridging Centrality
37

VIII

3.1 Bridging Centrality 37

3.2 Bridging Coefficient 37

3.3 Betweenness Centrality 39

3.4 Special Cases 49

3.4.1 Complete Graph 49

3.4.2 Complete Bi-partite Graph 50

3.4.3 Star Graph. 52

3.4.4 Cycle Graph 53

3.4.5 Path Graph 56

Chapter Four

Clustering Analysis In Unweighted Graph
59

4.1 Unweighted Graph 59

4.2
Highly Connected Subgraph Clustering

algorithm
59

4.2.1 Properties of HCS Clustering 62

4.2.2 Modified HCS Algorithm 62

4.3 HCS Analysis 63

4.4 Properties of Cluster 64

IX

4.5 Analysis 65

4.6
Highest Bridging Centrality Cut

Algorithm
66

4.7 Properties of HCRC Algorithm 71

4.8
Comparison Between HCS Algorithm and

HCRC Algorithm
72

4.9 Conclusion 75

 References 88

Appendices 91

 Appendix(A) My Matlap Programs 91

Appendix(B) The Adjacency Matrix For

Small Unweighted graph in figure(3.1)
99

Appendix(C) The Adjacency Matrix For

Unweighted Graph in Figure (4.2)
100

Appendix(D) The Adjacency Matrix For

Large Unweighted Graph in Figure

(4.13)

101

 ب الملخص

X

Table of tables

N

o
Table

Pag

e

2.

1
The Values of inγ and outγ For Some Scale-Free Networks. 20

3.

1
 Values of CR , BC , CB For the Graph in Figure (3.1) 48

XI

Table of Figures

no Figure Page

1.1 Graph G (5, 7) 2

1.2 Graph G (7,9) 3

1.3 (a) Weighted Graph (b) Unweighted Graph 4

1.4 (a) Directed Graph. (b) Undirected Graph 5

1.5 Complete Graph 5

1.6 Star Graph 6

1.7 Complete Bi-Partite Graph 6

1.8 4-Partite Graph 7

1.9 6-Cycle Graph 7

1.10 Path Graph 7

1.11 Directed Graph G. 8

2.1 Random and Scale-Free Network 12

2.2 (a) Random Network , (b)Scale-Free Network 13

2.3 Difference (1) between Random and Scale-Free Network. 14

2.4 Difference(2) Between Random and Scale-Free Network. 15

2.5 Different (3) Between Random and Scale-Free Network 15

XII

2.6 Map of Italian Cities 24

2.7 Step 1 We Cluster MI and TO in One Item. 25

2.8 In Step 2 We Cluster RM and NA In to One Item. 26

2.9 Step3 We Cluster BA With NA\RM Into One Item. 26

2.10 In Step 4 We Cluster FI With BA\NA\RM. 27

2.11
 Steps of Hierarchal Clustering Using Agglomerative and

Divisive Method
28

2.12 Graph of the Nodes IN Example(2.5), 31

2.13 Clusters in Iteration Two Example (2.5) 32

2.14 Cluster of Iteration Three Example (2.5) 34

2.15 Cluster of Iteration Four Example(2.5) 35

3.1 Simple Graph 43

3.2 Random Unweighted Graph 47

3.3 5-Cycle Graph 53

3.4 6-Cycle Graph 54

4.1 An Example on HCS Clustering Algorithm 61

4.2
We Can See that the Three Nodes Which Form Cluster 2 in

the Previous Example are Taken as Singletons
63

XIII

4.3 Random Unweighted Graph 63

4.4 Scale-Free Network 66

4.5 Applying HCRC Algorithm for Clustering 69

4.6 Small Unweighted Undirected Graph 72

4.7 random unweighted graph 73

4.8 When We Apply HCS Algorithm to Graph in Figure (4.7), 74

4.9
When We Apply HCRC Algorithm to the Graph in Figure

(4.7) We Get Three Clusters Only in Two Step
74

4.10
 Large Unweighted Scale-Free Network Example (4.4)

step1.
77

4.11 Step 2 in Example(4.4) 78

4.12 Step 3 in Example(4.4) 79

4.13 Step 4 in Example(4.4) 80

4.14 Step 5 in Example(4.4) 81

4.15 Step 6 in Example(4.4) 82

4.16 Step 7 in Example(4.4) 83

4.17 Step 8 in Example(4.4) 84

4.18 Step 9 in Example(4.4) 85

XIV

New Accomplishments

The main aim of our thesis was to reach to a new algorithm for clustering

depend on the bridging centrality of the nodes, and we reach to this result,

and through our research we can reach to many new rules and definitions

that we use from to reach to our result.

First: We can obtain a new algorithm to compute the Betweenness

centrality of the nodes, to compute the bridging centrality of the nodes.

Second: We Derive special cases of Betweenness centrality, bridging

coefficient, end bridging centrality of the nodes for some types of the

graph.

Third: We proposed some modification for highly connected subgraph

algorithm.

Fourth: We define new properties of cluster, that make number of clusters

less and average number of nodes in clusters more. These properties were

more suitable exactly when we deal with scale-free network.

Fifth: We reach to new algorithm for clustering which depend on bridging

coefficient of the nodes (HCRC Algorithm). In this algorithm we can reach

to the same clusters we can reach by using other clustering algorithm, with

less running time.

Sixth: Compare our algorithm with other clustering algorithm.

XVI

Bridging Centrality in Scale-Free Network

Using Bridging Node as the Boundary of Clustering

By

Hind Ali Ahmad Eid

Supervisor

Dr . Subhi Ruzieh

Abstract

Graph theory is one of the most popular fields in mathematics because if

it's important applications in solving many problems in the real world and

under standing many natural phenomena.

This work focuses mainly on studying the scale-free networks and their

properties. Moreover, it deals with the study of clustering methods and

developing a new a new clustering algorithm by using the properties of

scale-free networks. Bridging centrality of the graph together with

Betweenness centrality and bridging coefficients will also be investigated.

Finally we will illustrate how bridging centrality is used in clustering.

This will result in a new algorithm of clustering that is called Highest

Bridging Centrality Cut algorithm (HCRC algorithm). We concluded that

the HCRC algorithm depends on bridging centrality of the nodes.

1

Chapter One
Introduction

1.1 Graph Theory

 In mathematics and computer science, graph theory is the study of

graphs: mathematical structures used to model pair wise relations between

objects from a certain collection.

In the real world graph theory and its applications can solve many

problems such as computer networks, airplane lines, and many other kinds

of networks.

By using graph theory applications we can minimize the cost and

maximize the benefits. For example we can find the shortest path between

any two nodes in any graph. There are many different algorithms which

can solve this problem, and when we say shortest path we don't mean the

distance only. When we deal with weighted graphs, graphs where edges

are assigned weights, we may evaluate a lot of objectives like the minimum

cost, the maximum profit, the minimum distance between two locations

and many other objectives related to maximizing or minimizing problems.

And we can use graph theory applications in organizing steps for solving

some problems such as those related to computer applications, by finding

the critical path, and many other applications.

2

1.2 Main Definitions in Graph Theory

1.2.1 Graph

A graph G is an ordered pair (V (G), E (G)) where V (G) is a set of

nodes (vertices), and E (G) the set of edges, where the number of vertices is

the order of the graph and the number of edges is the size of graph G,

G(p,q) is a graph with order p and the size of the graph = q.

Figure (1.1): Graph G (5, 7)

Graph G(5, 7) in Figure(1.1) is a graph of order = 5(it has five Vertices

(or nodes)) and of size = 7 (it has seven Edges) the set of Vertices

V={1,2,3,4,5}, and the set of Edges E={a,b,c,d,e,f,g}.

1.2.2 Definitions

Let G (p,q) be a graph with order p and size q:

A loop: is an edge whose end vertices are the same vertex.

Multiple edges: are two or more edges joining the same pair of vertices.

A simple graph: is a graph which has neither loops nor multiple edges.

A complex graph: is a graph which has loops or multiple edges or both.

 A walk: an alternating sequence of vertices and edges, beginning and

ending with a vertex.

3

A trail: is a walk in which no edge is repeated.

A path: is a walk in which no vertex is repeated.

A closed walk: is a walk of the form (a , b , c , … , a).

A cycle: is a closed path.

Degree of node: is the number of nodes that are adjacent to this node.

Connected Graph: is the graph that has a path between any two nodes.

Disconnected graph: if there is a pair of nodes in graph has no path

between them the graph is called disconnected graph.

An isolated vertex: is a vertex with degree 0.

An end vertex: is a vertex with degree 1.

Adjacent: two vertices v, w of a graph G are adjacent if there is an

edge between them, and we can say v and w are neighbors, the set of nodes

that are adjacent to node v is N(v).

Example 1.1:

Figure (1.2): Graph G (7,9)

Considering the graph in Figure (1.2)

(A,C,D,B,C,E) is a walk. (B,C,D,B,E) is a trail.

(A,E,C,B,D) is a path. (A,B,C,E,A) is a cycle.

F is an end vertex, G is an isolated vertex.

4

The degree of node C (DEG(C)) = 4, Ne(C)={A,B,D,E}.

The graph G in Figure (1.2) is disconnected graph.

There are different kinds of graphs depending on the kinds of

application we deal with. We will deal with two kinds of graphs according

to the concept adopted.

The first concept of that is related to the weights of the edges in the

graph. According to this concept a graph is either weighted or unweighted.

1- A weighted graph is when the edges in this graph have values or

weights, these values may be lengths, costs, periods or of other

different types, these values are called weights. We may for

example have a graph whose vertices are the cities in some

country and the weights are the distances between the

neighboring cities.

2- AN unweighted graph: may be thought of as a weighted graphs

with all weights being equal to one. An example is a computer

network.

Figure (1.3): (a) Weighted Graph (b) Unweighted Graph

The other concept when dealing with graphs concerns the direction.

Here we look at two types of graphs.

1- A directed graph each edge has a specified direction.

5

2- Undirected graph, we consider that edges to have no restricted

direction and the move can be in either one of the two directions.

Figure (1.4): (a) Directed Graph. (b) Undirected Graph

 There are some special types of graph such as:

- The complete graph G (p, q) every vertex is adjacent to every other

vertex. The degree of a vertex in such a case is p-1. Such a graph,

where all vertices have the same degree is called a regular graph.

Thus the complete graph is a (p-1)-regular graph.

Figure (1.5): Complete Graph.

- Star: the graph take the shape of the star, one node adjacent to all

other nodes (degree of this nodes equal (p-1)). And the other nodes

have degree equal one.

6

Figure (1.6): Star Graph.

- The complete bipartite graph K(m, n) is a simple graph where the

vertex set V(G) is partitioned into two classes of sizes m and n

respectively and where every vertex in one class is adjacent to

every vertex in the other class. Besides that, any two vertices in the

same class are non adjacent. Such a graph clearly has size q = mn.

In general a graph is .

Figure (1.7): Complete Bi-Partite Graph.

- N-partite if is a simple graph where the vertex set V(G) is

partitioned into n classes of sizes m1, m2, …, mn respectively and

where every vertex in any class can be adjacent to any vertex in any

other classes. Besides that, any two vertices in the same class are non

adjacent. Such a graph clearly has size q = m1 m2 … mn

7

Figure (1.8): 4-Partite Graph.

- The P-cycle Cp is a graph that takes the shape of cycle and every

vertex has degree equal to two.

Figure (1.9): 6-Cycle Graph.

- The path is a graph that takes the shape of line. Each vertex has

degree equal two except the first vertex and the last vertex each of

which has degree equal one

Figure (1.10): Path Graph.

8

Adjacency Matrix: The adjacency matrix of a graph G is an n x n matrix

A = a(i,j) in which the
⎩
⎨
⎧

=
wiseother

adjacenareiandinodes
jia

0
1

),(

Distance Matrix: The distance matrix of a graph G is an n x n matrix D

= d(i,j) in which the entry
⎩
⎨
⎧

=
wiseother

adjacenareiandinodesl
jid

0
),(, l is the

distance between nodes I and j.

Example (1.2)

Figure (1.11): Directed Graph G.

Adjacency matrix is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01100
10010
10011
01101
00110

)(GA

The distance matrix is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0171100
1700190
110064
0196012
004120

)(GD

1.3 Scale-Free Network

1.3.1 Definition

Scale-free network is a complex connected graph (network) with the

property that the number of links k originating from a given node exhibits

9

a power law distribution YkkP −~)(where y is the degree exponent

that varies between 2 and 3.[20]

1.3.2 History of Scale-Free Network

 In 1999 the physicist Albert-Laszlo Barabasi and his colleagues at

the university of Notre Dame mapped the connectedness of the Web. To

their surprise, the Web did not have an even distribution of connectivity

(so-called "random connectivity"). Instead, some network nodes had

many more connections than the average. In seeking a simple categorical

label, Barabási and his collaborators called such highly connected nodes

"hubs". In physics, such right-skewed or heavy-tailed distributions often

have the form of a power law. I.e., the probability P(k) that a node in the

network connects with k other nodes was roughly proportional to k−γ, and

this function gave a roughly good fit to their observed data.

10

 After finding that a few other networks, including some social and

biological networks, also had heavy-tailed degree distributions, Barabási

and collaborators coined the term "scale-free network" to describe the

class of networks that exhibit a power-law degree distribution. Soon after,

Amaral et al. showed that most of the real-world networks can be

classified into two large categories according to the decay of P(k) for

large k.[20]

10

1.4 Clustering

Clustering is grouping similar data items together.

There are different clustering algorithms. We can divide clustering

algorithm into two main categories:

1- Hierarchical clustering. This Proceeds successively by either

merging small clustering into larger ones or splitting larger clustering.

2- Partitioned clustering. This attempts to directly decompose the data

set into a set of disjoint clusters.

Each type has different algorithms. A bridging node refers to a node

whose removal disconnects the network.

Many scientist study clustering algorithms and they obtain different

algorithms, in 1999 Erez Hartuv and Ron Shamer reach to new clustering

algorithm called Highly Connected Subgraph clustering algorithm, this

algorithm depend on the connectivity of the graph (the connectivity of the

graph G (or edges connectivity) is the minimum number of edges whose

11

removal disconnect the graph). After that they modify this algorithm by

repeating the algorithm several time until no new cluster appears, because

some times the graph has more than one minimum cut and the algorithm

may chose the wrong cut.

In our thesis we apply this algorithm on scale-free network but the result

was not suitable, exactly in scale-free network there are many end points.

11

1.5 Bridging Centrality

Bridging centrality is a concept used to identify bridging nodes in scale-

free networks. The bridging centrality of node v, ()(vCR), is the product of

the betweenness centrality of the node v, ()(vCB), and the bridging

coefficient of a node v, ()(vBC) (The bridging coefficient of a node

determines the extent of how well the node is located between high degree

nodes, The betweenness centrality is a measure of the global importance of

a node that assesses the proportion of a shortest path between all node pairs

that pass through the node of interest).

In 2006 a group of scientist (Woochang Hwangy ,Young-rae

Choy, Aidong Zhangy, and Murali Ramanathan) study the Bridging

Centrality in scale-free network, and they reach to a result that bridging

nodes lying between highly connected modules in scale-free networks.

(Bridging node: is a node that lies between modules in the graph and its

removal disconnect the graph, the bridging node have high bridging

centrality), in the last of there research the question was if it is possible

to reach to a new algorithm of clustering depend on bridging centrality.

1.6 Highest Bridging Centrality Cut Algorithm

After deep studying for clustering method and bridging centrality of the

node in scale- free network, and several iteration we can reach to a new

clustering algorithm depend on the bridging centrality, we called this

algorithm Highest Bridging Centrality (CR) Cut algorithm IHCRC algorithm.

12

Chapter Two

Scale-Free Network

2.1Scale-Free Network

2.1.1 Definition

Scale-free network is used to give small number of edges high

degree so that these nodes are adjacent to 70% or more of the nodes in the

network and large number of nodes with small degree)

Figure (2.1): Random and Scale-Free Network.

In Figure (2.1) in scale-fee network we can see that the red nodes are

adjacent to 70% of all other nodes(the green nodes), in random network

red points are adjacent to only 10% of all other nodes the.

13

2.1.2 Comparison Between Random and Scale-Free Network

By studying the properties of scale-free network we can find that there

are some differences between random and scale-free network:

1 Scale-free network is more robust against failure[3]:

This means that if we remove some nodes in random way, scale-free

networks are more likely to be connected than random networks.

Example (2.1):

 Figure (2.2): (a) Random Network, (b) Scale-Free Network

If we delete some nodes in random way, the scale-free net work may be

more connected than the random network.

14

Figure (2.3): Difference (1) between Random and Scale-Free Network.

In Figure (2.4) if we cut the same nodes from random and scale-free

network, random network split to more components than scale-free

network.

2- Scale-free networks are more vulnerable against non-random attacks

[3]:

If we remove nodes that have the highest degree, the network will be

quickly disintegrated.

Because in scale-free network the nodes that have high degree are

adjacent to 70% of all nodes, then in removing these nodes, the network

will break down into many components (the network will be

disconnected).

Example (2.2)

Consider the Network in Example (2.1)

15

Figure(2.4): Difference(2) Between Random and Scale-Free Network.

 After removing central nodes we find that the scale-free network

becomes disconnected but a random network stays connected.

3- A scale-free network has a shorter average path length than that in a

random network [3]:

Example (2.3)

Figure (2.5): Different (3) Between Random and Scale-Free Network.

a
b

16

To compute the shortest path between each pair of nodes we use Floyd's

algorithm.

Floyd's algorithm computes the shortest path between any two nodes in

the graph in weighted graph. Here we use this algorithm to compute the

shortest between each pair of nodes in unweighted graph, by giving each

edge weight to one.

Algorithm (2.1): Floyd's algorithm [17]

if i=j then Lij(0)=0

If nodes i and j are adjacent Lij(0)=length of edge ij

else Lij(0) = ∞

for k=1:n

for i=1:n

for j=1:n

Lij(k+1) = min(Lij(k) , Lik(k)+Lkj(k))

End

End

End

17

S=L(n)

 /* S : the array of shortest path s.t. S(i,j)=shortest path between nodes i and j */

To compute the average shortest path we use the following algorithm

Algorithm (2.2): Compute Average Shortest Path

Sum=0;

for i=1:n

 for j=1:n

 sum=sum+S(i,j);

end

end

Average=sum/(n*n);

S1 is the length of the shortest path for the random network in Figure

(2.6) showed in the following matrix:

18

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0362213546734665756
3051322435645776645
6504653124578667534
2140211324534665534
2362013546512443556
1251102435623554645
3231320213445556423
5413542013567556423
4322431102356445312
6544653320154243312
7655564431043132423
3473124655401332465
4584235764310221354
6766455542132021334
6766455544332201132
5675346653221110243
7655564433443312021
5433542211265334201
6544653322354423110

1S

Average shortest path between nodes in the random network = 3.55

S2 is the length of the shortest path for the scale-free network in Figure

(2.6) showed in the following matrix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0232212342234354445
2032212342234354445
3301323453345465556
2210212342234354445
2232012342234354445
1121101231123243334
2232210142234354445
2232212142234354445
3343323102332132223
2232212320232132223
2232212342012354445
3343323433101243334
4454434322210132223
3343323211321021112
5565545433543201334
4454434322432110223
4454434322432132023
4454434322432132201
5565545433543243310

2S

The average shortest path between nodes = 2.80

19

2.2 Power Law Distribution

 Power Law distribution is a polynomial relationship that exhibits the

property of scale invariance.

)()(kk xOaxxf += (2.1)

Where a, k are constant, and)(kxO is an asymptotically small function of

x.[20]

of node's degree is characterized by the degree distribution P(K) which

gives the probability that a randomly selected node has exactly k edges .

 Albert-Laszlo Barabasi, Zoltan Dezso, Erazsebt Ravasz, Soon-Hyung

Yook and Zoltan Oltv reach to a result that for most large networks,

including the World-Wide Web, Internet, metabolic and protein networks,

language or sexual networks, the degree distribution follows a power-law

distribution [6]:

γ−≈ kkP)(

 inkkP γ−≈)(, where inγ is different from one graph to another.

outkkP γ−≈)(, where outγ is different from graph to another.

In the following table we can see the scaling exponents characterizing

the degree distribution of several scale-free networks, for which P(k)

follows a power-law . We indicate the size of the network and its average

20

degree by K For directed networks we list separately the in-degree

(inγ)and out-degree (outγ) exponents, while for the undirected networks,

marked with a star [6]

TABLE (2.1): Values of inγ , outγ and K For Some Scale-Free

Networks. [6]

Network Size K inγ outγ

WWW 325,729 4.51 2.45 2.1

WWW 4X107 7 2.38 2.1

WWW 2X108 7.5 2.72 2.1

Internet , domain *
3,015-

4,389

3.42-

3.76

2.1-

2.2

2.1-

2.2

Internet , router * 3,888 2.57 2.48 2.48

Internet , router * 150,000 2.66 2.4 2.4

Movie actors * 212,250 28.78 2.3 2.3

Coauthors ,SPIRES

*
56,627 173 1.2 1.2

Coauthors , neuru. * 209,293 11.54 2.1 2.1

Coauther , math * 70,975 3.9 2.5 2.5

Metabolic, E.coli 778 7.4 2.2 2.2

Protein, S. cerev.* 1870 2.39 2.4 2.4

Ythan estuary * 134 8.7 1.05 1.05

Silwood park * 154 4.75 1.13 1.13

21

Citation 783,339 8.57 3

Phone-call 53X106 3.16 2.1 2.1

Words, conccurence! 460,902 70.13 2.7 2.7

Words, synonyms! 22,311 13.48 2.8 2.8

Protein, S. Cerev* 9,85 1.83 2.5 2.5

Comic Book

Characters
6,486 14.9 0.66 3.12

E-mail 59,912 2.88 2.03 1.49

Protein Domains* 876 9.32 1.6 1.6

Prot. Dom.

(PromDom)*
5995 2.33 2.5 2.5

Prot. Dom. (Pform)* 2478 1.12 1.7 1.7

Prot. Dom.

(Prosite)*
13.60 0.77 1.7 1.7

From this table we can see clearly that values of inγ , outγ and K

depend on the type and size of network.

2.3 Clustering

2.3.1 Definition:

Clustering is grouping similar data items together [15] .

Clustering motivation:

1- To provide automated tools to help in constructing categories or

taxonomies [15].

2- To minimize the effects of human factors in the process [15].

22

2.3.2 Clustering Methods

There are many different methods (algorithms) for clustering. These

may be divided into two basic types:

1- Hierarchical clustering.

2- Partitioned clustering.

 2.3.2.1 Hierarchical Clustering

Hierarchical clustering Proceeds successively by either merging

small clustering into larger ones or splitting larger clustering [15]. We

can divide hierarchical clustering into two main type: Agglomerative

method, and Divisive method [12][9].

I- Agglomerative hierarchical method: clusters are successively

merged until one cluster remains [9].

There are many different Agglomerative method of clustering. The main

difference between them is in how to compute the distance between any

two clusters. Some of these methods are:

a- Single linkage method: The distance between two clusters is

based on the points in each cluster that are nearest together[9].

),(min ji

Cj
Ci

KL xxdD

L

k

∈
∈

= (2.2)

b- Complete linkage method: The distance between two clusters is

based on the points in each cluster that are furthest apart[9].
),(max ji

Cj
Ci

KL xxdD

L

k

∈
∈

= (2.3)

23

c- Centroid linkage method: The distance between clusters is defined

as the (squared) Euclidean distance between cluster centroids KX

and LX [11] .

2

LKKL XXD −= (2.4)

 Where KX is the center of subgraph K and LX is the center of subgraph

L.

d- Average linkage method: The distance between clusters is the

average distance between pairs of observations [11].
 ∑∑

∈ ∈

=
K LCi Cj

ji
KL

KL xxd
nn

D),(1 (2.5)

Where nL is the number of nodes in subgraph L, and nK is the number of

nodes in subgraph K.

Algorithm(2.3): Agglomerative algorithm (single linkage method)[16]

1. Begin with the disjoint clustering having level L(0) = 0 and

sequence number m = 0.

2. Find the least dissimilar pair of clusters in the current clustering,

say pair (r), (s), according to

d[(r),(s)] = min d[(i),(j)]

where the minimum is over all pairs of clusters in the current clustering.

3. Increment the sequence number : m = m +1. Merge clusters (r) and

(s) into a single cluster to form the next clustering m. Set the level of

this clustering to

24

L(m) = d[(r),(s)]

4. Update the proximity matrix, D, by deleting the rows and columns

corresponding to clusters (r) and (s) and adding a row and column

corresponding to the newly formed cluster. The proximity between the

new cluster, denoted (r,s) and old cluster (k) is defined in this way:

d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)]

5. If all objects are in one cluster, stop. Else, go to step 2.

Example (2.4): [16]

We apply agglomerative algorithm (single linkage method) to cluster some

Italian cities. The distances in kilometers between these cities given in the

matrix.

Figure (2.6): Map of Italian Cities.

B

A
FI

M

I

N

A

R

M

T

O

B 0 6 8 2 4 9

A 62 77 55 12 96

F

I

6

62
0

2

95

4

68

2

68

4

00

25

M

I

8

77

2

95
0

7

54

5

64

1

38

N

A

2

55

4

68

7

54
0

2

19

8

69

R

M

4

12

2

68

5

64

2

19
0

6

69

T

O

9

96

4

00

1

38

8

69

6

69
0

In step 0 we have 6 items each item has only one component, we

called each item cluster.

The matrices show the distance in kilometer between the cities. Form

the adjacency matrix we find that the closest pair of clusters is MI and TO.

In step 1 we cluster MI and TO into one item the distance between the

new item and the other items = minimum distance between MI or TO and

any other nodes.

Figure (2.7): Step 1 We Cluster MI and TO in One Item.

 BA FI MI/TO NA RM

BA 0
66

2
877

25

5

41

2

FI
66

2
0 295

46

8

26

8

MI/TO
87

7

29

5
0

75

4

56

4

26

NA 255 468 754 0 219

RM 412 268 564 219 0

In step 2 the closest pair of clusters is NA and RM, we cluster them in

one cluster.

Figure (2.8): In Step 2 We Cluster RM and NA In to One Item.

B

A
FI

MI/T

O

NA/R

M

BA 0
6

62
877 255

FI
6

62
0 295 268

MI/T

O

8

77

2

95
0 564

NA/R

M

2

55

2

68
564 0

In step 3 the closest pair of clusters is BA and NA\RM

27

Figure (2.9): Step3 We Cluster BA With NA\RM Into One Item.

BA/

NA/RM
FI

MI/T

O

BA

/NA/RM
0

2

68
564

FI 268 0 295

MI/TO 564
2

95
0

In level 4 the closest pair of clusters is BA\ NA\RM and FI

Figure (2.10): In Step 4 We Cluster FI With BA\NA\RM.

BA/FI/

NA/RM

MI/T

O

BA/FI/

NA/RM
0 295

MI/TO 295 0

28

In the last step we have two clusters, which will be clustered into one

cluster.

II - Divisive hierarchical methods: begin with all objects in one cluster.

Groups are continually divided until there are many clusters [9].

Figure (2.11): Steps of Hierarchal Clustering Using Agglomerative and Divisive Method.

If we apply Divisive method on the graph that we explain in Example

(2.4) we start considering all the cities in one cluster then start dividing

the graph until we each city become a cluster.

2.3.2.2Partitioned Clustering

Partitioned clustering, attempts to directly decompose the data set into

a set of disjoint clusters [15].

29

K-means clustering method is a nonhierarchical clustering method ,

which aims to partition n observation into k clusters in which each

observation belongs to the cluster with the nearest center [4][21] .

There are several variants of the k-means clustering algorithm, but most

variants involve an iterative scheme that operates over a fixed number of

clusters, while attempting to satisfy the following properties[5]:

1. Each class has a center which is the mean position of all the samples

in that class.

2. Each sample is in class whose center is closest to.

Algorithm (2.4): Main Algorithm in k-Means Clustering [1]

1. Place K points into the space represented by the objects that are

being clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of

the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This

produces a separation of the objects into groups from which the metric

to be minimized can be calculated.

30

Example (2.5)

Cluster the following point into 3 clusters

{A1(3,5) , A2(5,2) , A3(1,7) , A4(12,1) , A5(10,1), A6(5,11), A7(4,4),

A8(7,10), A9(9,12), A10(10,3)}.

Where the distance between 2 nodes is :

2
21

2
21)()(yyxxd −+−=

Iteration 1

We choose 3 nodes in random way and consider each point as a center

of cluster. Suppose that A1,A3, and A10 are center.

Points
Dist mean1

(3,5)

Dist mean 2

(1,7)

Dist mean 3

(10,3)

Cluste

r

A1(3.5) 0 2.8284 7.2801 1

A2(5.2) 3.6056 6.4031 5.0990 1

A3(1,7)) 2.8284 0 9.8489 2

A4(12,1) 9.8489 12.5300 2.8284 3

A5(10,1) 8.0623 10.8167 2.0000 3

A6(5,11) 6.3246 5.6569 9.4340 2

A7(4,4) 1.4142 4.2426 6.0828 1

A8(7,10) 6.4031 6.7082 7.6158 1

31

A9(9,12) 9.2195 9.4340 9.0554 3

A10(10,3) 7.2801 9.8489 0 3

cluster 1 contain nodes : A1 (3,5) ,A 2 (5,2) , A7 (4,4) , and A8 (7,10)

cluster 2 contain nodes : A3 (1,7) , and A6 (5,11)

cluster 3 contain nodes: A4(12,1), A5(10,1) ,A9(9,12) ,and A10 (10,3)

Figure (2.12): Graph of the Nodes IN Example (2.5), Nodes Colored in Red are the

Centers of the Cluster.

center of cluster 1 =((3+5+4+7)/4, (5+2+4+10)=(4.75, 5.25)

center of cluster 2 =((1+5)/2,(7+11)/2) = (3 , 9)

center of cluster 3 =((12+10+9+10)/4,(1+1+12+3)/4) =(10.25, 4.25)

32

Iteration 2

Points
Dist mean 1

(4.75,5.25)

Dist mean2

(3,9)

Dist mean 3

(10.25,4.25)
Cluster

A1(3.5) 1.7678 4 7.2887 1

A2(5.2) 3.2596 7.2801 5.7118 1

A3(1,7)) 4.1382 2.8284 9.6501 2

A4(12,1) 8.4039 12.0416 3.6912 3

A5(10,1) 6.7546 10.6301 3.2596 3

A6(5,11) 5.7554 2.8284 8.5513 2

A7(4,4) 1.4577 5.0990 6.2550 1

A8(7,10) 5.2559 4.1231 6.6049 2

A9(9,12) 7.9765 6.7082 7.8502 2

A10(10,3) 5.7118 9.2195 1.2748 3

cluster 1 contain nodes : A1 (3,5) ,A 2 (5,2) ,and A7 (4,4)

cluster 2 contain nodes: A3(1,7), A6 (5,11), A8 (7,10) ,and A9 (9,12)

cluster 3 contain nodes : A4 (12,1) , A5 (10,1),and A10 (10,3)

33

Figure (2.13): Clusters in Iteration Two, the Point Colored in Red are the Centers of

the Clusters.

center of cluster 1 = (4 , 3.6667)

center of cluster 2 = (5.5 , 10)

center of cluster 3 = (10.6667 , 1.6667)

Iteration 3

Points
Dist mean 1

(4,3.6667)

Dist mean2

(5.5 , 10)

Dist mean 3

(10.6667,1.6667)
Cluster

A1(3.5) 1.6667 5.5902 8.3600 1

A2(5.2) 1.9437 8.0156 5.6765 1

A3(1,7)) 4.4845 5.4083 11.0403 1

A4(12,1) 8.4327 11.1018 1.4907 3

34

A5(10,1) 6.5659 10.0623 0.9428 3

A6(5,11) 7.4012 1.1180 10.9189 2

A7(4,4) 0.3333 6.1847 7.0632 1

A8(7,10) 7.0079 1.5000 9.1043 2

A9(9,12) 9.7183 4.0311 10.4669 2

A10(10,3) 6.0369 8.3217 1.4907 3

cluster 1 contain nodes : A1 (3,5) , A2 (5,2) , A3(1,7), and A7 (4,4)

cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9(9,12)

cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , and A10 (10,3)

Figure (2.14): Cluster of Iteration Three.

35

center of cluster 1 = (3.25 , 4.5)

center of cluster 2 is (7 , 11)

center of cluster 3 is (10.6667 , 1.6667)

Iteration 4

Points
Dist mean1

(3.25 , 4.5)

Dist mean 2

(7 , 11)

Dist mean 3

(10.6667 , .6667)

Cluste

r

A1(3.5) 0.5590 7.2111 8.3600 1

A2(5.2) 3.0516 9.2195 5.6765 1

A3(1,7)) 3.3634 7.2111 11.0403 1

A4(12,1) 9.4240 11.1803 1.4907 3

A5(10,1) 7.6035 10.4403 0.9428 3

A6(5,11) 6.7315 2 10.9189 2

A7(4,4) 0.9014 7.6158 7.0632 1

A8(7,10) 6.6568 1 9.1043 2

A9(9,12) 9.4505 2.2361 10.4669 2

A10(10,3

)
6.9147 8.5440

1.4907
3

 cluster 1 contain nodes : A1 (3,5) , A2 (5,2) , A3 (1,7), and A7 (4,4)

cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9 (9,12)

 cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , A10 (10,3)

36

Figure (2.15): Cluster of Iteration Four.

We repeat the same iteration until no new centers for the cluster appear.

In this example we reach to the following three clusters:

 Cluster 1 contain nodes: A1(3,5), A2(5,2), A3(1,7) ,and A7 (4,4) . Center

of cluster 1 is: (3.25 , 4.5).

Cluster 2 contain nodes : A6 (5,11) , A8 (7,10) , and A9 (9,12).

 Center of cluster two is: (7 , 11) .

Cluster 3 contain nodes : A4 (12,1) , A5 (10,1) , andA10 (10,3) .

 Center of cluster three is: (10.667 , 1.667).

37

Chapter Three

 Bridging Centrality
3.1 Bridging Centrality

 A bridging node is a node located between modules. It is a node that

connects densely connected components in a graph. The bridging nodes

in a graph are identified on the basis of their high value of bridging

centrality relative to other nodes in the same graph(or a concept and

formula to identify bridging nodes in scale-free networks). Bridging

centrality of a node measures the global and local features of a node,

respectively. Bridging centrality of node v, ()(vCR), is the product of the

betweenness centrality of a node v, ()(vCB), and the bridging coefficient

of a node v, ()(vBC) .[13]

)(*)()(VCVBCVC BR = (3.1)

 To evaluate Bridging Centrality, we need to evaluate the bridging

coefficient (BC) and betweenness centrality (CB).

3.2 Bridging Coefficient

 The bridging coefficient of a node determines the extent of how

well the node is located between high degree nodes.

∑
∈

−

−

=

)(

1

1

)(
)()(

vNi
iD

vDVBC (3.2)

 The symbol D(v) denotes the degree of node v (number of nodes

directly connected to node v), and N(v) denotes the neighbors of node v

38

(is the set of nodes that are adjacent to node v). [13] To evaluate

bridging coefficient, we need to find the degree of each node. From the

adjacency matrix we can find the matrix Ne which is (n, 1) matrix where

Ne(i,1) = deg(i)). Then from A and Ne we find the vector BC, where

BC(i) equal the bridging coefficient for node i.

We write the following algorithm to compute BC(v) for Vv∈ .

Algorithm (3.1): BC Algorithm.

function [bc]

//first we find Ne for the graph

for i=1:n

 Ne(i)=0;

 for j=1:n

 if A(i,j)==1;

 Ne(i)=Ne(i)+1;

 end

 end

end

//finding BC for each node

for i=1:n

 t=0;

 for j=1:n

 if A(i,j)==1

 t=t+1/Ne(j);

 end

39

 end

 BC(i)=(1/Ne(i))/t;

End

3.3 Betweenness Centrality

 The betweenness centrality is a measure of the global importance of

a node that assesses the proportion of a shortest path between all node

pairs that pass through the node of interest.

))2(*)1((
)(

,,

−−= ∑
∈
≠≠

nn
v

C
Vvts

vts st

st
B σ

σ (3.3)

Where σst denotes the number of shortest path from s to t and σst(v)

denotes number of shortest paths from s to t that pass through node

v .[13]

⎩
⎨
⎧ +<

=
otherwise

tvdvsdtsd
V

vtsv

GGG
st σσ

σ
*

),(),(),(0
)((3.4)

The number (n-1)*(n-2) gives the number of pairs in the graph

excluding vertex v .

Betweenness Centrality is important in the analysis of social network

but is costly to compute. The following algorithm is called "The faster

algorithm" written by Ulrik Brandes and is applied to compute CB in

unweighted undirected graph.

The algorithm is [7]

40

Algorithm (3.2): Faster Algorithm to Find CB

CB[v]=0 ,v ∈ V;

for s ∈ V do

 S is empty stack;

 P[w] is empty list , w ∈ V;

 σ[t]=0 , t ∈ V ; σ[s]=1;

 d[t]=-1 ,t ∈ V; d[s]=0;

 Q is empty queue ;

 Enqueue (s,Q);

 while Q not empty do

 dequeue(v,Q);

 push (v,S);

 for w ∈ N(v) do

 if d[w]<0 then

 enqueue(w,Q);

 d[w]=d[v]+1;

 end

 if d[w]=d[v]+1 then

 σ[w]= σ[w]+ σ[v];

 append(v,P[w])

 end

 end

 end

 δ[v]=0 , v ∈ V;

41

while S not empty do

 pop(w,S);

 for v ∈ P[w] do

 δ[v] = δ[v]+(σ[v]/ σ[w])*(1+ δ[w]);

 end

 if w ≠ s then

 CB[w]= CB[w] + δ[w];

 δ[w]

 end

 end

end

 After deep study of this subject, we reached to another algorithm

that depends on two main matrices. The first of which is the matrix (S1)

where S1(i,j) = number of shortest path from node i to node j ,(i , j ∈V)

and the second matrix is (S2) where S2(i,j) = length of shortest paths from

node i to j,(i , j ∈ V).

 Algorithm (3.3): CB Algorithm

function [cb]

compute Num % this array contain number of shortest path between

 any two nodes we assume that this array was computed%

compute L % this array contain length of shortest path between

 any two nodes we assume that this array was computed%

//calculate Bridging Centrality (CB)

for i=1:n

42

 s=0;

 for j=1:n

 if j~=i

 for k=1:n

 if k~=i

 if L(j,k)<L(j,i)+L(i,k)

 t=0;

 else

 t=Num(j,i)*Num(i,k)/Num(j,k);

 end

 s=s+t;

 end

 end

 end

 end

 CB(i,1)=s/((n-1)*(n-2));

End

 Our algorithm is easier to understand by any average person with little

information about programming as a math student. But Ulrik Brandes

algorithm needs deep understanding of data structure to understand.

Example (3.1):

We apply our Algorithms Algorithm(3.1) to compute BC and

Algorithm(3.3) to compute CR on the graph in Figure(3.1).

43

Figure (3.1): Simple Graph

Here we show how we compute BC and CR for nodes 2 and 3 :

First (BC)

To compute BC we need the adjacency matrix and the degree of each node,

the adjacency matrix is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011100
100010
100111
101011
011101
001110

A ,

The vector Ne contain the degree of each node, the vector is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3
2
4
4
4
3

Ne

n=6, number of nodes

0)2,2(2
3
101)1,2(1

02

==

+===

==

Aj

tAj

ti

44

4
1

3
11)3,2(3 +=== tAj

0)6,2(6
2
1

4
1

4
1

3
11)5,2(5

4
1

4
1

3
11)4,2(4

==

+++===

++===

Aj

tAj

tAj

1875.0
4
3*

4
1))2(

1(
)2(

3
4

===

=

t
NeBC

t

3
1

4
1

4
1

3
11)6,3(6

0)5,3(5
4
1

4
1

3
11)4,3(4

0)3,3(3
4
1

3
11)2,3(2

3
101)1,3(1

03

+++===

==

++===

==

+===

+===

==

tAj

Aj

tAj

Aj

tAj

tAj

ti

214286.0
7
6*

4
1))3(

1(
)3(

6
7

===

=

t
NeBC

t

We compute BC for the other way in the same way

Second (CB):

To compute CB we need two arrays: One- (Num) this array contain number

of shortest path between any two nodes. Two- (L) this array contain length

of shortest path between any two nodes.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011132
102211
120111
121011
311101
211110

Num

45

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011122
102212
120111
121011
211101
221110

L

Here we will compute CR for nodes 2 and 3:

10)(211)1,2()2,3(1)1,3(13
2

10)(321)6,2()2,1(2)6,1(6

11
1

1*1)(211)5,2()2,1(2)5,1(5

00)(211)4,2()2,1(1)4,1(4
00)(211)3,2()2,1(1)3,1(3

)(2
)(11

02

=⇒=⇒=+=+<===
==

=⇒=⇒=+=+<==

=+=⇒==⇒=+=+<==

=⇒=⇒=+=+<==
=⇒=⇒=+=+<==

==
===

==

sttrueLLLkj
ijj

sttrueLLLk

tsstfalseLLLk

sttrueLLLk
sttrueLLLk

ikk
jkkj

si

2
30)(211)5,2()2,4(2)5,4(5

4

2
2
1

2
3

2
1

2
1*1)(211)3,2()2,4(1)3,4(3

2
2
30)(211)1,2()2,4(1)1,4(14
2
30)(321)6,2()2,3(1)6,3(6

2
3

2
11

2
1

2
1*1)(211)5,2()2,3(2)5,3(5

10)(211)4,2()2,3(1)4,3(4
3
2

=⇒=⇒=+=+<==

==

=+=⇒==⇒=+=+<==

==

=⇒=⇒=+=+<===

=⇒=⇒=+=+<==

=+=⇒==⇒=+=+<==

=⇒=⇒=+=+<==
==
==

stfalseLLLk

jkk

sttrueLLLk

ikk

sttrueLLLkj

sttrueLLLk

stfalseLLLk

sttrueLLLk
jkk
ikk

4
2
1

2
7

2
1

2
1*1)(111)4,2()2,5(2)4,5(4

2
7

2
13

2
1

2
1*1)(211)3,2()2,5(2)3,5(3

2

3121
1

1*1)(211)1,2()2,5(2)1,5(15

20)(321)6,2()2,4(1)6,4(6

=+=⇒==⇒=+=+<==

=+=⇒==⇒=+=+<==

==

=+=⇒==⇒=+=+<===

=⇒=⇒=+=+<==

stfalseLLLk

stfalseLLLk

ikk

stfalseLLLkj

sttrueLLLk

46

jkk
sttrueLLLk
sttrueLLLk
sttrueLLLk

ikk
sttrueLLLkj
sttrueLLLk

jkk

==
=⇒=⇒=+=+<==
=⇒=⇒=+=+<==
=⇒=⇒=+=+<==

==
=⇒=⇒=+=+<===
=⇒=⇒=+=+<==

==

6
40)(312)5,2()2,6(1)5,6(5
40)(312)4,2()2,6(1)4,6(4
40)(312)3,2()2,6(1)3,6(3

2
40)(312)1,2()2,6(2)1,6(16
40)(321)6,2()2,5(1)6,5(6

5

2.0
5*4

4)2(==BC

6
50)(211)6,3()3,4(1)6,4(6
6
50)(321)5,3()3,4(2)5,4(5

4
3

6
50)(211)2,3()3,4(1)2,4(2
6
50)(211)1,3()3,4(1)1,4(14

3
6
5

3
1

2
1

3
1*1)(211)6,3()3,2(2)6,2(6

2
10)(321)5,3()3,2(1)5,2(5

2
10)(211)4,3()3,2(1)4,2(4

3
2

2
10)(211)1,3()3,2(1)1,2(12

2
1

2
10

2
1

2
1*1)(211)6,3()3,1(2)6,1(6

00)(321)5,3()3,1(2)5,1(5
00)(211)4,3()3,1(1)4,1(4

3
00)(211)2,3()3,1(1)2,1(2

11
03

=⇒=⇒=+=+<==

=⇒=⇒=+=+<==

==
==

=⇒=⇒=+=+<==

=⇒=⇒=+=+<===

==

=+=⇒=⇒=+=+<==

=⇒=⇒=+=+<==

==⇒=+=+<==

==
==

=⇒=⇒=+=+<===

=+===⇒=+=+<==

=⇒=⇒=+=+<==
=⇒=⇒=+=+<==

==
=⇒=⇒=+=+<==

===
==

sttrueLLLk

sttrueLLLk

jkk
ikk

sttrueLLLk

sttrueLLLkj

ijj

stfalseLLLk

sttrueLLLk

sttrueLLLk

ikk
jkk

sttrueLLLkj

sttrueLLLk

sttrueLLLk
sttrueLLLk

ikk
sttrueLLLk

jkkj
si

47

ikk

sttrueLLLk

sttrueLLLkj

==

=⇒=⇒=+=+<==

=⇒=⇒=+=+<===

3
6
50)(212)2,3()3,5(1)2,5(2
6
50)(312)1,3()3,5(2)1,5(15

jkk

sttrueLLLk

sttrueLLLk

ikk

stfalseLLLk

stfalseLLLkj

sttrueLLLk

jkk

sottrueLLLk

==

==⇒=+=+<==

==⇒=+=+<==

==

=+=⇒==⇒=+=+<==

=+=⇒==⇒=+=+<===

=⇒=⇒=+=+<==

==

=⇒=⇒=+=+<==

6
3
50)(321)5,3()3,6(1)5,6(5
3
50)(211)4,3()3,6(1)4,6(4

3
3
5

3
1

3
4

3
1

3
1*1)(211)2,3()3,6(2)2,6(2

3
4

2
1

6
5

2
1

2
1*1)(211)1,3()3,6(2)1,6(16

6
50)(312)6,3()3,5(1)6,5(6

5
6
5)(312)4,3)3,5(2)4,5(4

083333.0
4*5

3
5

)3(==BC

017857.0214286.0*083333.0)3(
0375.01875.0*2.0)2(

==
==

R

R

C
C

We compute BC, CB, and CR for the other nodes in the same way, and we

reach to the following result:

033333.0)6(333333.0)6(10.0)6(
028571.0)5(857143.0)5(033333.0)5(
017857.0)4(214286.0)4(083333.0)4(

0.0)1(444444.0)1(0.0)1(

===
===
===

===

RB

RB

RB

RB

CBCC
CBCC
CBCC

CBCC

Example(3.2)[13]

Figure (3.2): Random Unweighted Graph

48

We apply our Algorithms: Algorithm (3.1) to compute BC and

Algorithm (3.3) to compute CR on the graph in Figure(3.1)

 The six nodes that have the highest values of Bridging centrality are:

49

Table(3.1): Values of CR , BC , CB For the Graph in Figure (3.1).

Node v

Deg(v

) CB(v) BC(v) CR(v)

E 2 0.53333 0.85714 0. 45713

B 2 0.15555 0.85714 0.13333

D 2 0.15555 0.85714 0.13333

F 3 0.47777 0.22222 0.10617

A 4 0.65555 0.10000 0.06555

J 3 0.21111 0.16666 0.03519

We compute CB(v), BC(v) and CR(v) by using our algorithm.

From these result we arrange the nodes according to the values of the

coefficients in an descending order as follows:

1- Bridging Coefficient : E, B, D, F, J, A

2- Betweenness Centrality : A, E, F, J, D, B

3- Bridging Centrality: E, B, D, F, A, J.

Vertex A has the highest degree, thus it has the highest Betweenness

Centrality. From the graph we can see that vertex A lies in the center of

the graph, and the number of shortest paths that pass through this node is

the highest. Vertices E, D and B have the highest value of Bridging

Coefficient , from the definition of bridging node ,node E is bridging

node in this graph, A and F are also bridging nodes

49

 From this result and after studying many examples, we see that

there will be a relation between bridging node and clustering. Our goal is

to expire this kind of relation. This work will appear in the next chapter.

3.4 Special Cases:

In the following cases we use V = number of nodes in the graph.

3.4.1. Complete Graph

 We state the values of Bridging Centrality (CR) Bridging Coefficient

(BC) and Betweenness Centrality (CB) in the case of the complete graph

a- The betweenness centrality 0)(=vCB for all v∈V

Proof:

In complete graph every node is adjacent to all other nodes. This

means that length of a shortest path between any two nodes is equal to

one.

dG(s,t) = 1 for all s, t ∈ V s ≠ t]

dG(s,v) + dG(v,t) = 2

From equation(3.4) σst(v) = 0 for all s, t ∈ V.

Then from equation(3.3) 0)(=vCB for all v∈V.

b- The bridging coefficient is

1
1)(
−

=
n

vBC (3.5)

Proof :

50

∑
∈

−

−

=

)(

1

1

)(
)(

vNi

iD
vDBC

VvnvD ∈∀−= 1)(

1
1)1(

1
)1(

1
1
)1()(1

11

−
=−=

−
=

−
−
−

= −
−−

n
nn

n
n

nvBC

c- The bridging centrality is 0)(=vCR for all v∈V

Proof :

)(*)()(vCvBCvC BR =

0)(=vCB for all Vv∈ in complete graph

 0)(=vCR for all Vv∈ in complete graph

3.4.2. Complete Bi-partite Graph

We state the values of Bridging Centrality (CR) Bridging Coefficient

(BC) and Betweenness Centrality (CB) in the case of the complete bi-

partite graph.

Let n1 = order of V1 and n2 = order of V2. Then we have the

following:

a-
)2)(1(

)(*)1(*)/1(
)(

−−

−
=

nn
nnn

vC jji
B iVv∈ (3.6)

Proof:

Let 1Vv∈ then:

⎪
⎩

⎪
⎨

⎧

∈∈
∈
∈

=

21

21

12

,1
,
,

VtVs
Vtsn
Vtsn

stσ

51

And
⎪
⎩

⎪
⎨

⎧

∈∈
∈
∈

=

21

2

1

,0
,1
,0

)(
VtVs

Vts
Vts

vstσ

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈∈

∈

∈

=⇒

21

2
1

1

0

,1
,0

)(

VandtVs

Vts
n

Vts
v

st

st

σ
σ

))1)(1((

)
)(

(

)(
2,

−−=⇒

∑
≠≠
∈

nn

v

vC vts
Vts st

st

B

σ
σ

There are ()1(* 22 −nn) pairs of 2, Vts ∈ , then:

)2(*)1(

)1(*)(*)1(
)(

22
1

−−

−
=

nn

nnn
vCB

In the same way we prove CB for node 2Vv∈ as follow:

)2(*)1(

)1(*)(*)1(
)(

11
2

−−

−
=

nn

nnn
vCB

i

jj
i

B Vv
nn

nnn
vC ∈

−−

−
=⇒

)2(*)1(

)1(*)(*)1(
)(

b- Bridging Coefficient :

i
j

i Vv
n
n

vBC ∈= 2)((3.7)

Proof :

Let 1Vv∈

∑
∈

−

−

=

)(

1

1

)(
)(

vNi
iD

vDBC

{ }
1

2

2

)(
,)(

)(

niD
ViivN

nvD

=
∈=

=

52

2
2

1

2
1

2

*1

1
)(

n
n

n
n

n
vBC ==⇒

c- Bridging Centrality :

)(*)()(vCvBCvC BR =

))(2)(1(
)1(

)(
j

j
R nnn

n
vC

−−

−
= 1Vv∈ (3.8)

3.4.3. Start graph

 We state the values of Bridging Centrality (CR) Bridging Coefficient

(BC) and Betweenness Centrality(CB) in the case of the star graph.

We consider the star as a special case of the bipartite

n1 = 1, n2 = (n - 1)

For the center:

a- Betweenness Centrality

CB(v) =
)2)(1(

)(*)1(*)/1(221

−−
−
nn

nnn

CB(v) =
)2)(1(

)1(*)2(*)1/1(
−−

−−

nn
nn

CB(v) = 1

b- Bridging Coefficient 2
2

1)(
n
nvBC =

2)1(
1)(
−

=
n

vBC (3.9)

c- Bridging Centrality:

2)1(
1)(
−

=
n

vCR (3.10)

For the other nodes

53

a- Betweenness Centrality

CB(v) =
)2)(1(

)(*)1(*)/1(221

−−
−
nn

nnn

CB(v) =
)2)(1(

)1(*)11(*))1/(1(
−−
−−

nn
n ⇒ CB(v) = 0

b- Bridging Coefficient

2
1

2)(
n
nVBC = =

1
)1(−n)1()(−=⇒ nvBC (3.11)

c- Bridging Centrality :

CR(v) = 0

3.4.4. Cycle graph

 We state the values of Bridging Centrality (CR) Bridging Coefficient

(BC) and Betweenness Centrality (CB) in the case of the cycle graph

a- Betweenness Centrality

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−

−
−

−−

−+−

=

∑

∑

−

=

−

=

oddisn
nn

in

evenisn
nn

inn

vC
n

i

n

i

B

,
)2)(1(

)
2

1(2

,
)2)(1(

)
2

(2)1
2

(

)(
2

3

1

1
2

2

 (3.12)

We reach to this result by several iteration with different weight of

graphs.

Example (3.3):

Figure (3.3): 5-Cycle Graph.

54

The adjacency matrix for the graph is:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01001
10100
01010
00101
10010

A

The number of shortest path between any pair of nodes given in the array

(Num) and the length of shortest path between any pair of nodes given in

array (L).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01111
10111
11011
11101
11110

Num and

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01221
10122
21012
22101
12210

L

 Compute CB for node (1):

 The maximum shortest path in Figure (3.3) = 2 (the maximum shortest
path =

2
)1(−n), each pair of nodes have only one shortest path between, the

shortest paths that pass through node (1) are: the path from node 2 to node

5, and the path from node 5 to node 2, there are two shortest paths pass
through node 1(or

2
)1(−n shortest path pass from node1). Then:

2
1
0

1
0

1
1

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

)1(
.....

)1()1()(

4,5

4,5

4,2

4,2

3,2

3,2

1,,
1

=+++++++++++=

+++=∑
∈
≠≠ σ

σ
σ
σ

σ
σ

σ
σ

Vts
ts st

st v

166667.0

)25)(15(
2)1(=

−−
=BC

55

In the same way we compute CB for the other nodes in the graph and we

find that they have the same value.

Example (3.4):

Figure (3.4): 6-Cycle Graph.

The adjacency matrix for the graph is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010001
101000
010100
001010
000101
100010

A

The number of shortest path between any pair of nodes given in the array

(Num) and the length of shortest path between any pair of nodes given in

array (L).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011211
101121
110112
011011
121101
112110

Num and

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

012321
101232
210123
321012
232101
123210

L

 Compute CB for node (1):

 The maximum shortest path in Figure (3.3) = 3 (the maximum shortest
path =

2
n), each pair of nodes have either one pr two shortest path between,

56

the shortest paths that pass through node (1) are the path between each pair

of the following: (2,5),(5,2),(2,6),(6,2),(3,6), and (6,3) there are six

shortest paths pass through node 1(or n shortest path pass from node1),

four pairs have two shortest path one pass through node 1.

 Then:

20.0
)26)(16(

4)(

4
1
1

1
1

2
1

2
1

2
1

2
1)(

1,,
1

=
−−

=

=+++++=∑
∈
≠≠

vC

v

B

Vts
ts st

st

σ
σ

In the same way we compute CB for the other nodes in the graph and we

find that they have the same value.

We apply the same operation for cycle graph gave order (7,8,9,10) until we

reach to the result in equation (3.12).

b- Bridging Coefficient

 5.0)(=vBC

Proof :

∑
∈

−

−

=

)(

1

1

)(
)(

vNi
iD

vDBC

D(v) = 2 for any vertex v in the Cycle.

5.0

2
1

2
1

2
1

)(=
+

=vBC

c- Bridging Centrality:

CR(v) = BC(v) * CB(v)

57

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−

−
−

−−

−+−

=

∑

∑

−

=

−

=

oddisn
nn

in

evenisn
nn

inn

vC
n

i

n

i

R

,
)2)(1(

)
2

1(2

,
)2)(1(

)
2

(2)1
2

(

*5.0)(
2

3

1

1
2

2

3.4.5. Path graph

We state the values of Bridging Centrality (CR) Bridging Coefficient (BC)

and Betweenness Centrality(CB) in the case of the path graph

a. Betweenness Centrality :

)2)(1(
)1)((2)(

−−
−−

=
nn
iinvC iB (3.13)

where v denotes the number of nodes

Proof :

 In the path any node v is in the shortest path between any two nodes

that lie on the different side of v, and there is only one shortest path

between any two nodes. Node v divides the path into two parts:

 Part one contains (i-1) nodes, while part two contains (n-i) nodes.

Each node in part one has only one shortest path to any node in part two,

58

and the opposite is true, and this path (shortest path) passes through

node v.

))2(*)1((
)(

)(
,,

−−= ∑
∈
≠≠

nn
v

vC
Vvts

vts st

st
B σ

σ

Vts
v

st

st ∈∀= ,1
)(

σ
σ and from different part

⇒
)2)(1(
)1)((2)(

−−
−−

=
nn
iinvC iB

b- Bridging Coefficient

⎪
⎩

⎪
⎨

⎧
−==

==
=

otherwise
nvv

nvv
vBC

5.0
)1(,2333333.0

,12
)(

Proof :

 In path D(1) = 1, D(n) = 1 , D(v) = 2 for all other nodes.

∑
∈

−

−

=

)(

1

1

)(
)(

vNi
iD

vDBC

2
2

1
1

1
)1(==BC ,

333333.0
3
1

2
1

1
1

2
1

)2(==
+

=BC

5.0

2
1

2
1

2
1

)(=
+

=vBC

59

Chapter Four

Clustering Analysis in Unweighted Graphs
4.1 Unweighted Graph

An unweighted graph is a graph whose edges have no values. When

we deal with unweighted graph we consider the weight of each edge to

be equal to one. When we want to apply the method of cluster to this

type of graph, the clustering methods that we saw in chapter two are not

suitable because they depend on the weight of the graph. There are other

methods of clustering that depend on the properties of the graph not on

the weight of the graph, such as the connectivity of the graph as in HCS

clustering algorithm.

4.2. Highly Connected Subgraph Clustering Algorithm

Highly Connected Subgraph (HCS) algorithm of clustering depends

on the connectivity of the graph.

Connectivity of the graph G, denoted by k(G), is the minimum

number of edges whose removal gives a disconnected graph. The set of

removed edges is called a cut. If k(G)=L, then the graph G is called an

L-connected graph.

 HCS algorithm identifies highly connected Subgraph as cluster (We
consider the graph highly connected if k(G) >

2
N , but single vertices are

not considered clusters and they are grouped in a singleton set

(S)[11][19] .

60

Algorithm (4.1): HCS Clustering Algorithm[19]

HCS(G(V,E))

begin

 (H, H’,C) MINCUT(G)

 if G is highly connected

 then return (G)

 else

 HCS(H)

 HCS(H’)

 end if

end

The running time of HCS algorithm is 2X*f(N,E) where X denotes

the number of clusters and f(N,E) denotes the time complexity of

computing a minimum cut in a graph with N vertices and E edge) [19].

Example (4.1)

(a)

61

(b)

(c)

(d)

Figure(4.1): An Example on HCS Clustering Algorithm

We apply HCS clustering algorithm on the graph on Figure(4.1)

 (a) the graph.

(b) minimum cut edges are denoted by broken line.

 (c) after first cut the first Subgraph is highly connected
(5.23,5.2

2
5,3)(>==Hk) this is the first cluster.

 (d) after the other minimum cut there are 3 subgraph each subgraph is

highly connected then there are 3 cluster.

62

4.2.1 Properties of HCS Clustering [19]:

In this respect, we note the following observations:

1- The diameter of every highly connected graph is at most two.

 The diameter of connected graph G, diam(G), is the maximum distance

between any two vertices in the graph G.

2- Any two vertices are either adjacent or share one or more common

neighbors.

3- It shows a strong indication of homogeneity.

4- Any non-trivial set split by the algorithm has diameter at least three.

4.2.2 Modified HCS Algorithm

 When there are several minimum cuts in the graph, the algorithm

might choose a minimum cut which is not best from a clustering point

view. In many cases this process will break the cluster into singletons

[11].

Consider Graph (4.1) again. If we choose another cut, and consider

vertices with minimum degree, the result will be as the following:

(a) (b)

63

(c) (d)

Figure (4.2): Applying HCS Clustering Algorithm To the Graph in Figure (4.1).

 We can see that the three nodes which form cluster 2 in the previous

example are taken as singletons, in HCS clustering algorithm there is no

rule to choose the best minimum cut. To solve this problem we modify

HCS algorithm as the follows:

Perform several iteration of the HCS algorithm until no new cluster is

found [19] .

4.3 HCS Analysis

 After we study HCS clustering algorithm, and apply it to many

algorithms we reach to the following result.

 First: The HCS clustering algorithm depends on the connectivity of

the graph, inn the following graph k (G) = 1

Figure (4.3) Random Unweighted Graph

64

 If we apply HCS clustering algorithm, most of the nodes in the graph

will be taken as singletons.

Second: It is clear that the cut will be for the edge E. If we cut this

edge, the result will be 2 clusters, C1(1,2,3,4,5) , C2(6,7,8,9,10)). But

when we look at C1 we find that 1)1(=Ck and 5)1(=CN (N(C1)=

number of nodes in C1) which gives
2

)1(NCk < . This means that C1 is

not highly connected and we can't consider it as a cluster in HCS

algorithm and the same thing is true for C2.

 So I see that can modify HCS algorithm as follows:

1- The edge that we chose to cut must be between two nodes whose

degrees are greater than one.

2- Give more properties for the cluster.

4.4 Properties of Cluster

 In all method of clusters the main point was how to decide the

number of clusters, and when we can consider the subgraph a cluster.

 After deep studying to different methods of clustering we find that the

cluster must have one of these properties:

Suppose P is a subgraph, and N is the order of P :
1- Connectivity of graph (

2
)(NPk >).

2- The maximum shortest path between any two nodes must be at most

2 (2)(≤Pdiam) .

65

3- When the average clustering coefficient of the nodes in the graph

equal zero and there is a node adjacent to at least 40% of the nodes and

the other nodes have degree at most 2 and)(Pdiam is not greater than 4

(4)(≤Pdiam)in this case we consider the subgraph a cluster .

Clustering coefficient (C): is the number of triangle around the node

divide by number of expected triangle

∑
−

=

= 1

1

d

i

i

tC (3.1)

Where d is the degree of node, t number of triangle around the node.

(in Figure(4.3) the walk (7, 9, 10, 7) is a triangle around node 7, the

expected triangles around node 7 are(7,9,10,7), (7,9,8,7), (7,9,6,7),
(7,10,8,7), (7,10,6,7), (7,8,6,7).

6
1)7(=tCoefficienClustering).

4.5 Analysis

 In the previous chapter we discussed the bridging nodes and we saw

that the bridging node lies between modules and it has the highest

bridging centrality.

 Scale-free network is a graph that has a small number of nodes with

high degrees and these nodes are adjacent to nearly 70% of other nodes.

The other nodes have small degrees. When we apply any clustering

method to this kind of graph we find that each of the nodes that have

high degree lies in a cluster and the bridging nodes in this kind of graph

is very clear. Consider the following graph.

66

Figure (4.4): Scale-Free Network.

Figure (4.4) presents a scale-free network where the gray nodes have the

highest bridging centrality. If we cut the edges between these nodes,

referring bold edges, we will have an isolated graph and each part can

be considered a cluster.

From that result we find that we can reach to isolated modules if we

cut the edges between the nodes that have high bridging centrality and

these modules can be considered clusters when we deal with scale-free

network.

4.6 Highest Bridging Centrality Cut Algorithm

 After deep studying of clustering method and several iterations, we

reach to a new algorithm for clustering that depends on bridging

centrality, CR, of the nodes in the graph. This algorithm computes the

bridging centrality for each node and then finds the highest 25% of

values (x=max(CR)-(max(CR)-min(CR))/4). Then for each node that has

CR greater than x, it finds the highest CR for its neighbor and cuts the

67

edges between these two nodes. But there is the main condition for cut:

we can't cut an edge between two nodes one of them having 0=RC .

The module P is defined as a cluster if it satisfies one of the

following properties :

 1- (2)(≤Pdiam) .

2 - Average clustering coefficient= 0 and there is a node adjacent to at

least 40% of the nodes and the other nodes have degree at most two. In

this case we consider the subgraph as a cluster.

We called this algorithm Highest Bridging Centrality Cut algorithm

(HCRC Algorithm).

Algorithm (4.2): The HCRC Clustering Algorithm:

HCRC(G)

 CR array contain bridging centrality /*CR(i)=bridging

centrality

 for node i*/

x=max(CR(i)) – (max(CR(i)-min(CR(i))/4

for i=1:N //N number of nodes in the graph

if CR(i)>=x

 cut the edge between node i and max(CR(neighbor of i))

end

end

 t=number of parts that the graph split into

for i=1:t

if P(i) is a cluster //the properties of the cluster that we discuss

68

 P(i) is a cluster

Else

 HCRC (P(i))

end

end

 Example (4.2):

A

B

C

69

D

Figure (4.5): Applying HCRC Algorithm for Clustering.

Applying HCRC algorithm:

(A) Step 1:

Compute CR for each node:

Node 1 2 3 4 5 6 7

CR 0.008527 0.0 0.0 0.0 0.0 0.0 0.0

Node 8 9 10 11 12 13 14

CR 0.000000 0.101504 0.092552 0.015363 0.0 0.0 0.145092

Node 15 16 17 18 19 20 21

CR 0.170526 0.017105 0.0 0.0 0.0 0.042857 0.0

127895.0)
4

0.0170526.0(170526.0 =
−

−=x

There are two nodes having values of CR greater than 0.127895. These

nodes are 15 and 14.

Ne(15) = {10,16} , max(CR) = 0.092552 and this is for node 10.

Then we cut the node between nodes 15 and 10.

70

Ne(14) = {10 , 11 , 16} , max(CR) = 0.092552 and this is for node 10.

Then we cut the node between node 14 and 10.

The symbol Ne(i) denotes the neighbors of node i, i.e the set of nodes

that are adjacent to node i.

 After cutting these two edges the graph still consist of one part.

(B) Step 2

compute CR for the graph

Node 1 2 3 4 5 6 7

CR 0.008224 0.0 0.0 0.0 0.0 0.0 0.0

Node 8 9 10 11 12 13 14

CR 0.0 0.37218 0.37218 0.035338 0.0 0.0 0.65311

Node 15 16 17 18 19 20 21

CR 0.0 0.017193 0.0 0.0 0.0 0.042857 0.0

489433.0
4

)0.065311.0(65311.0 =
−

−=x

Ne(14) = {11 , 16} , max(CR) = 0.035338 and this is for node 11. Then

we cut the edge between nodes 14, 11.

After step 2, we find that the graph splits into 2 parts, P1 and P2. we

note that P1 is not cluster(it doesn't satisfy any of clusters properties

that we apply) while P2 is a cluster and it satisfies the third property.

(C) Step 3:

Compute CR for P1 .
Node 1 2 3 4 5 6 7

CR 0.01189 0.0 0.0 0.0 0.0 0.0 0.0

Node 8 9 10 11 12 13

71
CR 0.0 0.251748 0.251748 0.027146 0.0 0.0

188811.0
4

)0.0251748.0(251748.0 =
−

−=x

Ne(9) = {1 , 11} , max(CR) = 0.027146 and this value is for node 11.

The we cut the edge between nodes 9 and 11.

Ne(10) = {1 , 11} , max(CR) = 0.027146 and this is for node 11. The we

cut the edge between nodes 10 and 11.

We see that P1 splits into 2 parts P11 and P12 where each of them is a

cluster and it satisfies the second property.

Here we stop.

4.7 Properties of HCRC Algorithm

 After making the comparison between HCRC algorithm and several

different algorithms we find that this algorithm has the following

properties:

1- The average running time of this algorithm is smaller than other

algorithms.

2- The cluster is homogeneous if it satisfies properties one or two.

3- Property 3 gives the algorithm more validity exactly when we deal

with scale-free network. This is because in scale-free network, when

we apply clustering method some modules of the graph will have

one center and the other nodes will have degree at most two. This is

well seen in the following graph.

72

Figure (4.6): Small Unweighted Undirected Graph

If we want to split this graph by applying any of the clustering methods,

the result will be very small parts, consisting of two nodes.

So the third condition gives this algorithm more validity for properties

of clusters.

4.8 Comparison Between HCS Algorithm and HCRC

Algorithm

After applying HCS algorithm and HCRC algorithm to many

different networks, we find that there are several differences

between these two algorithms.

 1- Applying to scale-free network

We can't apply HCS algorithm to scale-free network because of the

following reasons:

 a- The minimum cut in scale-free network is equal to one. So applying

this algorithm will result in many singletons.

 b- The number of clusters will be very large and the average size will

be very small, because the clusters must be highly connected.

HCRC algorithm is suitable for scale-free network.

2- Applying to random network

73

Both HCS algorithm and HCRC algorithm are suitable for random

networks.

3- Running time

 HCRC algorithm running time is smaller than the HCS algorithm

running time.

 The running time for HCS algorithm = 2X*f(N,E) and the modified

HCS algorithm will take at least twice this time and depending on the

different clusters hat occur in each iteration

 We can't give main equation to the running time of HCRC algorithm

because it depends on the place of bridging nodes in each iteration.

Example (4.3)

Figure (4.7) random unweighted graph

74

Figure (4.8): Apply HCS Algorithm to Graph in Figure (4.7),

 When we apply HCS algorithm to the graph on Figure (4.7) the

minimum cut comes to be equal to two. There are many minimum cuts.

The first iteration A we get two clusters. The second iteration B we get

two clusters, one is new. The third iteration C we get three clusters but

there is no new cluster. Then we have three clusters.

Figure (4.9): Apply HCRC Algorithm to the Graph in Figure (4.7)

When we apply HCRC clustering algorithm to the graph in Figure (4.7)

the highest 25% of CR are the edge between nodes 4 and 10, and the

75

edge between nodes 4 and 6, in the second iteration the highest 25% of

CR are the edges between nodes 9 and 2, and the edge between nodes 5

and 7. We reach to the same clusters that we reach to when we use HSC

clustering algorithm only in two steps.

4.9 Conclusion

The main purpose in this thesis was to find new clustering algorithms

depending on the Bridging Centrality of the graph.

 There are different clustering algorithms depend on the weight of the

graph. We can split these algorithms into two main categories:

Hierarchical clustering algorithm (such as Single linkage method) and

Partitioned clustering algorithm (such as K-means algorithm) these

methods are suitable for weighted graphs.

 But when we want to cluster unweighted graphs we must deal with

other algorithms which depend on the properties of the graph not on the

weight of the edges. One of these algorithms was Highly Connected

Subgraph (HCS) algorithm of clustering, that algorithm depends on the

connectivity of the graph. In this algorithm we cut the number of edges

whose removal disconnects the graph, and identifies highly connected

subgraph as cluster. But single vertices are not considered clusters and

they are grouped in a singleton set (S). Some times when there are

several minimum cuts in the graph, the algorithm might chose a

minimum cut which is not best from a clustering point view. In many

76

cases this process will break the cluster into singletons. Modified HCS

algorithm solve this problem by performing several iteration of the HCS

algorithm until no new cluster is found.

 But if we apply this algorithm to scale-free network in most times

the minimum cut will be equal to one, so we will have many single

nodes. To solve this problem we suggest some conditions on the cut and

on the properties for the cluster.

 After deep studying and iterations we reach to a new algorithm for

clustering. This algorithm depends on the Bridging Centrality of the

graph. This algorithm cut the edges between the nodes that have highest

Bridging Centrality. And we define the subgraph as a cluster if it

satisfies one of the conditions that we defined in sectio (4.4).

Example(4.4)

Large unweighted graph

By applying HCRC Algorithm on large graph.

77

Figure (4.10): Large Unweighted Scale-Free Network Example (4.4) step1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

78

Figure (4.11): Large Unweighted Scale-Free Network Example (4.4) Step2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

79

Figure (4.12): Large Unweighted Scale-Free Network Example (4.4) Step3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

5

5

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

7

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

80

Figure (4.13): Large Unweighted Scale-Free Network Example (4.4) Step 4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

81

Figure (4.14): Large Unweighted Scale-Free Network Example (4.4) Step 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

82

Figure (4.15): Large Unweighted Scale-Free Network Example (4.4) Step 6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

83

Figure (4.16): Large Unweighted Scale-Free Network Example (4.4) Step 7.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

84

Figure (4.17): Large Unweighted Scale-Free Network Example (4.4) Step8.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

85

Figure (4.18): Large Unweighted Scale-Free Network Example (4.4) Step 9.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

24 23 22

20

19

25
26

27

30

31

34

39

40

28

41

42

43

45

46

44

47

48

49

38

37

35

29
50

21

51

52

53

54

55

56

57

58

59

60

61

62

63

32

33

36

64

65

66

67

68

74
73

72

7069

75

76
77

80

78

81

82
83

85

86

84

87

88

89

79
90

71

87

When we apply HCRC clustering algorithm the clustering will be as

following:

Step1: when we calculate CR for all the nodes in Figure (4.13) we find that

the highest 25% of CR is for node (60) we cut the edge between this node

and the highest CR of its neighbors. The graph split into two parts 1P and 2P ,

but we can't consider one of then a cluster.

Step 2: we calculate CR to the two parts we reach to in step1, in part one we

find that the highest 25% of CR is for nodes (58,65,66,75,70) we cut the

edges between these nodes and the nodes that have highest CR of there

neighbors. And in 2P we find that the highest 25% of CR if for node (30).

We repeat this operation until each sub graph consider as a cluster, satisfy

the properties in section(4.4)

In this example we reach to 13 clusters.

88

References

1) A Tutorial on Clustering Algorithms ,K-means clustering,

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmea

ns.html

2) A. K. Jain and R. C. Dubes Cluster Analysis (Jan, 2003).

3) A.Hidalgo R. and Albert-Laszlo Barabasi .Scale-free network.

Scholar pedia, the free peer reviewed encyclopedia (2008);

3(1):1616.

4) Andrew .W. Moore K-means and hierarchical Clustering (Nov

16th, 2001)

5) Andrew Moore: “K-means and Hierarchical Clustering - Tutorial

Slides”. http://www-2.cs.cmu.edu/~awm/tutorials/kmeans.html

6) Barabasi, A.L. Dezso, Z. Ravasz, E. yook, S.H. and Oltvai, Z. Scale-

free and hierarchical structures in complex network,(2002).

7) Brandes, U. A fastest Algorithm For Betweenness Centrality,

(2001).

8) Chien.C.C. Hierarchical Clustering , (May 2008)

9) David.S. and Marten. G. Clustering of EEG-Segments Using

Hierarchical Agglomerative Methods and Self-Organizing, (2001)

10) Erez .H. and Ron.S. HCS Clustering Algorithm based on Graph

Connectivity ,(March 1999).

11) Hartuv,M. and Shamir, R. A clustering Algorithm basrd on

Graph Connectivity ,(1999).

89

12) Hierarchical Clustering method Example,

http://ocw.mit.edu/NR/rdonlyres/Health-Sciences-and

Technology/HST-508Genomics-and-Computational-

BiologyFall2002/CBC2DFF7-3872-4BCA-B0C0-

EC09CDC24102/0/hierarchical.pdf

13) Hwang, W. Cho,Y. Zhang, A. and Ramanathan, M. Bridging

Centrality: Identifying Bridging Nodes In Scale-Free

Network.(2006)

 http://www.scholarpedia.org/article/Scale-free_networks

14) Jan matlis, Quick Study : scale-free network , November 4,2002.

15) Kaski. S. Data Exploration Using Self-Organizing Maps. Part 2.1

Clustering Methods.(1997).

16) S.C.Johnson Hierarchical Clustering Algorithm (1967)

17) Scott Gasch ,The algorithm Archive, 0.4.3 Floyd's Algorithm –

Shortest Paths. (1999).

 http://www.fearme.com/misc/alg/node88.html

18) Stefano Mossa, Marc Barthélémy, H. Eugene Stanley, and Luís A.

Nunes Amaral, Truncation of Power Law Behavior in"scale-Free"

Network Models due to Information Filtering, March 4, 2002.

19) Thiagarajan, B. A Clustering Algorithm based on Graph

Connectivity, (2001)

20) Wikipedia ,free encyclopedia . Scale-free network, (28 May 2009).

 http://en.wikipedia.org/wiki/Scale-free_network

90

21) Wikipedia ,free encyclopedia, K-means Clustering, (30 June

2009). http://en.wikipedia.org/wiki/K-means_clustering

22) Wikipedia ,free encyclopedia, Clustering Coefficient ,(25 June

2009). http://en.wikipedia.org/wiki/Clustering_coefficient

23) Zhang, A. Ramanathan, M. Hwang, W. and Cho,Y. Bridging

centrality : a concept and formula to identify bridging nodes in

scale-free network. (2007).

91

Appendices

Appendix (A)

My Matlap Programs:

 program to find CR(Bridging centrality)

Clc

clear all

n=input('enter number of nodes in the graph: ');

A=enter(n);

BC=BC(A,n);

CB=CB(A,n);

for i=1:n

 CR(i)=CB(i)*BC(i);

end

fprintf('CB\t\t\tBC\t\t\tCR\n');

for i=1:n

 fprintf('%f\t%f\t%f\n',CB(i),BC(i),CR(i));

end

Note: A = enter(n) is a function to enter the adjacency matrices.

You can choose the kind of graph (star, tree, bipartite, line, or

random graph). BC(A,n) is a function to find Bridging coefficient od

92

the graph. CB(A,n) is a function to find Betweenness Centrality of

the graph.

Function Enter

function [A]=enter(n)

fprintf('1- star \n2- Cycle \n3- Complete graph \n4- Path \n5- Complete

Bi-partite \n6- Random graph\n')

s=input('Enter number of graph kind\n');

if s==1

 A=zeros(n);

 A(1,:)=1;

 A(:,1)=1;

 A(1,1)=0;

 else if s==2

 A=zeros(n);

 A(1,2)=1;

 A(1,n)=1;

 A(n,1)=1;

 A(n,n-1)=1;

 for q=2:(n-1)

 A(q,q-1)=1;

 A(q,q+1)=1;

 end

 else if s==3

93

 A=zeros(n);

 for k=1:n

 A(k,:)=1;

 A(k,k)=0;

 end

 else if s==4

 A=zeros(n);

 A(1,2)=1;

 A(n,n-1)=1;

 for r=2:(n-1)

 A(r,r-1)=1;

 A(r,r+1)=1;

 end

 else if s==5

 x1=input('number of nodes in part one');

 x2=n-x1;

 A=[zeros(x1),ones(x1,x2);ones(x2,x1),zeros(x2)];

 else if s==6

 for t=1:n

 for l=t:n

 fprintf('entry %d %d:',t,l)

 A(t,l)=input('');

 A(l,t)=A(t,l);

94

 End

 end

 end

 end

 End

 end

 end

end

End

Function to find Bridging Coefficient

function [BC]=BC(A,n)

for i=1:n

 N(i)=0;

 for j=1:n

 if A(i,j)==1;

 N(i)=N(i)+1;

 end

 end

end

%BC

for i=1:n

 t=0;

 for j=1:n

95

 if A(i,j)==1

 t=t+1/N(j);

 end

 end

 BC(i)=(1/N(i))/t;

End

Function to find Betweenness Centrality

function [CB]=CB(A,n)

Num=A;%number of shortest path

L=A;%length of shortest path

for k=2:n-1

 B=A^k;

 for i=1:n

 for j=1:n

 if Num(i,j)==0

 Num(i,j)=B(i,j);

 L(i,j)=k;

 Num(j,i)=Num(i,j);

 L(j,i)=L(i,j);

 end

 if i==j

 Num(i,j)=0;

 L(i,j)=0;

96

 End

 end

 end

end

%calculate Bridging Centrality (CB)

for i=1:n

 s=0;

 for j=1:n

 if j~=i

 for k=1:n

 if k~=i

 if L(j,k)<L(j,i)+L(i,k)

 t=0;

 else

 t=Num(j,i)*Num(i,k)/Num(j,k);

 end

 s=s+t;

 end

 end

 end

 end

 CB(i,1)=s/((n-1)*(n-2));

End

97

Floyd's Algorithm

Clc

clear all

n=input('Enter number of vertices\n');

for i=1:n

 for j=1:n

 fprintf('entry %d %d',i,j)

 A(i,j)=input('');

 end

end

for i=1:n

 for j=1:n

 if A(i,j)==0 && i~=j

 I(i,j,1)=Inf;

 else

98

 I(i,j,1)=A(i,j);

 end

 end

end

%%%%%%%%%%%%%

for k=1:n

 for i=1:n

 for j=1:n

 if I(i,j,k)<(I(i,k,k)+I(k,j,k))

 I(i,j,k+1)=I(i,j,k);

 else

 I(i,j,k+1)=I(i,k,k)+I(k,j,k);

 end

 end

 end

end

I

99

Appendix (B)

The Adjacency Matrix For Small Unweighted Graph in Figure(3.1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01100000000
10010000000
10010000000
01101000000
00010010000
00000010000
00001101100
00000010010
00000010010
00000001101
00000000010

A

100

Appendix (C)

The Adjacency Matrix For Unweighted Graph in Figure (4.2)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010000000000000000000
100001000000000000000
000001000000000000000
000001000000000000000
000001000000000000000
011110110000000000000
000001000001000000000
000001000011000000000
000000000010000000000
000000000010000000000
000000011101100000000
000000110010000000001
000000000010000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000000000000001
000000000001111111110

A

101

Appendix (D)

The Adjacency Matrix For Large Unweighted Graph in Figure (4.13)

Column 1-30:

[0 1 0

1 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 1 1 1 0 1 1 0

0 0 0 0 1 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

102

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0

0 1 0

0 1 0 0 0 0 0

0 1 0

0 1 0 1 0 1

0 1 0

0 1 0

0

0 1 0 0 0 1 0

0

0

0

0 1 0

0 1

0

0 1 0

0

0 0

0

0

0

103

0 1 0 0 0 0 0 0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0

0

0

0

0 0

0

0

0

104

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

105

Column 31-60:

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

106

0 0

0 0 1 0

0 0

0 0

0 0

1 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0

0 1 0

1 0

0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0

0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

107

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 1 0 0 1 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

108

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

109

Column 61-90:

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

1 0

110

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 1 0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0

0

0

111

0

0

0 0

0 0 1 0

0

0

0 0 1 0

0

0

0

0

0

0

0

0 0 1 0

0 1 0 1 1 1 0

0 0 1 0

0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

112

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1;

0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 1 0

0 1 0 0

0 1 0 0 0 0 0 0 0 0 0];

 ب

 التجسير المرآزي في الشبكات الحرة

 باستخدام عقدة الجسر آمرجع للتجميع

 إعداد

 هند علي احمد عيد

 إشراف

 صبحي رزية. د

 الملخص

وذلك لأهمية تطبيقاته في , الرسوم هو احد اشهر المواضيع في الرياضيات نظرية

ودراسة بعض آما ان استخدام هذه التطبيقات يساعدنا في فهم, حل الكثير من المشاآل

 .الظواهر الطبيعية

بالاضافة . يرآز هذا العمل بشكل اساسي على دراسة الشبكات الحرة وخصائصها

الى انه رآز على دراسة طرق التجميع مع محاولة التوصل الى خوارزمية جديدة

وآذلك التجسير المرآزي لكل عقدة في . للتجميع مستخدما خصائص الشبكات الحرة

 .الشبكة

وبعد , ير المرآزي يعتمد على البينية المرآزية وآذلك معامل التجسيران التجس

دراسة عميقة لهذه القيم في الشبكات الحرة لاحظنا وجود علاقة بين هذه القيم لعقدة

 .معينة وموقعها في الشبكة

في النهاية تمكنا من ايجاد العلاقة بين قيمة التجسير المرآزي لكل عقدة وموقعها

مكنا من ايجاد خوارزمية جديدة للتجميع تعتمد على التجسير المرآزي وت, في الشبكة

 . لكل عقدة

 جامعة النجاح الوطنية

 آلية الدراسات العليا

 التجسير المرآزي في الشبكات الحرة

 باستخدام عقدة الجسر آمرجع للتجميع

 إعداد

 هند علي احمد عيد

 إشراف

 صبحي رزية. د

ذه ا دمت ه ي ق تير ف ة الماجس ى درج ول عل ات الحص تكمالا لمتطلب ة اس لاطروح

ابلس ة في ن ة النجاح الوطني ا في جامع ة الدراسات العلي , الرياضيات المحوسبة بكلي

 .فلسطين

م2010

