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Abstract

Schrodinger equation and its variants are one of the basic
equations studied in the field of partial differential equations, and have
various applications in geometry, spectral and scattering theory and
integrable systems.

In this thesis we review some basic details of quantum mechanics
such as Schrodinger equation of both types: these include time-
dependent and time-independent Schrédinger equation. Moreover, we
focus mainly on some analytical and numerical methods for solving
Schrodinger equation and its variants. For the analytical solution of the
Schrodinger equation, we use the separation of variables method and
method of characteristics. For the numerical handling of this equation,
we use the Finite Difference Method (FDM) and Pseudo-Spectral
Method (PSM), for two cases of quantum mechanics: finite and infinite
square well.

To test the efficiency of these methods, we consider some
numerical test cases. Numerical results show clearly that Pseudo-
Spectral Method is one of the most powerful numerical technique for
solving time independent Schrédinger equation in comparison with the

Finite Difference Method.



Introduction

At the beginning of the twentieth century, experimental evidence
suggested that atomic particles were also wave-like in nature. For example,
electrons were found to give diffraction patterns when passed through a
double slit in a similar way to light waves. Therefore, it was reasonable to
assume that a wave equation could explain the behavior of atomic particles
[11,14].

Schrédinger equation is a type of differential equation known as a
wave-equation, which serves as a mathematical model of the moment of
waves. Solutions to Schrodinger's equation express not only molecular,
atomic and subatomic systems but also macroscopic systems, perhaps even
the whole universe. Schrodinger’s equation is central to all applications of
guantum mechanics including quantum field theory which incorporate
special relativity with quantum mechanics [14]. In mathematics, the
Schrodinger equation and its variants are one of the basic equations studied
in the field of partial differential equations, and have applications in
geometry, spectral and scattering theory, and integrable systems.

In1924, de-Broglie suggested that every moving particle has a wave
associated with it, which is also known as matter wave. Furthermore,
Erwin Schrodinger, in continuation to de-Broglie’s hypothesis,
constructed a differential wave equation of second order to rationalize the
wave nature of matter and particle that correlates to wave [11]. Thus the

equation is analogous to the equation for waves in optics, which assumes
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that the particle behaves as wave and yields solution in terms of a function
called the wave function. When this equation is solved, it generates two of
the following; namely the wave function ¢ and the energy E, of the particle
under consideration.

In 1926, Irwin Schrddinger inserted de Broglie's wave-like
representation of particles into the conservation of energy equation (total
energy = kinetic energy plus potential energy) and from this he derived an
equation to describe their behavior— which has become known as the
Schrodinger wave equation.

Once the wave function ¢ is known, then everything about the
particle is known or can be deduced from the wave function. Thus, the
wave function ¢ is the most important thing, which itself does not have
any physical significance, however the absolute square of ¢, i.e. |@|?gives
the probability of finding the particle in a particular region of space at a
particular instant of time [11,14].

A wave equation is an example of an 'equation of motion' which,
as the name suggests, can be used to predict the motion of an object. In
this case the object is a wave. In other words, if we know the amplitude
and velocity of the wave at a given time and place, we can project forward
(or backward) and predict the amplitude and velocity of the wave at some
other time and place. For example, if one dropps a pebble into a pond it
makes a wave of a given height (amplitude) which will decrease with time
as the wave spreads. Knowing the rate at which the wave spreads and loses

amplitude, we can predict what it will look like in ten seconds, twenty
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seconds and so on. Or conversely, we can look at the circular wave pattern
at a given time and run the whole thing in reverse to re-create the original
pulse created by the pebble.

Essentially, Schrédinger equation has two forms: one consisting of
time termed as time dependent equation and the other in which time factor
Is eliminated and hence named as time independent equation [ 37]. The
solution of Schrodinger equation can be obtained analytically by using the
exact solvable models developed by Makowski [22]. On the other hand,
numerical methods play a very crucial rule in solving Schrédinger
equation. Sandvik [34] has obtained a numerical solution of the
Schrodinger equation by using Numerov's method. Marston [24] has
described the Fourier grid Hamiltonian method for bound state eigenvalues
and eigenfunctions. Monovasilis [28] studied the exponential-fitting
symplectic methods for the numerical integration of the Schrédinger
equation. Doescher and Rice, in their work [8] studied the infinite square
well potential with a moving wall. Jackiewicz technique [17] is used to
find the solutions by spectral collocation method and wave method form
relaxation methods. Strikwerda [36] has obtained a numerical solution of
the Schrddinger equation by using finite difference method. Aronstein and
Stroud [1] implemented the general series for finite square-well energy
levels for use in wave-packet studies. Robinson and Fairweather [33] have
obtained an orthogonal spline collocation method for Schrodinger -type
equation in one space variable. Gildener and Patrascioui [13] have shown

that the energy spectrum of a one-dimensional system by using the pseudo
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spectral contributions. The solution of the differential equations of
chemical physics can be obtained by using the spectral difference methods
by Mazziotti [26]. Orszag [29] made a comparison of pseudo-spectral and
spectral approximation. Also, England and Savari [9] implemented
pseudo-spectral method of solving linear ordinary differential equations.
Furthermore, Bulirsch, Miele and Stoer [4] have used the direct collocation
as numerical method to find the numerical solution of optimal control
problems.

For the numerical handling of the Schrédinger equation, we employ
the Finite Difference Method (FDM). In order to implement the FDM
method, Schrddinger equation is first transformed into a diffusion equation
by the imaginary time transformation. The resulting time-domain diffusion
equation is then solved numerically by the FDM. In this method, we
approximate derivatives using difference equation with errors of order
O (h™) to solve differential equations numerically. This method was first
developed by A. Thom in the 1920s [6]. Finite difference procedures
approximate the derivative appearing in a partial differential equation by
sums and differences of function values at a set of discrete points. These
approximations are based on Talyor series expansions of a function of one
or more variables [5,6,20,36].

In addition, we will solve the Schroédinger equation by the Pseudo-
spectral method, which is a family of numerical methods for the solution
of differential equations based on the expansion of basis functions defined

on a set of grid points. A pseudo-spectral method is proposed for the
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numerical solution of linear Schrodinger equation. The employed method
iIs based on Chebyshev-Gauss-Lobbato quadrature points. Using the
pseudo-spectral differentiation matrices, the problem identified is reduced
to a system of nonlinear algebraic equations [13,26]. However, this method
has already been implemented by England and Savari, in their work [9]
studied the pseudo-spectral method of solving linear ordinary differential
equations.

This thesis is organized as follows: In chapter one, we review some
basic details of quantum mechanics such as Schrédinger equation of both
types: these include time-dependent and time-independent Schrddinger
equation. In chapter two, we use analytical methods to solve the time-
independent Schrodinger equation for three cases, namely, the finite
square well, the infinite square well and the harmonic oscillator. Two
numerical techniques for solving Schrddinger equation are presented in
chapter three, these techniques are finite difference method and pseudo-
spectral method for two cases of quantum mechanics: finite and infinite
square well. In chapter four, some numerical examples for solving
Schrodinger equation including the finite square well and infinite square

well are illustrated. Finally, Conclusion are drawn.



Chapter One
Introduction to Schrodinger Equation
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Chapter One

Introduction to Schrdodinger Equation

In this chapter, we investigate some important concepts related to
Schrddinger equation including the derivation of two types of Schrddinger
equation, namely: time-dependent and time-independent Schrédinger
equation, also we introduce some properties of the solutions of the

Schrodinger equation, probability, normalization, and expectation value.

1.1 Schrodinger Equation

For a general quantum system, the Schrodinger equation may be written

into the form:
h2 (x,t) = Hp(x, t) (1.1)

where h = % is the plank constant, @(x, t) is the wave function or
state function, i is the imaginary unit, ih% is the energy operator, and
A=-1 v
is the Hamiltonian operator, where V(x) represent the real function
that illustrates the potential energy (input) of the method.
The Schrodinger equation has two types, in the first one, the time
is obvious in the form with certain description and characterization

that will show the wave function and how it will change with time.

Therefore, the functional equation is known as time-dependent
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Schrédinger (TDSE) wave equation for one dimension which can be

written as:
2 o(xt) = — =L o(x,t) + V) e(x, ) (1.2)
e P = = a2 P )P, '
or
oot = -2 4 v ) o ) (1.3)
at(p ! 2m 9x?2 PLx L), '

where m indicates the mass of the element.

This is typically a second-order linear differential equation, where
the visible expression on the left-hand side of the functional equation
(1.3) denotes the total energy of the visible particle. The first part on
the right-hand side sufficiently denotes the kinetic energy of the particle,
while the second part on the right-hand side denotes the potential energy
of the particle. There are three important properties of the solution for
time-dependent Schrodinger functional equation as the following:

1. The time dependent Schrodinger equation is carefully consistent with

energy reservation.

2. The time dependent Schrédinger equation has linear and singular value
solution, which suggest that solutions can be typically formed by
superposition of two or more independent solutions.

3. The free-particle solution V(x) = 0 is harmonious, with a single wave

of de Broglie.
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The second type of the Schrodinger equation is the time-independent
Schrodinger equation (TISE), which is suitable for finding energy values

for a one-dimensional system, which can be written as:
h2
Eo(x) = - —@ @(x) + V(x)(x). (1.4)

We will derive the two types of the Schrédinger equation:

1.2 Derivation of the Time-Independent Schrédinger Equation

We will start with the one-dimensional standard wave equation [10,14]

9%u 1 9%u

T aan (1.5)
Using separation of variables,
ulx, t) = )f (@), (1.6)
we have,
0%u 0?2
P ﬁq)(x) f(®)
62
then we obtain,
FO () = S9p() 25 £(0), (1.7)

when we use a standard solution of the wave equation, f(t) = e'“t, we

obtain

) =2

(1.8)
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We want to find the standard form of the Schrodinger equation by

using the total energy which contains kinetic and potential energy|[17]

F=2 4y

finally, by using w = 2mtv, ¢ = v4, and h = pA we have
w? _an?v? _ an? _ 2m[E-V(x)]

c? c? 22 h2 !

Combining equations (1.10) and (1.8) gives

m[E-V(x)]

l/’( ) = _h—z P(x)

mlE—- V(x)

IP()+ P(x)=0

Rearranging equation (1.11) it becomes
L) + 22 PE - 22 veopx) = 0
a2 V) Tz vlx pe VOP) =0,
Multiplying both side of equation (1.12) by ;—: gives:

—h? 92

(@) — B + VEOP(x) =0

or

DI + V() = Ep().

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

This is the time-independent Schrédinger Equation, which describes the

state function of a particle with mass m and potential energy V (x).

Functional equation (1.13) can be expanded sufficiently to the

specific case of three dimensions [10]. That is,
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;—:Vzlp(x) +V0)Y(x) = Ep(x) (1.14)

0% 02 02
where V— + — + —
0z2'

Equation (1.14) may take the form [10]

Ho(x) = Ep(x).

1.3 Derivation of the Time-dependent Schrddinger Equation

There is more than one method to derive time-dependent Schrédinger
equation. We will derive it by using the time-independent Schrodinger
equation.

The Schrédinger's time-independent equation is:
alep + (E MY =0 (1.15)
We assume that a wave function represented as (see [9,36]):

P =A-e 0 (1.16)
where A is the amplitude of the wave, w is an angular frequency which

equal 2mv, and t is the time period.

Differentiating equation (1.16) with respect to ¢,

Z_lf = —jwAe” @t = —j(2nv)Ade vt (1.17)
since E = hv
oY  (2mE it _ _;2TE
=) A e = i

El/)— —h o0y _ ma_zp_.ha_zp

2mi Ot 2m At l ot (1.18)
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Substituting equation (1.18) into equation (1.15) gives,

02 2m oY 2mV
PR TR T T

2mi o0y 2myv
= =?¢ — V%Y (1.19)

2

Multiplying equation (1.19) by zh—m we get

i3, 6) = V(x, £) = 3=, ) (1.20)
this is time-dependent Schrédinger equation with the term:
h? 9?2

as the Hamiltonian operator.
Equation (1.20) takes the form [10, 37]

ih%gb(x, t) = Hop(x,t)

1.4 Schrodinger's operators

An operator is a rule for construction one function from another. In
guantum mechanics, we have just seen that the momentum becomes

associated with an operator related to the spatial derivative.

D
For any function: f(x) — another function of x

or

Do = ¢,



13
where D is an operator. Every operator in quantum mechanics can be

typically structured from the fundamental factors of both position and

momentum.

m¢=—m%w
Definition (1.1)[11,14]: For an operator D, if
Df(x;D) = Df(x; D)
for a given D € C where ¢ denotes any complex number, then f(x)
denotes an eigenfunction of the operator D and D is the corresponding
eigenvalue.
Operators act on the eigenfunctions in a way identical to multiplying the

eigenfunction by a constant number as seen in definition (1.1).

To every observable quantity, there is associated corresponding

operator. For instance, the momentum operator is

d
p = —ih %
the position operator is
X=x
the energy operator is
E=P v =inl

and so on.
Note that the operator order is important. For instance,

PRf () = (xf () = —ih = (xf (x)) = —ih (f(x) + x%")) (1.21)

while,
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2pf () = 2 (—ih L2 = —inx LE (1.22)

To measure the importance of order, we define the commutator of two
operators A and B as [11,14]
[4,B] = AB - BA.
Subtracting equation (1.21) from equation (1.22) we get
Xpf (x) — pxf (x) = ihf (x) (1.23)

1.5 Linear Operators

Definition (1.1)[11]: An operator A is said to be linear if
A(cf(x)) = cAf(x) (1.24)
and

A(f(x) +g(x) = Af (x) + Ag(x) (1.25)
where f(x) and g(x) are any two appropriate functions and c is a
complex constant.

Examples: the operators £, p, and H are all linear operators.

1.6 Wave function

The wave function defined as a variable quantity that describes
the wave characteristics of a particle mathematically.

Note that wave function, denoted by the Greek letter, ¢, may be
thought of as an expression for the amplitude of the particle wave. The

wave function ¢ must be single-valued, continuous, and finite.
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Also, the probability of finding the particle described by a specific

wave function ¢ at a given point and time is proportional to the value of

2

Q-

p(x) = |p(x)|? determines the probability that an object in the state
¢ (x) will be found at position x. The total probability is the probability of
the particle that must be unity [11,14,37],

IZ 1e@)]? dx = 1 (1.26)
and this is the normalization requirement which can be satisfied only

if the wave function, ¢ (x), does not diverge to infinite.

1.7 Equation of motion of the wave function

Moving to another operator called the Hamiltonian operator which
plays an essential part in quantum mechanics. The Hamiltonian operator
corresponds to the total energy observable for a free particle of mass m
moving in 1-dimension in a potential ¥V (x). The Hamiltonian operator may

take the form
H=T +V = — StV (1.27)

In three dimensions, equation (1.27) may take the form [37]:

g _ht(or o9 9% SN G »
A=-—( +ay2+azz)+V(r)— V4V (1.28)

2m \9x2

For many-particle systems, we need to explain
the expression for the total energy which includes the kinetic energy of
the particles and the potential energy of the system. For two particles in 3-

dimensions, functional equation (1.28) may take the form [37]:
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= h? h? —s -
H=-— vt — — V,2 4+ V(1) (1.29)
where
V,’= o + - + r
YUax? 9yl 0z,°
and
, 07 ik ik
VZ -

- 2+ 2+ 2
dx, ay, 0z,
The Hamiltonian operator typically plays an essential role in

the time-dependent development of the wave function. time- dependent
wave function will have its equation of motion given by the time-

dependent Schrodinger equation (TDSE):

do .
h— = Ho.
Mo =19
This obtain a basic equation that describes the movement of a quantum

mechanical system.

1.8 Properties of the solutions of the time-independent Schrddinger

equation

Considering a free particle where V(x)= 0, the wave function

solution can be carefully inserted in the form of a plane wave

o(x,t) = Aetkx-iwt (1.30)

which as a complex function can be expanded sufficiently in the form
@(x,t) = Acos(kx — wt) + iAsin(kx — wt) (1.31)
where A is the amplitude of the wave , w is an angular frequency and t is
the time period. The free particle wave function is associated with a known

momentum:
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p=lo i _pg
The time-independent Schrodinger equation is beneficial for finding
energy values for a one dimensional system
Fp(x) = —3=250(6 ) + V()9(x, 0). (132
From equation (1.32) we obtain the normalized eigenfunctions:
on(x) = \Esin%x n=1273,.. (1.33)

which we will explore it in chapter two.

The solutions of the time-independent Schrédinger equation (TISE)
have the following three properties:

1. Continuity: The possible solutions to the time-independent
Schrodinger equation ¢@(x) and its first derivative ¢@(x) must be
naturally extended for all values of x (the latter holds for finite potential
V(x)).

2. Normalizable: The possible solutions to the time-independent
Schrédinger equation must typically square integrable, i.e. the
functional integral of the modulus squared of the wave function over
all space must be a finite constant so that the wave function can be
normalized to give [~ |o(x)|? dx = 1.

3. Linearity: Owing to the linearity of the time-independent Schrédinger
equation, given two independent solutions ¢, (x) and ¢,(x), we can
construct other solutions by taking an appropriate superposition of
these: @ (x) =a; ¢, (x) + a,@,(x), where |a;|* + |a,|* = 1 to ensure

normalization.
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1.9 Basis of quantum mechanics

Corollary (1.1)[10,36]: The function ¢(x,t) denotes the state of a
guantum mechanical system, which depends on space and time
coordinates of the particle. This function, called the wave function or state
function.

Corollary (1.2) [11,37]: To every observable, A4, in classical mechanics
(e.g energy, position and momentum), there corresponds a linear

Hermitian operator, A in quantum mechanics.
Corollary (1.3)[11,37]: In any measurement of the observable
associated with operator A, the only values that will ever be available are
the eigenvalues (a), which satisfy the eigenvalue equation:
A gg=a @, (1.34)
where ¢, is the eigenfunction corresponding, respectively, with the
eigenvalue a of the operator A. An arbitrary state can be expanded in the
complete set of eigenvectors of 4 (Ap, = ag,) as [11,14,37]:
P=%a Ca Pa (1.35)
in this specific situation , we only know that the specific
measurement of the observable A will be typically yield one of the values
(a) with a probability |c,|%.
Corollary (1.4)[11,14,37]: If asystem is in a state which is typically

related by a normalized wave function ¢, then the average value of

the observable corresponding to 4 is given by:
<A>=[ ¢*(x) Ap(x)dx (1.36)

and

AA = J(A2) — (A)?
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1.10 Stationary States
By separation the space and time dependence of the Schrodinger
equation as
o(x,t)= @(x)g(t)
then the concept of a stationary state arises naturally. It then turns
out that the separation of the partial differential Schrodinger equation is
possible only if
1- H is time independent,
2- @(x) is an eigenfunction of H,
that is, @ must be a solution of the time-independent Schrddinger equation,
Ho(x) = Ep(x).
It is then easy to find g(t). We consider the time-dependent
Schrddinger equation [36]:
n o

2 —
h @, t) = <—ﬁa—2+V(x)>cp(x, t) = Ho(x, t) (1.37)

X

We assume that the potential energy in the Hamiltonian operator in
equation (1.37) to be time-independent, i.e (V = V(x)).

To solve equation (1.37) we use the separation of variables method.
Let

o(x,t) = g(Oex)

Inserting the above equation into equation (1.37) yields:

6
I 02 gt + V@ e)g(t) (1.38)

: 9g® _
lhq)(x) at  2m 9
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Dividing both sides of equation (1.38) by ¢(x)g(t) gives:

w1 9g® _ _ 1 1 dew
MG o = " mmam a2 TV (1.39)

Both sides of equation (1.39) must be equal to a constant, since the left-
hand side is only dependent on t and the right-hand side only on x, which

we can denote E. Thus we have two separated sides as:

h—L 990 _ a9 _ _!
.lhg(t) Py =F = 7 hEdt
In(g) =— %Et + const. = g(t) = const.eEt/h (1.40)

So, we have

—iEt/h

p(x,t) =@(x)e
This is called a stationary solution of the Schrodinger equation, because:

e The probability density is time-independent

lp(x, DI? = o ()@ (x)eE/MeE/M = |p(x)|? (1.41)
The spatial part of the wave function satisfies the time-independent

Schrodinger equation.

e all operators which do not depend explicitly on time, like
X, Py, E etc, have time-independent expectation values in the

stationary state @ (x, t). Thus, if A = A(x, p,), then

(A(x,px)) = J @* ()M A(x, —ih %)fp(?@e_““/h dx

= [ ¢*(x) A(x,—ih ;_x)¢(x)dx = constant. (1.42)
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Theorem (1.1)[37]: (Time-independent Schrddinger equation)

i Ho(x) = Ep(x)
where H = — zh_m V + V(x) is the Hamiltonian.

Definition (1.2)[ 11, 14, 37]: A state is called stable if it is performed
by the wave function:
@(x,t) = (x) e7E/N
Corollary (1.5)[ 11, 14]: As a direct result, the eigenvalues of the
Hamiltonian, which represent the potential energy levels of
the system, are clearly time-independent.
To see this, just take H(x, p,) instead of A(x, p,) in equation (1.42)
and use the time-independent Schrodinger equation (Theorem 1.1)
(Hoop)) =@ () Hp(x) dx = [ ¢*(x) E (x)dx =
E(J ()" (x)dx). (1.43)

The value of this integration is finite.
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Chapter Two
Analytical Methods
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Chapter Two

Analytical Methods

2.1 Introduction

In this chapter we attempt to solve the time-independent
Schrodinger equation analytically. This include the following three cases:
the infinite potential well, the finite potential well and the quantum

harmonic oscillator.

2.2 Infinite square well

Regarding the infinite square well, the particle exists only in the
finite interval [0, L]. Such that [8],

x € [0, L]
else

Ve ={ 1)

which sufficiently indicate that the quantum object is carefully restricted
to a specific area between x = 0 and x =L it moves freely but cannot

escape. Therefore, mathematically we have.

outside region: ¢@(x) =0 for x & [0,L] (2.2)
inside region: (;—:):—; = E¢, this is time-independent Schrodinger
equation.

and,

w(0) =0 and W(L) =0 (2.3)
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this because ¢ must be continuous.
Taking into Consideration any sample point ¥(x;), x; € [0, L]
, there is no ¥ (x;) will visible in the system of linear equations, since
each P (x;) = 0.
The wave functions, i, are eigenvectors of the Hamiltonian operator,

and satisfy equation:

oY =Ey (2.4)
we recall that the Hamiltonian is simply the sum of the kinetic and

potential energies, so equation (2.4) becomes
Hy = Ey
K+ V]yp = Ey (2.5)

we know that the kinetic energy of the particle is

V2mE

2mE
K== VK% = = (2.6)
Substituting equation (2.6) into equation (2.5), we get [24]
_hZ 02 KZhZ
<%>WIIJ(9€) = om P(x)
62
— — _K?2
P00 = —K*P)
62
=Y +KP(x) =0 (2.7)

Equation (2.7) has the general solution:

Y(x) = asin(Kx) + b cos(Kx) (2.8)
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a and b are two constants that are being specified by the boundary

conditions

Y(0)=0andy(L) =0, (2.9)

beginning with ¥/ (0) = 0,
Y(0) =asin(0)+bcos(0) =0 = b=0 (2.10)
from the second boundary condition ¥(L) = 0 then implies

Y(L) =asin(KL) = 0 (2.11)
it is assumed that a + 0, for otherwise ¥ (x) would be zero everywhere
and the particle would disappear. The condition that sin KL = 0 implies
that

KL=nr = K= "L—" (2.12)
where n = 1,2,3, ... can be any natural number.
Substituting equation (2.12) into equation (2.6) to obtain

n?m2h?

no omiz

(2.13)

from equation (2.13) we can see that:

1. the energy is finite [7],
2h?2 41212 9m?h?
2. E1 -_ 2mL2 ) 2 - 2mL2

3. Eqin = E; # 0 (zero point energy).

4. AsL > o, E,i, =0.
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5. Asm — 00,Ein =0.

nm 2T

6. We knowthat K = — == 50 L=n—'1.
L A 2

The eigenfunctions in equation (2.8) with b =0 and K = nL—” is

given by:
P (x) = asin==, n=123,.. (2.14)

Finally, we get the value of the constant (a) from the normalization of the

wave function.

[ oy |2dx = 1 (2.15)
the integration running over the domain of the particle, 0 < x < L.
Substituting equation (2.14) into equation (2.15)[9,12,30],
lal|? fOL sin? (nL—nx) dx = IaIZ:—nfOnn sin? 6 df = |a|2§ =1. (2.16)
We have made the substitution 8 = "Lﬂ and used the fact that the average

. . 1
value of sin?#8 over an integral of half wavelengths equals > From

equation (2.16) we can identify the normalization constant a = (%)1/ 2 for

all values of n. Thus, we obtain the normalized eigenfunctions:

Yn(x) = \E cos(nL—nx), n=135,.. (2.17)

2 mn
Pn(x) = \/; sin (Tx) n=246.. (2.18)

For n =1 we get the bound state of the energy E; and wave

function ¥, for n > 1 are named excited states.



27

Yl PN £ = 168,
¥3(0) Bs = OF;
1/)2 (X) \/ E, n==24E1
1!’1 (x) nE;ll

0 X L

Figure 1.1: Eigenfunctions and the energy for a particle in a box

2.3 Finite square well

In this section we want to solve the finite square well. Consider the

potential shown in

V(ix) 4
1
1
: V=V,
1

E <V, E> Vo E <V,
1
:
Region 1 Regio'n 2 Region 3
1
1
N > V=0
—L ! L
0 X

Figure 1.2: A finite square well, depth V,, width 2L.
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Since we have a symmetric well, we must focus on the positive half

of the x -axis since we know @(—x) = @(x) for the even parity states
such as (ground, second excited, and forth exited state) and @(—x) =
—@(x) for odd parity states (such as for the first excited, third excited, and
fifth excited state) [1].

2.3.1 Bound states

Region 1:

x<-LV(x)=1V,,

similarly, to region 3, the solutions are:
Y(x) = Fe*™ + Qe™ %,

butsincey - 0asx - —o0,Q =0
we get Y = Fe®* for region 1.

Region 2:

—L<x<LV(x)=0.

substituting into these equation:
2m

(;_f:)%‘/’(x) =E9P(x) :%w(x) = —ZEP(x)

meaning
62
0x?

2mE
h2 -’

Y(x) = —K? yP(x) with K? =
The solutions to this equation is [1]
Y(x) = Asin(Kx) + B cos(Kx)

Region 3:

x = L, V(x) =V,, the Schrodinger equation becomes:

—h2 62 B
(—>@w + V() = Ep(x)

2m
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92 2

¥ = h_T(VO - E)y (2.19)
yielding
™) =a 1,[),W|tha’ =h—2(VO—E)>O
So,

a= /i—’f(vo — E), which is real.

The solutions to this differential equation are:
Y(x) =Ce ™ + De®*,
butsincey - 0asx - oo, D =0

we get i = Ce™%* for region 3.
We want to determine the value of the energy E and the other

coefficients (C, D, F, Q) The symmetry of the well allow us to choose
even or odd functions, which means cosine or sine solution in the
central region depending on which n state we want.

The parity condition ¢@(x) =x¢@(—x) allows us to join the
coefficients in the area x < —L to the coefficients in the areax > L [1].

Here is a graphic summery of which solutions apply in which regions.

¢(x) = cos(Kx)
or sin( Kx) E
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This leaves us with three unknowns: (E, C, D)and right now we

have three boundary conditions to consider: the continuity of the
wave function and the continuity of its derivative. The last boundary
condition is that the wave function must have a sensible behavior at
infinity [1,23]. That is, ¢ (x) is finite at infinity, we require ¢(x) to be

finite as x = +oo.

The finite behavior at infinity is a powerful condition since it
tells usthat D = 0 and we must have @(x) = Ce™%* in the region x > L.
For the even parity states we select a cosine function for the well
center point. We start with the wave function continuity condition

which requires

QD(L)left =@ (L)right

cos(KL) = Ce™ %L (2.20)

To apply the continuity of the derivative condition, we begin by taking

the derivative of the wave functions [33]:

0 cos(Kx) _ _
———— = —Ksin(Kx),-; = —Ksin(KL)
ax x=L
0Ce™x — —oX — —oaL
o el aCe ™™, = —ale™ ™",
hence the condition 2L = 2ed) gives :

0x left 0x right
—K sin(KL) = — aCe™ %t (2.21)

From equations (2.20) and (2.21) we obtain:

K tan(KL) = «,
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inserting expressions for K and « as a function of E we have,

VB an [y = [

taking out the common factor of /h—z leaves us with the transcendental

equation:

VE tan(L ZFTI';E) =WV —E (2.22)

We want to solve equation (2.22) by graphing the left and right
sides of the equation on a semilog graph. Logical solutions happened at

the intersection of the two plots. We take V=50 eV.

20

15

10

R B

V(V - E)

o
r|r|'||

U Il i II|III| i i 1 |I|I|
] 10 50 100

E (eV)

=

Figure 1.3: A semilog graph for the energy of finite square well.

There are precisely two intersections, as a result, there
are two even bound states in thewelln= 1 and n= 3. One of the even

bound states happens at E = 5.72 eV, the other happens near the peak of
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the well at a power of E = 45.4 eV/. There is an odd bound state corres-

ponding respectively to n = 2 at roughly 20 eV.

2.4 The quantum harmonic oscillator

The quantum harmonic oscillator is very important in quantum
mechanics, is a very useful solution in both approximations and in exact
solutions of various problems.

The harmonic oscillator is described by the Hamiltonian:

A= +zkx = +-me’X’, (2.23)

where m is the particle's mass, k is the force constant, w = \/% IS

the angular frequency of the oscillator, X is the position operator (given
by x), and p is the momentum operator (given by p = —i h;—x). The
initial concept in the Hamiltonian intentionally introduces the kinetic
energy of the fundamental particle [7], and the second key concept
introduces its potential energy.

First, we have to sufficiently identify what is meant by the energy

eigenstate of the possible solution of the Schrddinger equation.

2

The energy quantity = hw = — = mw°as,
4 h?2 2 h i
thus a™ = — a“ = ——, where a is the length.
m2 w? m w

The Schrodinger equation of the harmonic oscillator is:

X e o =Eg@ (2.24)
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with boundary condition:

@(x)—>0as|x| » . (2.25)

Multiplying equation (2.24) by % we get:

h d?¢ mw 2E

mow dx?

2E : : :
let € = — be the dimensionless value of the energy, so equation (2.26)

takes the form:

h d?¢  mw o
R + T XTP = €, (2.27)
let, X =au, (2.28)

where a is the length and u is the new variable of differential

equation.

Differentiating both sides of equation (2.28) with respect to x,

d 1d d? 1 d?
—_——_——— —_— T —
dx adu dx? a?du?

S0, equation (2.27) may take the form :

_d%

— + ulp = e (2.29)

when & - oo, the equation becomes ¢ = u2¢,

au? .
let ¢ = ute /2, where a is any number.

, au? _. au?
¢ = auure™ /2 + pur-1e™ /2,



¢ = a’ulut e” “/y [1+2“+1ul2 +%%}
2u+1 1 u(pu—-1) 1
—augo[1+ u2+TF]'

When u = o, a? = 1 since ¢ = u?g.
—u?/ u?/
p(u) =Au*e /2+ Bute /2,
In equation (2.30), B = 0 for |u| = oo.
2
Let, p(u) = h(u)e_u /2 ,

where h(u) an arbitrary function.

Substituting equation (2.31) into equation (2.29) to obtain:

dZ

- 2u —+(s—1)h—0

solving equation (2.32) by a power series expansions, so,

h(w) = 320 a,
dh <o s e
- = Zjeo) qju T,
d’h _ Qoo s j-2 _ j—2
— = 2j20) — Daw/ ™ =372, j( — Dajuw/ ™,

Suppose that, j = j + 2, equation (2.35) become:

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

d<h [o'%e) ’ 7 1 [o'e) . . i
= Yizo( +2)( + Dajw! = 3¥55,G + 2)( + Dajyw/, (2.36)

Substituting equations (2.33), (2.34), (2.35) and (2.36) into equation

(2.32), we get:
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Z((}' +2)§+1)aj, —2jaj+ (e — 1)aj)uf =0
j=0

YR +2)(+Daj2— (2j+1-8a)u/ =0, (2.37)
from equation (2.37), we get this relation:

_ (2jt+1-¢)

aj+2 = m - (238)

Possible solutions fixed by given a,, a, (h(O), fz(O)), where from

a, We can properly fixed a,, a,, .... even solutions, and from a, we can
fixed as, as, .... 0dd solutions.

Now, to terminate the series we can choose
2j+1—e=0, (2.39)
this will make a;,, = 0.
So the solution h(u) = aju/ + a;_u/~% + -
call j =n,wegeth(u) = a,u™+a,_,u" 2+ -
equation (2.39) become:
2n+1—-¢, =0, (2.40)

from equation (2.40), we get

En

()’

where E,, is the energy of the harmonic oscillator

e, =2n+1=

E, ="2(2n+1) = hw (n + %) (2.41)
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H,(u) =2"u™ + 0(u™?) (2.42)
Here, H,,(u) is a polynomial of degree n called a Hermite polynomial.
The first four Hermite polynomials are
Hy(u)=1
H,(u) = 2u
Hy,(u) = 4u? — 2
Hs(u) = 8u3 — 12u
A few sample wave functions are given in Figure 1.3. As the value of
the principal number increases, the solutions alternate between even

functions and odd functions about x=0.

Y V(X)

Energy (in units of hv0)

xY

Figure 1.4: The first five wavefunctions of the quantum harmonic oscillator.

The solution of the quantum harmonic oscillator is:
_uz/
¢n = Hy(u)e 22
X -X
Qon(x) = H, (E) e /2a2
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Chapter Three
Numerical Techniques for Solving
Schrodinger Equation
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Chapter Three

Numerical Techniques for Solving Schrodinger
Equation

In this chapter, we attempt to solve the Schrédinger equation and its
variants numerically. This involves using the finite difference and the

pseudo-spectral methods.

3.1 Finite Difference Method (FDM)

This method replaces the partial derivatives of the dependent variable
(unknown function) with a partial differential equation using finite

difference approximations with errors.

This procedure transforms the region (where the independent variables in
PDE are defined on)to a mesh grid of points where the dependent
variables are approximated [5,20,36]. The possible replacement of partial
derivatives with various approximation formulas depends on Taylor's

Theorem. Hence, Taylor's Theorem is presented.

3.2 Taylor's Theorem [5,36]

Let ¢(x) has n € N continuous derivatives over the interval (a, b). Then,
for a < x4, x, + h < b, we can write the value of ¢ (x) and its derivatives
nearby the point x, + h as follows:

‘P(;io) (- xg) + <p(2x!o)

@(xo + Ax) = @(x0) + (x — xp)?

‘/;’(xo)

+3!

(x — x0)3+..
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p h?
@(xo +h) = p(xp) + hp(xp) + ;QD(XO)"‘
h3 ; hn—l _
9 Gxo)+. +——=p" D (xp) + 0(h™) (3.1)

(n-1)!

which can be written in the more compact notation as

(00

(n)
z 7)oy o)

n!
n=0

where

1. @(x,) Iis the first derivative of ¢ with recognition to x at the
specific point x,.

2. @™ D(x,) is the n — 1" derivative of ¢ with respect to x at the
point x,.

3. 0(h™) denotes an unknown error term that satisfies the property: for
@(h) = O(h™)

. h
lim % = ¢, for any nonzero constant c.
-

When we eliminate the error term, O(h™), from the right-hand side
of functional equation (3.1), we get an approximation to ¢ (x, + h).
the forward—difference formula for approximating ¢ (x,)

B (xy) = <p(xo+A22—<p(xo) + 0(Ax),

The backward—difference formula

@(xo) — @(xo — Ax)
Ax

@ (xo) = + 0(Ax),
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and the central-difference formula

@(xo + Ax) — @p(xy — Ax)
2Ax

P(x0) = + 0(Ax)?,

and we have also

@(xg + Ax) — 2¢(xp) + p(x9 — Ax)

Ar? + 0(Ax)2.

é(xo) =

To find the numerical solution to partial differential equation with
finite difference method, we discretize the domain D of the given

problem [5,20,36,37].

3.3 Strategy of Discretization

We start implementing the finite difference method to Schrodinger
equation (3.2),
—h? 92 o 0
gﬁ?j}(xi, t]) + V(xl,t])l/)(xl, t]) = lha(p(xi,tj), fOI’(x, t) €ER (32)
The rectangulardomain R = {(x,t)la < x < b,c <t <d}and ¢(x,t) =

g(x,t) for any (x,t) € S, where: S denotes the boundary of a region R,

g(x, t) is continuous on S.

Now, we will use the finite difference algorithm for solving the time-

independent Schrodinger equation [5,35]:
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The Finite Difference Algorithm

Step 1: Choose positive integers N and M.

Step 2: DefineAx=h=b%aandAt=k=%.

This step partitions the interval [a, b] into N equal parts of width h and
partitions the interval [c, d] into M equal parts of width k as step 3
illustrates.
Step 3: Define the mesh point (x;, t;) as

x;=a+ih, i=012,....,N

tj = jk, j=012,....M

Step 2 and step 3 are illustrated in figure 1.4.

1 1 1 1 X
Xg=a X1 X3 xN=b

Figure 1.5: Grid lines and mesh points of the grid using Finite difference method.

It is clear from figure 1.5 that we obtain horizontal and vertical lines inside

the rectangle R. These lines are called "grid lines" and



42
their intersections are named "mesh points" of the grid. For each mesh
point inside the grid, (x;,¢;), i = 1,2,...,N — 1 and
j=1.2,..,M —1[2,5]. We use Taylor series in the variable x about t to
generate the central-difference formula:

92 o(xiv1.tj)—-20(xptj)+@(xi—1,t;))  h% 9%
e et) = ———+—2~ ———. o) (3.3)

where §; € (x;_1,Xi41)-
In addition, we use Taylor series in the variable t about x to generate the
forward-difference formula [2,5]:

3 _ olxutjv)-pit)  k 82
> o(xut) = - L= e(x)) (3.4)

where (Xi, E]) € (t], tj+1).
Substituting equation (3.3) and equation (3.4) into equation (3.2), we get:

e P Xitjr1)—@(Xit; k 02
lh ( ]+1]){ ( ]) 2 atz(p( i;fj) —

—-h? @(Xi+1tj)—20(xpt;)+o(xi-1t;) n? ot
— (Xi41 1) (hZ 1) (¥iz ]) _E'W@(EP tj) + V(xi)(p(xi'tj) (35)

Foreachi =1,2,3,...,n—1 and j =123, .... ,m—1.

Rearranging equation (3.5), we get:

—ihp(xpt;)) B2 @(xut))

+

h?2 ‘P(xl+1t])+¢’(x11t]) k 92
- e =3 () -

12 ax4 ('0(5“ L )

or it can simply be written as

—ih  h2 o 0(xtjze) | B2 e(xiput))te(xiut;))  k
= Dlp(xit;) + ih——-= 4 —- — ==

PE h2 9
ﬁ‘ﬂ(xi;fj) -5 ﬁfp(fi' t;)
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Multiplying both sides by —h?, we get :

ihh?2

[ + + hZV(xl) (p(xut ) (,0( Xiy ]+1) (p(xl+1' ¢ ) +
¢(xi—1:tj) = —h?*[ 5 ﬁ(p(xl'fj) }112 9t <p(€l,t)

Clarifying the last equation and typically let ¢; ; approximate ¢ (x;, t;),

we form[2,5]:

ihh? 2 ihh? h?
[+ -+ RV N9 — = Pije1 = 5 [Pisny + @i, ] = 0(3.6)

foreachi =1,2,3,...,n—1 and j =123, .... ,m—1.

3.4 Eigenvalue Problem

The wave functions, 1, are eigenvectors of the Hamiltonian
operator, and satisfy equation [16]:

Hy = Ey (3.7)

where H is the Hamiltonian operator, and the eigenvalues E represents the
energies of a particle with wave functiony.In the one
dimensional situation, y is dependent only on the spatial coordinate x,

and the one dimensional Hamiltonian is performed by

A=(2)Z+vw
where h is a stable constant, m denotes the mass of the particle, and
V (x) determine the potential energy function of the particle. Note that
H is dependent upon via x the V(x) term. To give a dimensionless

interpretation, we establish h? = 2m, so that



H= -t V(x) (3.8)
Let the points: x; 1=0,1,2..n.
At each point x;, equation (3.7) holds [16], so that

Hp(x;) = Ep(x;)
Where ﬁj is the Hamiltonian operator evaluated at V(x;). Taking into

Consideration that each of the points x; makes the structure of

equations:

ﬁow(xo) = EY(x)

H(x) = Ep(x)) (3.9)

H\nw(xn) = EY(x,)
Using equation (3.8), system (3.9) can be written as[16]:
=" (x0) + V(x0)P(x0) = EP(xp)

=" (x1) + V()Y (xy) = EP(xy) (3.10)

—l/J”(Xn) + V(xn)lp(xn) = Ey(xy)
We now have a system (3.10) of n equations relating the wave function of

a particle to its fundamental energy.

—P"() + [Vx) - Eyp(x) =0 (3.11)
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JWe will limit our analysis the evaluation of ¢ (x) in the case of the
infinite square well, and for scattering states within a finite interval[5,16].

We now select to approximate ¢(x) in equation (3.11) using finite
difference scheme for ¢ (x), such that:

o(x) = (%) (Ago(xj_n) +Bo(Xj_p41) + -+ Co(xj) + -
+ D(Xj4n—1) + G‘P(xj+n))

where A, B, C, D, and G determined constants, h denotes the step size,
and n is an integer.

In the second order, the centered finite difference approximation:
, 1
0(5) ~ () (2 G5-1) — 20(5) + 0 (x:01))

Substituting the approximation for { (x) system (3.10) becomes

(= (%) 00 +Z 00) = 0 ) +V(xo). 9(x0) = B (xo),

Simplifying,
— ) (o) + |V (xo) + | 9 (x0) — (-5 ) @(x1) = Ep(x,)
() #tc-0+ [0+ oo = ()

(D)ot + [V + 2] 0t = (S o) = Eox)
() o) + v+ 0 = 5

~ (1) #Cn2) + [V Giuc) + ] 0a) = (i) #0) = Fopac)

- lz @(xp_1) + V(xn)+£2 @ () — iz P (Xni1) = E@(xy)
() a0 + [0 ] oo = 5

now we define the vector
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[ @ (x0) ]
@ (x1)

‘P(x.;z.—1)
L o (xp) |

Employing a suitable finite differencing scheme, as well as using a

boundary conditions, the system of linear equations may be expressed
only in terms of the sample points u(x;) such thatj=0,1, .., n
(excluding u(x_;), ..., u(xp41), u(Xp42), ... )[5,16].
In this case, system (3.11) can be written as
H¢ =E¢
where H is a matrix containing the coefficients of each ¢ (x;) in the system
of linear equations. E is the energy of eigenvector ¢ (x;) at each sample

points x;, and is an eigenvalue of H.

Fo = (22) 22 4 v
$=\2m ) ox? X9

P1 P

%) @2

El . |= [ H ] .
N XN

Pn Pn

The eigenvalues of the N by N matrix (H) can be evaluated. There will
be N eigenvalues and N eigenvectors. For a large value of N, Matlab can

be used to find eigenvalues and eigenvectors.

[V, D] = eig (H)
where D has the eigenvalues of H as its diagonal elements. V has

normalized eigenvectors of H as its columns [16,24].

3.5 Finite Difference Method for infinite square well
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In this part, we need to find the solution to the free time-

independent Schrodinger equation with the boundary conditions [22]
_hZ 62
(55) w0 = Ep@) (3.12)
Using the second order centered finite difference approximation:
. 1
0(5) ~ (53) (0(x72) = 20(5) + 0(31))

each linear combination will have the form
1
= (52) (0(g0) = 20(5) + 0(35-2)) + V()0 (x5) = Eoo ()

- (72) 0C-2) + [ 0) + 3] 0) = (5) @) = B ),
where @(x;,) =0,V x; € [0, L].

Thus, the matrix H will take a form

[ 1 \
Ax? 1 Ax?
1 2 Ly 1
Ax? Ax? 2 T Ax2
1 2 '+ ) 1
Ax? Axz 1 Ax?
1 2
\ & e ]

3.6  Finite difference method for finite square well

The bound states of the finite square well which shows in figure

(1.2):
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Region 2:
—L<x<LV(x)=0.

The equation is:
2

O0x?

P(x) = —k* P (x)

Use second-order centered difference formula for ¢(x;), i = 1,2, ...,9 and

drop the error term,

Piv1 —20; Qi1
h? B

—k?@;

2mE

2 —
where k* = —-.

Region 1 and 3 in figure (1.2):
x<—-Lorx=L,V(x)=V,
The equation is:

S =a
where a? = Zh—zl (Vo — E).

Use second-order centered difference formula for ¢(x;), i = 1,2, ...,9 and

drop the error term,

Piv1 — 20+ 01,
2 = a ;.

When we use second-order centered difference formula for ¢ (x;), and

drop the error term, we get

Pit1—20i+Qi_1
h2

= —Eg;.

Each linear combination will have a form

1
~(5) (Prie) = 2060 + 0(xi-) = Ep(x)
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- (%) P (xi-1) + 5 9 (x;) = (%) @(x41) = Ep(x;)  (3.13) for

. N
x; <xn,i=1,...,—.
t = 2

2

Thus, the matrix H takes the form

-0 1 ;
2z 0 0 0 0 0 0 0
1 2 1
W2 e R 0 0 0 0 0 0
1 2 1
0 7 e T 0 0 0 0 0
1 2 1
0 0 7 e R 0 0 0 0
1 2 1
0 0 0 W m R 0 0 0
1 2 1
0 0 0 0 7w R 0 0
1 2 1
0 0 0 0 0 7 e R 0
1 2 1
0 0 0 0 0 0 7w m
1 2
I 0 0 0 0 0 0 0 7 Rz |

Use second-order centered difference formula for ¢ (x;), and drop the error

term, we get

Piv1 — 20+ i1,
2 = a ;.

Each linear combination will have a form
(hi) (p(xir1) = 20(x) + @(x;-1)) = a®p(x;) (3.14)

for%SiSN+1.

Thus, the matrix H takes the form
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2 1
1z nz 0 0 0 0 0 0
1 2 1
2 R nZ 0 0 0 0 0
1 2 1
2 T nZ 0 0 0 0
1 2 1
0 2 T nz 0 0 0
1 2 1
0 0 2 nz 0 0
1 2 1
0 0 0 2 T nz 0
1 2 1
0 0 0 0 2 T nz 0
1 2 1
0 0 0 0 0 0 2 Tm; nZ
1 2
0 0 0 0 0 0 0 2z T

Then we need to solve these systems.

3.7 Pseudo-spectral method

Another method used to solve the Schrodinger equation is the pseudo-
spectral method, which based on the expansion of basis functions
defined in a collection of grid points, a function is approximated as a
weighted sum of smooth basis functions, which are often selected to be
Legendre or Chebyshev polynomials. The pseudo-spectral method is
proposed for the numerical solution of the nonlinear Schrddinger equation
[9,26].

The fundamental concept of this method is to expand the solution

function as a finite series of smooth basis functions [8],

@:[-1,1]1 > R
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Pn(x) = Y=o ¢ T (%), (3.15)
where, T, (x) typically represents Chebyshev or Legendre orthogonal
polynomials defined on the interval [—1,1] [9,25,31], and c,, represents
the constant coefficients vector.
¢, = (Co,Cqpeen-rcy)T € RNTL

Which are computed from the formula

Tjn

2 1
Cp = N_anzﬂyﬂé_j‘P(xj) cos (T)n =0L12....N. (3.16)

Here, o =¢y=2,6,=1, n=12,...,N—1, and Xj = COS (%),

j=0,1,....,N,are the Chebyshev-Gauss-Lobatto points.

Let recall the definition of a Chebyshev polynomial:

T, (x) = cos(ncos™1(x)) Jif x| <1 (3.17)
Let:
@ =costx = X = cos 0
Then:
T,(x) = 0,(60) = cos(nf), 0 €|[—mnnr] (3.18)

Using the identity defined a bove, equation (3.15) becomes:

@(x) = Xh=o cn cos(n6) (3.19)
Deriving equation (3.19) with respect to x, we get:

afp(X) — Zg=0 Cn (n sinn@) (320)

ox sin 6

%p(x) ZN nsinn@ cos8-n? cosné sin 6
— 4n=0 Cn( )

0x?2

(3.21)

sin3 @

The basic equation is:
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2 p() = Ep(x) (3.22)

Substituting equation (3.21) in equation (3.22), we get:

inné 6-n? 0 sin@
Z%’:o Cn(nsmn cos 8—n“ cosnb sin )=E. Zﬁ:o c, COS(TLQ)

sin3 6

Using boundary condition to find the coefficients of the vector c, [24,36].
N

N N
A T
(0) = n Tn(0) = WO lz) = n( - =0
2 ;80 nz:;)c (2) nz:;)c cosn2
(1) = Z ¢ Tu(1)
nﬁo N .
= nPn(0) = n(cosn0) = (D=0
;C ;C cosn ;C
So
[€0]
%0—1010—1010IC1|_0
[3 1 1 1 11 1 1 1 1] C25|_[0] (3.23)
2 L ¢,]

These relations form a system with two equations and N + 1 unknowns,
to construct the remaining N — 1 equations we collocate (3.15) at the
zeros of Ty_4(x), which are the interior points between 0 and 1, and are

given as [8,24,30]
_(@n—-Dm

n N_l_, n=1,.....,N—1.

By using inverse Fourier transform we will find the wave function ¢(x)

@(x) = Y=o Cn cOS(n0).
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3.8 Pseudo-Spectral Algorithm

Step 1: Choose positive integer N.
Step 2: Define Ax = L

N+1

Step 3: Define the mesh point x; asx; =ih i =0,1,2,...... ,N + 1.
Step 4: Define x = cos 8, 0 = cos™ 1 x.
Step 5: Define @,,(x) = @,,(6) = cosn®.
Step 6: Define ¢(x) = YXN_, ¢, cos(nd).
Step7: Using boundary conditions to evaluate the coefficient of the vector
Cp-
From the first boundary condition :

@ (x9) = Xii=o CnDn(xo),
from the second boundary condition:

@(xXn+1) = Xn=0 CnPn(tn+1)-
Step 8: Find the matrix of the coefficient of the vector c, by using this

formula
_(@n-Dm
O N-—-1 "

Step 9: Using inverse Fourier transform to find the wave function ¢(x).
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Chapter Four
Numerical Examples and Results
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Chapter Four

Numerical Examples and Results

In this chapter, we implement the two numerical methods, namely, the
finite difference and pseudo-spectral methods, for solving the Schrédinger

equation and its variants.

4.1 Numerical solution for infinite square well of TISE

Example (4.1):

Consider that for the infinite square well, the particle whose mass 0.5 g is
only found in the infinite interval [0,1], such that

V(x) = { 0 x € [0,1]
00 else

consider the free time- independent Schrédinger equation

() @ = Epo) (4.1)
with the boundary conditions

Y(0)=0 and (1) =0 (4.2)
the exact solution of (4.1) [8] is:

@(x) = V2 sin(mx)
the following algorithm is applied to obtain the solution of the equation
(4.1) using the finite difference method.
Algorithm (4. 1): Finite Difference Method

1- Find the general solution for the equation
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@1/1(96) + K2P(x) =0

2- Define b=0,L = 1, h? = 2m.

3- Find k, a, where K = nL—n,a = %

4- Find the energy E

n?m?h?

where £, = —

5- Choose positive integers N = 9.
6- Clarify h = ﬁ = 1—10 this act separates the interval [0,1] into 9 equal

parts of width =
10

7- Define the mesh point x; asx; =ih i=0,1,2,..... ,10.

the mesh points are

xo xl xZ x3 X4, XS Xa X7 xg X9 xlo

00| 01] 02| 03] 04| 05| 06| 07| 08| 09] 10

8- Use second-order centered difference formula for ¢ (x;),

i =1,2,...,9 and drop the error term, we get

Pit1—2@0i+Pi—1 _
h2 - _E(pl

Each linear combination will have a form
1

~ (37) (G = 20 + 0(xi-0)) = Bp(x)
~ () 0 ic) + 5 0(x) = (35) @ (xien) = Ep(x), (4.3)
where ¢(x;) =0,V x; ¢ [0,1].

For i = 1, equation (4.3) becomes

—(3) (o) + =0 (1) — (55) 9 (x2) = Egp(xy)
w2 ) PXo 2 PLXa nz) P\X2) = LPLX

fori =2,
— () 90 + 500 = (55) 9 (x2) = Eg(x2)
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fori =3,

() ote + 000 - () ot = e
fori =4,

— (&) @) + S 0(xs) — (=) @ (xs) = Eg(xy)
fori =35,

() ote0 + 00 - () ot = e
fori =6,

(&) o@s) + o) — (35) 0 (x7) = Ep(xe)
fori =7,
— (&) oe) + 5 0@ — () 0 (xe) = Ep(xy)
fori =8,
~(3) 0@ + Zo@e) — () p(x0) = Eg(xg)
fori =9,
— (&) 0o + S0 (xe) — (&) 0(x10) = Eg(xo)

Thus, the matrix H takes the form



2 1
2 T 0 0 0 0 0 0 0
1 2 1
7 e 0 0 0 0 0 0
1 2 1
0 2 e Tm 0 0 0 0 0
1 2 1
0 0 7 e 0 0 0 0
1 2 1
0 0 0 W m R 0 0 0
1 2 1
0 0 0 0 7 e 0 0
1 2 1
0 0 0 0 0 7 e 0
1 2 1
0 0 0 0 0 0 7w m
1 2
I 0 0 0 0 0 0 0 7z Rz |

Applying algorithm (4.1) for example (4.1). Table (4.1) contains both the
exact and the numerical results using the finite difference method for

example (4.1).

Table (4.1): The exact and the numerical solutions using finite

difference method algorithm where N=9.

Xi Pe = Pexact Pi=Prnumerical Absolute error
|pe—qil

0 0 0 0

0.1 0.43701602 0.46701602 0.03000000
0.2 0.83125388 0.90015676 0.06890288
0.3 1.14412281 1.18543371 0.04131090
0.4 1.34499702 1.25307610 0.09192092
0.5 1.36500261 1.28863421 0.07636840
0.6 1.34499702 1.55307610 0.20807908
0.7 1.14412281 1.18543371 0.04131090
0.8 0.831253878 0.90015676 0.06890288
0.9 0.43701602 0.46701602 0.03000000
1.0 0 0 0
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It can be observed that the maximum absolute error is 0.20807908.
The exact and approximate results of ¢(x) are shown in Fig. 4.1 (a) and

the resulted error is shown in Fig. 4.1 (b).

The solution of TISE by finite difference method.

14 F T L T L |y L L

Exact
1.2+ — Approx ||

0.8
p(x)

I
1

0.4 -

0.2 -

O r r r r r r r r r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(N =9)

Fig. 4.1 (a): A comparison between the exact and approximate solution in example
4.1.

= Error

0.09 |
0.08 | \ ]
0.07 | ) |
0.06 | : '\. |

oost / \ / \ A

0.03 " " " L
0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.9

x(N =9)
Fig. 4.1 (b): Absolute error between exact and numerical solution in example 4.1
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Table (4.2) contains both the exact and the numerical results for the

values of energy for example (4.1).

Table (4.2): The exact and the numerical solutions for the energy in

example (4.1) where N=9.

N Eoract Epumerical Absolute error
|Eexact'Enum|
1 9.86960440 9.27431124 0.59529316
2 39.47841760 39.05884233 0.41957527
3 88.82643961 88.11904310 0.70739651
4 157.91367042 157.8754602 0.03821022
S 246.74011003 246.64312400 0.09698603
6 355.30575844 355.07313011 0.23262833
7 483.61061565 483.89924520 0.28862955
8 631.65468167 631.00001527 0.65466640
9 799.43795649 799.08054461 0.35741188

It can be observed that the maximum absolute error is 0.70739651.

The exact and approximate results of E,, are shown in Fig. 4.2 (a) and the

resulted error is shown in Fig. 4.2 (b).

900
800G
700 |
600 [
500 |-

Ey
400 -
300 |

200 -

100 |-

09—

—— Approx

Exact

D
O

D

0.1

0.2 03

04

05 06

X

07

08 09

Fig 4.2 (a): A comparison between The exact and approximate results of E,,.
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1.2
— Error

0.6
0.4

02

0
0.1 02 0.3 0.4 0.5 0.6 0.7 08
X

09

Fig 4.2 (b): Absolute error between The exact and approximate results of Ej,.

Pseudo-Spectral Method
Solving example (4. 1) by the pseudo-spectral method.

Algorithm (4.2)[ 4,13]: The Pseudo- Spectral Method
1. Define L=1, m=0.5, n=1, 6 € [—m, m].
2. Choose positive integer N=9.
L 1

3. Define Ax = — = —.
N+1 10

4. Define the mesh point x; asx; =ih i=0,1,2,..... ,10.

the mesh points are

x
0 X1 X2 x3  x,  Xs Xg X7 Xg X9

X10

00 /01020304 05 | 06 | 0./ | 0.8 | 09

1.0

5. Define x = cos 8, 8 = cos™ ! x.
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6. Define @,,(x) = 0,,(6) = cosné.
7. Define @(x) = ¥N_, ¢, cos(nb).
8. Using boundary conditions to evaluate the coefficient of the vector
Cn.-

From the first boundary condition:
N N

@(0) = z Cn@,(0) = z c, 0" =0

n=0 n=0
From the second boundary condition:

N N

O = ) ()= ) 1" =0
n=0 n=0

9. Find the matrix of the coefficient of the vector c, by using this
formula

_@n-Dm B

n=TN T =1, ... ,8

10.Using inverse Fourier transform to find the wave function ¢ (x).
Applying algorithm (4.2) for example (4.1). Table (4.3) contains both the
exact and the numerical results using the pseudo-spectral method for

example (4.1).
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Table (4.3): The exact and the numerical solutions using pseudo-

spectral method algorithm where N=9.

Xi Pe = Pexact Pi = Pnumericar | AbSOlUte error|g,-@; |
0 0 0 0
0.1 0.31880021 0.40000852 0.08120831
0.2 0.60775210 0.72194022 0.11418812
0.3 0.83703748 0.98861174 0.15157426
0.4 0.98442201 1.02520004 0.10026000
0.5 1.03530001 1.08468201 0.04938200
0.6 0.98483305 1.01227759 0.02744454
0.7 0.83780103 0.90463332 0.06683229
0.8 0.60870000 0.65430703 0.04560703
0.9 0.32000000 0.37000032 0.05000032
1 0 0 0

It can be observed that the maximum absolute error is 0.15157426.

The exact and approximate results of ¢(x) are shown in Fig. 4.3

(a) and the resulted error is shown in Fig. 4.3 (b).

127

0.8 I
p(x)

06

047

0.27

Dl 4
0 0.1

4 4

02 03

L - 4

04 0.5 0.6

X

Exact
Approx

\

\
18 4 L ]

0.7 0.8 09 1

Fig 4.3 (a): A comparison between exact and numerical solution in example 4.1.
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0.7

A = Error
i1

0.3

0.2

0.1

D - A '} A I
0 0.1 0.2 03 04, 05 0.6 0.7 0.8 0.9 1

Fig 4.3 (b): Absolute error between exact and numerical solution in example 4.1.

Second case of quantum mechanics: the finite square well.
4.2 Numerical solution for finite square well
Region 2 in figure (1.2):

—L<x<LV(x)=0.

The equation is:
2

4 2
PG = k2 Yo

Use second-order centered difference formula for ¢(x;), i = 1,2, ...,9 and
drop the error term,

Piv1 —20; + Qi1
h? a

—k?@;

2mE
hz

where k? =
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Region 1 and 3 in figure (1.2):

x<—=Lorx=LV(x)=V,
The equation is :
2
¥ =Y
2m

where a? = — (Vo — E),

Use second-order centered difference formula for ¢(x;), i = 1,2, ...,9 and

drop the error term,

Piv1 — 20+ 91,
2 = a ;.

Example (4.2):
Consider that for the finite square well 1 nm, the particle with mass
=0.5 g is found in the interval [0,1], such that V(x) =V, = 50 eV,

consider the free time independent Schrédinger equation:

(35) Z 900 + V@) = E (o) (4

2m/ o0x

with the boundary conditions
Y(x) >0 as|x| » oo (4.5)
the exact solution of (4.4) [1,23] is:

p(x)=ce™™
the following algorithm is applied to obtain the solution of the

equation (4.4) using the finite difference method.

Algorithm (4. 3): Finite Difference Method

1- Find the general solution for the equation
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2 () — a?p(x) = 0
alepx a“yP(x) =
2- Define L = 1 nm, h? = 2m,V, = 50.

3- Define a = /i—T(Vo —E)

4- Find the energy E, where E,, =

n?m?h?

2mlL2

5- Choose positive integers N = 3.

6- Clarifyh = L;:ll = % = 0.25, this act separates the interval [0,1]

into 4 equal parts of width 0.25.
7- Define the mesh point x; as x; = ih, i = 0,1,2,3.

The mesh points are

X0 X1 X X3 Xa

0 0.25 0.5 0.75 1

8- Use second-order centered difference formula for ¢ (x;),

i = 1,2 and drop the error term, we get

Pit1—2@0i+Pi—1 _
h2 - _E(pl

Each linear combination will have a form
1
~ (5) (Gxes) = 20 + 9(i-)) = Eg(x)

~ () i) + =0 — () P(xiar) = Ep(x))  (46)

where ¢(x;) =0,V x; ¢ [0,1].
For i = 1, equation (4.6) becomes

_ (%) o(x,) + %(p(xl) - (%) p(xz) = Ep(x;)
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fori =2,
1 2 1
~ (5) 00 + 350G = (3) 0(x) = Bl
9- Use second-order centered difference formula for ¢(x;), i =
3,4 and drop the error term, we get

Piv1 — 20+ Qi1
W2 = a~Q;.

Each linear combination will have a form
1
() (PCres) = 20G) + 9(i-) = D)
fori =3,
1 2 1 5
() 002) = 2 0 + (1) 0a) = ()
fori =4,
1 2 1 5
() 00e) = 0 + () 0s) = ()

Thus, for i = 1,2 the matrix H will take form

2 1
hz  h2
1 2
hZ  R2
and for i = 3,4 the matrix H will take form
2 1
hZ  RZ
1 2
h2  h2

Applying algorithm (4.3) for example (4.2). Table (4.4) contains
both the exact and the numerical results using the finite difference method

for example (4.2).
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Table (4.4): The exact and the numerical solutions using finite

difference method algorithm where N=3.

N Pe = Pexact @i = Pnumerical Absolute error
[P — @i
1 0.18945941 0.18945027 0.00000914
2 0.25428327 0.24638761 0.00789566
3 0.58497260 0.58556111 0.00058851
4 0.90483742 0.90097764 0.00385978

It can be observed that the maximum absolute error is 0.00789566.
The exact and approximate results of ¢ (x) are shown in Fig.

4.4 (a) and the resulted error is shown in Fig. 4.4 (b).

17

— Exact '

09} —— Approx ‘
08 /

,'/

0.7} E
P(X) o6+ -
05 > 1
04 F ,x/ 1
03} ; 1

par —

0.1° - 4 , - - - - .
02 03 04 05 0 0.7 08 09 1
X (N=3s5
Fig 4.4 (a): A comparison between the exact and approximate solution in example

4.2.
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-3
g 210 i i i

———  Error
7 -
6 - -
5 - -
4 ]
3 - -
2 - -~
1t
D L a'l A i . A A L A .
02 03 0.4 0.5 06 0.7 08 0.9 1

Fig. 4.4 (b): Absolute error between exact and numerical solution in example 4.2.

Table (4.5) contains the exact and the numerical results for
the energy in example (4.2).
Table (4.5): The exact and the numerical results for the energy in

example (4.2).

N Eoract Epumerical Absolute error
| Eexact'Enuml
1 5.72000000 3.77780000 1.94220000
2 20.00000000 10.65000000 9.35000000
3 45.40000000 39.45000000 5.95000000
4 49.84000000 47.76900000 2.07100000

It can be observed that the maximum absolute error is 9.35000000.
The exact and approximate results of E,, are shown in Fig. 4.5 (a)

and the resulted error is shown in Fig. 4.5 (b).
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Fig 4.5 (a):A comparison between The exact and approximate results of E,,.
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Fig 4.5 (b): Absolute error between exact and numerical energy in example 4.2.
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Example (4.3):
An electron in a finite square well 3 nm and 25 eV deep, consider
the free time independent Schrédinger equation:

—h?

(52) Zp) + V() = E () (4.7)

2m/ 0x?

with the boundary conditions
P(x) = 0 as x| - oo (4.8)

the exact solution of (4.7) [1,23] is:

—ax

p(x)=ce
the following algorithm is applied to obtain the solution of the

equation (4.7) using the finite difference method.

Algorithm (4. 3): Finite Difference Method

1- Find the general solution for the equation
62

) —a’P(x) =0

dx

2- Define L = 3nm, h? = 2m,V, = 25, interval=[0,3].

3- Define a = /i—’f(vo —E)

4- Find the energy E
n?m?h?

where E,, = —

5- Choose positive integers N = 5.

6- Clarify h = % = Z = 0.5, this act separates the interval [0,3]

into 6 equal parts of width 0.5.

7- Define the mesh point x; as x; = ih, i = 0,1,2,3.



The mesh points are

72

X0 %, Xy X3 X4 Xs X6
0 0.5 1 1.5 2 2.5 3
8- Use second-order centered difference formula for ¢ (x;),
i = 1,2,3 and drop the error term, we get
‘Pi+1_2h‘I;i+‘Pi—1 - _Eg,
Each linear combination will have a form
(3 (9 i) — 20() + 9xi-2)) = E(x)
— () 0@ic)) + o) — (35) 0(xian) = E@(x)  (4.8)

where ¢(x;) =0,V x; € [0, 3].

For i = 1, equation (4.8) becomes

~(53) @e0) + 3 0 ) — (35) 0(x2) = B

fori = 2,

() 96 + m0e) — () ) = )

fori =3,

_ (hiz) o(x,) + %go(xg,) - (%) @(x4) = E@(x3)

9- Use second-order centered difference formula for ¢ (x;),

for i = 4,5,6 and drop the error term, we get

Piv1 —20i+ Qi1 _ ,

hZ

a~Q;.

Each linear combination will have a form

1
() (@Cresn) = 20 + 9(i-0) = (D)

fori = 4,
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() £Cxs) — 5 0Ce) + (55) 0xw) = ()
fori =35,

(hi) D) — 5 0xs) + (hi) o(xs) = ()
fori =6,

() 0 e0) = 1 0x) + () 0en) = @)

Thus, fori = 1,2,3 the matrix H will take form

and for i = 4,5,6 the matrix H will take form

2 1
7 e
1 2 1
2 TR w

1 2

0w e

Applying algorithm (4.3) for example (4.3). Table (4.6) contains
both the exact and the numerical results using the finite difference method

for example (4.3)
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Table (4.6): The exact and the numerical solutions using finite

difference method algorithm where N=5.

N Pe = Pexact ©i = Qnumericar | AbSOlUte error
9. — @i

1 0.08688196 0.084587199 0.00229476

2 0.10372639 0.10373944 0.00001305

3 0.14332877 0.14432878 0.00100001

4 0.24664101 0.24742102 0.00078001

5 0.79179532 0.74039755 0.05139777

It can be observed that the maximum absolute error is 0.05139777.
The exact and approximate results of ¢(x) are shown in Fig. 4.6

(a) and the resulted error is shown in Fig. 4.6 (b).

0.8 r = T
Exact

— Approx
0.7 PP /1

0.6 | /4

05 ]

0.4} -
¢ (x) |

0.3} / -

02} _,___.-—-" ’ -

0.5 1 x(N=5 15 2 25

Fig 4.6 (a): A comparison between the exact and approximate solution in example 4.3.
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Fig. 4.6 (b): Absolute error between exact and numerical solution in example 4.3.

Table (4.7) contains the exact and the numerical results for the energy in

example (4.3).

Table (4.7): numerical The exact and the results for the energy in

example (4.3).

N Eoract E umerical Absolute error
| Eexact 'Enum |
1 1.12300000 1.09551111 0.02748889
2 4.46100000 4.38649084 0.07450916
3 9.90500000 9.86960440 0.03539560
4 17.16200000 17.545963379 0.383963379
5 24.78200000 27.4155677808 2.63356778

It can be observed that the maximum error is 2.63356778.

The exact and approximate results of E,, are shown in Fig. 4.7 (a)

and the resulted error is shown in Fig. 4.7 (b).
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05 1 X 15 2 25

Fig 4.7 (a):A comparison between The exact and approximate results of E,,.

15|

05

0 L I i
0.5 1 x 15 2 25

Fig 4.7 (b): Absolute error between exact and numerical energy in example 4.3.
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Conclusion

In this work we have used some analytical methods, namely, the
separation of variables method and the method of characteristics to solve
the Schrddinger equation. However, our main focus was on implementing
two numerical methods, these are: the finite difference and pseudo-spectral
methods, for solving the Schrodinger equation.

Numerical results show clearly that the pseudo-spectral method
(collocation) gives more efficient results than the finite difference method.
One major advantage of the pseudo-spectral method is that it does not
require a tedious steps of evaluating the unknown coefficients of the
approximating function. It is also seen to be suitable for any class of linear
differential equations with or without analytical solutions. Another
advantage of pseudo-spectral method is that the time independent
Schrédinger equation reduces to a system of algebraic equations which can
be solved by many iterative methods. This provides an accurate
approximation for a smooth solution with relatively few degree of
freedom. Finally, less grid points are needed with the pseudo-spectral

method than with finite difference methods to achieve the same accuracy.
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Appendix
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Appendix (A)
Matlab code for finite difference method for time-independent
Schrodinger equation (infinite square well).
Clear all
L= input(\n Please enter the value of L");
n=input(\n Please enter the value of n");
m= input('\n Please enter the value of m');
N= input("\n Please enter the value of N);
(% since h=2m=1)
h= (2*m)™(1/2) ;
(% find the values of the energy )
En=zeros(1,N);
for i=1:N+1
En(i)=(i*i*(22/7)*(22/7)*2*m)/(2*m*L*L)
end
En=[Enl En2 En3 En4 En5 En6 En7 En8 En9 En10 ];
k=((2*m*En)/(h*h))"(1/2)
(%enter the values of the matrix Hamiltonian H)
h1=(2/h*h)
h2=-1/(h*h)
H=[h1h20000000;h2h1h2000000;0h2h1h200000;00 h2
h1h20000;000h2h1h2000;0000h2h1h200;00000 h2hlh2
0;000000h2h1h2;0000000 h1h2]

(% find the eigenvector and eigenvalue of H)
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[V,D] = eig(H)
(% the values of the diagonal of the eigenvalue)
app=[0 D(1,1) D(2,2) D(3,3) D(4,4) D(5,5) D(6,6) D(7,7) D(8,8) D(9, 9)
0f;
(% the exact value of the wavefunction)
ress=zeros(1,N);
for j=1:N
ress(j)=(2)"(.05) *(sin((22/7)*j/10))
end
real= [0 ress 0]
(% enter the values of x)
x=[00.10.20.30.40.50.60.70.80.9 1]
(%plot the exact solution and approximation of wavefunction)
plot(x,real)
hold on
plot(x,app)
(%the error between exact and approximation solutions)
diff=real-d1,
plot(x,diff);
(%the absolute error)
AbDiff= abs(diff);
plot(x,AbDiff);
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Appendix (B)

Matlab code for finite difference method for time-independent

Schrodinger equation (finite square well).

L= input(\n Please enter the value of L");

v=input("\n Please enter the value of Vv');

m= input(\n Please enter the value of m’);

N= input("\n Please enter the value of N');

if mod(N,2)==1

else N= input(\n Please renter the value of N, you entered even number’)

end

f1=input(\n Please enter the value of start of interval’);

f2=input("\n Please enter the value of end of interval’);

h=(f2-fL)/(N+1);

- h1=(2/h*h)
h2=-1/(h*h)
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number_of X= N+1;

H=zeros(humber_of X/2);
for(i=1:number_of_X/2)
for(j=1:number_of_X/2)
if (i==))

H(i,j))=h2;

else if (abs(i-j)==1)
H(i,j)=h1;

else

H(i,))=0;

end

end

end

end

H1=-H;

[V,D] = eig(H)

[V1,D1] = eig(H1)

En=zeros(1,N);
for i=1:N
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En(i)=(-1* alpha(1,i) *alpha(1,i)*(h)*(h)*2*m)+v
end
for(i=1:number_of X/2)
for(j=1:number_of_X/2)
c(i,j)=D(i,i)

end

for(i=1:number_of X/2)

for(j=1:number_of X/2)

alphal(i,j)=D1(0,0):

end

alpha=[c, alphal];

plot(c,V)

plot(alpha,En);

al=alpha(1,5:8)

plot(al,V1)

Enl=En(1:4)
En2=En(5:8)
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Appendix (c)
Matlab code for Pseudo-spectral method for time-independent

Schrodinger equation.

n=input(\n Please enter the max value of n’);

N= input("\n Please enter the value of N');

theta= zeros(1,n);

for ii=1:n

theta(ii)=((2*n-1)*(22/7))/(N-1);

tt=[0.500000000; 0.5 theta(1) theta(1)"2 theta(1)"3 theta(1)"4
theta(1)"5 theta(1)"'6 theta(1)"\7 theta(1)"8;0.5 theta(2) theta(2)"2
theta(2)"\3 theta(2)"4 theta(2)"\5 theta(2)"\6 theta(2)"\7 theta(2)"8;0.5
theta(3) theta(3)"2 theta(3)"'3 theta(3)"4 theta(3)"5 theta(3)"6 theta(3)"7
theta(3)"8;0.5 theta(4) theta(4)"2 theta(4)"3 theta(4)™4 theta(4)"5
theta(4)"6 theta(4)"7 theta(4)"8;0.5 theta(5) theta(5)"2 theta(5)"3
theta(5)"4 theta(5)"5 theta(5)”6 theta(5)"\7 theta(5)"8;0.5 theta(6)
theta(6)"2 theta(6)"'3 theta(6)"4 theta(6)"\5 theta(6)"*6 theta(6)"7
theta(6)"8;0.5 theta(7) theta(7)"2 theta(7)"3 theta(7)"4 theta(7)"5
theta(7)"6 theta(7)"7 theta(7)"8;0.5 theta(8) theta(8)"2 theta(8)"3
theta(8)"4 theta(8)"5 theta(8)"'6 theta(8)"\7 theta(8)"8].



il £ ladl) daaly
Lulad) cslafyad) dls

Al g ddalaal doaaad) J glall

K\K)

daa (3hge W

&

%Y

u.'\l.'\h'é P SRR g

Lougaal) bl b pualal) dajs Ao Jganl) cildbial Ylaind dag hY) o2 Cuadd
2019



-

oAk gpd ddaleal djased) Jglal)

Aac)

daa (3hge

&

) i)
ua'l.'ih'é JPE K A

ailall

Y alaal) Jlae (8 Conall Jlae djgnall ¥ dlaall (o Wil paitiag saiag i Alalae s
Aelai¥ly Caadally ggunll dplaig clualll deia (8 ddbiaal) Lglauda gy dijad) dolialal)
JRidg yh Alslaa Lgiag oSl 1SISod] Apli) s liall mje ) Ayl o2 Ciags . ALalSial)
DS,y ) dilal L el dadpall e @llig el ddadyall jaingyd Aslee :leadSay
Fauilld gl pitiag yaiag p Alabee (ad Lnselly Al Gylal) iams o (st Ui s 2l
ey cbriall Jead i o Jarie &aldl (ol aiagyd Aslad Jbaill Jall
ey Toginall il lase ariiciins bl licdlalaall Lpoall Aalleall Zocalls Wl . ailiadll
Aol Hladl gy Sly 5agana) ybg Bagand) Allall 1ol Sl (g pillal Cll Caglall
Laaal) bl Cyelal 2y L Laaaall HLAAY) CVa ey laeY) Ge 3V S o3kl ol
ool daipall jie jaizgpd Alalae Jal oY) diphll o Bl Caall e o Zoeas



