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The Numerical Methods for Solving Schrödinger Equation  

By 

Hadeel Muaffaq Hejja 

Supervisor 

Prof. Dr. Naji Qatanani 

Abstract  

Schrödinger equation and its variants are one of the basic 

equations studied in the field of partial differential equations, and have 

various applications in geometry, spectral and scattering theory and 

integrable systems. 

In this thesis we review some basic details of quantum mechanics 

such as Schrödinger equation of both types: these include time-

dependent and time-independent Schrödinger equation. Moreover, we 

focus mainly on some analytical and numerical methods for solving 

Schrödinger equation and its variants. For the analytical solution of the 

Schrödinger equation, we use the separation of variables method and 

method of characteristics. For the numerical handling of this equation, 

we use the Finite Difference Method (FDM) and Pseudo-Spectral 

Method (PSM), for two cases of quantum mechanics: finite and infinite 

square well. 

To test the efficiency of these methods, we consider some 

numerical test cases. Numerical results show clearly that Pseudo-

Spectral Method is one of the most powerful numerical technique for 

solving time independent Schrödinger equation in comparison with the 

Finite Difference Method.  
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Introduction  

          At the beginning of the twentieth century, experimental evidence 

suggested that atomic particles were also wave-like in nature. For example, 

electrons were found to give diffraction patterns when passed through a 

double slit in a similar way to light waves. Therefore, it was reasonable to 

assume that a wave equation could explain the behavior of atomic particles 

[11,14]. 

            Schrödinger equation is a type of differential equation known as a 

wave-equation, which serves as a mathematical model of the moment of 

waves. Solutions to Schrödinger's equation express not only molecular, 

atomic and subatomic systems but also macroscopic systems, perhaps even 

the whole universe. Schrödinger’s equation is central to all applications of 

quantum mechanics including quantum field theory which incorporate 

special relativity with quantum mechanics [14]. In mathematics, the 

Schrödinger equation and its variants are one of the basic equations studied 

in the field of partial differential equations, and have applications in 

geometry, spectral and scattering theory, and  integrable systems. 

          In1924, de-Broglie suggested that every moving particle has a wave 

associated with it, which is also known as matter wave. Furthermore, 

Erwin Schrödinger, in continuation to de-Broglie’s hypothesis, 

constructed a differential wave equation of second order to rationalize the 

wave nature of matter and particle that correlates to wave [11]. Thus the 

equation is analogous to the equation for waves in optics, which assumes 
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that the particle behaves as wave and yields solution in terms of a function 

called the wave function. When this equation is solved, it generates two of 

the following; namely the wave function 𝜑 and the energy 𝐸, of the particle 

under consideration.  

        In 1926, Irwin Schrödinger inserted de Broglie's wave-like 

representation of particles into the conservation of energy equation (total 

energy = kinetic energy plus potential energy) and from this he derived an 

equation to describe their behavior— which has become known as the 

Schrödinger wave equation. 

        Once the wave function 𝜑 is known, then everything about the 

particle is known or can be deduced from the wave function. Thus, the 

wave function 𝜑 is the most important thing, which itself does not have 

any physical significance, however the absolute square of 𝜑, i.e. |𝜑|2gives 

the probability of finding the particle in a particular region of space at a 

particular instant of time [11,14]. 

            A wave equation is an example of an 'equation of motion' which, 

as the name suggests, can be used to predict the motion of an object. In 

this case the object is a wave. In other words, if we know the amplitude 

and velocity of the wave at a given time and place, we can project forward 

(or backward) and predict the amplitude and velocity of the wave at some 

other time and place. For example, if one dropps a pebble into a pond it 

makes a wave of a given height (amplitude) which will decrease with time 

as the wave spreads. Knowing the rate at which the wave spreads and loses 

amplitude, we can predict what it will look like in ten seconds, twenty 
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seconds and so on. Or conversely, we can look at the circular wave pattern 

at a given time and run the whole thing in reverse to re-create the original 

pulse created by the pebble. 

           Essentially, Schrödinger equation has two forms: one consisting of 

time termed as time dependent equation and the other in which time factor 

is eliminated and hence named as time independent equation [ 37]. The 

solution of Schrödinger equation can be obtained analytically by using the 

exact solvable models developed by Makowski [22]. On the other hand, 

numerical methods play a very crucial rule in solving Schrödinger 

equation. Sandvik [34] has obtained a numerical solution of the 

Schrödinger equation by using Numerov's method. Marston [24] has 

described the Fourier grid Hamiltonian method for bound state eigenvalues 

and eigenfunctions. Monovasilis [28] studied the exponential-fitting 

symplectic methods for the numerical integration of the Schrödinger 

equation. Doescher and Rice, in their work [8] studied the infinite square 

well potential with a moving wall. Jackiewicz technique [17] is used to 

find the solutions by spectral collocation method and wave method form 

relaxation methods. Strikwerda [36] has obtained a numerical solution of 

the Schrödinger equation by using finite difference method.  Aronstein and 

Stroud [1] implemented the general series for finite square-well energy 

levels for use in wave-packet studies. Robinson and Fairweather [33] have 

obtained an orthogonal spline collocation method for Schrödinger -type 

equation in one space variable. Gildener and Patrascioui [13] have shown 

that the energy spectrum of a one-dimensional system by using the pseudo 
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spectral contributions.  The solution of the differential equations of 

chemical physics can be obtained by using the spectral difference methods 

by Mazziotti [26]. Orszag [29] made a comparison of pseudo-spectral and 

spectral approximation. Also, England and Savari [9] implemented 

pseudo-spectral method of solving linear ordinary differential equations. 

Furthermore, Bulirsch, Miele and Stoer [4] have used the direct collocation 

as numerical method to find the numerical solution of optimal control 

problems.  

          For the numerical handling of the Schrödinger equation, we employ 

the Finite Difference Method (FDM).  In order to implement the FDM 

method, Schrödinger equation is first transformed into a diffusion equation 

by the imaginary time transformation. The resulting time-domain diffusion 

equation is then solved numerically by the FDM. In this method, we 

approximate derivatives using difference equation with errors of order 

𝑂(ℎ𝑛) to solve differential equations numerically. This method was first 

developed by A. Thom in the 1920s [6]. Finite difference procedures 

approximate the derivative appearing in a partial differential equation by 

sums and differences of function values at a set of discrete points. These 

approximations are based on Talyor series expansions of a function of one 

or more variables [5,6,20,36]. 

           In addition, we will solve the Schrödinger equation by the Pseudo-

spectral method, which is a family of numerical methods for the solution 

of differential equations based on the expansion of basis functions defined 

on a set of grid points. A pseudo-spectral method is proposed for the 
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numerical solution of linear Schrödinger equation. The employed method 

is based on Chebyshev-Gauss-Lobbato quadrature points. Using the 

pseudo-spectral differentiation matrices, the problem identified is reduced 

to a system of nonlinear algebraic equations [13,26]. However, this method 

has already been implemented by England and Savari, in their work [9] 

studied the pseudo-spectral method of solving linear ordinary differential 

equations. 

         This thesis is organized as follows: In chapter one, we review some 

basic details of quantum mechanics such as Schrödinger equation of both 

types: these include time-dependent and time-independent Schrödinger 

equation. In chapter two, we use analytical methods to solve the time-

independent Schrödinger equation for three cases, namely, the finite 

square well, the infinite square well and the harmonic oscillator. Two 

numerical techniques for solving Schrödinger equation are presented in 

chapter three, these techniques are finite difference method and pseudo-

spectral method for two cases of quantum mechanics: finite and infinite 

square well. In chapter four, some numerical examples for solving 

Schrödinger equation including the finite square well and infinite square 

well are illustrated. Finally, Conclusion are drawn. 
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Chapter One 

Introduction to Schrödinger Equation 

           In this chapter, we investigate some important concepts related to 

Schrödinger equation including the derivation of two types of Schrödinger 

equation, namely: time-dependent and time-independent Schrödinger 

equation, also we introduce some properties of the solutions of the 

Schrödinger equation, probability, normalization, and expectation value. 

1.1 Schrödinger Equation 

For a general quantum system, the Schrödinger equation may be written 

into the form: 

         𝑖ħ
∂

∂t
φ(𝑥, 𝑡) = �̂�𝜑(𝑥, 𝑡)                                         (1.1) 

where ħ =
h

2𝑚
 is the plank constant, φ(𝑥, 𝑡) is the wave function or 

state function, 𝑖 is the imaginary unit, 𝑖ħ
∂

∂t
 is the energy operator,  and    

                                   �̂� = −
ħ2

2𝑚

d2

dx2
+ V(𝑥) 

 is the Hamiltonian operator, where V(𝑥) represent the real function 

that illustrates the potential energy (input) of the method. 

         The Schrödinger equation has two types, in the first one, the time 

is obvious in the form with certain description and characterization 

that will show the wave function and how it will change with time. 

Therefore, the functional equation is known as time-dependent 
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Schrödinger (TDSE) wave equation for one dimension which can be 

written as: 

𝑖ħ
∂

∂t
φ(𝑥, 𝑡) = −

ħ2

2𝑚

∂2

∂𝑥2
φ(𝑥, 𝑡) + V(𝑥)φ(𝑥, 𝑡)                     (1.2) 

or 

𝑖ħ
∂

∂t
φ(𝑥, 𝑡) = (−

ħ2

2𝑚

∂2

∂𝑥2
+ V(𝑥))φ(𝑥, 𝑡),                        (1.3) 

where 𝑚 indicates the mass of the element.  

       This is typically a second-order linear differential equation, where 

the visible expression on the left-hand side of the functional equation 

(1.3) denotes the total energy of the visible particle. The first part on 

the right-hand side sufficiently denotes  the kinetic energy of the particle, 

while the second part on the right-hand side denotes the potential energy 

of the particle. There are three important properties of the solution for 

time-dependent Schrödinger functional equation as the following: 

1. The time dependent Schrödinger equation is carefully consistent with 

energy reservation.  

2. The time dependent Schrödinger equation has linear and singular value 

solution, which suggest that solutions can be typically formed by 

superposition of two or more independent solutions. 

3. The free-particle solution 𝑉(𝑥) = 0 is harmonious, with a single wave   

    of de Broglie. 
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      The second type of the Schrödinger equation is the time-independent 

Schrödinger equation (TISE), which is suitable for finding energy values 

for a one-dimensional system, which can be written as: 

𝐸φ(𝑥) = −
ħ2

2𝑚 

∂2

∂𝑥2
φ(𝑥) + V(𝑥)φ(𝑥).                      (1.4) 

       We will derive the two types of the Schrödinger equation: 

1.2 Derivation of the Time-Independent Schrödinger Equation 

    We will start with the one-dimensional standard wave equation [10,14] 

𝜕2𝑢

𝜕𝑥2
=

1

c2

𝜕2𝑢

𝜕𝑡2
.                                              (1.5) 

 Using separation of variables, 

   𝑢(𝑥, 𝑡) = 𝜓(𝑥)𝑓(𝑡),                                    (1.6)           

we have, 

𝜕2𝑢

𝜕𝑥2
=

𝜕2

𝜕𝑥2
𝜑(𝑥) 𝑓(𝑡) 

𝜕2𝑢

𝜕𝑡2
= 𝜓(𝑥)

𝜕2

𝜕𝑡2
𝑓(𝑡) 

 then we obtain, 

𝑓(𝑡)
𝜕2

𝜕𝑥2
𝜓(𝑥) =

1

c2
𝜓(𝑥)

𝜕2

𝜕𝑡2
𝑓(𝑡),                              (1.7) 

when we use a standard solution of the wave equation, 𝑓(𝑡) = 𝑒𝑖𝜔𝑡, we 

obtain 

   
𝜕2

𝜕𝑥2
𝜓(𝑥) =

−𝜔2

c2
𝜓(𝑥).                                       (1.8) 
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      We want to find the standard form of the Schrödinger equation by 

using the total energy which contains kinetic and potential energy[17] 

𝐸 =
𝑝2

2𝑚
+ 𝑉(𝑥),                                               (1.9)                                                    

finally, by using 𝜔 = 2𝜋𝑣, c = 𝑣𝜆, and ℎ = 𝑝𝜆 we have 

  
𝜔2

c2
=

4𝜋2𝑣2

c2
=

4𝜋2

𝜆2
=

2𝑚[𝐸−𝑉(𝑥)]

ħ2
 ,                               (1.10)                                   

Combining equations (1.10) and (1.8) gives  

                               
𝜕2

𝜕𝑥2
𝜓(𝑥) = −

2𝑚[𝐸−𝑉(𝑥)]

ħ2
 𝜓(𝑥)             

𝜕2

𝜕𝑥2
 𝜓(𝑥) +

2𝑚[𝐸−𝑉(𝑥)]

ħ2
 𝜓(𝑥) = 0                             (1.11) 

Rearranging equation (1.11) it becomes  

𝑑2

𝑑𝑥2
𝜓(𝑥) +

2𝑚

ħ2
𝜓(𝑥)𝐸 −

2𝑚

ħ2
 𝑉(𝑥)𝜓(𝑥) = 0,                  (1.12) 

Multiplying both side of equation (1.12) by 
−ħ2

2𝑚
  gives: 

                     
−ħ2

2𝑚

𝜕2

𝜕𝑥2 𝜓(𝑥) − 𝐸𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 0 

or 

−ħ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥).                         (1.13)      

       

  This is the time-independent Schrödinger Equation, which describes the 

state function of a particle with mass 𝑚 and potential energy 𝑉(𝑥). 

           

          Functional equation (1.13) can be expanded sufficiently to the 

specific case of three dimensions [10]. That is, 
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−ħ2

2𝑚
∇2𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)                        (1.14) 

where ∇=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
. 

    Equation (1.14) may take the form [10] 

�̂�𝜑(𝑥) = 𝐸𝜑(𝑥). 

1.3 Derivation of the Time-dependent Schrödinger Equation 

      There is more than one method to derive time-dependent Schrödinger 

equation. We will derive it by using the time-independent Schrödinger 

equation.       

The Schrödinger's time-independent equation is: 

 
∂2

∂𝑥2
𝜓 +

2𝑚

ħ2
(𝐸 − 𝑉)𝜓 = 0                                          (1.15) 

We assume that a wave function represented as (see [9,36]): 

𝜓 = 𝐴 ∙ 𝑒−𝑖𝜔𝑡                                               (1.16) 

where 𝐴 is the amplitude of the wave, 𝜔 is an angular frequency which 

equal 2𝜋𝑣, and 𝑡 is the time period. 

 Differentiating equation (1.16) with respect to 𝑡,  

 
𝜕𝜓

𝜕𝑡
= −𝑖𝜔𝐴𝑒−𝑖𝜔𝑡 = −𝑖(2𝜋𝑣)𝐴𝑒−𝑖𝜔𝑡                                (1.17) 

since 𝐸 = ℎ𝑣 

𝜕𝜓

𝜕𝑡
= −𝑖 (

2𝜋𝐸

ℎ
)𝐴 ∙ 𝑒−𝑖𝜔𝑡 = −𝑖(

2𝜋𝐸

ℎ
)𝜓 

𝐸𝜓 =
−ℎ

2𝜋𝑖
∙
𝜕𝜓

𝜕𝑡
=

𝑖ℎ

2𝜋

𝜕𝜓

𝜕𝑡
= 𝑖ħ

𝜕𝜓

𝜕𝑡
                          (1.18) 



 12   

  

Substituting equation (1.18) into equation (1.15) gives, 

∂2

∂𝑥2
𝜓 +

2𝑚

ħ2
∙ 𝑖ħ

𝜕𝜓

𝜕𝑡
−

2𝑚𝑉

ħ2
𝜓 = 0 

2𝑚𝑖

ħ
∙
𝜕𝜓

𝜕𝑡
=

2𝑚𝑉

ħ2 𝜓 − ∇2𝜓                               (1.19) 

Multiplying equation (1.19) by 
ħ2

2𝑚
, we get 

 𝑖ħ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 𝑉𝜓(𝑥, 𝑡) −

ħ2

2𝑚

∂2

∂𝑥2 𝜓(𝑥, 𝑡)                    (1.20) 

this is time-dependent Schrödinger equation with the term: 

                                     −
ħ2

2𝑚

∂2

∂𝑥2 + 𝑉 = 𝐻  

 as the Hamiltonian operator. 

Equation (1.20) takes the form [10, 37] 

𝑖ħ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = �̂�𝜑(𝑥, 𝑡) 

1.4 Schrödinger's operators 

         An operator is a rule for construction one function from another. In 

quantum mechanics, we have just seen that the momentum becomes 

associated with an operator related to the spatial derivative. 

     For any function: 𝑓(𝑥)
�̂�
→ another function of 𝑥 

or  

�̂�𝜑 = �́�, 
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   where �̂� is an operator. Every operator in quantum mechanics can be 

typically structured from the fundamental factors of  both position and 

momentum.  

𝑥𝜑 = 𝑥𝜑 

                                                     �̂�𝑥𝜑 = −𝑖ħ
𝑑

𝑑𝑥
𝜑. 

Definition (𝟏. 𝟏)[11,14]: For an operator �̂�, if  

�̂�𝑓(𝑥; 𝐷) = 𝐷𝑓(𝑥; 𝐷) 

for a given 𝐷 ∈ ℂ where 𝑐 denotes any complex number, then 𝑓(𝑥) 

denotes an eigenfunction of the operator �̂� and 𝐷 is the corresponding 

eigenvalue.  

Operators act on the eigenfunctions in a way identical to multiplying the 

eigenfunction by a constant number as seen in definition (1.1).  

       To every observable quantity, there is associated corresponding 

operator. For instance, the momentum operator is  

�̂� = −𝑖ħ
𝑑

𝑑𝑥
,  

the position operator is  

𝑥 = 𝑥 

the energy operator is  

�̂� =
�̂�2

2𝑚
+ 𝑉(𝑥) = 𝑖 ħ

𝜕

𝜕𝑥
 

and so on. 

      Note that the operator order is important. For instance, 

�̂�𝑥𝑓(𝑥) = �̂�(𝑥𝑓(𝑥)) = −𝑖ħ
𝑑

𝑑𝑥
(𝑥𝑓(𝑥)) = −𝑖ħ (𝑓(𝑥) + 𝑥

𝑑𝑓(𝑥)

𝑑𝑥
),   (1.21) 

 while, 
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                �̂��̂�𝑓(𝑥) = 𝑥 (−𝑖ħ
𝑑𝑓(𝑥)

𝑑𝑥
) = −𝑖ħ𝑥

𝑑𝑓(𝑥)

𝑑𝑥
.                              (1.22) 

      To measure the importance of order, we define the commutator of two 

operators �̂� and �̂� as [11,14] 

[�̂�,  �̂�] ≡ �̂��̂� − �̂��̂�. 

       Subtracting equation (1.21) from equation (1.22) we get 

𝑥�̂�𝑓(𝑥) − �̂�𝑥𝑓(𝑥) = 𝑖ħ𝑓(𝑥)                                 (1.23) 

1.5 Linear Operators 

Definition (𝟏. 𝟏)[11]: An operator �̂� is said to be linear if 

�̂�(𝑐𝑓(𝑥)) = 𝑐�̂�𝑓(𝑥)                                      (1.24) 

and 

�̂�(𝑓(𝑥) + 𝑔(𝑥)) = �̂�𝑓(𝑥) + �̂�𝑔(𝑥)                           (1.25) 

where 𝑓(𝑥) and 𝑔(𝑥) are any two appropriate functions and c is a 

complex constant. 

Examples: the operators 𝑥, �̂�, 𝑎𝑛𝑑 �̂� are all linear operators. 

1.6 Wave function  

       The wave function defined as a variable quantity that describes 

the wave characteristics of a particle mathematically.  

        Note that wave function, denoted by the Greek letter, 𝜑, may be 

thought of as an expression for the amplitude of the particle wave. The 

wave function 𝜑 must be single-valued, continuous, and finite.  
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      Also, the probability of finding the particle described by a specific 

wave function 𝜑 at a given point and time is proportional to the value of 

𝜑2
.  

𝑝(𝑥) = |𝜑(𝑥)|2 determines the probability that an object in the state 

𝜑(𝑥) will be found at position 𝑥. The total probability is the probability of 

the particle that must be unity [11,14,37], 

∫ |φ(𝑥)|2 𝑑𝑥 = 1
∞

−∞
                                     (1.26) 

and this is the normalization requirement which can be satisfied only 

if the wave function, 𝜑(𝑥), does not diverge to infinite. 

1.7 Equation of motion of the wave function 

        Moving to another operator called the Hamiltonian operator which 

plays an essential part in quantum mechanics. The Hamiltonian operator 

corresponds to the total energy observable for a free particle of mass 𝑚 

moving in 1-dimension in a potential 𝑉(𝑥). The Hamiltonian operator may 

take the form  

  �̂� = �̂�  + �̂�  = −
ħ2

2𝑚

d2

d𝑥2 + 𝑉(𝑥).                                   (1.27) 

      In three dimensions, equation (1.27)  may take the form [37]: 

�̂� = −
ħ2

2𝑚
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) + 𝑉(𝑟) = −
ħ2

2𝑚
∇2 + 𝑉(𝑟)         (1.28) 

For many-particle systems, we need to explain 

the expression for the total energy which includes the kinetic energy of 

the particles and the potential energy of the system. For two particles in 3-

dimensions, functional equation  (1.28) may take the form [37]: 
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   �̂� = −
ħ2

2𝑚
  ∇1

2  −
ħ2

2𝑚
 ∇2

2 + 𝑉(𝑟1⃗⃗⃗ ⃗, 𝑟2)                             (1.29) 

where 

∇1
2=

𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑦1
2 +

𝜕2

𝜕𝑧1
2 

and 

∇2
2=

𝜕2

𝜕𝑥2
2 +

𝜕2

𝜕𝑦2
2 +

𝜕2

𝜕𝑧2
2 

The Hamiltonian operator typically plays an essential role in 

the time-dependent development of the wave function.  time- dependent 

wave function will have its equation of motion given by the time-

dependent Schrödinger equation (TDSE): 

𝑖ħ
𝜕𝜑

𝜕𝑡
= �̂�𝜑. 

This obtain a basic equation that describes the movement of a quantum 

mechanical system. 

1.8 Properties of the solutions of the time-independent Schrödinger 

equation  

Considering a free particle where V(𝑥)= 0, the wave function 

solution can be carefully inserted in the form of a plane wave 

𝜑(𝑥, 𝑡) = 𝐴𝑒𝑖𝑘𝑥−𝑖𝜔𝑡                                    (1.30) 

which as a complex function can be expanded sufficiently in the form  

𝜑(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡) + 𝑖𝐴 sin(𝑘𝑥 − 𝜔𝑡)                 (1.31) 

where 𝐴 is the amplitude of the wave , 𝜔 is an angular frequency and 𝑡 is 

the time period. The free particle wave function is associated with a known 

momentum: 
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𝑝 =
ℎ

𝜆
=

ℎ𝐾

2𝜋
= ħK. 

      The time-independent Schrödinger equation is beneficial for finding 

energy values for a one dimensional system 

𝐸φ(𝑥) = −
ħ2

2m

∂2

∂𝑥2 φ(𝑥, 𝑡) + V(𝑥)φ(𝑥, 𝑡).                     (1.32) 

    From equation (1.32) we obtain the normalized eigenfunctions: 

𝜑𝑛(𝑥) = √
2

𝐿
sin

𝑛𝜋

𝐿
𝑥         𝑛 = 1,2,3, ….                       (1.33) 

which we will explore it in chapter two. 

       The solutions of the time-independent Schrödinger equation (TISE) 

have the following three properties: 

1. Continuity: The possible solutions to the time-independent 

Schrödinger equation 𝜑(𝑥) and its first derivative  �́�(𝑥) must be 

naturally extended for all values of 𝑥 (the latter holds for finite potential 

𝑉(𝑥)). 

2. Normalizable: The possible solutions to the time-independent 

Schrödinger equation must typically square integrable, i.e. the 

functional  integral of the modulus squared of the wave function over 

all space must be a finite constant so that the wave function can be 

normalized to give ∫ |φ(𝑥)|2 𝑑𝑥 = 1
∞

−∞
. 

3. Linearity: Owing to the linearity of the time-independent Schrödinger 

equation, given two independent solutions 𝜑1(𝑥) and 𝜑2(𝑥), we can 

construct other solutions by taking an appropriate superposition of 

these: 𝜑(𝑥) =𝛼1𝜑1(𝑥) + 𝛼2𝜑2(𝑥), where |𝛼1|
2 + |𝛼2|

2 = 1 to ensure 

normalization. 
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1.9 Basis of quantum mechanics 

Corollary (𝟏. 𝟏) [10,36]: The function 𝜑(𝑥, 𝑡) denotes the state of a 

quantum mechanical system, which depends on space and time 

coordinates of the particle. This function, called the wave function or state 

function.  

Corollary (𝟏. 𝟐) [11,37]: To every observable, 𝐴, in classical mechanics 

(e.g energy, position and momentum), there corresponds a linear 

Hermitian operator, �̂� in quantum mechanics. 

Corollary (𝟏. 𝟑)[𝟏𝟏, 𝟑𝟕]:  In any measurement of the observable 

associated with operator �̂�, the only values that will ever be available are  

the eigenvalues (a), which satisfy the eigenvalue equation:               

            𝐴 ̂𝜑𝑎=𝑎 𝜑𝑎 ,                                               (1.34) 

where 𝜑𝑎 is the eigenfunction corresponding, respectively, with the 

eigenvalue 𝑎 of the operator �̂�. An arbitrary state can be expanded in the 

complete set of eigenvectors of �̂� (�̂�𝜑𝑎 = 𝑎𝜑𝑎) as [11,14,37]: 

 𝜑=∑ 𝑐𝑎 
𝑛
𝑎 𝜑𝑎                                          (1.35) 

in this specific situation , we only know that the specific 

measurement of the observable 𝐴 will be typically yield one of the values 

(𝑎) with a probability |𝑐𝑎|2.    

Corollary (𝟏. 𝟒)[𝟏𝟏, 𝟏𝟒, 𝟑𝟕]: If a system is in a state which is typically 

related by a normalized wave function 𝜑,  then the average value of 

the observable corresponding to �̂� is given by: 

<�̂�> =∫ 𝜑∗(𝑥)
∞

−∞
�̂�𝜑(𝑥)𝑑𝑥                               (1.36)    

and  

                                         ∆𝐴 ≡ √〈𝐴2〉 − 〈𝐴〉2              
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1.10 Stationary States 

By separation the space and time dependence of the Schrödinger 

equation as  

φ(𝑥,t)= φ(𝑥)g(t) 

then the concept of a stationary state arises naturally. It then turns 

out that the separation of the partial differential Schrödinger equation is 

possible only if  

1- �̂� is time independent, 

2- 𝜑(𝑥) is an eigenfunction of �̂�, 

that is, 𝜑 must be a solution of the time-independent Schrödinger equation, 

�̂�𝜑(𝑥) = 𝐸𝜑(𝑥).  

      It is then easy to find 𝑔(𝑡). We consider the time-dependent 

Schrödinger equation [36]: 

               𝑖ħ
∂

∂t
φ(𝑥, 𝑡) = (−

ħ
2

2𝑚

∂
2

∂𝑥
2 + V(𝑥))φ(𝑥, 𝑡) = �̂�φ(𝑥, 𝑡)             (1.37) 

        We assume that the potential energy in the Hamiltonian operator in 

equation (1.37) to be time-independent, i.e ( 𝑉 = 𝑉(𝑥)). 

        To solve equation (1.37) we use the separation of variables method. 

Let 

𝜑(𝑥, t) = g(t)𝜑(𝑥) 

 Inserting the above equation into equation (1.37) yields:            

              𝑖ħ𝜑(𝑥)
𝜕𝑔(𝑡)

𝜕𝑡
= −

ħ
2

2𝑚
 
∂
2
𝜑(𝑥)

∂𝑥
2 𝑔(𝑡) + 𝑉(𝑥)𝜑(𝑥)𝑔(𝑡)                     (1.38) 
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Dividing both sides of equation (1.38) 𝑏𝑦 𝜑(𝑥)𝑔(𝑡) gives: 

𝑖ħ
1

𝑔(𝑡)

𝜕𝑔(𝑡)

𝜕𝑡
= −

ħ
2

2𝑚
 

1

𝜑(𝑥)

∂
2
𝜑(𝑥)

∂𝑥
2 + 𝑉(𝑥).                            (1.39) 

    

Both sides of equation (1.39) must be equal to a constant, since the left-

hand side is only dependent on 𝑡 and the right-hand side only on 𝑥, which 

we can denote 𝐸. Thus we have two separated sides as: 

                                 𝑖ħ
1

𝑔(𝑡)

𝜕𝑔(𝑡)

𝜕𝑡
= 𝐸    ⇒  

𝑑𝑔

𝑔
= −

𝑖

ħ
𝐸𝑑𝑡 

  ln( 𝑔) = −
𝑖

ħ
𝐸𝑡 + 𝑐𝑜𝑛𝑠𝑡.      ⇒  𝑔(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 𝑒−𝑖𝐸𝑡 ħ⁄            (1.40) 

So, we have 

𝜑(𝑥, 𝑡) = 𝜑(𝑥) 𝑒−𝑖𝐸𝑡 ħ⁄  

This is called a stationary solution of the Schrödinger equation, because: 

 The probability density is time-independent 

 |𝜑(𝑥, 𝑡)|2 = 𝜑∗(𝑥)𝜑(𝑥)𝑒𝑖𝐸𝑡 ħ⁄ 𝑒−𝑖𝐸𝑡 ħ⁄ = |𝜑(𝑥)|2            (1.41) 

The spatial part of the wave function satisfies the time-independent 

Schrödinger equation. 

 all operators which do not depend explicitly on time, like 

𝑥, 𝑝𝑥 , 𝐸 𝑒𝑡𝑐, have time-independent expectation values in the 

stationary state 𝜑(𝑥, 𝑡). Thus, if 𝐴 = 𝐴(𝑥, 𝑝𝑥), then 

 

〈𝐴(𝑥, 𝑝𝑥)〉 = ∫𝜑∗(𝑥)𝑒𝑖𝐸𝑡 ħ⁄  𝐴(𝑥,−𝑖ħ
𝑑

𝑑𝑥
)𝜑(𝑥)𝑒−𝑖𝐸𝑡 ħ⁄ 𝑑𝑥 

                         = ∫𝜑∗(𝑥) 𝐴(𝑥,−𝑖ħ
𝑑

𝑑𝑥
)𝜑(𝑥)𝑑𝑥 = constant.               (1.42) 
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Theorem (𝟏. 𝟏)[𝟑𝟕]: (Time-independent Schrödinger equation)  

Ĥφ(𝑥) = Eφ(𝑥) 

where �̂� =  −
ħ2

2𝑚
 ∇ + 𝑉(𝑥) is the Hamiltonian. 

 

Definition (𝟏. 𝟐)[ 𝟏𝟏, 𝟏𝟒, 𝟑𝟕]: A state is called stable if it is performed 

by the wave function: 

𝜑(𝑥, t) = 𝜑(𝑥) 𝑒−𝑖𝐸𝑡 ħ⁄  

Corollary (𝟏. 𝟓)[ 𝟏𝟏, 𝟏𝟒]: As a direct result, the eigenvalues of the 

Hamiltonian, which represent the potential energy levels of 

the system, are clearly time-independent. 

To see this, just take �̂�(𝑥, 𝑝𝑥) instead of 𝐴(𝑥, 𝑝𝑥) in equation (1.42) 

and use the time-independent Schrödinger equation (Theorem 1.1) 

  〈�̂�(𝑥, 𝑝𝑥)〉 = ∫𝜑∗(𝑥) 𝐻 𝜑(𝑥) 𝑑𝑥 = ∫𝜑∗(𝑥) 𝐸 𝜑(𝑥)𝑑𝑥 =

                                         𝐸(∫𝜑(𝑥)𝜑∗(𝑥)𝑑𝑥).                                           (1.43)  

The value of this integration is finite. 

 

 

 

 

 

 

 

 



 22   

  

 

 

 

 

 

 

 

 

 

Chapter Two 

Analytical Methods 

 

 

 

 

 

 

 

 

 

 



 23   

  

Chapter Two 

Analytical Methods 

2.1   Introduction 

In this chapter we attempt to solve the time-independent 

Schrödinger equation analytically. This include the following three cases: 

the infinite potential well, the finite potential well and the quantum 

harmonic oscillator. 

2.2 Infinite square well 

Regarding the infinite square well, the particle exists only in the 

finite interval [0, L]. Such that [8], 

  𝑉(𝑥) = {
0,             𝑥 ∈ [0, 𝐿]
∞,                 𝑒𝑙𝑠𝑒       

                                                   (2.1) 

 

which sufficiently indicate that the quantum object is carefully restricted 

to a specific area between  𝑥 = 0 and 𝑥 = 𝐿 it moves freely but cannot 

escape. Therefore, mathematically we have. 

outside region:     𝜑(𝑥) = 0       𝑓𝑜𝑟  𝑥 ∉  [0, L]                              (2.2) 

inside region:       (
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
= 𝐸𝜑,   this is time-independent Schrödinger 

equation. 

and, 

                             𝜓(0) = 0  and   𝜓(𝐿) = 0                                 (2.3) 
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this because 𝜑 must be continuous.              

Taking into Consideration any sample point 𝜓(𝑥𝑘),  𝑥𝑘 ∉  [0, L] 

, there is no 𝜓(𝑥𝑘) will visible in the system of linear equations, since 

each 𝜓(𝑥𝑘) = 0. 

       The wave functions, 𝜓, are eigenvectors of the Hamiltonian operator, 

and satisfy equation: 

�̂�𝜓 = 𝐸𝜓                                                (2.4) 

we recall that the Hamiltonian is simply the sum of the kinetic and 

potential energies, so equation (2.4) becomes  

Ĥ𝜓 = 𝐸𝜓 

   [�̂� + �̂�]𝜓 = 𝐸𝜓                                          (2.5) 

we know that the kinetic energy of the particle is  

    𝐾 =
√2𝑚𝐸

ħ
, 𝐾2 =

2𝑚𝐸

ħ2
                                              (2.6) 

Substituting equation (2.6) into equation (2.5), we get [24]  

(
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) =

𝐾2ħ2

2𝑚
 𝜓(𝑥) 

𝜕2

𝜕𝑥2
𝜓(𝑥) = −𝐾2𝜓(𝑥) 

                               
𝜕2

𝜕𝑥2 𝜓(𝑥) + 𝐾2𝜓(𝑥) = 0                              (2.7) 

Equation (2.7) has the general solution:  

  𝜓(𝑥) = 𝑎 sin(𝐾𝑥) + 𝑏 cos(𝐾𝑥)                                 (2.8) 
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𝑎 and 𝑏 are two constants that are being specified by the boundary 

conditions 

                                   𝜓(0) = 0 and 𝜓(𝐿) = 0 ,                                     (2.9) 

beginning with 𝜓(0) = 0, 

 𝜓(0) = 𝑎 sin(0) + 𝑏 cos(0) = 0       ⇒        𝑏 = 0             (2.10) 

from the second boundary condition 𝜓(𝐿) = 0 then implies 

  𝜓(𝐿) = 𝑎 sin(𝐾𝐿) =   0                                                (2.11) 

it is assumed that 𝑎 ≠ 0, for otherwise 𝜓(𝑥) would be zero everywhere 

and the particle would disappear. The condition that sin𝐾𝐿 = 0 implies 

that  

  𝐾𝐿 = 𝑛𝜋    ⇒      𝐾 =
𝑛𝜋

𝐿
,                                           (2.12) 

where 𝑛 = 1,2,3,…  can be any natural number. 

     Substituting equation (2.12) into equation (2.6) to obtain 

 

                                        𝐸𝑛 =
𝑛2𝜋2ħ2

2𝑚𝐿2
 ,                                                  (2.13)     

 from equation (2.13) we can see that: 

1.  the energy is finite [7], 

2. 𝐸1 =
𝜋2ħ2

2𝑚𝐿2
  , 𝐸2 =

4𝜋2ħ2

2𝑚𝐿2
= 4𝐸1 , 𝐸3 =

9𝜋2ħ2

2𝑚𝐿2
= 9𝐸1 , . . . .. 

3.  𝐸𝑚𝑖𝑛 = 𝐸1 ≠ 0  (𝑧𝑒𝑟𝑜 𝑝𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦). 

4. As 𝐿 → ∞,𝐸𝑚𝑖𝑛 = 0 . 
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5. As 𝑚 → ∞,𝐸𝑚𝑖𝑛 = 0 . 

6. We know that 𝐾 =
𝑛𝜋

𝐿
=

2𝜋

𝜆
 , so   𝐿 =

𝑛𝜆

2
 . 

The eigenfunctions in equation (2.8) with 𝑏 = 0 and 𝐾 =
𝑛𝜋

𝐿
, is 

given by: 

        𝜓𝑛(𝑥) = 𝑎 sin
𝑛𝜋𝑥

𝐿
,                𝑛 = 1,2,3,…                      (2.14) 

Finally, we get the value of the constant (𝑎) from the normalization of the 

wave function. 

  ∫ |𝜓𝑛|2𝑑𝑥 = 1  
𝐿

0
                                                  (2.15) 

the integration running over the domain of the particle, 0 ≤ 𝑥 ≤ 𝐿. 

Substituting equation (2.14) into equation (2.15)[9,12,30], 

 |𝑎|2 ∫ sin2 (
𝑛𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0
= |𝑎|2

𝐿

𝑛𝜋
∫ sin2 𝜃

𝑛𝜋

0
 𝑑𝜃 =   |𝑎|2

𝐿

2
= 1.     (2.16) 

We have made the substitution 𝜃 =
𝑛𝜋𝑥

𝐿
 and used the fact that the average 

value of sin2 𝜃 over an integral of half wavelengths equals 
1

2
. From 

equation (2.16) we can identify the normalization constant 𝑎 = (
2

𝐿
)1/2 for 

all values of 𝑛. Thus, we obtain the normalized eigenfunctions: 

 𝜓𝑛(𝑥) = √
2

𝐿
 cos(

𝑛𝜋

𝐿
𝑥) ,            𝑛 = 1,3,5,…                              (2.17) 

 𝜓𝑛(𝑥) = √
2

𝐿
 sin (

𝑛𝜋

𝐿
𝑥),            𝑛 = 2,4,6…                                (2.18) 

        For 𝑛 = 1 we get the bound state of the energy 𝐸1 and wave 

function 𝜓1, for 𝑛 > 1 are named excited states. 



 27   

  

 

 

 

  

                     

 

  

 

  

 

 

 

 

Figure 1.1: Eigenfunctions and the energy for a particle in a box 

2.3 Finite square well 

In this section we want to solve the finite square well. Consider the 

potential shown in 

  

 

    

 

  

  

𝜓1(𝑥) 

𝜓2(𝑥) 

 

𝜓3(𝑥) 

 

𝜓4(𝑥) 

 

0 L 𝑥 

   

 

𝐸1 

  n=1    

𝐸2 = 4𝐸1 

         n=2 

𝐸3 = 9𝐸1 

   𝑛 = 3 

𝐸4 = 16𝐸1 

     𝑛 = 4  

𝑥 

Region 1 Region 3 Region 2 

−L L 

0 

E < V0 

V = V0 

V = 0 

𝑉(𝑥) 

E < V0 

 

E > V0 

 

Figure 1.2: A finite square well, depth V0, width 2L. 
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Since we have a symmetric well, we must focus on the positive half 

of the 𝑥 -axis since  we know 𝜑(−𝑥) = 𝜑(𝑥) for the even parity states 

such as (ground, second excited, and forth exited state) and 𝜑(−𝑥) =

−𝜑(𝑥) for odd parity states (such as for the first excited, third excited, and 

fifth excited state) [1]. 

2.3.1 Bound states 

Region 1: 

𝑥 ≤ −𝐿, 𝑉(𝑥) = 𝑉0, 

similarly, to region 3, the solutions are: 

𝜓(𝑥) = 𝐹𝑒𝛼𝑥 + 𝑄𝑒−𝛼𝑥, 

but since 𝜓 → 0 as 𝑥 → −∞, 𝑄 = 0                                               

we get 𝜓 = 𝐹𝑒𝛼𝑥 for region 1. 

Region 2: 

−𝐿 < 𝑥 < 𝐿, 𝑉(𝑥) = 0. 

substituting into these equation: 

                             (
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) = 𝐸 𝜓(𝑥)   

𝜕2

𝜕𝑥2
𝜓(𝑥) = −

2𝑚

ħ2
𝐸 𝜓(𝑥) 

meaning 

                                       
𝜕2

  𝜕𝑥2
𝜓(𝑥) = −𝐾2 𝜓(𝑥) with 𝐾2 =

2𝑚𝐸

ħ2
. 

The solutions to this equation is [1] 

𝜓(𝑥) = 𝐴 sin(𝐾𝑥) + 𝐵 cos(𝐾𝑥)  

Region 3: 

𝑥 ≥ L, 𝑉(𝑥) = 𝑉0, the Schrödinger equation becomes: 

(
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓 + 𝑉0𝜓(𝑥) = 𝐸 𝜓(𝑥) 
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𝜕2

 𝜕𝑥2
𝜓 =

2𝑚

ħ2
(𝑉0 − 𝐸)𝜓                                   (2.19) 

yielding 

∂2

 ∂x2 𝜓 = 𝛼2𝜓, with 𝛼2 =
2𝑚

ħ2
(𝑉0 − 𝐸) > 0 

So, 

𝛼=√
2𝑚

ħ2
(𝑉0 − 𝐸), which is real. 

The solutions to this differential equation are: 

    𝜓(𝑥) = 𝐶𝑒−𝛼𝑥 + 𝐷𝑒𝛼𝑥,  

but since 𝜓 → 0 as 𝑥 → ∞, 𝐷 = 0     

we get 𝜓 = 𝐶𝑒−𝛼𝑥 for region 3. 

We want to determine the value of the energy 𝐸 and the other 

coefficients (C, D, F, Q) The symmetry of the well allow us to choose 

even or odd functions, which means cosine or sine solution in the 

central region depending on which n state we want. 

The parity condition 𝜑(𝑥) =±𝜑(−𝑥) allows us to join the 

coefficients in the area 𝑥 ≤ −𝐿 to the coefficients in the area 𝑥 ≥ 𝐿 [1]. 

Here is a graphic summery of which solutions apply in which regions. 

 

 

 

 

         −𝐿 𝐿 0 

V = 0 

𝜑(𝑥) = cos ( 𝐾𝑥) 

            𝑜𝑟 sin(𝐾𝑥) 

 
φ(𝒙) =  𝐶𝑒−𝛼𝑥 

               +𝐷𝑒𝛼𝑥 

𝐸 

φ(𝒙) =  𝐹𝑒𝛼𝑥 

               +𝑄𝑒−𝛼𝑥 
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This leaves us with three unknowns: (𝐸, 𝐶, 𝐷)and right now we 

have three boundary conditions to consider: the continuity of the 

wave function and the continuity of its derivative. The last boundary 

condition is that the wave function must have a sensible behavior at 

infinity [1,23]. That is, 𝜑(𝑥) is finite at infinity, we require 𝜑(𝑥) to be 

finite as 𝑥 → ±∞. 

The finite behavior at infinity is a powerful condition since it 

tells us that 𝐷 = 0 and we must have φ(𝑥) =  𝐶𝑒−𝛼𝑥 in the region 𝑥 ≥ 𝐿.  

For the even parity states we select a cosine function for the well 

center point. We start with the wave function continuity condition 

which requires  

                                       𝜑(𝐿)𝑙𝑒𝑓𝑡 = 𝜑(𝐿)𝑟𝑖𝑔ℎ𝑡  

  cos(𝐾𝐿) = 𝐶𝑒−𝛼𝐿                                              (2.20) 

 

To apply the continuity of the derivative condition, we begin by taking 

the derivative of the wave functions [33]: 

∂ cos(K𝑥)

∂𝑥 𝑥=L
= −Ksin(K𝑥)𝑥=L = −Ksin(KL) 

                                  
∂Ce−α𝑥 

∂𝑥 𝑥=L
= −αCe−α𝑥

𝑥=L = −αCe−αL, 

hence the condition 
∂φ(L)

∂𝑥 left
=

∂φ(L)

∂𝑥 right
 gives : 

       −𝐾 sin(𝐾𝐿) = − 𝛼𝐶𝑒−𝛼𝐿                                  (2.21) 

From equations (2.20) and (2.21) we obtain: 

                                           𝐾 tan(𝐾𝐿) =𝛼, 
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inserting expressions for 𝐾 and 𝛼 as a function of 𝐸 we have, 

                              √
2𝑚𝐸

ħ2  tan(𝐿 √
2𝑚𝐸

ħ2 ) = √
2𝑚(𝑉−𝐸)

ħ2 , 

taking out the common factor of √
2𝑚

ħ2
 leaves us with the transcendental 

equation: 

√𝐸 tan(𝐿√
2𝑚𝐸

ħ2 ) = √𝑉 − 𝐸                                (2.22) 

We want to solve equation (2.22) by graphing the left and right 

sides of the equation on a semilog graph. Logical solutions happened at 

the intersection of the two plots. We take 𝑉= 50 𝑒𝑉. 

 

 

            

   

There are precisely two intersections, as a result, there 

are two even bound states in the well n = 1 and n = 3. One of the even 

bound states happens at 𝐸 = 5.72 𝑒𝑉, the other happens near the  peak of 

Figure 1.3: A semilog graph for the energy of finite square well. 
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the well at a power of 𝐸 = 45.4 𝑒𝑉. There is an odd bound state corres- 

ponding respectively to 𝑛 = 2 at roughly 20 𝑒𝑉. 

2.4 The quantum harmonic oscillator 

The quantum harmonic oscillator is very important in quantum 

mechanics, is a very useful solution in both approximations and in exact 

solutions of various problems.  

The harmonic oscillator is described by the Hamiltonian: 

�̂� =
p̂2

2𝑚
+

1

2
k�̂�2

=
p̂2

2𝑚
+

1

2
𝑚ω2�̂�2

,                         (2.23) 

where 𝑚 is the particle's mass, k is the force constant, ω = √
𝑘

𝑚
 is 

the angular frequency of the oscillator,  �̂� 
is the position operator (given 

by 𝑥), and p̂  is the momentum operator (given by p̂ = −𝑖 ħ
𝜕

𝜕𝑥
). The 

initial concept in the Hamiltonian intentionally introduces the kinetic 

energy of the fundamental particle [7], and the second key concept 

introduces its potential energy. 

        First, we have to sufficiently identify what is meant by the energy 

eigenstate of the possible solution of the Schrödinger equation. 

The energy quantity = ħ𝜔 = 
ħ2

𝑚 𝑎2 =  𝑚𝜔2𝑎2,  

thus 𝑎4 =
ħ2

𝑚2 
𝜔2 → 𝑎2 =

ħ 

𝑚  𝜔 , where 𝑎 is the length.  

The Schrödinger equation of the harmonic oscillator is: 

−
ħ2

2𝑚

𝑑2𝜑

𝑑𝑥2 +
1

2
𝑚𝜔2𝑥2𝜑 = 𝐸𝜑                           (2.24) 
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with boundary condition: 

𝜑(𝑥) → 0 as |𝑥| → ∞ .                          (2.25) 

Multiplying equation (2.24) by 
2

ħ𝜔
, we get:  

−
ħ 

𝑚𝜔

𝑑2𝜑

𝑑𝑥2 +
𝑚𝜔 

ħ
𝑥2𝜑 =

2𝐸

ħ𝜔 
𝜑 ,                        (2.26)   

let 𝜀 =
2𝐸

ħ𝜔 
 be the dimensionless value of the energy, so equation (2.26) 

takes the form: 

   −
ħ 

𝑚𝜔

𝑑2𝜑

𝑑𝑥2 +
𝑚𝜔 

ħ
𝑥2𝜑 = εφ,                                  (2.27) 

let,                                        𝑥 = 𝑎𝑢 ,                                                (2.28) 

where 𝑎 is the length and 𝑢 is the new variable of differential 

equation. 

Differentiating both sides of equation (2.28) with respect to 𝑥, 

𝑑

𝑑𝑥
=

1

𝑎

𝑑

𝑑𝑢
→  

𝑑2

𝑑𝑥2
=

1

𝑎2

𝑑2

𝑑𝑢2
 

so, equation (2.27) may take the form : 

−
𝑑2𝜑

𝑑𝑢2 + 𝑢2𝜑 = 𝜀𝜑                                   (2.29) 

when 𝜀 → ∞ , the equation becomes �́́� = 𝑢2𝜑, 

let 𝜑 = 𝑢𝜇𝑒
𝛼𝑢2

2⁄ , where 𝛼 is any number. 

�́� = 𝛼𝑢𝑢𝜇𝑒
𝛼𝑢2

2⁄ + 𝜇𝑢𝜇−1𝑒
𝛼𝑢2

2⁄ , 
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�́́� = (𝛼𝑢)2𝑢𝜇 𝑒
𝛼𝑢2

2⁄  +………….. 

�́́� = 𝛼2𝑢2𝑢𝜇 𝑒
𝛼𝑢2

2⁄ [1 +
2𝜇+1

𝛼

1

𝑢2
+

𝜇(𝜇−1)

𝛼2

1

𝑢4
] 

= 𝛼2𝑢2𝜑 [1 +
2𝜇+1

𝛼

1

𝑢2
+

𝜇(𝜇−1)

𝛼2

1

𝑢4
]. 

When 𝑢 → ∞,𝛼2 = 1 since �́́� = 𝑢2𝜑.  

𝜑(𝑢) = 𝐴𝑢𝜇 𝑒
−𝑢2

2⁄ + 𝐵𝑢𝜇 𝑒
𝑢2

2⁄ ,                                                          (2.30) 

In equation (2.30) , 𝐵 = 0 for |𝑢| → ∞. 

Let,       𝜑(𝑢) = ℎ(𝑢)𝑒−𝑢2

2⁄  ,                                                           (2.31) 

where ℎ(𝑢) an arbitrary function.  

Substituting equation (2.31) into equation (2.29) to obtain: 

𝑑2ℎ

𝑑𝑢2
− 2𝑢

𝑑ℎ

𝑑𝑢
+ (𝜀 − 1)ℎ = 0,                                           (2.32) 

solving equation (2.32) by a power series expansions, so, 

ℎ(𝑢) = ∑ 𝑎𝑗𝑢
𝑗∞

𝑗=0 ,                                               (2.33) 

𝑑ℎ

𝑑𝑢
= ∑ 𝑗∞

𝑗=0 𝑎𝑗𝑢
𝑗−1,                                              (2.34) 

𝑑2ℎ

𝑑𝑢2
= ∑ 𝑗(𝑗 − 1)𝑎𝑗𝑢

𝑗−2∞
𝑗=0 = ∑ 𝑗(𝑗 − 1)𝑎𝑗𝑢

𝑗−2∞
𝑗=2 ,                   (2.35) 

Suppose that, 𝑗 = �́� + 2, equation (2.35) become: 

    
𝑑2ℎ

𝑑𝑢2
= ∑ (�́� + 2)(�́� + 1)𝑎�́�+2𝑢

�́�∞
�́�=0 = ∑ (𝑗 + 2)(𝑗 + 1)𝑎𝑗+2𝑢

𝑗∞
𝑗=0 , (2.36) 

Substituting equations (2.33), (2.34),  (2.35) and (2.36) into equation 

(2.32), we get: 
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∑((𝑗 + 2)(𝑗 + 1)

∞

𝑗=0

𝑎𝑗+2 − 2𝑗𝑎𝑗 + (𝜀 − 1)𝑎𝑗)𝑢
𝑗 = 0 

        ∑ ((𝑗 + 2)(𝑗 + 1)∞
𝑗=0 𝑎𝑗+2 − (2𝑗 + 1 − 𝜀)𝑎𝑗)𝑢

𝑗 = 0,  (2.37) 

from equation (2.37), we get this relation: 

𝑎𝑗+2 =
(2𝑗+1−𝜀)

(𝑗+2)(𝑗+1)
𝑎𝑗.                                               (2.38) 

Possible solutions fixed by given 𝑎0, 𝑎1 (ℎ(0), ℎ́(0)), where from 

𝑎0 we can properly fixed 𝑎2, 𝑎4, …. even solutions, and from 𝑎1 we can 

fixed 𝑎3, 𝑎5, …. odd solutions. 

Now, to terminate the series we can choose  

2𝑗 + 1 − 𝜀 = 0,                                     (2.39) 

this will make 𝑎𝑗+2 = 0. 

So the solution ℎ(𝑢) =  𝑎𝑗𝑢
𝑗 + 𝑎𝑗−2𝑢

𝑗−2 + ⋯ 

call 𝑗 = 𝑛, we get ℎ(𝑢) =  𝑎𝑛𝑢𝑛 + 𝑎𝑛−2𝑢
𝑛−2 + ⋯ 

equation (2.39) become: 

2𝑛 + 1 − 𝜀𝑛 = 0,                                    (2.40) 

 from equation (2.40), we get  

𝜀𝑛 = 2𝑛 + 1 =
𝐸𝑛

(
ħ𝜔 

2
)
 , 

where 𝐸𝑛 is the energy of the harmonic oscillator 

𝐸𝑛 =
ħ𝜔 

2
(2𝑛 + 1) = ħ𝜔 (n +

1

2
)                             (2.41) 
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𝐻𝑛(𝑢) = 2𝑛𝑢𝑛 + 𝑂(𝑢𝑛−2 )                             (2.42) 

Here, 𝐻𝑛(𝑢) is a polynomial of degree n called a Hermite polynomial. 

The first four Hermite polynomials are  

𝐻0(𝑢)=1 

𝐻1(𝑢) = 2𝑢 

𝐻2(𝑢) = 4𝑢2 − 2 

𝐻3(𝑢) = 8𝑢3 − 12𝑢 

      A few sample wave functions are given in Figure 1.3. As the value of 

the principal number increases, the solutions alternate between even 

functions and odd functions about x=0. 

 

 

Figure 1.4: The first five wavefunctions of the quantum harmonic oscillator. 

The solution of the quantum harmonic oscillator is: 

𝜑𝑛 = 𝐻𝑛(𝑢)𝑒
−𝑢2

2⁄  

𝜑𝑛(𝑥) = 𝐻𝑛 (
𝑥

𝑎
) 𝑒

−𝑥2

2𝑎2⁄
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Chapter Three 

Numerical Techniques for Solving Schrödinger 

Equation 

         In this chapter, we attempt to solve the Schrödinger equation and its 

variants numerically. This involves using the finite difference and the 

pseudo-spectral methods.  

3.1 Finite Difference Method (FDM) 

      

     This method replaces the partial derivatives of the dependent variable 

(unknown function) with a partial differential equation using finite 

difference approximations with errors. 

This procedure transforms the region (where the independent variables in 

PDE are defined on) to a mesh grid of points where the dependent 

variables are approximated [5,20,36]. The possible replacement of partial 

derivatives with various approximation formulas depends on Taylor's 

Theorem. Hence, Taylor's Theorem is presented. 

3.2 Taylor's Theorem [5,36]  

Let 𝜑(𝑥) has 𝑛 ∈ 𝑁 continuous derivatives over the interval (𝑎, 𝑏). Then, 

for  𝑎 < 𝑥0, 𝑥0 + ℎ < 𝑏, we can write the value of 𝜑(𝑥) and its derivatives 

nearby the point 𝑥0 + ℎ as follows: 

𝜑(𝑥0 + ∆𝑥) = 𝜑(𝑥0) +
�́�(𝑥0)

1!
(𝑥 − 𝑥0) +

�́́�(𝑥0)

2!
(𝑥 − 𝑥0)

2

+
�́́́�(𝑥0)

3!
(𝑥 − 𝑥0)

3+.. 
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𝜑(𝑥0 + ℎ) = 𝜑(𝑥0) + ℎ�́�(𝑥0) +
ℎ2

2!
�́́�(𝑥0)+ 

                          
ℎ3

3!
�́́́�(𝑥0)+. . +

ℎ𝑛−1

(𝑛−1)!
𝜑(𝑛−1)(𝑥0) +  𝑂(ℎ𝑛)                   (3.1)                                           

 

which can be written in the more compact notation as  

 

∑
𝜑(𝑛)(𝑥0)

𝑛!

∞

𝑛=0

(𝑥 − 𝑥0)
𝑛 + 𝑂(ℎ𝑛) 

where  

1. �́�(𝑥0)  is the first derivative of 𝜑 with recognition to 𝑥 at the 

specific point 𝑥0. 

2. 𝜑(𝑛−1)(𝑥0) is the 𝑛 − 1𝑡ℎ derivative of 𝜑 with respect to 𝑥 at the 

point 𝑥0. 

3. 𝑂(ℎ𝑛) denotes an unknown error term that satisfies the property: for 

𝜑(ℎ) = 𝑂(ℎ𝑛) 

       lim
ℎ→0

𝜑(ℎ)

ℎ𝑛
= 𝑐, for any nonzero constant c. 

      When we eliminate the error term, 𝑂(ℎ𝑛), from the right-hand side 

of functional equation (3.1), we get an approximation to 𝜑(𝑥0 + ℎ). 

the forward–difference formula for approximating �́�(𝑥0) 

 

�́�(𝑥0) ≅
𝜑(𝑥0+∆𝑥)−𝜑(𝑥0)

∆𝑥
+ 𝑂(∆𝑥), 

The backward−difference formula 

 

�́�(𝑥0) =
𝜑(𝑥0) − 𝜑(𝑥0 − ∆𝑥)

∆𝑥
+ 𝑂(∆𝑥), 
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and the central–difference formula 

   

�́�(𝑥0) =
𝜑(𝑥0 + ∆𝑥) − 𝜑(𝑥0 − ∆𝑥)

2∆𝑥
+ 𝑂(∆𝑥)2, 

 

and we have also  

 

�́́�(𝑥0) ≅
𝜑(𝑥0 + ∆𝑥) − 2𝜑(𝑥0) + 𝜑(𝑥0 − ∆𝑥)

∆𝑥2
+ 𝑂(∆𝑥)2. 

 

        To find the numerical solution to partial differential equation with 

finite difference method, we discretize the domain D of the given 

problem [5,20,36,37]. 

3.3 Strategy of Discretization 

       We start implementing the finite difference method to Schrödinger 

equation (3.2),  

 
−ħ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥𝑖 , 𝑡𝑗) + 𝑉(𝑥𝑖 , 𝑡𝑗)𝜓(𝑥𝑖 , 𝑡𝑗) = 𝑖ħ

𝜕

𝜕𝑡
𝜑(𝑥𝑖 , 𝑡𝑗),  for(𝑥, 𝑡) ∈ 𝑅  (3.2) 

The rectangular domain 𝑅 = {(𝑥, 𝑡)|𝑎 < 𝑥 < 𝑏, 𝑐 < 𝑡 < 𝑑} and 𝜑(𝑥, 𝑡) =

𝑔(𝑥, 𝑡) for any (𝑥, 𝑡) ∈ 𝑆, where: 𝑆 denotes the boundary of a region 𝑅, 

𝑔(𝑥, 𝑡) is continuous on 𝑆.  

Now, we will use the finite difference algorithm for solving the time-

independent Schrödinger equation [5,35]: 
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The Finite Difference Algorithm   

Step 1: Choose positive integers 𝑁 and 𝑀. 

Step 2: Define ∆𝑥 = ℎ =
𝑏−𝑎

𝑁
 and ∆𝑡 = 𝑘 =

𝑑−𝑐

𝑀
 .  

This step partitions the interval [a, b] into 𝑁 equal parts of width ℎ and 

partitions the interval [c, d] into 𝑀 equal parts of width 𝑘 as step 3 

illustrates. 

Step 3: Define the mesh point (𝑥𝑖 , 𝑡𝑗) as 

𝑥𝑖 = 𝑎 + 𝑖ℎ,      𝑖 = 0,1,2,… . . , 𝑁 

 𝑡𝑗 = 𝑗𝑘,            𝑗 = 0,1,2,… . . ,𝑀 

Step 2 and step 3 are illustrated in figure 1.4. 

 

 

 

 

       

 

 

Figure 1.5: Grid lines and mesh points of the grid using Finite difference method. 

It is clear from figure 1.5 that we obtain horizontal and vertical lines inside 

the rectangle 𝑅. These lines are called "grid lines" and 

𝑥0 = 𝑎 𝑥1 𝑥2 𝑥𝑁 = 𝑏 

𝑡0 = 𝑐 

𝑡1 
𝑡2 

𝑡𝑀 = 𝑑 

… 

𝑥 

𝑡 
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their intersections are named "mesh points" of the grid. For each mesh 

point inside the grid, (𝑥𝑖 , 𝑡𝑗), 𝑖 = 1,2,… , 𝑁 − 1 and  

𝑗 = 1,2,… ,𝑀 − 1 [2,5]. We use Taylor series in the variable 𝑥 about t to 

generate the central-difference formula: 

𝜕2

𝜕𝑥2
𝜑(𝑥𝑖 , 𝑡𝑗) =

𝜑(𝑥𝑖+1,𝑡𝑗)−2𝜑(𝑥𝑖,𝑡𝑗)+𝜑(𝑥𝑖−1,𝑡𝑗)

ħ2
−

ħ2

12
.

𝜕4

𝜕𝑥4
𝜑(𝜉𝑖 , 𝑡𝑗)           (3.3) 

 𝑤ℎ𝑒𝑟𝑒 𝜉𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖+1). 

In addition, we use Taylor series in the variable 𝑡 about 𝑥 to generate the 

forward-difference formula [2,5]: 

              
𝜕

𝜕𝑡
𝜑(𝑥𝑖 , 𝑡𝑗) =

𝜑(𝑥𝑖,𝑡𝑗+1)−𝜑(𝑥𝑖,𝑡𝑗)

�̃�
−

�̃�

2

𝜕2

𝜕𝑡2
𝜑(𝑥𝑖 , 𝜉𝑗)                   (3.4) 

where (𝑥𝑖 , 𝜉𝑗) ∈ (𝑡𝑗 , 𝑡𝑗+1). 

Substituting equation (3.3) and equation (3.4) into equation (3.2), we get: 

𝑖ħ
𝜑(𝑥𝑖,𝑡𝑗+1)−𝜑(𝑥𝑖,𝑡𝑗)

𝑘
−

𝑘

2
∙

𝜕2

𝜕𝑡2
𝜑(𝑥𝑖 , 𝜉𝑗) =  

−ħ2

2𝑚
 
𝜑(𝑥𝑖+1,𝑡𝑗)−2𝜑(𝑥𝑖,𝑡𝑗)+𝜑(𝑥𝑖−1,𝑡𝑗)

ℎ2
−

ℎ2

12
.

𝜕4

𝜕𝑥4
φ(𝜉𝑗 , 𝑡𝑗) + 𝑉(𝑥𝑖)𝜑(𝑥𝑖 , 𝑡𝑗) (3.5) 

For each 𝑖 = 1,2,3, … , 𝑛 − 1  and   𝑗 = 1,2,3,…… ,𝑚 − 1. 

Rearranging equation (3.5), we get: 

−𝑖ħ𝜑(𝑥𝑖,𝑡𝑗)

𝑘
−

ħ2

𝑚
∙
𝜑(𝑥𝑖,𝑡𝑗)

ℎ2
− 𝑉(𝑥𝑖)𝜑(𝑥𝑖 , 𝑡𝑗) +

𝑖ħ𝜑(𝑥𝑖,𝑡𝑗+1)

𝑘
+  

ħ2

2𝑚
∙
𝜑(𝑥𝑖+1,𝑡𝑗)+𝜑(𝑥𝑖−1,𝑡𝑗)

ℎ2
=

𝑘

2
∙

𝜕2

𝜕𝑡2
𝜑(𝑥𝑖 , 𝜉𝑗) −  

ℎ2

12
∙

𝜕4

𝜕𝑥4
𝜑(𝜉𝑖 , 𝑡𝑗)  

or it can simply be written as 

[
−𝑖ħ

𝑘
−

ħ2

𝑚ℎ2
− 𝑉(𝑥𝑖)]𝜑(𝑥𝑖 , 𝑡𝑗) + 𝑖ħ

 𝜑(𝑥𝑖,𝑡𝑗+1)

𝑘
+

ħ2

2𝑚
∙
𝜑(𝑥𝑖+1,𝑡𝑗)+𝜑(𝑥𝑖−1,𝑡𝑗)

ℎ2
=

𝑘

2
∙

𝜕2

𝜕𝑡2
𝜑(𝑥𝑖 , 𝜉𝑗) −  

ℎ2

12
∙

𝜕4

𝜕𝑥4
𝜑(𝜉𝑖 , 𝑡𝑗)  
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Multiplying both sides by −ℎ2, we get : 

[
𝑖ħℎ2

𝑘
+

ħ2

𝑚
+ ℎ2𝑉(𝑥𝑖)]𝜑(𝑥𝑖 , 𝑡𝑗) −

𝑖ħℎ2

𝑘
𝜑(𝑥𝑖 , 𝑡𝑗+1) −

ħ2

2𝑚
∙ [𝜑(𝑥𝑖+1, 𝑡𝑗) +

𝜑(𝑥𝑖−1, 𝑡𝑗)] = −ℎ2[
𝑘

2
∙

𝜕2

𝜕𝑡2
𝜑(𝑥𝑖 , 𝜉𝑗) −  

ℎ2

12
∙

𝜕4

𝜕𝑥4
𝜑(𝜉𝑖 , 𝑡𝑗)]. 

 

Clarifying the last equation and typically let 𝜑𝑖,𝑗  approximate 𝜑(𝑥𝑖 , 𝑡𝑗), 

we form[2,5]: 

[
𝑖ħℎ2

𝑘
+

ħ2

𝑚
+ ℎ2𝑉(𝑥𝑖)]𝜑𝑖,𝑗 −

𝑖ħℎ2

𝑘
𝜑𝑖,𝑗+1 −

ħ2

2𝑚
∙ [𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗] = 0(3.6) 

for each 𝑖 = 1,2,3, … , 𝑛 − 1  and   𝑗 = 1,2,3,…… ,𝑚 − 1. 

3.4 Eigenvalue Problem 

          The wave functions, 𝜓, are eigenvectors of the Hamiltonian 

operator, and satisfy equation [16]:  

                                               Ĥ𝜓 = 𝐸𝜓                                              (3.7) 
 

where Ĥ is the Hamiltonian operator, and the eigenvalues 𝐸 represents the 

energies of a particle with wave function 𝜓. In the one  

dimensional situation, 𝜓 is dependent only on the spatial coordinate 𝑥, 

and the one dimensional Hamiltonian is performed by 

                                             �̂�  = (
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)                                                

where ħ is a stable constant, 𝑚 denotes the mass of the particle, and 

𝑉(𝑥) determine the potential energy function of the particle. Note that 

𝐻 is dependent upon via 𝑥 the 𝑉(𝑥) term. To give a dimensionless 

interpretation, we establish ħ2 = 2𝑚, so that 
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�̂� = −
𝜕2

𝜕𝑥2
+ 𝑉(𝑥)                                   (3.8) 

Let the points: 𝑥𝑗          j = 0, 1, 2...n. 

 At each point 𝑥𝑗, equation (3.7) holds [16], so that 

�̂�𝑗𝜓(𝑥𝑗) = 𝐸𝜓(𝑥𝑗) 

Where �̂�𝑗 is the Hamiltonian operator evaluated at 𝑉(𝑥𝑗). Taking into 

Consideration that each of the points 𝑥𝑗  makes the structure of 

equations: 

�̂�0𝜓(𝑥0) = 𝐸𝜓(𝑥0) 

   �̂�𝑗𝜓(𝑥𝑗) = 𝐸𝜓(𝑥𝑗)                                        (3.9) 

…. 

�̂�𝑛𝜓(𝑥𝑛) = 𝐸𝜓(𝑥𝑛) 

Using equation (3.8), system (3.9) can be written as[16]: 

−𝜓′′(𝑥0) + 𝑉(𝑥0)𝜓(𝑥0) = 𝐸𝜓(𝑥0) 

          −𝜓′′(𝑥1) + 𝑉(𝑥1)𝜓(𝑥1) = 𝐸𝜓(𝑥1)                        (3.10) 

…. 

−𝜓′′(𝑥𝑛) + 𝑉(𝑥𝑛)𝜓(𝑥𝑛) = 𝐸𝜓(𝑥𝑛) 

We now have a system (3.10) of n equations relating the wave function of 

a particle to its fundamental energy. 

                     −𝜓′′(𝑥) + [𝑉(𝑥) − 𝐸]𝜓(𝑥) = 0                                   (3.11) 



 45   

  

]We will limit our analysis the evaluation of 𝜑 (𝑥)  in the case of the 

infinite square well, and for scattering states within a finite interval[5,16]. 

       We now select to approximate �́́�(𝑥) in equation (3.11) using finite 

difference scheme for �́́�(𝑥), such that: 

�́́�(𝑥) = (
1

ℎ2
) (𝐴𝜑(𝑥𝑗−𝑛) + 𝐵𝜑(𝑥𝑗−𝑛+1) + ⋯+ 𝐶𝜑(𝑥𝑗) + ⋯

+ 𝐷𝜑(𝑥𝑗+𝑛−1)  + 𝐺𝜑(𝑥𝑗+𝑛)) 

where A, B, C, D, and G determined constants, h denotes the step size, 

and n  is an integer. 

       In the second order, the centered finite difference approximation: 

�́́�(𝑥𝑗) ≈ (
1

ℎ2
) (𝜑(𝑥𝑗−1) − 2𝜑(𝑥𝑗) + 𝜑(𝑥𝑗+1)) 

Substituting the approximation for �́́�(𝑥) system (3.10) becomes  

 

(−(
1

ℎ2)𝜑(𝑥−1) +
2

ℎ2
𝜑(𝑥0) −

1

ℎ2
𝜑(𝑥1)) + 𝑉(𝑥0). 𝜑(𝑥0) = 𝐸𝜑(𝑥0), 

Simplifying, 

−(
1

ℎ2
)𝜑(𝑥−1) + [𝑉(𝑥0) +

2

ℎ2
] 𝜑(𝑥0) − (

1

ℎ2
)𝜑(𝑥1) = 𝐸𝜑(𝑥0)              

 

−(
1

ℎ2
)𝜑(𝑥0) + [𝑉(𝑥1) +

2

ℎ2
] 𝜑(𝑥1) − (

1

ℎ2
)𝜑(𝑥2) = 𝐸𝜑(𝑥1)              

                                                    …….. 

−(
1

ℎ2
)𝜑(𝑥𝑛−2) + [𝑉(𝑥𝑛−1) +

2

ℎ2
] 𝜑(𝑥𝑛−1) − (

1

ℎ2
)𝜑(𝑥𝑛) = 𝐸𝜑(𝑥𝑛−1) 

 

−(
1

ℎ2
)𝜑(𝑥𝑛−1) + [𝑉(𝑥𝑛) +

2

ℎ2
] 𝜑(𝑥𝑛) − (

1

ℎ2
)𝜑(𝑥𝑛+1) = 𝐸𝜑(𝑥𝑛) 

    now we define the vector  
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𝜑 =

[
 
 
 
 

𝜑(𝑥0)

𝜑(𝑥1)
…

𝜑(𝑥𝑛−1)

𝜑(𝑥𝑛) ]
 
 
 
 

 

Employing a suitable finite differencing scheme, as well as using a 

boundary conditions, the system of linear equations may be expressed 

only in terms of the sample points 𝑢(𝑥𝑗) such that j = 0, 1, …, n 

(excluding 𝑢(𝑥−1), … . , 𝑢(𝑥𝑛+1), 𝑢(𝑥𝑛+2), … )[5,16]. 

      In this case, system (3.11) can be written as  

                                                     𝐻�⃗⃗� = 𝐸�⃗⃗�   

where 𝐻 is a matrix containing the coefficients of each 𝜑(𝑥𝑗) in the system 

of linear equations. 𝐸 is the energy of eigenvector �⃗⃗�(𝑥𝑗) at each sample 

points 𝑥𝑗, and is an eigenvalue of 𝐻. 

𝐸𝜑 = (
−ħ2

2𝑚
)

𝜕2𝜑

𝜕𝑥2
+ 𝑉(𝑥)𝜑 

𝐸

[
 
 
 
 
𝜑1

𝜑2

.

.
𝜑𝑛]

 
 
 
 

= [

              
𝐻 

𝑁 × 𝑁
] 

[
 
 
 
 
𝜑1

𝜑2

.

.
𝜑𝑛]

 
 
 
 

 

        The eigenvalues of the 𝑁 by 𝑁 matrix (𝐻) can be evaluated. There will 

be 𝑁 eigenvalues and 𝑁 eigenvectors. For a large value of 𝑁, Matlab can 

be used to find eigenvalues and eigenvectors.  

[𝑉, 𝐷] = 𝑒𝑖𝑔 (𝐻) 

where 𝐷 has the eigenvalues of 𝐻 as its diagonal elements. 𝑉 has 

normalized eigenvectors of 𝐻 as its columns [16,24]. 

3.5 Finite Difference Method for infinite square well 
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       In this part, we need to find the solution to the free time-

independent Schrödinger equation with the boundary conditions [22] 

                                    (
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) = 𝐸 𝜓(𝑥)                               (3.12) 

Using the second order centered finite difference approximation: 

�́́�(𝑥𝑗) ≈ (
1

ℎ2
) (𝜑(𝑥𝑗+1) − 2𝜑(𝑥𝑗) + 𝜑(𝑥𝑗−1)) 

each linear combination will have the form   

−(
1

ℎ2
) (𝜑(𝑥𝑗+1) − 2𝜑(𝑥𝑗) + 𝜑(𝑥𝑗−1)) + 𝑉(𝑥𝑗)𝜑(𝑥𝑗) = 𝐸𝜑(𝑥𝑗) 

        

−(
1

ℎ2
)𝜑(𝑥𝑗−1) + [𝑉(𝑥𝑗) +

2

ℎ2
] 𝜑(𝑥𝑗) − (

1

ℎ2
)𝜑(𝑥𝑗+1) = 𝐸𝜑(𝑥𝑗), 

where 𝜑(𝑥𝑘) = 0, ∀ 𝑥𝑘 ∉ [0, L]. 

Thus, the matrix 𝐻 will take a form 

(

 
 
 
 
 
 
 
 
 
 

2

∆𝑥2
+ 𝑉1                    −

1

∆𝑥2
                                  

−
1

∆𝑥2
                           

2

∆𝑥2
+ 𝑉2            −

1

∆𝑥2
 

         

 
                              ⋱                        ⋱                      ⋱                      

                  ⋱                          ⋱                              ⋱

 

                   −
1

∆𝑥2
     

2

∆𝑥2
+ 𝑉𝑛−1   −

1

∆𝑥2
 
  

                                 −
1

∆𝑥2
            

2

∆𝑥2
+ 𝑉𝑛 

  )

 
 
 
 
 
 
 
 
 
 

 

3.6  Finite difference method for finite square well 

        The bound states of the finite square well which shows in figure 

(1.2): 
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Region 2: 

−𝐿 < 𝑥 < 𝐿, 𝑉(𝑥) = 0. 

The equation is: 

      
𝜕2

  𝜕𝑥2
𝜓(𝑥) = −𝑘2 𝜓(𝑥) 

Use second-order centered difference formula for �́́�(𝑥𝑖), 𝑖 = 1,2,… ,9 and 

drop the error term, 

 
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= −𝑘2𝜑𝑖 

where 𝑘2 =
2𝑚𝐸

ħ2
. 

Region 1 and 3 in figure (𝟏. 𝟐): 

 x ≤ −L 𝑜𝑟 𝑥 ≥ 𝐿, 𝑉(𝑥) = 𝑉0. 

 The equation is: 

                                                 
𝜕2

 𝜕𝑥2
𝜓 = 𝛼2𝜓 

where 𝛼2 =
2𝑚

ħ2
(𝑉0 − 𝐸). 

Use second-order centered difference formula for �́́�(𝑥𝑖), 𝑖 = 1,2,… ,9 and 

drop the error term, 
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= 𝛼2𝜑𝑖 . 

When we use second-order centered difference formula for �́́�(𝑥𝑖), and 

drop the error term, we get  

                                          
𝜑𝑖+1−2𝜑𝑖+𝜑𝑖−1

ℎ2
= −𝐸𝜑𝑖. 

Each linear combination will have a form  

−(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝐸𝜑(𝑥𝑖) 
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       −(
1

ℎ2)𝜑(𝑥𝑖−1) +
2

ℎ2
𝜑(𝑥𝑖) − (

1

ℎ2)𝜑(𝑥𝑖+1) = 𝐸𝜑(𝑥𝑖)       (3.13)    for 

𝑥𝑖 ≤ 𝑥𝑁

2

, 𝑖 = 1,… . ,
𝑁

2
. 

Thus, the matrix 𝐻 takes the form  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

ℎ2
  −

1

ℎ2
0 0 0 0 0 0 0

−
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0 0 0

0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0 0

0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0

0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0

0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0

0 0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0

0 0 0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2

0 0 0 0 0 0 0 −
1

ℎ2

2

ℎ2
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Use second-order centered difference formula for �́́�(𝑥𝑖), and drop the error 

term, we get  
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= 𝛼2𝜑𝑖 . 

Each linear combination will have a form  

(
1

ℎ2) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝛼2𝜑(𝑥𝑖)                          (3.14) 

for 
𝑁

2
≤ 𝑖 ≤ 𝑁 + 1. 

   Thus, the matrix 𝐻 takes the form   
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

2

ℎ2
  

1

ℎ2
0 0 0 0 0 0 0

1

ℎ2
−

2

ℎ2
  

1

ℎ2
0 0 0 0 0 0

0
1

ℎ2
−

2

ℎ2
  

1

ℎ2
0 0 0 0 0

0 0
1

ℎ2
−

2

ℎ2
  

1

ℎ2
0 0 0 0

0 0 0
1

ℎ2
−

2

ℎ2
  

1

ℎ2
0 0 0

0 0 0 0
1

ℎ2
−

2

ℎ2
  

1

ℎ2
0 0

0 0 0 0 0
1

ℎ2
−

2

ℎ2
  

1

ℎ2
0

0 0 0 0 0 0
1

ℎ2
−

2

ℎ2
  

1

ℎ2

0 0 0 0 0 0 0
1

ℎ2
−

2

ℎ2
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    Then we need to solve these systems. 

3.7 Pseudo-spectral method 

 

       Another method used to solve the Schrödinger equation is the pseudo-

spectral method, which based on the expansion of basis functions 

defined in a collection of grid points, a function is approximated as a 

weighted sum of smooth basis functions, which are often selected to be 

Legendre or Chebyshev polynomials. The pseudo-spectral method is 

proposed for the numerical solution of the nonlinear Schrödinger equation 

[9,26]. 

     The fundamental concept of this method is to expand the solution 

function as a finite series of  smooth basis functions [8],  

𝜑: [−1,1] → 𝑅 
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                                   𝜑𝑛(𝑥) = ∑ 𝑐𝑛𝑇𝑛(𝑥),𝑁
𝑛=0                                  (3.15) 

where, 𝑇𝑛(𝑥) typically represents Chebyshev or Legendre orthogonal 

polynomials defined on the interval [−1,1] [9,25,31], and 𝑐𝑛 represents 

the constant coefficients vector. 

𝑐𝑛 = (𝑐0, 𝑐1, … . . , 𝑐𝑁)𝑇 ∈ 𝑅𝑁+1, 

Which are computed from the formula  

𝑐𝑛 =
2

𝑁𝑐�̃�
∑

1

𝑐�̃�
𝜑(𝑥𝑗) cos (

𝜋𝑗𝑛

𝑁
)𝑁

𝑗=0 , 𝑛 = 0,1,2, … . , 𝑁.                          (3.16) 

Here, �̃�0 = �̃�𝑁 = 2, �̃�𝑛 = 1, 𝑛 = 1,2,… . , 𝑁 − 1, 𝑎𝑛𝑑 𝑥𝑗 = cos (
𝜋𝑗

𝑁
), 

 𝑗 = 0,1,… . . , 𝑁, are the Chebyshev-Gauss-Lobatto points. 

Let recall the definition of a Chebyshev polynomial: 

   𝑇𝑛(𝑥) = cos(𝑛 cos−1(𝑥))        , if |𝑥| ≤ 1                               (3.17) 

Let: 

𝜃 = cos−1 𝑥        
 

⇒          𝑥 = cos 𝜃 

Then: 

       𝑇𝑛(𝑥) = ∅𝑛(𝜃) = cos(𝑛𝜃),       𝜃 ∈ [−𝜋, 𝜋]                            (3.18) 

Using the identity defined a bove, equation (3.15) becomes: 

 𝜑(𝑥) = ∑ 𝑐𝑛 cos(𝑛𝜃)𝑁
𝑛=0                                              (3.19) 

Deriving equation (3.19) with respect to 𝑥, we get: 

  
𝜕𝜑(𝑥)

𝜕𝑥
= ∑ 𝑐𝑛 (

𝑛 sin𝑛𝜃

sin𝜃
)𝑁

𝑛=0                                                 (3.20) 

   
𝜕2𝜑(𝑥)

𝜕𝑥2
= ∑ 𝑐𝑛(

𝑛 sin𝑛𝜃 cos𝜃−𝑛2 cos 𝑛𝜃 sin𝜃

sin3 𝜃
𝑁
𝑛=0 )                               (3.21) 

The basic equation is: 
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𝜕2

𝜕𝑥2
𝜑(𝑥) = 𝐸𝜑(𝑥)                                           (3.22) 

Substituting equation  (3.21) in equation (3.22), we get: 

     ∑ 𝑐𝑛(
𝑛sin𝑛𝜃 cos𝜃−𝑛2 cos𝑛𝜃 sin 𝜃

sin3 𝜃
𝑁
𝑛=0 ) = 𝐸. ∑ 𝑐𝑛 cos(𝑛𝜃)𝑁

𝑛=0  

Using boundary condition to find the coefficients of the vector 𝑐𝑛[24,36]. 

𝜑(0) = ∑ 𝑐𝑛

𝑁

𝑛=0

𝑇𝑛(0) = ∑ 𝑐𝑛∅𝑛 (
𝜋

2
) = ∑ 𝑐𝑛(cos 𝑛

𝜋

2
) = 0

𝑁

𝑛=0

𝑁

𝑛=0

 

             𝜑(1) = ∑ 𝑐𝑛

𝑁

𝑛=0

𝑇𝑛(1)

= ∑ 𝑐𝑛∅𝑛(0) = ∑ 𝑐𝑛(cos 𝑛0) = ∑ 𝑐𝑛(1)𝑛 =

𝑁

𝑛=0

0

𝑁

𝑛=0

𝑁

𝑛=0

 

So  

        [

1

2
0 −1 0 1 0 −1 0 1 0

1

2
1 1 1 1 1 1 1 1 1

]

[
 
 
 
 
𝑐0

𝑐1

𝑐 2 .
;
;

𝐶𝑁]
 
 
 
 

= [
0
0
]                    (3.23) 

These relations form a system with two equations and 𝑁 + 1 unknowns, 

to construct the remaining 𝑁 − 1 equations we collocate (3.15) at the 

zeros of 𝑇𝑁−1(𝑥), which are the interior points between 0 and 1, and are 

given as [8,24,30] 

𝜃𝑛 =
(2𝑛 − 1)𝜋

𝑁 − 1
 ,   𝑛 = 1,… . . , 𝑁 − 1. 

By using inverse Fourier transform we will find the wave function 𝜑(𝑥) 

                                           𝜑(𝑥) = ∑ 𝑐𝑛 cos(𝑛𝜃)𝑁
𝑛=0 . 

 

 

  



 53   

  

3.8  Pseudo-Spectral Algorithm 

Step 1: Choose positive integer N. 

Step 2: Define ∆𝑥 =
𝐿

𝑁+1
. 

Step 3: Define the mesh point 𝑥𝑖 as 𝑥𝑖 = 𝑖ℎ       𝑖 = 0,1,2, …… ,𝑁 + 1. 

Step 4: Define 𝑥 = cos 𝜃, 𝜃 = cos−1 𝑥. 

Step 5: Define ∅𝑛(𝑥) = ∅𝑛(𝜃) = cos 𝑛𝜃. 

Step 6: Define  𝜑(𝑥) = ∑ 𝑐𝑛 cos(𝑛𝜃)𝑁
𝑛=0 . 

Step7: Using boundary conditions to evaluate the coefficient of the vector 

𝑐𝑛. 

From the first boundary condition : 

𝜑(𝑥0) = ∑ 𝑐𝑛∅𝑛(𝑥0)
𝑁
𝑛=0 , 

from the second boundary condition: 

                                      φ(𝑥𝑁+1) = ∑ 𝑐𝑛∅𝑛(𝑥𝑁+1)
𝑁
𝑛=0 . 

Step 8: Find the matrix of the coefficient of the vector 𝑐𝑛,by using this 

formula 

𝜃𝑛 =
(2𝑛 − 1)𝜋

𝑁 − 1
,          𝑛 = 1,…… , 8 

Step 9: Using inverse Fourier transform to find the wave function 𝜑(𝑥). 
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Chapter Four 

Numerical Examples and Results 

In this chapter, we implement the two numerical methods, namely, the 

finite difference and pseudo-spectral methods, for solving the Schrödinger 

equation and its variants. 

4.1 Numerical solution for infinite square well of TISE 

Example (𝟒. 𝟏): 

Consider that for the infinite square well, the particle whose mass 0.5 g  is 

only found in the infinite interval [0,1], such that  

𝑉(𝑥) = {
0                                𝑥 ∈ [0,1]

     ∞                                 𝑒𝑙𝑠𝑒            
 

consider the free time- independent Schrödinger equation  

(
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) = 𝐸 𝜓(𝑥)                                        (4.1) 

with the boundary conditions 

𝜓(0) = 0  and   𝜓(1) = 0                                        (4.2) 

the exact solution of (4.1) [8] is: 

𝜑(𝑥) = √2 sin(𝜋𝑥)       

the following algorithm is applied to obtain the solution of the equation 

(4.1) using the finite difference method. 

Algorithm (𝟒. 𝟏): Finite Difference Method 

1- Find the general solution for the equation   
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𝜕2

𝜕𝑥2
𝜓(𝑥) + 𝐾2𝜓(𝑥) = 0 

2- Define 𝑏=0, 𝐿 = 1,  ħ2 = 2𝑚. 

3- Find 𝑘, 𝑎, where 𝐾 =
𝑛𝜋

𝐿
, 𝑎 = √

2

𝐿
.  

4- Find the energy 𝐸 

where 𝐸𝑛 =
𝑛2𝜋2ħ2

2𝑚𝐿2
                                         

5- Choose positive integers 𝑁 = 9. 

6- Clarify ℎ =
𝐿

𝑁+1
=

1

10
, this act separates the interval [0,1] into 9 equal 

parts of width 
1

10
.  

7- Define the mesh point 𝑥𝑖 as 𝑥𝑖 = 𝑖ℎ       𝑖 = 0,1,2,…… ,10. 

 the mesh points are        

8- Use second-order centered difference formula for �́́�(𝑥𝑖),  

𝑖 = 1,2,… ,9 and drop the error term, we get  

                                          
𝜑𝑖+1−2𝜑𝑖+𝜑𝑖−1

ℎ2
= −𝐸𝜑𝑖. 

Each linear combination will have a form  

−(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝐸𝜑(𝑥𝑖)               

−(
1

ℎ2)𝜑(𝑥𝑖−1) +
2

ℎ2
𝜑(𝑥𝑖) − (

1

ℎ2)𝜑(𝑥𝑖+1) = 𝐸𝜑(𝑥𝑖),                      (4.3) 

where 𝜑(𝑥𝑖) = 0, ∀ 𝑥𝑖 ∉ [0, 1]. 

         For 𝑖 = 1, equation (4.3) becomes 

                    −(
1

ℎ2)𝜑(𝑥0) +
2

ℎ2
𝜑(𝑥1) − (

1

ℎ2)𝜑(𝑥2) = 𝐸𝜑(𝑥1) 

for 𝑖 = 2, 

                     −(
1

ℎ2)𝜑(𝑥1) +
2

ℎ2
𝜑(𝑥2) − (

1

ℎ2)𝜑(𝑥3) = 𝐸𝜑(𝑥2)       

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 
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for 𝑖 = 3,                

                  −(
1

ℎ2)𝜑(𝑥2) +
2

ℎ2
𝜑(𝑥3) − (

1

ℎ2)𝜑(𝑥4) = 𝐸𝜑(𝑥3)       

for 𝑖 = 4, 

                    −(
1

ℎ2)𝜑(𝑥3) +
2

ℎ2
𝜑(𝑥4) − (

1

ℎ2)𝜑(𝑥5) = 𝐸𝜑(𝑥4)       

for 𝑖 = 5, 

                    − (
1

ℎ2)𝜑(𝑥4) +
2

ℎ2
𝜑(𝑥5) − (

1

ℎ2)𝜑(𝑥6) = 𝐸𝜑(𝑥5)                     

for 𝑖 = 6, 

                −(
1

ℎ2)𝜑(𝑥5) +
2

ℎ2
𝜑(𝑥6) − (

1

ℎ2)𝜑(𝑥7) = 𝐸𝜑(𝑥6)       

for 𝑖 = 7, 

                 −(
1

ℎ2)𝜑(𝑥6) +
2

ℎ2
𝜑(𝑥7) − (

1

ℎ2)𝜑(𝑥8) = 𝐸𝜑(𝑥7)                     

for 𝑖 = 8, 

                −(
1

ℎ2)𝜑(𝑥7) +
2

ℎ2
𝜑(𝑥8) − (

1

ℎ2)𝜑(𝑥9) = 𝐸𝜑(𝑥8)       

for 𝑖 = 9, 

              −(
1

ℎ2)𝜑(𝑥8) +
2

ℎ2
𝜑(𝑥9) − (

1

ℎ2)𝜑(𝑥10) = 𝐸𝜑(𝑥9)                    

 Thus, the matrix H takes the form 



 58   

  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

ℎ2
  −

1

ℎ2
0 0 0 0 0 0 0

−
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0 0 0

0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0 0

0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0 0

0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0 0

0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0 0

0 0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2
0

0 0 0 0 0 0 −
1

ℎ2

2

ℎ2
  −

1

ℎ2

0 0 0 0 0 0 0 −
1

ℎ2

2

ℎ2
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Applying algorithm (4.1) for example (4.1). Table (4.1) contains both the 

exact and the numerical results using the finite difference method for 

example (4.1). 

Table (𝟒. 𝟏): The exact and the numerical solutions using finite 

difference method algorithm where 𝑵=9. 
𝑥𝑖 𝜑𝑒 = 𝜑𝑒𝑥𝑎𝑐𝑡  𝜑𝑖=𝜑𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 Absolute error 

|𝜑𝑒−𝜑𝑖| 
0 0 0 0 

0.1 0.43701602 0.46701602 0.03000000 

0.2 0.83125388 0.90015676 0.06890288 

0.3 1.14412281 1.18543371 0.04131090 

0.4 1.34499702 1.25307610 0.09192092 

0.5 1.36500261 1.28863421 0.07636840 

0.6 1.34499702 1.55307610 0.20807908 

0.7 1.14412281 1.18543371 0.04131090 

0.8 0.831253878 0.90015676 0.06890288 

0.9 0.43701602 0.46701602 0.03000000 

1.0 0 0 0 
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It can be observed that the maximum absolute error is 0.20807908.  

The exact and approximate results of 𝜑(𝑥) are shown in Fig. 4.1 (𝑎) and 

the resulted error is shown in Fig. 4.1 (𝑏). 

 

 

Fig. 4.1 (𝒂): A comparison between the exact and approximate solution in example 

4.1. 

  

Fig. 4.1 (b): Absolute error between exact and numerical solution in example 4.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Exact 

Approx 

The solution of TISE by finite difference method. 

 

𝑥(𝑁 = 9) 

𝜑(𝑥) 

 

 Error 

𝑥(𝑁 = 9) 
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Table (4.2) contains both the exact and the numerical results for the 

values of energy for example (4.1). 

Table (𝟒. 𝟐): The exact and the numerical solutions for the energy in 

example (𝟒. 𝟏) where 𝑵=9. 

𝑁              𝐸𝑒𝑥𝑎𝑐𝑡 𝐸𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 Absolute error   

|𝐸𝑒𝑥𝑎𝑐𝑡-𝐸𝑛𝑢𝑚| 

1 9.86960440 9.27431124 0.59529316 

2 39.47841760 39.05884233 0.41957527 

3 88.82643961 88.11904310 0.70739651 

4 157.91367042 157.8754602 0.03821022 

5 246.74011003 246.64312400 0.09698603 

6 355.30575844 355.07313011 0.23262833 

7 483.61061565 483.89924520 0.28862955 

8 631.65468167 631.00001527 0.65466640 

9 799.43795649 799.08054461 0.35741188 

It can be observed that the maximum absolute error is 0.70739651.  

The exact and  approximate results of 𝐸𝑛 are shown in Fig. 4.2 (𝑎) and the 

resulted error is shown in Fig. 4.2 (𝑏). 

 

Fig 4.2 (a): A comparison between The exact and  approximate results of 𝐄𝐧. 

 Exact 

Approx 

 

𝑥 

𝐸𝑛 
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 Fig 4.2 (b): Absolute error between The exact and approximate results of 𝐄𝐧. 

Pseudo-Spectral Method 

Solving example (𝟒. 𝟏) by the pseudo-spectral method.  

Algorithm (𝟒. 𝟐)[ 𝟒, 𝟏𝟑]: The Pseudo- Spectral Method 

1. Define 𝐿=1, 𝑚=0.5, 𝑛=1, 𝜃 ∈ [−𝜋, 𝜋]. 

2. Choose positive integer 𝑁=9. 

3. Define ∆𝑥 =
𝐿

𝑁+1
=

1

10
. 

4. Define the mesh point 𝑥𝑖 as 𝑥𝑖 = 𝑖ℎ       𝑖 = 0,1,2,…… ,10. 

       the mesh points are  

       

5. Define 𝑥 = cos 𝜃, 𝜃 = cos−1 𝑥. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 

  Error 

𝑥 
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6. Define ∅𝑛(𝑥) = ∅𝑛(𝜃) = cos 𝑛𝜃. 

7. Define  𝜑(𝑥) = ∑ 𝑐𝑛 cos(𝑛𝜃)𝑁
𝑛=0 . 

8. Using boundary conditions to evaluate the coefficient of the vector 

𝑐𝑛. 

From the first boundary condition: 

𝜑(0) = ∑ 𝑐𝑛∅𝑛(0) = ∑ 𝑐𝑛0𝑛 = 0

𝑁

𝑛=0

𝑁

𝑛=0

 

From the second boundary condition: 

φ(1) = ∑ 𝑐𝑛∅𝑛(1) = ∑ 𝑐𝑛1𝑛 = 0

𝑁

𝑛=0

𝑁

𝑛=0

 

9. Find the matrix of the coefficient of the vector 𝑐𝑛,by using this 

formula 

𝜃𝑛 =
(2𝑛 − 1)𝜋

𝑁 − 1
,          𝑛 = 1,…… , 8 

10. Using inverse Fourier transform to find the wave function 𝜑(𝑥). 

Applying algorithm (4.2) for example (4.1). Table (4.3) contains both the 

exact and the numerical results using the pseudo-spectral method for 

example (4.1). 
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Table (4.3): The exact and the numerical solutions using pseudo-

spectral method algorithm where 𝑵=9. 

𝑥𝑖 𝜑𝑒 = 𝜑𝑒𝑥𝑎𝑐𝑡 𝜑𝑖 = 𝜑𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  Absolute error|𝜑𝑒-𝜑𝑖| 
0 0 0 0 

0.1 0.31880021 0.40000852 0.08120831 

0.2 0.60775210 0.72194022 0.11418812 

0.3 0.83703748 0.98861174 0.15157426 

0.4 0.98442201 1.02520004 0.10026000 

0.5 1.03530001 1.08468201 0.04938200 

0.6 0.98483305 1.01227759 0.02744454 

0.7 0.83780103 0.90463332 0.06683229 

0.8 0.60870000 0.65430703 0.04560703 

0.9 0.32000000 0.37000032 0.05000032 

1 0 0 0 

It can be observed that the maximum absolute error is 0.15157426. 

The exact and  approximate results of 𝜑(𝑥) are shown in Fig. 4.3 

(𝑎) and the resulted error is shown in Fig. 4.3 (𝑏). 

 

Fig 4.3 (a): A comparison between exact and numerical solution in example 4.1. 

 

 Exact 

Approx 

𝑥 

𝜑(𝑥) 
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Fig 4.3 (b): Absolute error between exact and numerical solution in example 4.1. 

Second case of quantum mechanics: the finite square well. 

4.2 Numerical solution for finite square well 

       Region 2 in figure (𝟏. 𝟐): 

−𝐿 < 𝑥 < 𝐿, 𝑉(𝑥) = 0. 

The equation is: 

      
𝜕2

  𝜕𝑥2
𝜓(𝑥) = −𝑘2 𝜓(𝑥) 

Use second-order centered difference formula for �́́�(𝑥𝑖), 𝑖 = 1,2,… ,9 and 

drop the error term, 

𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= −𝑘2𝜑𝑖 

where 𝑘2 =
2𝑚𝐸

ħ2
. 

  

 Error 

𝑥 
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Region 1 and 3 in figure (𝟏. 𝟐): 

x ≤ −L 𝑜𝑟 𝑥 ≥ 𝐿, 𝑉(𝑥) = 𝑉0. 

The equation is : 

                                                       
𝜕2

 𝜕𝑥2
𝜓 = 𝛼2𝜓 

where 𝛼2 =
2𝑚

ħ2
(𝑉0 − 𝐸), 

Use second-order centered difference formula for �́́�(𝑥𝑖), 𝑖 = 1,2,… ,9 and 

drop the error term, 
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= 𝛼2𝜑𝑖 . 

Example (𝟒. 𝟐): 

Consider that for the finite square well 1 nm, the particle with mass 

=0.5 g is found in the interval [0,1], such that 𝑉(𝑥) = 𝑉0 = 50 𝑒𝑉, 

consider the free time independent Schrödinger equation: 

(
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸 𝜓(𝑥)                           (4.4) 

with the boundary conditions  

𝜓(𝑥) → 0  𝑎𝑠 |𝑥| → ∞                                        (4.5) 

the exact solution of (4.4) [1,23] is: 

𝜑(𝑥) = 𝑐 𝑒−𝛼𝑥 

 the following algorithm is applied to obtain the solution of the 

equation (4.4) using the finite difference method. 

Algorithm (𝟒. 𝟑): Finite Difference Method 

1- Find the general solution for the equation   
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𝜕2

𝜕𝑥2
𝜓(𝑥) − 𝛼2𝜓(𝑥) = 0 

2- Define  𝐿 = 1 𝑛𝑚,  ħ2 = 2𝑚,𝑉0 = 50. 

3- Define 𝛼 = √
2𝑚

ħ2
(𝑉0 − 𝐸) 

4- Find the energy 𝐸, where 𝐸𝑛 =
𝑛2𝜋2ħ2

2𝑚𝐿2
                                         

5- Choose positive integers 𝑁 = 3. 

6- Clarify ℎ =
𝐿2−𝐿1

𝑁+1
=

1

4
= 0.25 , this act separates the interval [0,1] 

into 4 equal parts of width 0.25.  

7- Define the mesh point 𝑥𝑖 as 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0,1,2,3. 

     The mesh points are 

       

            0             0.25              0.5            0.75            1 

 

8- Use second-order centered difference formula for �́́�(𝑥𝑖),  

𝑖 = 1,2 and drop the error term, we get  

                                          
𝜑𝑖+1−2𝜑𝑖+𝜑𝑖−1

ℎ2
= −𝐸𝜑𝑖. 

Each linear combination will have a form  

−(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝐸𝜑(𝑥𝑖) 

                 −(
1

ℎ2)𝜑(𝑥𝑖−1) +
2

ℎ2
𝜑(𝑥𝑖) − (

1

ℎ2)𝜑(𝑥𝑖+1) = 𝐸𝜑(𝑥𝑖)      (4.6)   

where 𝜑(𝑥𝑖) = 0, ∀ 𝑥𝑖 ∉ [0, 1]. 

     For 𝑖 = 1, equation (4.6) becomes 

−(
1

ℎ2
)𝜑(𝑥0) +

2

ℎ2
𝜑(𝑥1) − (

1

ℎ2
)𝜑(𝑥2) = 𝐸𝜑(𝑥1) 

  

         𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 
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for 𝑖 = 2, 

−(
1

ℎ2
)𝜑(𝑥1) +

2

ℎ2
𝜑(𝑥2) − (

1

ℎ2
)𝜑(𝑥3) = 𝐸𝜑(𝑥2) 

9- Use second-order centered difference formula  for �́́�(𝑥𝑖), 𝑖 =

3,4 and drop the error term, we get  
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= 𝛼2𝜑𝑖 . 

Each linear combination will have a form  

(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝛼2𝜑(𝑥𝑖) 

for 𝑖 = 3,                

(
1

ℎ2
)𝜑(𝑥2) −

2

ℎ2
𝜑(𝑥3) + (

1

ℎ2
)𝜑(𝑥4) = 𝛼2𝜑(𝑥3) 

for 𝑖 = 4, 

(
1

ℎ2
)𝜑(𝑥3) −

2

ℎ2
𝜑(𝑥4) + (

1

ℎ2
)𝜑(𝑥5) = 𝛼2𝜑(𝑥4) 

    Thus, for 𝑖 = 1,2  the matrix H will take form   

(

2

ℎ2
−

1

ℎ2

−
1

ℎ2

2

ℎ2

) 

and for 𝑖 = 3,4  the matrix H will take form  

(
−

2

ℎ2

1

ℎ2

1

ℎ2
−

2

ℎ2

) 

Applying algorithm (4.3) for example (4.2). Table (4.4) contains 

both the exact and the numerical results using the finite difference method 

for example (4.2). 
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Table (𝟒. 𝟒): The exact and the numerical solutions using finite 

difference method algorithm where  𝑵=3. 

N 𝜑𝑒 = 𝜑𝑒𝑥𝑎𝑐𝑡 𝜑𝑖 = 𝜑𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  Absolute error      

|𝜑𝑒 − 𝜑𝑖| 
              1 0.18945941 0.18945027 0.00000914 

              2 0.25428327 0.24638761 0.00789566 

              3 0.58497260 0.58556111 0.00058851 

              4 0.90483742 0.90097764 0.00385978 

It can be observed that the maximum absolute error is 0.00789566.  

 The exact and  approximate results of 𝜑(𝑥) are shown in Fig. 

4.4 (𝑎) and the resulted error is shown in Fig. 4.4 (𝑏). 

 

 Fig 4.4 (a): A comparison between the exact and approximate solution in example 

4.2. 

 Exact 

Approx 

𝑥 (N=3) 

𝜑(𝑥) 
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Fig. 4.4 (b): Absolute error between exact and numerical solution in  example 4.2. 

 Table (4.5) contains the exact and the numerical results for 

the energy in example (4.2). 

Table (𝟒. 𝟓): The exact and the numerical results for the energy in 

example (𝟒. 𝟐). 

N           𝐸𝑒𝑥𝑎𝑐𝑡 𝐸𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 Absolute error 

| 𝐸𝑒𝑥𝑎𝑐𝑡-𝐸𝑛𝑢𝑚| 
1 5.72000000 3.77780000 1.94220000 

2 20.00000000 10.65000000 9.35000000 

3 45.40000000 39.45000000 5.95000000 

4 49.84000000 47.76900000 2.07100000 

 It can be observed that the maximum absolute error is 9.35000000.  

 The exact and  approximate results of 𝐸𝑛 are shown in Fig. 4.5 (𝑎) 

and the resulted error is shown in Fig. 4.5 (𝑏). 

 Error 
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Fig 4.5 (a):A comparison between The exact and  approximate results of 𝑬𝒏. 

 

Fig 4.5 (b): Absolute error between exact and numerical energy in example 4.2. 

 

 Approx 

Exact 

𝑥 (N=3) 

𝐸𝑛 

 Error 
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Example (𝟒. 𝟑): 

An electron in a finite square well 3 nm and 25 eV deep, consider 

the free time independent Schrödinger equation: 

  (
−ħ2

2𝑚
)

𝜕2

𝜕𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸 𝜓(𝑥)                            (4.7) 

with the boundary conditions 

𝜓(𝑥) → 0  𝑎𝑠 |𝑥| → ∞                                        (4.8) 

the exact solution of  (4.7) [1,23] is: 

𝜑(𝑥) = 𝑐 𝑒−𝛼𝑥 

 the following algorithm is applied to obtain the solution of the 

equation (4.7) using the finite difference method. 

Algorithm (𝟒. 𝟑): Finite Difference Method 

1- Find the general solution for the equation   

     
𝜕2

𝜕𝑥2
𝜓(𝑥) − 𝛼2𝜓(𝑥) = 0 

2- Define  𝐿 = 3 𝑛𝑚,  ħ2 = 2𝑚,𝑉0 = 25, interval=[0,3]. 

3- Define 𝛼 = √
2𝑚

ħ2
(𝑉0 − 𝐸) 

4- Find the energy 𝐸 

where 𝐸𝑛 =
𝑛2𝜋2ħ2

2𝑚𝐿2
                                         

5- Choose positive integers 𝑁 = 5. 

6- Clarify ℎ =
𝐿2−𝐿1

𝑁+1
=

3

6
= 0.5 , this act separates the interval [0,3] 

into 6 equal parts of width 0.5.  

7- Define the mesh point 𝑥𝑖 as 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0,1,2,3. 
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          The mesh points are 

       

0 0.5 1 1.5 2 2.5 3 

8- Use second-order centered difference formula for �́́�(𝑥𝑖), 

 𝑖 = 1,2,3 and drop the error term, we get  

                                          
𝜑𝑖+1−2𝜑𝑖+𝜑𝑖−1

ℎ2
= −𝐸𝜑𝑖. 

     Each linear combination will have a form  

−(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝐸𝜑(𝑥𝑖) 

                   −(
1

ℎ2)𝜑(𝑥𝑖−1) +
2

ℎ2
𝜑(𝑥𝑖) − (

1

ℎ2)𝜑(𝑥𝑖+1) = 𝐸𝜑(𝑥𝑖)    (4.8)        

   where 𝜑(𝑥𝑖) = 0, ∀ 𝑥𝑖 ∉ [0, 3]. 

     For 𝑖 = 1, equation (4.8) becomes 

−(
1

ℎ2
)𝜑(𝑥0) +

2

ℎ2
𝜑(𝑥1) − (

1

ℎ2
)𝜑(𝑥2) = 𝐸𝜑(𝑥1) 

    for 𝑖 = 2, 

−(
1

ℎ2
)𝜑(𝑥1) +

2

ℎ2
𝜑(𝑥2) − (

1

ℎ2
)𝜑(𝑥3) = 𝐸𝜑(𝑥2) 

    for 𝑖 = 3,                

−(
1

ℎ2
)𝜑(𝑥2) +

2

ℎ2
𝜑(𝑥3) − (

1

ℎ2
)𝜑(𝑥4) = 𝐸𝜑(𝑥3) 

9- Use second-order centered difference formula for �́́�(𝑥𝑖),  

for 𝑖 = 4,5,6 and drop the error term, we get  
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
= 𝛼2𝜑𝑖 . 

       Each linear combination will have a form  

(
1

ℎ2
) (𝜑(𝑥𝑖+1) − 2𝜑(𝑥𝑖) + 𝜑(𝑥𝑖−1)) = 𝛼2𝜑(𝑥𝑖) 

        for 𝑖 = 4,    
  

         𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 
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(
1

ℎ2
)𝜑(𝑥3) −

2

ℎ2
𝜑(𝑥4) + (

1

ℎ2
)𝜑(𝑥5) = 𝛼2𝜑(𝑥4) 

       for 𝑖 = 5, 

(
1

ℎ2
)𝜑(𝑥4) −

2

ℎ2
𝜑(𝑥5) + (

1

ℎ2
)𝜑(𝑥6) = 𝛼2𝜑(𝑥5) 

        for 𝑖 = 6, 

(
1

ℎ2
)𝜑(𝑥5) −

2

ℎ2
𝜑(𝑥6) + (

1

ℎ2
)𝜑(𝑥7) = 𝛼2𝜑(𝑥6) 

  Thus,  for 𝑖 = 1,2,3  the matrix H will take form  

(

 
 
 

2

ℎ2
−

1

ℎ2
0

−
1

ℎ2

2

ℎ2
−

1

ℎ2

0  − 
1

ℎ2
   

2

ℎ2 )

 
 
 

 

    and for 𝑖 = 4,5,6  the matrix H will take form  

(

 
 
 

−
2

ℎ2

1

ℎ2
0

1

ℎ2
 −

2

ℎ2

1

ℎ2

0
1

ℎ2
−

2

ℎ2)

 
 
 

 

Applying algorithm (4.3) for example (4.3). Table (4.6) contains 

both the exact and the numerical results using the finite difference method 

for example (4.3) 
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Table (𝟒. 𝟔): The exact and the numerical solutions using finite 

difference method algorithm where  𝑵=5. 

𝑁 𝜑𝑒 = 𝜑𝑒𝑥𝑎𝑐𝑡 𝜑𝑖 = 𝜑𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  Absolute error      

|𝜑𝑒 − 𝜑𝑖| 
1 0.08688196 0.084587199 0.00229476 

2 0.10372639 0.10373944 0.00001305 

3 0.14332877 0.14432878 0.00100001 

4 0.24664101 0.24742102 0.00078001 

5 0.79179532 0.74039755 0.05139777 

It can be observed that the maximum absolute error is 0.05139777.  

 The exact and  approximate results of 𝜑(𝑥) are shown in Fig. 4.6 

(𝑎) and the resulted error is shown in Fig. 4.6 (𝑏). 

 

Fig 4.6 (a): A comparison between the exact and approximate solution in example 4.3. 

 Exact 

Approx 

𝑥(𝑁 = 5) 

𝜑(𝑥) 



 75   

  

 

Fig. 4.6 (b): Absolute error between exact and numerical solution in example 4.3. 

Table (4.7) contains the exact and the numerical results for the energy in 

example (4.3). 

Table (𝟒. 𝟕): numerical The exact and the results for the energy in 

example (𝟒. 𝟑). 

𝑁           𝐸𝑒𝑥𝑎𝑐𝑡 𝐸𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 Absolute error 

| 𝐸𝑒𝑥𝑎𝑐𝑡-𝐸𝑛𝑢𝑚| 
1 1.12300000 1.09551111 0.02748889 

2 4.46100000 4.38649084 0.07450916 

3 9.90500000 9.86960440 0.03539560 

4 17.16200000 17.545963379 0.383963379 

5 24.78200000 27.4155677808 2.63356778 

It can be observed that the maximum error is 2.63356778.  

 The exact and  approximate results of 𝐸𝑛 are shown in Fig. 4.7 (𝑎) 

and the resulted error is shown in Fig. 4.7 (𝑏). 

 Error 
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    Fig 4.7 (a):A comparison between The exact and  approximate results of 𝑬𝒏. 

 

 

Fig 4.7 (b): Absolute error between exact and numerical energy in example 4.3. 

  

𝑥 

𝐸𝑛 

𝑥 
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Conclusion 

In this work we have used some analytical methods, namely, the 

separation of variables method and the method of characteristics to solve 

the Schrödinger equation. However, our main focus was on implementing 

two numerical methods, these are: the finite difference and pseudo-spectral 

methods, for solving the Schrödinger equation. 

Numerical results show clearly that the pseudo-spectral method 

(collocation) gives more efficient results than the finite difference method. 

One major advantage of the pseudo-spectral method is that it does not 

require a tedious steps of evaluating the unknown coefficients of the 

approximating function. It is also seen to be suitable for any class of linear 

differential equations with or without analytical solutions. Another 

advantage of pseudo-spectral method is that the time independent 

Schrödinger equation reduces to a system of algebraic equations which can 

be solved by many iterative methods. This provides an accurate 

approximation for a smooth solution with relatively few degree of 

freedom. Finally, less grid points are needed with the pseudo-spectral 

method than with finite difference methods to achieve the same accuracy. 
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Appendix (A) 

Matlab code for finite difference method for time-independent 

Schrödinger equation (infinite square well).  

Clear all 

  L= input('\n Please enter the value of L'); 

  n= input('\n Please enter the value of n'); 

   m= input('\n Please enter the value of m');  

  N= input('\n Please enter the value of N'); 

 (% since h=2m=1 ) 

h= (2*m)^(1/2) ; 

(% find the values of the energy ) 

En=zeros(1,N); 

for i=1:N+1  

En(i)=(i*i*(22/7)*(22/7)*2*m)/(2*m*L*L) 

end 

En=[En1 En2 En3 En4 En5 En6 En7 En8 En9 En10 ]; 

  k=((2*m*En)/(h*h))^(1/2) 

(%enter the values of the matrix Hamiltonian �̂�) 

 h1=(2/h*h) 

 h2=-1/(h*h) 

H=[h1 h2 0 0 0 0 0 0 0; h2 h1 h2 0 0 0 0 0 0;0 h2 h1 h2 0 0 0 0 0;0 0 h2 

h1 h2 0 0 0 0;0 0 0 h2 h1 h2 0 0 0;0 0 0 0 h2 h1 h2 0 0;0 0 0 0 0 h2 h1 h2 

0;0 0 0 0 0 0 h2 h1 h2;0 0 0 0 0 0 0 h1 h2] 

(% find the eigenvector and eigenvalue of  �̂�) 
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[V,D] = eig(H) 

(% the values of the diagonal of the eigenvalue) 

app=[0 D(1,1) D(2,2) D(3,3) D(4,4) D(5,5) D(6,6) D(7,7) D(8,8) D(9, 9) 

0]; 

 (% the exact value of the wavefunction) 

ress=zeros(1,N); 

for j=1:N  

ress(j)=(2)^(.05) *(sin((22/7)*j/10)) 

end 

real= [0 ress 0] 

 (% enter the values of 𝑥) 

x=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1] 

 (%plot the exact solution and approximation of wavefunction)  

plot(x,real) 

hold on  

plot(x,app) 

(%the error between exact and approximation solutions)   

diff=real-d1; 

plot(x,diff); 

(%the absolute error) 

AbDiff= abs(diff); 

plot(x,AbDiff); 
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Appendix (B) 

Matlab code for finite difference method for time-independent 

Schrödinger equation (finite square well).  

 

L= input('\n Please enter the value of L'); 

  

  v= input('\n Please enter the value of v'); 

 

   m= input('\n Please enter the value of m'); 

  

  N= input('\n Please enter the value of N'); 

 if mod(N,2)==1 

 else N= input('\n Please renter the value of N, you entered even number') 

 end 

 

 f1= input('\n Please enter the value of start of interval'); 

 

f2= input('\n Please enter the value of end of interval'); 

 

h=(f2-f1)/(N+1); 

 

; h1=(2/h*h) 

 ;h2=-1/(h*h) 
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number_of_X= N+1; 

 

H=zeros(number_of_X/2); 

for(i=1:number_of_X/2) 

for(j=1:number_of_X/2) 

if (i==j)  

H(i,j)=h2; 

else if (abs(i-j)==1) 

H(i,j)=h1; 

else  

H(i,j)=0; 

end 

end 

end 

end 

 

H1=-H; 

 

 

[V,D] = eig(H) 

[V1,D1] = eig(H1) 

 

En=zeros(1,N); 

 for i=1:N 
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En(i)=(-1* alpha(1,i) *alpha(1,i)*(h)*(h)*2*m)+v 

end 

for(i=1:number_of_X/2) 

for(j=1:number_of_X/2) 

c(i,j)=D(i,i) 

end 

 

for(i=1:number_of_X/2) 

for(j=1:number_of_X/2) 

alpha1(i,j)=D1(0,0); 

end 

 

alpha=[c, alpha1]; 

 

plot(c,V) 

 

plot(alpha,En); 

 

a1=alpha(1,5:8) 

 

plot(a1,V1) 

 

En1=En(1:4) 

En2=En(5:8) 
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Appendix (c) 

Matlab code for Pseudo-spectral method for time-independent 

Schrödinger equation. 

 

n= input('\n Please enter the max value of n'); 

N= input('\n Please enter the value of N'); 

theta= zeros(1,n); 

 for ii=1:n 

theta(ii)=((2*n-1)*(22/7))/(N-1); 

tt=[0.5 0 0 0 0 0 0 0 0; 0.5 theta(1)  theta(1)^2 theta(1)^3 theta(1)^4 

theta(1)^5 theta(1)^6 theta(1)^7 theta(1)^8;0.5 theta(2)  theta(2)^2 

theta(2)^3 theta(2)^4 theta(2)^5 theta(2)^6 theta(2)^7 theta(2)^8;0.5 

theta(3)  theta(3)^2 theta(3)^3 theta(3)^4 theta(3)^5 theta(3)^6 theta(3)^7 

theta(3)^8;0.5 theta(4)  theta(4)^2 theta(4)^3 theta(4)^4 theta(4)^5 

theta(4)^6 theta(4)^7 theta(4)^8;0.5 theta(5)  theta(5)^2 theta(5)^3 

theta(5)^4 theta(5)^5 theta(5)^6 theta(5)^7 theta(5)^8;0.5 theta(6)  

theta(6)^2 theta(6)^3 theta(6)^4 theta(6)^5 theta(6)^6 theta(6)^7 

theta(6)^8;0.5 theta(7)  theta(7)^2 theta(7)^3 theta(7)^4 theta(7)^5 

theta(7)^6 theta(7)^7 theta(7)^8;0.5 theta(8)  theta(8)^2 theta(8)^3 

theta(8)^4 theta(8)^5 theta(8)^6 theta(8)^7 theta(8)^8]. 
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 الملخص

 تعتبر معادلة شرودنغر ومتغيراتها من المعادلات المحورية مجال البحث في مجال المعادلات
مة التفاضلية الجزئية ولها تطبيقاتها المختلفة في هندسة الرياضيات ونظرية الضوء والطيف والانظ

غر ومنها معادلة شرودن المفاهيم الاساسية لميكانيكا الكم عرضالمتكاملة. تهدف هذه الدراسة الى 
بشكليها: معادلة شرودنغر المرتبطة بالزمن وتلك غير المرتبطة بالزمن. اضافة الى ذلك, ستركز 

لنسبة لحل معادلة شرودنغر ومتغيراتها. فبا على بعض الطرق التحليلية والعدديةالباحثة وبشكل رئيسي 
لى مبدا فصل المتغيرات ومبدا الى الحل التحليلي لمعادلة شرودنغر، فان الباحثة ستعمل ع

ومبدا  للمعادلة،فان الباحثة ستستخدم مبدا الفروق المنتهية ائص. اما بالنسبة للمعالجة العدديةالخص
اعلية الطيف الزائف لحالتين من ميكانيكا الكم: الحالة المحدودة وغير المحدودة. ولكي يتم اختبار ف

 ت الاختبار العددية. وقد اظهرت النتائج العدديةبعين الاعتبار بعض حالا ذهذه الطرق، تم الاخ
بوضوح ان مبدا الطيف الزائف هو الطريقة الاقوى لحل معادلة شرودنغر غير المرتبطة بالزمن 

 بالمقارنة مع التفاضل المحدود.


