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 Abstract 

In this thesis we study Z-transform (the two-sided Z-transform), the one-

sided Z-transform and the two-dimensional Z-transform with their 

properties, their inverses  and some examples on them. We also present the 

relation  between Z-transform and Laplace transform and  between Z-

transform and Fourier transform. Some applications of Z-transform 

including solutions of some kinds of  linear difference equations, analysis of 

linear shift-invariant systems, implementation of FIR and IIR filters and 

design of IIR filters from analog filters are discussed. Chirp Z-transform 

algorithm is also presented with two applications: enhancement in poles and 

high resolution and narrow band frequency analysis.
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Introduction 

Transformation is a very powerful mathematical tool so using it in 

mathematical treatment of problem is arising in many applications [1]. 

The idea of Z-transform back to 1730 when De Moivre introduced the 

concept of “generating functions” to probability theory [8]. In 1947  a 

transform of sampled signal or sequence defined by W. Hurewicz as a 

tractable way to solve linear constant-coefficients difference equations. The 

transformation named "Z-transform" by Ragazzini and Lotfi Zadeh in the 

sampled-data control group at Columbia University in 1952 [21]. 

Z-transform  is transformation for discrete data equivalent to the Laplace 

transform of continuous data  and its a generalization of  discrete Fourier 

transform [6]. 

Z-transform is used in many areas of applied mathematics as digital signal 

processing, control theory, economics and some other fields [8]. 

In this thesis, we present Z-transform, the one-sided Z-transform and the two-

dimensional Z-transform with their properties, finding their inverse and some 

examples on them. Many applications of Z-transform are discussed as solving 

some kinds of linear difference equations, applications in digital signal 

processing. Finally chirp Z-transform is represented. 

In the first chapter, some basic definitions and concepts of sequences are 

presented together with some theorems on integration in complex plane 

[1,2,5,6,10,14,19]. 
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In the second chapter, the definition of Z-transform and one-sided Z-

transform are discussed as well as some important properties and examples 

of them [6,8,9,13,14].  

In the third chapter, methods for determining the inverse of Z-transform are 

represented, also we have discussed the relation between Z-transform and 

Laplace transform and discrete Fourier transform. The chapter is closed by 

describing the definition and properties of two-sided Z-transform in addition 

to its inverse [5,9,12,13,14,20]. 

In the fourth chapter, Z-transform is used to solve some kind of linear 

difference equations as linear difference equation of constant coefficient and 

Volterra difference equations of convolution type [3,4,7,18].   

In the fifth chapter, applications of Z-transform in digital signal processing 

such as analysis of linear shift-invariant systems, implementation of finite-

duration impulse response (FIR) and infinite-duration impulse response (IIR) 

systems and design of IIR filters from analog filters [1,6,9,11,14]. 

In the sixth chapter, the chirp Z-transform algorithm is studied with two 

applications of it such as: enhancement of poles and high resolution and 

narrow band frequency analysis [9,16,17,19].  
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Chapter One 

Definitions and Concepts 

In this chapter we give some basic definitions, concepts and theorems 

important for our thesis. 

Definition 1.1: [5] The complex sequence {𝑎𝑘} is called geometric 

sequence if ∃ a constant 𝑠 ∈ ℂ s.t 
𝑎𝑘+1
𝑎𝑘

= 𝑠, ∀𝑘 ∈ ℕ                                       (1.1) 

In that case 

𝑎𝑘 = 𝑎𝑠
𝑘                                                 (1.2) 

A geometric series is of the form  

∑𝑎𝑠𝑘
∞

𝑘=0

= 𝑎 + 𝑎𝑠 + 𝑎𝑠2 +⋯                         (1.3) 

Note that a finite geometric series is summable with 

∑𝑎𝑠𝑘
𝑛

𝑘=0

= {
𝑎(1 − 𝑠𝑛+1)

1 − 𝑠
,    𝑠 ≠ 1

 𝑎(𝑛 + 1)      ,     𝑠 = 1

                        (1.4) 

If |𝑠| < 1, then  

∑𝑎𝑠𝑘
∞

𝑘=0

=
𝑎

1 − 𝑠
                                              (1.5) 

Definition 1.2: [10]A sequence 𝑥(𝑛) is called: 

a)  causal if: 

𝑥(𝑛) = 0, for 𝑛 < 0                                         (1.6) 

b)  anticausal if: 

𝑥(𝑛) = 0, for 𝑛 ≥ 0                                        (1.7) 
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Definition 1.3:[1,19]The unit step sequence or Heaviside step sequence is 

defined as 

𝑢(𝑛) = {
1,     𝑛 ≥ 0
0,     𝑛 < 0

                                          (1.8) 

And for two-dimensional space it has the form 

𝑢(𝑛,𝑚) = {
1,     𝑛,𝑚 ≥ 0   
0,     𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒  

                            (1.9) 

Definition 1.4:[1,19] The unit impulse or unit sample sequence is defined 

as 

𝛿(𝑛) = {
1,      𝑛 = 0                  
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

                      (1.10) 

And for two-dimensional space it has the form 

𝛿(𝑛,𝑚) = {
1,        𝑛 = 𝑚 = 0       
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

                  (1.11) 

Definition 1.5: [6] The convolution between two infinite sequences 𝑥(𝑛)  

and 𝑦(𝑛) is defined as 

𝑥(𝑛) ∗ 𝑦(𝑛) = ∑ 𝑥(𝑘)𝑦(𝑛 − 𝑘)

∞

𝑘=−∞

                       (1.12) 

Example 1.1: Find the convolution of the two sequences 

𝑥(𝑛) = 𝛿(𝑛) −  5𝛿(𝑛 − 1), 𝑦(𝑛) = 5𝑛𝑢(𝑛)  

Solution: 

𝑥(𝑛) ∗ 𝑦(𝑛) = ∑ 𝑥(𝑘)𝑦(𝑛 − 𝑘)

∞

𝑘=−∞

                

                                               = ∑ [𝛿(𝑘) −  5𝛿(𝑘 − 1)]5𝑛−𝑘𝑢(𝑛 − 𝑘)

∞

𝑘=−∞

 

For 𝑛 < 𝑘, 𝑢(𝑛 − 𝑘) = 0, 

For 𝑘 ≠ 0 and 𝑘 ≠ 1, 𝛿(𝑘) −  5𝛿(𝑘 − 1) = 0 

So 

𝑥(𝑛) ∗ 𝑦(𝑛) = 5𝑛 𝑢(𝑛) − 5. 5𝑛−1𝑢(𝑛 − 1) 
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              = 5𝑛 (𝑢(𝑛) − 𝑢(𝑛 − 1)) 

Since 𝛿(𝑘) = 1 when 𝑘 = 1 and 𝛿(𝑘 − 1) = 1 when 𝑘 = 1. 

Then we have  

𝑥(𝑛) ∗ 𝑦(𝑛) = {
1,      𝑛 = 0                  
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

Or it can be written as 

𝑥(𝑛) ∗ 𝑦(𝑛) = 𝛿(𝑛) 

Definition 1.6: [14] The correlation between two sequences 𝑥(𝑛) and 𝑦(𝑛) 

is defined as 

𝑟𝑥𝑦(𝑙) =  ∑ 𝑥(𝑛)𝑦(𝑛 − 𝑙)

∞

𝑛=−∞

=  𝑥(𝑙) ∗ 𝑦(−𝑙)           (1.13) 

where 𝑙 is an integer. 

 Definition 1.7: [14] The autocorrelation 𝑟𝑥𝑥(𝑙) of a sequence 𝑥(𝑛) is the 

correlation with itself. 

Definition 1.8:  A function  𝑓(𝑧) is analytic at a point 𝑧0 if it has a 

derivative at each point in some neighborhood of 𝑧0. 

Theorem 1.1:[2] If a function 𝑓(𝑧) is analytic at all points interior to and 

on a simple contour 𝐶 then, 

∮𝑓(𝑧)𝑑𝑧
𝐶

= 0                                             (1.14) 

Theorem 1.2:[2] Laurent’s Theorem 

Suppose that a function 𝑓(𝑧) is analytic throughout an annular domain 𝑟 <

|𝑧 − 𝑧0| < 𝑅, centered at 𝑧0, and let 𝐶 be any positively oriented simple 

closed contour a round 𝑧0 and lying in that domain. Then, at each point in 

the domain, 𝑓(𝑧) has the series representation 
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𝑓(𝑧) = ∑ 𝑏𝑛

∞

𝑛=−∞

(𝑧 − 𝑧0)
𝑛,     𝑟 < |𝑧 − 𝑧0| < 𝑅            (1.15) 

where 

𝑏𝑛 =
1

2𝜋𝑗
 ∮

𝑓(𝑧)

(𝑧 − 𝑧0)
𝑛+1

𝑑𝑧
𝐶

,    𝑛 ∈ ℤ               (1.16) 

The representation of 𝑓(𝑧) in Eq(1.15) is called a Laurent series. 

Definition 1.9: [2] If 𝑧0 is an isolated singular point of a function 𝑓(𝑧), then 

there is a positive number 𝑅 such that 𝑓(𝑧) is analytic at each point 𝑧 for 

which 0 < |𝑧 − 𝑧0| < 𝑅. Consequently, 𝑓(𝑧) has a Laurent series 

representation as in Eq(1.15). The complex number 𝑏−1, which is the 

coefficient of 1/(𝑧 −  𝑧0) in Eq(1.15)  is called the residue of 𝑓(𝑧) at the 

isolated singular point 𝑧0, and we shall often write 

𝑏−1 = 𝑅𝑒𝑠[𝑓(𝑧), 𝑧0 ] 

Theorem 1.3: [2] An isolated singular point 𝑧0 of a function 𝑓(𝑧) is a pole 

of order 𝑠 if and only if 𝑓(𝑧) can be written in the form 

𝑓(𝑧) =
𝑔(𝑧)

(𝑧 − 𝑧0)
𝑠
 

where 𝑔(𝑧) is analytic and nonzero at 𝑧0.  

Moreover, if 𝑠 = 1 then, 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧0 ] = 𝑅𝑒𝑠 [
𝑔(𝑧)

𝑧 − 𝑧0
, 𝑧0 ] = 𝑔(𝑧0)                   (1.17) 

And if 𝑠 ≥ 2 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧0 ] = 𝑅𝑒𝑠 [
𝑔(𝑧)

(𝑧 − 𝑧0)
𝑠
, 𝑧0 ] 

      =
1

(𝑠 − 1)!

𝑑𝑠−1

𝑑𝑧𝑠−1
𝑔(𝑧)| .𝑧 = 𝑧0

𝑎𝐴       (1.18) 

Theorem 1.4: [2] Residue Theorem or Cauchy's Residue Theorem. 
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If a function 𝑓(𝑧) is analytic inside and on a simple closed contour 𝐶 

(described in the positive sense) except for a finite number of singular 

points 𝑧𝑘 , 𝑘 = 1, 2,… , 𝑛 inside 𝐶 then, 

1

2𝜋𝑗
 ∮𝑓(𝑧)𝑑𝑧
𝐶

= ∑𝑅𝑒𝑠[𝑓(𝑧), 𝑧𝑘 ]

𝑛

𝑘=1

                     (1.19) 

Theorem 1.5:[2] Taylor’s Theorem 

Suppose that a function 𝑓(𝑧) is analytic throughout a disk |𝑧 − 𝑧0| < 𝑅 

centered at 𝑧0 and with radius 𝑅. Then 𝑓(𝑧) has the power series 

representation 

𝑓(𝑧) = ∑𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑧0)
𝑛,     |𝑧 − 𝑧0| < 𝑅                   (1.20) 

where 

𝑎𝑛 =
𝑓(𝑛)(𝑧)

𝑛!
 ,    𝑛 = 0, 1, 2, …                         (1.21) 

The series in Eq(1.20) is called the Taylor series of 𝑓(𝑧) about 𝑧 = 𝑧0 and 

its converges to 𝑓(𝑧) when 𝑧 lies in the given open disk. 
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Chapter Two 

The Z-transform 

In this chapter we introduce the two-sided and the one-sided Z-transforms, 

investigate their properties and give some examples on them.  

Section 2.1: Definition of Z-transform. 

Definition 2.1:[9]  Given an infinite complex sequence 𝑥(𝑛), we define  

its Z-transform 𝑋(𝑧) by the two sided infinite power series  

𝑋(𝑧) = 𝛧[𝑥(𝑛)]  = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

                             (2.1) 

where 𝑧 is a complex variable. This Z-transform is called a two-sided or a 

bilateral Z-transform. 

Note: Whenever we talk about Z-transform we mean the two-sided Z-

transform. 

Z-transform exists only for those values of 𝑧 for which the series in Eq(2.1) 

converges. These values of 𝑧 define the region of convergence (𝑅𝑂𝐶) of 

𝑋(𝑧). Thus, the 𝑅𝑂𝐶 is the domain of the Z-transform. So, whenever 𝑋(𝑧) 

is found, its 𝑅𝑂𝐶 should be also defined. 

The region of convergence of 𝑋(𝑧) is identical to the set of all values of 𝑧 

which make the sequence in Eq(2.1) absolutely summable, i.e [9]     

∑ |𝑥(𝑛) 𝑧−𝑛| < ∞

∞

𝑛=−∞

                                        (2.2) 

Example 2.1: Determine the Z-transform of the sequence  

𝑥(𝑛) ={… , 0, 1,0,
↑
2
↑
, 0,0,7,0,0, … }= {

1 ,     𝑛 = −2  
2 ,     𝑛 = 0     
7 ,     𝑛 = 3     
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Note: The arrow in this sequence indicates the position of 𝑥(0). 

Solution:  

 𝑋(𝑧) = 𝛧[𝑥(𝑛)]  = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

 

                                               =  𝑧2  +   2  +  7 𝑧−3 , 

𝑋(𝑧) converges for the entire z-plane except 𝑧 =  0 and 𝑧 =  ∞, so  

𝑅𝑂𝐶: 0 < |𝑧| <  ∞ 

Example 2.2: Determine the Z-transform of the following sequences.  

a) 𝑥(𝑛)  =  (
1

2
)
𝑛

, where 𝑛 ≥ 0              

b) (𝑛)  =  (
1

2
)
𝑛

 , where 𝑛 < 0  

c) (𝑛)  =  (
1

2
)
𝑛

 , where 𝑛 ∈ ℤ  

Solution: 

a) 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

=∑(
1

2
)
𝑛

𝑧−𝑛
∞

𝑛=0

 

                   = ∑ (
1

2𝑧
)
𝑛

=

∞

𝑛=0

1

1 − (2𝑧)−1
= 

𝑧

𝑧 −
1
2
 
 

The above series is an infinite geometric series that converges only if |
1

2𝑧
| < 1 

or  |z| >
1

2
.  Thus, the 𝑅𝑂𝐶 is |z| >

1

2
  , the exterior of a circle of radius 

1

2
 

centered at the origin of the complex plane. 

Note that: From Definition 1.2 (a) The sequence 𝑥(𝑛) is causal. 

b)                    

𝑌(𝑧) = ∑ 𝑦(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ (
1

2
)
𝑛

𝑧−𝑛
−1

𝑛=−∞

= ∑ (2𝑧)−𝑛 

−1

𝑛=−∞

 

Substitute 𝑚 = −𝑛 we get 
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 𝑌(𝑧) = ∑(2𝑧)𝑚
∞

𝑚=1

  

                                  =
1

1 −  2𝑧
−  1 =  

𝑧

1
2
−  𝑧

 

Again, this is an infinite geometric series that converges only if |2z| < 1 or  

|z| <
1

2
. Thus, the 𝑅𝑂𝐶 is |𝑧| <

1

2
. In this case the 𝑅𝑂𝐶 is the interior of      a 

circle centered at the origin of the complex plane of radius 
1

2
. 

Note that: From Definition 1.2 (b) The sequence 𝑦(𝑛) is anticausal. 

c)  

𝑅(𝑧) = ∑ 𝑟(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ (
1

2
)
𝑛

𝑧−𝑛
∞

𝑛=−∞

 

         = ∑ (
1

2
)
𝑛

𝑧−𝑛
−1

𝑛=−∞

+∑(
1

2
)
𝑛

𝑧−𝑛
∞

𝑛=0

 

             = ∑ 𝑦(𝑛)𝑧−𝑛
−1

𝑛=−∞

+ ∑𝑥(𝑛)𝑧−𝑛 

∞

𝑛=1

 

But the first power series converges if |𝑧| <  
1

2
  where the second power 

series converges if  |𝑧| >  
1

2
, so there is no 𝑧 in the region of convergence 

for 𝑅(𝑧).  

∴ 𝑅𝑂𝐶 =  ∅ (the empty set). 

Example 2.3: Determine the Z-transform of the sequence  

𝑥(𝑛) =  𝛼 𝑛 𝑢(𝑛), 𝑤ℎ𝑒𝑟𝑒 𝛼 ∈ ℂ  

Solution:  

𝑥(𝑛)  =  𝛼 𝑛 𝑢(𝑛)  =   { 
𝛼𝑛   , 𝑛 ≥ 0
0     , 𝑛 < 0

 

Note that this sequence is the same as the sequence in Example 2.2(a) with 

𝛼 =
1

2
  so, 
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𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

=∑𝛼 𝑛𝑧−𝑛
∞

𝑛=0

=
𝑧

𝑧 −  𝛼  
  

∴ 𝛧[𝛼 𝑛 𝑢(𝑛)] =
𝑧

𝑧 −  𝛼  
                                  (2.3) 

𝑅𝑂𝐶: |𝑧| > |𝛼| the exterior of a circle centered at the origin of the complex 

plane having radius |𝛼|. 

 

 

 

 

 

 

 

Example 2.4: Determine the Z-transform of the sequence  

𝑥(𝑛) = −𝑏 𝑛 𝑢(− 𝑛 −  1) 

Solution:  

𝑥(𝑛)  =  −𝑏 𝑛 𝑢(− 𝑛 −  1)  =  {
0   , 𝑛 ≥ 0

 −𝑏𝑛, 𝑛 < 0
 

Note that this sequence is the  negative of the sequence in Example 2.2 (b) 

so 

𝑋(𝑧) = ∑ −𝑏𝑛𝑧−𝑛
−1

𝑛=−∞

= −∑(𝑏−1𝑧)𝑚 

∞

𝑚=1

=
𝑧

𝑧 −  𝑏 
 

∴ 𝛧[−𝑏 𝑛 𝑢(− 𝑛 −  1)] =
𝑧

𝑧 −  𝑏 
                                  (2.4) 

𝑅𝑂𝐶: |𝑧| <  |𝑏| the interior of a circle centered at the origin of the complex-

plane having radius |𝑏|. 

 

Figure 2.1 𝑅𝑂𝐶 for Z-transform in Example 

2.3 
 

|𝛼|
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Note that: if  𝑏 =  𝛼 then the function 𝑋(𝑧) in Example 2.3 is identical to 

that in Example 2.4 with different 𝑅𝑂𝐶. This illustrates the important fact 

that specifying Z-transform of a sequence requires not only the function 𝑋(𝑧) 

but also its region of convergence.  

Example 2.5: Determine the Z-transform of the sequence  

𝑥(𝑛)  =  𝛼𝑛 𝑢(𝑛)  −𝑏𝑛 𝑢(− 𝑛 −  1) 

Solution: 

𝑥(𝑛)  =   𝛼𝑛 𝑢(𝑛)  −𝑏𝑛 𝑢(− 𝑛 −  1)  =  {
  𝛼𝑛   , 𝑛 ≥ 0
−𝑏𝑛   , 𝑛 < 0

 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ −𝑏𝑛𝑧−𝑛
−1

𝑛=−∞

+∑𝛼𝑛𝑧−𝑛
∞

𝑛=0

 

                                                    =  − ∑(𝑏−1𝑧)𝑚 

∞

𝑚=1

+∑(𝛼 𝑧−1)𝑛
∞

𝑛=0

 

The first power series converges if  |𝑏−1𝑧| < 1 or |z| < |𝑏| where the 

second power series converges if  |α z−1| < 1 or |z| > |𝛼|, this gives us 

two cases for 𝑋(𝑧): 

Case 1: If |𝑏| ≤ |𝛼| then, there is no common region of convergence, i.e 

𝑋(𝑧) does not exist. 

Figure 2.2 𝑅𝑂𝐶 for Z-transform in Example 

2.4 
 

|𝑏|  
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Case 2: If  |𝑏|  >  |𝛼|, then there is a common region of convergence, which 

is |𝛼| < |z| < |𝑏|, and in this case 𝑋(𝑧) will be 

𝑋(𝑧) =  
𝑧

𝑧 −  𝑏  
+

𝑧

𝑧 −  𝛼
=  

𝑧(2𝑧 − 𝛼 −  𝑏)

(𝑧 −  𝑏)(𝑧 − 𝛼) 
    

 

 

 

 

 

 

 

Note: For any sequence  𝑥(𝑛) with rational Z-transform the region of 

convergence cannot contain any poles and is bounded by poles or by zero or 

infinity. 

A Note on the 𝑹𝑶𝑪 of the Z-transform for two sided sequences [9]. 

Let 𝑋(𝑧) be the Z-transform of the sequence 𝑥(𝑛), then  

𝑋(𝑧) = ∑ 𝑥(𝑛)

∞

𝑛=−∞

𝑧−𝑛   

 = ∑  𝑥(𝑛)𝑧−𝑛 + ∑ 𝑥(𝑛) 𝑧−𝑛
∞

𝑛=𝑛1

𝑛0

𝑛=−∞

     (2.5) 

For the series 

∑ 𝑥(𝑛) 𝑧−𝑛
∞

𝑛=𝑛1

                                             (2.6) 

 Suppose that Eq(2.6) is a absolutely convergent for 𝑧 = 𝑧1, so  

∑ |𝑥(𝑛) 𝑧1
−𝑛| < ∞

∞

𝑛=𝑛1

                              (2.7) 

Figure 2.3 𝑅𝑂𝐶 for Z-transform in Example 2.5 where |𝑏|  >
 |𝛼| 

 

|𝑏|
  |𝛼|  
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We have two cases for the value of 𝑛1 .  

Case 1: If 𝑛1 ≥ 0, then for any 𝑧 ∈ ℂ such that |𝑧| > |𝑧1| we get, 

∑ |𝑥(𝑛) 𝑧1
−𝑛|

∞

𝑛=𝑛1

< ∑ |𝑥(𝑛) 𝑧−𝑛| < ∞

∞

𝑛=𝑛1

                 (2.8) 

So the 𝑅𝑂𝐶 in this case is |𝑧| > 𝑟𝑥 where 𝑟𝑥 is the smallest value of |𝑧| 

make Eq(2.6) convergent 

Case 2: If 𝑛1 < 0, then we express the series in Eq(2.6)  as  

∑ 𝑥(𝑛) 𝑧−𝑛
∞

𝑛=𝑛1

= ∑ 𝑥(𝑛) 𝑧−𝑛
−1

𝑛=𝑛1

+∑𝑥(𝑛) 𝑧−𝑛
∞

𝑛=0

               (2.9) 

The first series on the right-hand side of Eq(2.9) is finite for any finite 

value of 𝑧 so, its convergent for all values of 𝑧 except for 𝑧 = ∞. Where the 

second series by (case 1) convergent for |𝑧| > 𝑟𝑥. Thus, the series in 

Eq(2.6) has a region of convergence that is the exterior of a circle centered 

at the origin of complex-plane with radius 𝑟𝑥 with the exception of 𝑧 = ∞ 

for 𝑛1 < 0.   

For the series 

∑  𝑥(𝑛)𝑧−𝑛

𝑛0

𝑛=−∞

                                           (2.10) 

If we change the index of summation through the substitution 𝑛 =  −𝑚, we 

obtain the series  

∑  𝑥(−𝑚)𝑧𝑚
∞

𝑚=−𝑛0

                                      (2.11) 

Applying the result of Eq(2.6) on Eq(2.10) (with n replaced by –𝑚 and 𝑧 

by 𝑧−1) then, the region of convergence of Eq(2.10) is the interior of a 

circle centered at the origin of complex-plane with radius 𝑅𝑥 where 𝑅𝑥is the 
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largest value of |𝑧| make Eq(2.10) convergent and not equal zero for 𝑛0 >

0. 

So for Eq(2.5), The first series has a region of convergence |𝑧| < 𝑅𝑥 while 

the region of convergence for the second series is 𝑟𝑥 < |𝑧|. If 𝑟𝑥 < 𝑅𝑥 then 

the region of convergence for 𝑋(𝑧) is 𝑟𝑥 < |𝑧| < 𝑅𝑥; otherwise there is no 

region of convergence for 𝑋(𝑧) .  

Section 2.2: Properties of Z-transform. 

In studying discrete-time signals and systems,  Z-transform is a very 

powerful tool due to its properties [14]. In this section, we examine some of 

these properties leaving the Examples to the next section. 

Let 𝑋(𝑧) be the Z-transform of 𝑥(𝑛) with 𝑅𝑂𝐶 𝑟𝑥 < |𝑧| < 𝑅𝑥 and let 𝑌(𝑧) 

be the Z-transform of 𝑦(𝑛) with 𝑂𝐶  𝑟𝑦 < |𝑧| < 𝑅𝑦. Let 𝑟 = max(𝑟𝑥, 𝑟𝑦) 

and 𝑅 = min(𝑅𝑥, 𝑅𝑦), where 𝑟 can be as small as 0 and 𝑅 can be as large as 

∞.   

1. Linearity. 

For any two complex numbers α, β we have 

𝑍[𝛼 𝑥(𝑛)  +  𝛽 𝑦(𝑛)] = 𝛼 𝑋(𝑧)  +  𝛽 𝑌(𝑧),   𝑟 < |𝑧| < 𝑅           (2.12) 

Proof: 

Let  

 𝑤(𝑛) = 𝛼 𝑥(𝑛)  +  𝛽 𝑦(𝑛) 

then 

𝑊(𝑧) = ∑ 𝑤(𝑛)𝑧−𝑛
∞

𝑛=−∞
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                                      = ∑ [𝛼 𝑥(𝑛) +  𝛽 𝑦(𝑛)]𝑧−𝑛
∞

𝑛=−∞

     

                                                 = ∑ 𝛼 𝑥(𝑛)𝑧−𝑛 + ∑ 𝛽 𝑦(𝑛) 𝑧−𝑛
∞

𝑛=−∞

∞

𝑛=−∞

 

                                                   = 𝛼 ∑  𝑥(𝑛)𝑧−𝑛 + 𝛽 ∑  𝑦(𝑛) 𝑧−𝑛
∞

𝑛=−∞

∞

𝑛=−∞

  

                         = 𝛼 𝑋(𝑧) +  𝛽 𝑌(𝑧)            

𝑅𝑂𝐶 of  𝑊(𝑧) =  𝛼 𝑋(𝑧) +  𝛽 𝑌(𝑧) contains all 𝑧 such that 

𝑧 ∈ 𝑅𝑂𝐶(𝑋(𝑧)) ∩ 𝑅𝑂𝐶(𝑌(𝑧)) 

then 

{𝑟𝑥 < |𝑧| < 𝑅𝑥} ∩ {𝑟𝑦 < |𝑧| < 𝑅𝑦} 

∴ max(𝑟𝑥, 𝑟𝑦) < |𝑧| < min(𝑅𝑥, 𝑅𝑦) 

If the linear combination canceled some poles the region of convergence 

may be larger. For example, the sequences 𝑐 𝑛𝑢(𝑛)  and  𝑐 𝑛𝑢(𝑛 − 1) both 

have a region of convergence defined  by |𝑧| > |𝑐|, but the sequence 

corresponding to the difference [𝑐 𝑛 𝑢(𝑛) − 𝑐 𝑛 𝑢( 𝑛 −  1)] = 𝛿(𝑛) has the 

entire z-plane as its 𝑅𝑂𝐶. 

2. Shifting 

If 𝑘 is any integer then, 

𝑍[𝑥(𝑛 + 𝑘)] = 𝑧𝑘 𝑋(𝑧),         𝑟𝑥 < |𝑧| < 𝑅𝑥                (2.13) 

Proof: 

𝑍[𝑥(𝑛 + 𝑘)] = ∑ 𝑥(𝑛 + 𝑘)𝑧−𝑛
∞

𝑛=−∞

                    (2.14) 

Substitute 𝑚 = 𝑛 + 𝑘 in Eq(2.14) ,we get 

 𝑍[𝑥(𝑛 + 𝑘)] = ∑ 𝑥(𝑚)𝑧−(𝑚−𝑘)
∞

𝑚=−∞
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                                          = 𝑧𝑘 ∑ 𝑥(𝑚)𝑧−𝑚
∞

𝑚=−∞

= 𝑧𝑘 𝑋(𝑧) 

The 𝑅𝑂𝐶 of 𝑋(𝑧), and 𝑍[𝑥(𝑛 + 𝑘)] are identical, with the possible 

exception of 𝑧 =  0 or 𝑧 =  ∞. 

3. Multiplication by Exponential.  

If 𝛼 is any complex number then, 

𝑍[𝛼𝑛𝑥(𝑛)] =  𝑋(𝛼−1𝑧),    |𝛼| 𝑟𝑥 < |𝑧| < |𝛼| 𝑅𝑥             (2.15) 

Proof: 

𝑍[𝛼𝑛𝑥(𝑛)] = ∑ 𝛼𝑛𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

 

                                                  = ∑ 𝑥(𝑛)(𝛼−1𝑧)−𝑛
∞

𝑛=−∞

= 𝑋(𝛼−1𝑧) 

where  𝑟𝑥 < |𝛼
−1 𝑧| < 𝑅𝑥 or |𝛼|𝑟𝑥 < |𝑧| < |𝛼|𝑅𝑥 

4. Time Reversal. 

In discrete-time signal the variable 𝑛 in the sequence 𝑥(𝑛) refer to time. 

𝑍[𝑥(−𝑛)] = 𝑋(𝑧−1),       
1

𝑅𝑥
< |𝑧| <

1

𝑟𝑥
                  (2.16) 

Proof: 

𝑍[𝑥(−𝑛)] = ∑ 𝑥(−𝑛)𝑧−𝑛
∞

𝑛=−∞

                            (2.17) 

Let 𝑚 = −𝑛, then Eq(2.17) become 

∑ 𝑥(𝑚)(𝑧)𝑚
∞

𝑚=−∞

= ∑ 𝑥(𝑚)(𝑧−1)−𝑚
∞

𝑚=−∞

= 𝑋(𝑧−1) 

𝑅𝑂𝐶 𝑟𝑥 < |𝑧
−1| < 𝑅𝑥 𝑜𝑟 

1

𝑅𝑥
< |𝑧| <

1

𝑟𝑥
 

The above means that if 𝑧0 belongs to the 𝑅𝑂𝐶 of 𝑋(𝑧) then 1/𝑧0 is in the 

𝑅𝑂𝐶 of  𝑋(𝑧−1). 
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5. Conjugation. 

𝑍[𝑥∗(𝑛)] = 𝑋∗(𝑧∗),              𝑟𝑥 < |𝑧| < 𝑅𝑥                    (2.18) 

where 𝑥∗(𝑛) is the complex conjugate of 𝑥(𝑛). 

Proof: 

𝑍[𝑥∗(𝑛)] = ∑ 𝑥∗(𝑛)𝑧−𝑛 = ∑ [𝑥(𝑛)(𝑧∗)−𝑛]∗
∞

𝑛=−∞

∞

𝑛=−∞

 

     = [ ∑ 𝑥(𝑛)(𝑧∗)−𝑛
∞

𝑛=−∞

]

∗

= 𝑋∗(𝑧∗) 

 With 𝑅𝑂𝐶 identical to the 𝑅𝑂𝐶 of 𝑋(𝑧). 

6. Multiplication by n or Differentiation of the Transform  

𝑍[𝑛 𝑥(𝑛)] = −𝑧
𝑑𝑋(𝑧)

𝑑𝑧
,    𝑟𝑥 < |𝑧| < 𝑅𝑥                   (2.19)  

Proof: 

From the definition of Z-transform 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

 

Differentiate both sides of the previous equation with respect to z ,we obtain 

𝑑𝑋(𝑧)

𝑑𝑧
= ∑ 𝑥(𝑛) (– 𝑛)𝑧−𝑛−1

∞

𝑛=−∞

  

               = −𝑧−1 ∑ [𝑛𝑥(𝑛)] 𝑧−𝑛
∞

𝑛=−∞

 

 = −𝑧−1𝑍[𝑛 𝑥(𝑛)] 

∴ 𝑍[𝑛 𝑥(𝑛)] = −𝑧
𝑑𝑋(𝑧)

𝑑𝑧
   

With the same 𝑅𝑂𝐶 of 𝑋(𝑧) which is  𝑟𝑥 < |𝑧| < 𝑅𝑥 

7. Convolution of Two Sequences. 

The convolution property is one of the most powerful properties of Z-

transform. 
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𝑍[𝑥(𝑛) ∗ 𝑦(𝑛)] = 𝑋(𝑧)𝑌(𝑧)                                  (2.20) 

Where the 𝑅𝑂𝐶 is, at least, the intersection of 𝑅𝑂𝐶 of 𝑋(𝑧) and 𝑅𝑂𝐶 of 

𝑌(𝑧). However, the 𝑅𝑂𝐶 may be larger if there is a pole-zero cancelation in 

the product 𝑋(𝑧)𝑌(𝑧). 

Proof: 

Let 𝑟(𝑛) be the convolution of 𝑥(𝑛) and 𝑦(𝑛), then 𝑟(𝑛) is defined as 

𝑟(𝑛) = 𝑥(𝑛) ∗ 𝑦(𝑛) = ∑ 𝑥(𝑘)𝑦(𝑛 − 𝑘)

∞

𝑘=−∞

                        (2.21) 

Taking the Z-transform of Eq(2.21), we obtain  

𝑅(𝑧) = 𝑍[𝑟(𝑛)] = ∑ 𝑟(𝑛) 𝑧−𝑛
∞

𝑛=−∞

 

 = ∑ [ ∑ 𝑥(𝑘)𝑦(𝑛 − 𝑘)

∞

𝑘=−∞

]

∞

𝑛=−∞

𝑧−𝑛               (2.22) 

By interchanging the order of the summations of Eq(2.22) and applying the 

shifting property, we obtain 

𝑅(𝑧) = ∑ 𝑥(𝑘) [ ∑ 𝑦(𝑛 − 𝑘)𝑧−𝑛
∞

𝑛=−∞

]

∞

𝑘=−∞

 

           = 𝑌(𝑧) ∑ 𝑥(𝑘)𝑧−𝑘
∞

𝑘=−∞

= 𝑌(𝑧) 𝑋(𝑧) 

The 𝑅𝑂𝐶 of the convolution is, at least, the intersection of 𝑅𝑂𝐶 of  𝑋(𝑧) 

and 𝑅𝑂𝐶 of 𝑌(𝑧). 

8. Correlation of Two Sequences [14]. 

𝑍[𝑟𝑥𝑦(𝑙)] = 𝑅𝑥𝑦(𝑧) = 𝑋(𝑧)𝑌(𝑧
−1)                         (2.23) 

The 𝑅𝑂𝐶 is, at least, the intersection of 𝑅𝑂𝐶 of 𝑋(𝑧) and 𝑅𝑂𝐶 of 𝑌(𝑧−1). 

Proof:  

We know from Definition 1.6 that 
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𝑟𝑥𝑦(𝑙) = 𝑥(𝑙) ∗ 𝑦(−𝑙)                                   (2.24) 

Taking Z-transform of both sides of Eq(2.24), and use the convolution and 

time reversal properties, we get 

𝑅𝑥𝑦(𝑧) = 𝑍[𝑥(𝑙)]𝑍[𝑦(−𝑙)] =  𝑋(𝑧)𝑌(𝑧
−1). 

The proof of the following property and theorem will be delayed till the 

introduction of the inverse Z-transform in Chapter 3.  

9. Multiplication of Two Sequences 

𝑍(𝑥(𝑛)𝑦(𝑛)) =
1

2𝜋𝑗
 ∮ 𝑋(𝑣)𝑌 (

𝑧

𝑣
)
1

𝑣
𝑑𝑣

𝐶

,                    (2.25) 

With 𝑅𝑂𝐶: 𝑟𝑥𝑟𝑦 < |𝑧| < 𝑅𝑥𝑅𝑦 

where 𝐶 is a counterclockwise closed contour that encloses the origin and 

lies within the common region of convergence of 𝑋(𝑣) and 𝑌 (
𝑧

𝑣
). 

Parseval’s Theorem 

If 

𝑟𝑥𝑟𝑦 < |𝑧| = 1 < 𝑅𝑥𝑅𝑦 

then we have 

∑ 𝑥(𝑛)𝑦∗(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑧)Y∗ (

1

𝑧∗
)
1

𝑧
𝑑𝑧

𝐶

                       (2.26) 

where 𝐶 is a counterclockwise closed contour that encloses the origin and 

lies within the common region of convergence of 𝑋(𝑧) and Y∗(1/z∗).  

Note: If 𝑦(𝑛) is real sequences, then Parseval’s theorem will be    

∑ 𝑥(𝑛)𝑦(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑧)𝑌 (

1

𝑧
)
1

𝑧
𝑑𝑧

𝐶

                       (2.27) 

A table of properties of Z-transform is given in Appendix C. 
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Section 2.3: Examples on the Properties of Z-transform. 

Example 2.6: Determine the Z-transform of the sequence 

𝑥(𝑛)  =  𝑐𝑜𝑠(𝑛𝑤) 𝑢(𝑛), 𝑤 ∈ ℂ 

Solution: 

By using Euler's identity 

𝑐𝑜𝑠(𝑛𝑤) =
𝑒𝑛𝑤𝑗 + 𝑒−𝑛𝑤𝑗

2
 

𝑋(𝑧) will be 

𝑋(𝑧) = 𝑍[𝑐𝑜𝑠(𝑛𝑤)𝑢(𝑛)] = 𝑍 [
𝑒𝑛𝑤𝑗 + 𝑒−𝑛𝑤𝑗

2
𝑢(𝑛) ] 

By using linear property, we get 

𝑋(𝑧) =
1

2
[𝑍[𝑒𝑛𝑤𝑗𝑢(𝑛)] + 𝑍[𝑒−𝑛𝑤𝑗𝑢(𝑛)]]  

By Example 2.3, with 𝛼 = 𝑒±𝑤𝑗  (|𝛼| = |𝑒+𝑤𝑗| = 1), we get 

𝑋(𝑧) =
1

2
[

𝑧

𝑧 − 𝑒𝑤𝑗
+

𝑧

𝑧 − 𝑒−𝑤𝑗
]  

                   =
1

2
[
2𝑧2 − (𝑒−𝑤𝑗 + 𝑒𝑤𝑗)𝑧

(𝑧2 − 𝑧(𝑒𝑤𝑗 + 𝑒−𝑤𝑗) + 1
] 

 =
𝑧2 − 𝑧𝑐𝑜𝑠(𝑤)

𝑧2 − 2𝑧𝑐𝑜𝑠(𝑤) + 1
 

Since the 𝑅𝑂𝐶 of 𝑍[𝑒𝑛𝑤𝑗𝑢(𝑛)] is |𝑧| > 1and the 𝑅𝑂𝐶 of 𝑍[𝑒−𝑛𝑤𝑗𝑢(𝑛)] is 

also |𝑧| > 1 and there is no pole-zero cancelation, then the 𝑅𝑂𝐶 of 𝑋(𝑧) is   

the intersection of the two regions, which is |𝑧| > 1. 

Example 2.7: Determine the Z-transform of the sequence 

𝑥(𝑛) = 𝑛3𝑛𝑢(−𝑛) 

Solution: 

Using Example 2.3, with 𝛼 =
1

3
 (|𝛼| = |

1

3
| =

1

3
) we get 
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𝑍 [
1

3

𝑛

𝑢(𝑛)] =
𝑧

𝑧 −
1
3

, |𝑧| >
1

3
  

Then by time reversal property, we obtain 

𝑍[3𝑛𝑢(−𝑛)] =  
𝑧−1

𝑧−1 −
1
3

=
3

3 − 𝑧
, |𝑧| < 3  

Finally, using multiplication by n property, it follows that 

𝑍[𝑛3 𝑛𝑢(−𝑛)] = −𝑧
𝑑

𝑑𝑧
 
3

3 − 𝑧
  

                                        =  
−3𝑧

(3 − 𝑧)2
, |𝑧| < 3   

Example 2.8: Determine the Z-transform of the convolution of  

𝑥(𝑛) = 𝛿(𝑛) −  5𝛿(𝑛 − 1) and 𝑦(𝑛) = 5𝑛𝑢(𝑛)  

Solution:  

𝑍[𝑥(𝑛)] = 𝑍[𝛿(𝑛) ] − 5𝑍[𝛿(𝑛 − 1)] 

Using shifting property 

𝑍[𝑥(𝑛)] = 𝑍[𝛿(𝑛) ] − 5𝑧−1𝑍[𝛿(𝑛)] 

                          = 1 − 5𝑧−1 ∙ 1 =
𝑧 − 5

𝑧
, |𝑧| > 0  

𝑍[𝑦(𝑛)] =
𝑧

𝑧 − 5
, |𝑧| > 5                     

However, Z-transform of the convolution of 𝑥(𝑛) and 𝑦(𝑛) is 

𝑍[𝑥(𝑛) ∗ 𝑦(𝑛)] = 𝑋(𝑧)𝑌(𝑧) =
𝑧 − 5

𝑧
.
𝑧

𝑧 − 5
= 1 

Which due to the pole-zero cancelation (see property 7), has a region of 

convergence that is the entire z-plane. 

Note: From Example 𝟏. 𝟏 we find that 

𝑥(𝑛) ∗ 𝑦(𝑛) = [𝛿(𝑛) −  5𝛿(𝑛 − 1)] ∗  5𝑛𝑢(𝑛) = 𝛿(𝑛) 

So  
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𝑍[𝑥(𝑛) ∗ 𝑦(𝑛)] = 𝑍[𝛿(𝑛)] = 1 

 𝑅𝑂𝐶 is the entire z-plane. 

Example 2.9: Determine the Z-transform of the autocorrelation of the 

sequence 

𝑥(𝑛) = (0.1)𝑛 𝑢(𝑛) 

Solution:  

Since the autocorrelation of the sequence is its correlation with itself, then 

𝑟𝑥𝑥(𝑙) =  𝑥(𝑙) ∗ 𝑥(−𝑙) 

From correlation property 

𝑅𝑥𝑥(𝑧) = 𝑍[𝑟𝑥𝑥(𝑙)] = 𝑋(𝑧)𝑋(𝑧
−1)  

𝑋(𝑧) =
𝑧

𝑧 − 0.1
            |𝑧| > 0.1  

𝑋(𝑧−1) =
1

1 − 0.1𝑧
      |𝑧| < 10  

 𝑅𝑥𝑥(𝑧) =
𝑧

𝑧 − 0.1
∙

1

1 − 0.1𝑧
            

            =
𝑧

−0.1𝑧2 + 1.01𝑧 − 0.1
 

=
−10𝑧

𝑧2 − 10.1𝑧 + 1
  

𝑅𝑂𝐶 0.1 < |𝑧| < 10 

Example 2.10: Determine the Z-transform of the sequence 𝑤(𝑛) =  𝑥(𝑛) ∙

𝑦(𝑛)  where 𝑥(𝑛) = 2 𝑛 𝑢(𝑛) and 𝑦(𝑛) = 3 𝑛 𝑢(𝑛). 

Solution: 

𝑋(𝑧) =
𝑧

𝑧 − 2
, |𝑧| > 2  

𝑌(𝑧) =
𝑧

𝑧 − 3
, |𝑧| > 3  

Using multiplication of two sequences property 

𝑊(𝑧) =
1

2𝜋𝑗
 ∮ 𝑋(𝑣)𝑌 (

𝑧

𝑣
)
1

𝑣
𝑑𝑣

𝐶
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                         =
1

2𝜋𝑗
 ∮

𝑣

𝑣 − 2
 

(𝑧 ⁄ 𝑣)

[(𝑧 ⁄ 𝑣) − 3]
  
1

𝑣
𝑑𝑣

𝐶

 

                =
1

2𝜋𝑗
 ∮

1

𝑣 − 2
 

𝑧

(𝑧 − 3𝑣)
  𝑑𝑣

𝐶

 

The integral has two poles, one located at 𝑣 =  2 and the second at                

𝑣 =  𝑧 ⁄ 3. The contour of integration must be within the region of 

convergence of 𝑋(𝑣), and consequently will enclose the pole at 𝑣 =  2. To 

determine whether it encloses the pole at 𝑣 =  𝑧 ⁄ 3, we consider that the Z-

transform 𝑌(𝑧) is only valid for  |z| > 3. Therefore, the corresponding 

expression for Y(z/v) is only valid for |𝑧/𝑣| > 3. Thus if  

|
𝑧

𝑣
| > 3 

Then 

|
𝑧

3
| > |𝑣| 

For the 𝑅𝑂𝐶 of 𝑍[𝑥(𝑛) ∙ 𝑦(𝑛)]  we get 

|𝑣| > 2  and  |
𝑧

3
| > |𝑣| 

So  

|
𝑧

3
| > |𝑣| > 2 

 

∴ 𝑅𝑂𝐶 of 𝑍[𝑥(𝑛) ∙ 𝑦(𝑛)] is |𝑧| > 6   

Consequently, the pole |
𝑧

3
| lie outside the contour of  integration in 𝑣. 

Using Cauchy residue theorem to evaluate 𝑊(𝑧), we obtain 

𝑊(𝑧) = 𝑅𝑒𝑠 [
1

𝑣 − 2
 

𝑧

(𝑧 − 3𝑣)
 ,2 ]  

                                                  =
𝑧

(𝑧 − 6)
,    |𝑧| > 6 

Example 2.11: Use Parseval's Theorem to find 
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∑ 𝑥(𝑛)𝑦(𝑛)

∞

𝑛=−∞

 

where 𝑥(𝑛) = (
1

2
) 𝑛 𝑢(𝑛) and 𝑦(𝑛) = (

1

3
)
𝑛
 𝑢(𝑛). 

 

Solution: 

From Parseval's theorem, since 𝑦(𝑛) is real we use the expression in 

Eq(2.27) we obtain, 

∑ 𝑥(𝑛)𝑦(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑧)𝑌 (

1

𝑧
)
1

𝑧
𝑑𝑧

𝐶

 

𝑋(𝑧) =
𝑧

𝑧 −
1
2

, |𝑧| >
1

2
  

𝑌 (
1

𝑧
) =

3

3 − 𝑧
=

−3

𝑧 − 3
, |𝑧| < 3 

So, the 𝑅𝑂𝐶 of 𝑋(𝑧) and 𝑌 (
1

𝑧
)  is 

1

2
< |𝑧| < 3 

∑ 𝑥(𝑛)𝑦(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮

𝑧

𝑧 −
1
2

−3

𝑧 − 3

1

𝑧
𝑑𝑧

𝐶

 

                                  =  
1

2𝜋𝑗
 ∮

−3

(𝑧 −
1
2)
(𝑧 − 3)

𝑑𝑧
𝐶

 

where 𝐶 is any circle with radius 𝑟, where 
1

2
< 𝑟 < 3. 

∑ 𝑥(𝑛)𝑦(𝑛)

∞

𝑛=−∞

= 𝑅𝑒𝑠 [
−3

(𝑧 −
1
2)
(𝑧 − 3)

 ,
1

2
 ] =

6

5
  

Example 2.12: If 𝑌(𝑧) = 𝑍[(1 + 𝑗)𝑛𝑢(𝑛)] =
𝑧

𝑧−(1+𝑗)
, |𝑧| > √2. Determine 

the Z-transform of 𝑥(𝑛) = (1 − 𝑗)𝑛𝑢(𝑛) . 

Solution: 

Note that 𝑥(𝑛) = [(1 + 𝑗)𝑛𝑢(𝑛)]∗  

Using conjugation property 
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𝑍[𝑥(𝑛)] = 𝑌∗(𝑧∗) = [
𝑧∗

𝑧∗ − (1 + 𝑗)
]
∗

, |𝑧| > √2  

=
𝑧

𝑧 − (1 − 𝑗)
٫            |𝑧| > √2 

Example 2.13: Determine the Z-transform of the sequence  

𝑥(𝑛) = (
−1

2
)
|𝑛|

 

Solution: 

We can write 𝑥(𝑛) as 

𝑥(𝑛) = (
−1

2
)
𝑛

𝑢(𝑛) + (
−1

2
)
−𝑛

𝑢(−𝑛) − 𝛿(𝑛)  

Using linearity and time reversal properties, we get 

𝑋(𝑧) =
𝑧

𝑧 +
1
2

+
𝑧−1

𝑧−1 +
1
2

− 1,      |
−1

2
| < |𝑧| <

1

|
−1
2
|
 

=
3𝑧

(2𝑧 + 1)(𝑧 + 2)
 ,         

1

2
< |𝑧| < 2      

2.4: Definition and Properties of the One-Sided Z-transform. 

Definition 2.2:[6] The one-sided or unilateral Z-transform of a sequence is 

 𝑋+(𝑧) = 𝛧+[𝑥(𝑛)]  = ∑𝑥(𝑛)𝑧−𝑛
∞

𝑛=0

                        (2.28) 

where 𝑧 is a complex variable.  

The one-sided Z-transform differs from the two-sided Z- transform in the 

lower limit of the summation, which is always zero whether or not the 

sequence 𝑥(𝑛) is zero for 𝑛 < 0 (i.e., causal). So, it does not contain any 

information about the sequence 𝑥(𝑛) for the negative values of 𝑛.  

Note: The one-sided Z-transform 𝑋+(𝑧) of 𝑥(𝑛) is identical to the two-sided 

Z- transform of the sequence 𝑥(𝑛)𝑢(𝑛). Since 𝑥(𝑛)𝑢(𝑛) is causal, the region 
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of convergence of its transform is always the exterior of a circle centered at 

the origin of z-plane.  

Example 2.14: Determine the one-sided Z-transform of the sequences. 

a) 𝑥(𝑛) = {
↑
7
↑
, 3,0,1,2,6} 

b) 𝑦(𝑛) = {2,
↑
3
↑
,−4,0,5} 

c)  𝑟(𝑛) = {7,3,2,
↑
3
↑
,−4,0,5}  

d) 𝑤(𝑛) = 4𝑛   

e) ℎ(𝑛) = 𝑢(−𝑛 − 1) 

Solution: 

a) 

𝑋+(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
∞

𝑛=0

= 7 + 3 𝑧−1 + 1 𝑧−3 + 2 𝑧−4 + 6𝑧−5 

𝑅𝑂𝐶: entire z-plane except 𝑧 =  0  

b) 

𝑌+(𝑧) = 3 − 4 𝑧−1 + 5 𝑧−3 ,   |𝑧| > 0  

c) 

𝑅+(𝑧) = 3 − 4 𝑧−1 + 5 𝑧−3 ,   |𝑧| > 0  

d) 

𝑊+(𝑧) =
𝑧

𝑧 − 4
 ,   |𝑧| > 4   

e) 

𝐻+(𝑧) = 0,   𝑅𝑂𝐶 is all z − plane 
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Note: The one-sided Z-transform is not unique for noncausal sequence. for  

example, in the previous example  𝑌+(𝑧) = 𝑅+(𝑧) but 𝑦(𝑛) ≠ 𝑟(𝑛). Also 

it's not unique for anticausal sequences it's always equal zero. 

Most of the properties of the one-sided Z-transform are the same as those for 

the two-sided Z-transform except the shifting property. 

Shifting Property for the One-Sided Z-transform 

If 𝑋+(𝑧) is the one-sided Z-transform of the sequence 𝑥(𝑛) with 𝑅𝑂𝐶  |𝑧| >

𝑟𝑥, and 𝑘 is any positive integer then, 

a) 𝛧+[𝑥(𝑛 − 𝑘)]  = 𝑧−𝑘 [𝑋+(𝑧) +∑𝑥(−𝑛)𝑧𝑛
𝑘

𝑛=1

] , |𝑧| > 𝑟𝑥                (2.29) 

in case 𝑥(𝑛) is casual 

𝛧+[𝑥(𝑛 − 𝑘)]  = 𝑧−𝑘𝑋+(𝑧) 

b) 𝛧+[𝑥(𝑛 + 𝑘)]  = 𝑧𝑘 [𝑋+(𝑧) −∑𝑥(𝑛)𝑧−𝑛
𝑘−1

𝑛=0

] , |𝑧| > 𝑟𝑥                   (2.30) 

  Proof: 

 a) 

𝛧+[𝑥(𝑛 − 𝑘)]  =∑𝑥(𝑛 − 𝑘)𝑧−𝑛
∞

𝑛=0

                      (2.31) 

Substitute 𝑚 =  𝑛 –  𝑘 in Eq(2.31), we get  

𝛧+[𝑥(𝑛 − 𝑘)] =  ∑ 𝑥(𝑚)𝑧−(𝑚+𝑘)
∞

𝑚=−𝑘

                                 

                           = 𝑧−𝑘 [∑ 𝑥(𝑚)𝑧−𝑚 +∑𝑥(𝑚)𝑧−𝑚
∞

𝑚=0

−1

𝑚=−𝑘

] 

= 𝑧−𝑘 [∑ 𝑥(𝑚)𝑧−𝑚 + 𝑋+(𝑧)

−1

𝑚=−𝑘

]                    (2.32) 

Substitute 𝑛 =  −𝑚  in Eq(2.32), we obtain  
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𝛧+[𝑥(𝑛 − 𝑘)]  = 𝑧−𝑘 [𝑋+(𝑧) +∑𝑥(−𝑛)𝑧𝑛
𝑘

𝑛=1

] 

 b) 

𝛧+[𝑥(𝑛 + 𝑘)]  = ∑𝑥(𝑛 + 𝑘)𝑧−𝑛
∞

𝑛=0

                        (2.33) 

Changing the index of summation of Eq(2.33) from n to 𝑚 =  𝑛 +  𝑘  

𝛧+[𝑥(𝑛 + 𝑘)] =  ∑𝑥(𝑚)𝑧−(𝑚−𝑘)
∞

𝑚=𝑘

 

                        = 𝑧𝑘∑𝑥(𝑚)𝑧−𝑚)
∞

𝑚=𝑘

 

                                                         = 𝑧𝑘 [∑ 𝑥(𝑚)𝑧−𝑚
∞

𝑚=0

−∑𝑥(𝑚)𝑧−𝑚
𝑘−1

𝑚=0

] 

= 𝑧𝑘 [𝑋+(𝑧) −∑𝑥(𝑚)𝑧−𝑚
𝑘−1

𝑚=0

]         (2.34) 

Changing the index of summation of  Eq(2.34) from m to 𝑛 =  𝑚 

𝛧+[𝑥(𝑛 + 𝑘)]  = 𝑧𝑘 [𝑋+(𝑧) −∑𝑥(𝑛)𝑧−𝑛
𝑘−1

𝑛=0

] 

Example 2.15: Determine the one-sided Z-transform of the sequences. 

a) 𝑥(𝑛)  = 3𝑛, 𝑛 ∈ ℤ 

b) 𝑦(𝑛)  =  𝑥(𝑛 − 2) 

c) 𝑤(𝑛)  =  𝑥(𝑛 + 3) 

Solution: 

a) 

𝑋+(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
∞

𝑛=0

= ∑3𝑛𝑧−𝑛
∞

𝑛=0

=
𝑧

𝑧 − 3
, |𝑧| > 3 
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b) 

Using shifting property in Eq(2.29) for the one-sided Z-transform with 

 𝑘 =  2 

𝛧+[𝑥(𝑛 − 2)]  = 𝑧−2 [𝑋+(𝑧) +∑𝑥(−𝑛)𝑧𝑛
2

𝑛=1

] 

                                         = 𝑧−2[𝑋+(𝑧) + 𝑥(−1)𝑧1 + 𝑥(−2)𝑧2] 

                                    = 𝑧−2𝑋+(𝑧) + 𝑥(−1)𝑧−1 + 𝑥(−2) 

since 𝑥(−1) = 3−1 =
1

3
, 𝑥(−2) = 3−2 =

1

9
, we obtain , 

𝛧+[𝑥(𝑛 − 2)] =
1

𝑧2 − 3𝑧
+
1

3𝑧
+
1

9
,   |𝑧| > 3 

c) 

Using shifting property in Eq(2.30) for the one-sided Z-transform with 

 𝑘 =  3 

                      𝛧+[𝑥(𝑛 + 3)]  = 𝑧3 [𝑋+(𝑧) −∑𝑥(𝑛)𝑧−𝑛
3−1

𝑛=0

] 

                                               = 𝑧3[𝑋+(𝑧) − (𝑥(0)𝑧0 + 𝑥(1)𝑧−1 + 𝑥(2)𝑧−2)] 

                                         = 𝑧3𝑋+(𝑧) − 𝑥(0)𝑧3 − 𝑥(1)𝑧2 + 𝑥(2)𝑧1 

since 𝑥(0) = 30 = 1, 𝑥(1) = 31 = 3 and 𝑥(2) = 32 = 9, we obtain, 

𝛧+[𝑥(𝑛 + 3)] = 𝑧3
𝑧

𝑧 − 3
− 𝑧3 − 3𝑧2 + 9𝑧 

                                       =
𝑧4

𝑧 − 3
− 𝑧3 − 3𝑧2 + 9𝑧,   |𝑧| > 3 

Now, we will talk about two important theorems in the analysis of sequences: 

the Initial value theorem and Final value theorem. They are useful if we 

are interested in asymptotic behavior of a sequences 𝑥(𝑛) and we know  its 

one-sided Z-transform but not the sequences.   
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Initial Value Theorem[6] 

Let 𝑥(𝑛) be a sequence, the initial value, 𝑥(0), can be found from 𝑋+(𝑧) as 

follows: 

𝑥(0) = 𝑙𝑖𝑚
𝑧→∞

𝑋+(𝑧)                                    (2.35) 

 Proof: 

𝑋+(𝑧) = ∑𝑥(𝑛) 𝑧−𝑛
∞

𝑛=𝑜

= 𝑥(0) + 𝑥(1) 𝑧−1 + 𝑥(2) 𝑧−2 +⋯ 

If we let 𝑧 → ∞ ,each term in 𝑋+(𝑧) goes to zero except the first one. 

∴ 𝑙𝑖𝑚
𝑧→∞

𝑋+(𝑧) = 𝑥(0) 

Final Value Theorem[8] 

If 𝑋+(𝑧) is the one-sided Z-transform of the sequence 𝑥(𝑛),then 

𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) = 𝑙𝑖𝑚
𝑧→1

(𝑧 − 1)𝑋+(𝑧) , 𝑖𝑓 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛)  exist                  (2.36) 

Proof: 

𝛧+[𝑥(𝑘 + 1) − 𝑥(𝑘)] = 𝑙𝑖𝑚
𝑛→∞

∑[𝑥(𝑘+1)−𝑥(𝑘)]

𝑛

𝑘=0

𝑧−𝑘 

𝑧𝑋+(𝑧) − 𝑧𝑥(0) − 𝑋+(𝑧) = 𝑙𝑖𝑚
𝑛→∞

∑[𝑥(𝑘+1)−𝑥(𝑘)]

𝑛

𝑘=0

𝑧−𝑘 

(𝑧 − 1)𝑋+(𝑧) − 𝑧𝑥(0) = 𝑙𝑖𝑚
𝑛→∞

∑[𝑥(𝑘+1)−𝑥(𝑘)]

𝑛

𝑘=0

𝑧−𝑘 

By taking the limit as 𝑧 → 1  ,the above equation become 

𝑙𝑖𝑚
𝑧→1

(𝑧 − 1)𝑋+(𝑧) − 𝑥(0)

= 𝑙𝑖𝑚
𝑛→∞

∑[𝑥(𝑘+1)−𝑥(𝑘)]      

𝑛

𝑘=0

                                                                

= 𝑙𝑖𝑚
𝑛→∞

[𝑥(1) − 𝑥(0) + 𝑥(2) − 𝑥(1) + ⋯ 

     𝑥(𝑛) − 𝑥(𝑛 − 1) + 𝑥(𝑛 + 1) − 𝑥(𝑛)] 

                                       = 𝑙𝑖𝑚
𝑛→∞

[−𝑥(0) + 𝑥(𝑛 + 1)] 

                           = −𝑥(0) + 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) 

∴ 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) = 𝑙𝑖𝑚
𝑧→1

(𝑧 − 1)𝑋+(𝑧) 
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Example 2. 16: If 𝑋+(𝑧) = 𝑧2 (𝑧 − 1)(𝑧 − 𝑒−1)⁄ , |𝑧| > 1,is the one-sided 

Z-transform of the sequence 𝑥(𝑛). Find the value of 𝑥(0) and 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛). 

Solution:  

From initial value theorem 

𝑥(0) = 𝑙𝑖𝑚
𝑧→∞

𝑋+(𝑧) = 𝑙𝑖𝑚
𝑧→∞

𝑧2

(𝑧 − 1)(𝑧 − 𝑒−1)
= 1 

And from final value theorem  

𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) = 𝑙𝑖𝑚
𝑧→1

(𝑧 − 1)𝑋+(𝑧) 

                                                   = 𝑙𝑖𝑚
𝑧→1

(𝑧 − 1)
𝑧2

(𝑧 − 1)(𝑧 − 𝑒−1)
             

      =
1

(1 − 𝑒−1)
 

Example 2.17: Generalize the Initial value theorem to find the value of 

𝑥(1) for a causal sequence 𝑥(𝑛) and find it for 

𝑋(𝑧) =
4𝑧3 + 5𝑧2

8𝑧3 − 2𝑧 + 3
 

Solution: 

If 𝑥(𝑛) is causal then 

𝑋(𝑧) = 𝑥(0) + 𝑥(1)𝑧−1 + 𝑥(2)𝑧−2 +⋯              (2.37)  

Subtract 𝑥(0) from both sides of Eq(2.37)  

𝑋(𝑧) − 𝑥(0) = 𝑥(1)𝑧−1 + 𝑥(2)𝑧−2 +⋯               (2.38) 

Multiply both sides of Eq(2.38) with z 

𝑧[𝑋(𝑧) − 𝑥(0)] = 𝑧[𝑥(1)𝑧−1 + 𝑥(2)𝑧−2 +⋯]          (2.39) 

If we take the limit as 𝑧 → ∞ for Eq(2.39) 

𝑙𝑖𝑚
𝑧→∞

𝑧[𝑋(𝑧) − 𝑥(0)] = 𝑥(1)                            (2.40) 

Eq(2.40) is a generalize the Initial value theorem to find the value of 𝑥(1) 

for a causal sequence 𝑥(𝑛). 



33 

For the given Z-transform 

𝑥(0) = 𝑙𝑖𝑚
𝑧→∞

𝑋(𝑧) =  
1

2
 

 

𝑥(1) = 𝑙𝑖𝑚
𝑧→∞

𝑧[𝑋(𝑧) − 𝑥(0)] 

𝑧[𝑋(𝑧) − 𝑥(0)] = 𝑧 [
4𝑧3 + 5𝑧2

8𝑧3 − 2𝑧 + 3
−
1

2
] =

10𝑧3 + 2𝑧2 − 3𝑧

16𝑧3 − 4𝑧 + 6
 

Therefore  

𝑥(1) = 𝑙𝑖𝑚
𝑧→∞

10𝑧3 + 2𝑧2 − 3𝑧

16𝑧3 − 4𝑧 + 6
=
5

8
 

Example 2.18: Let 𝑥(𝑛) be a left-sided sequence that is equal zero for 𝑛 >

0. If 

𝑋(𝑧) =
5𝑧 + 4

9𝑧2 − 3𝑧 + 2
 

Find 𝑥(0). 

Solution: 

For a left-sided sequence that is equal zero for 𝑛 > 0, the Z-transform is 

𝑋(𝑧) = 𝑥(0) + 𝑥(−1)𝑧 + 𝑥(−2)𝑧2 +⋯ 

If we take the limit as 𝑧 → 0, we get 

𝑙𝑖𝑚
𝑧→0

𝑋(𝑧) = 𝑥(0) 

For our example 

𝑥(0) = 𝑙𝑖𝑚
𝑧→0

𝑋(𝑧) = 𝑙𝑖𝑚
𝑧→0

5𝑧 + 4

9𝑧2 − 3𝑧 + 2
= 2 
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Chapter Three 

The Inverse Z-transform 

In this chapter we investigate methods for finding the inverse of the Z-

transform, clarify the relation between Z-transform and discrete Fourier-

transform and its relation with Laplace transform, then we introduce the 

definition of two-dimensional Z-transform, investigate its properties and how 

to find its inverse. 

Section 3.1: The Inverse Z-transform  

Just as important as technique for finding the Z-transform of a sequence are 

methods that may be used to invert the Z-transform and recover the sequence 

𝑥(𝑛) from 𝑋(𝑧). Three methods are often used for the evaluation of the 

inverse of Z-transform.  

1. Integration. 

2. Power Series. 

3. Partial-Fraction. 

1. Integration Method.[9] 

Integration method relies on Cauchy integral formula, which state that if 𝐶 is 

a closed contour that encircles the origin in a counterclockwise direction then, 
1

2𝜋𝑗
 ∮𝑧𝑘−1𝑑𝑧
𝐶

= {
1, 𝑘 = 0
0, 𝑘 ≠ 0

                           (3.1) 

The Z-transform of a sequence 𝑥(𝑛) is given by 

𝑋(𝑧)  = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

                                     (3.2) 
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Multiply both sides of Eq(3.2) by 
1

2𝜋𝑗
 𝑧𝑘−1 and integrating over a contour  𝐶 

that encloses the origin counterclockwise and lies entirely in the region of 

convergence of 𝑋(𝑧), we obtain 

1

2𝜋𝑗
 ∮𝑋(𝑧) 𝑧𝑘−1𝑑𝑧
𝐶

=
1

2𝜋𝑗
 ∮ ∑ 𝑥(𝑛)

∞

𝑛=−∞

 𝑧−𝑛+𝑘−1𝑑𝑧
𝐶

         (3.3) 

Interchanging the order of integration and summation on the right-hand side 

of Eq(3.3) (valid if the series is convergent) we get 

1

2𝜋𝑗
 ∮𝑋(𝑧) 𝑧𝑘−1𝑑𝑧
𝐶

= ∑ 𝑥(𝑛)

∞

𝑛=−∞

1

2𝜋𝑗
 ∮ 𝑧−𝑛+𝑘−1𝑑𝑧
𝐶

           (3.4) 

Applying Cauchy integral formula on the integral in the right hand side of 

Eq(3.4), we get 
1

2𝜋𝑗
 ∮ 𝑧−𝑛+𝑘−1𝑑𝑧
𝐶

= {
1, 𝑛 = 𝑘
0, 𝑛 ≠ 𝑘

                    (3.5) 

So Eq(3.4) becomes    
1

2𝜋𝑗
 ∮𝑋(𝑧) 𝑧𝑘−1𝑑𝑧
𝐶

= 𝑥(𝑘)                           (3.6) 

Therefore, the inverse of Z-transform is given by the integral 

𝑥(𝑛) =
1

2𝜋𝑗
 ∮𝑋(𝑧) 𝑧𝑛−1𝑑𝑧
𝐶

                             (3.7) 

where 𝐶 is a counterclockwise closed contour in the region of convergence 

of 𝑋(𝑧) and encircling the origin of the z-plane and 𝑛 ∈ ℤ. 

Note: For a rational Z-transform 𝑋(𝑧), 𝑥(𝑛) is often evaluated using the 

residue theorem, i.e.,  

𝑥(𝑛) =  ∑[𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑓 𝑋(𝑧) 𝑧𝑛−1𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 ]     (3.8) 

Example 3.1: Find the inverse Z-transform of  

𝑋(𝑧) =
𝑧

𝑧 + 3 
 ,   |𝑧| > 3 
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Solution: 

From Eq(3.7) 𝑥(𝑛), will be 

𝑥(𝑛) =
1

2𝜋𝑗
 ∮

𝑧

𝑧 + 3
 𝑧𝑛−1𝑑𝑧

𝐶

=
1

2𝜋𝑗
 ∮

 𝑧𝑛

𝑧 + 3
𝑑𝑧

𝐶

 

where the contour of integration, C is  a circle of radius greater than 3. 

For 𝑛 ≥ 0, the contour of integration encloses only one pole at 𝑧 = −3. So  

𝑥(𝑛) =  𝑅𝑒𝑠 [
 𝑧𝑛

𝑧 + 3
,−3 ] =  (−3)𝑛 

For 𝑛 < 0, in an addition to the pole at 𝑧 = −3 there is a multiple-order 

pole at 𝑧 = 0 whose order depends on 𝑛. 

For 𝑛 = −1, 

𝑥(−1) =
1

2𝜋𝑗
 ∮

1

𝑧(𝑧 + 3) 
𝑑𝑧

𝐶

 

 = 𝑅𝑒𝑠 [
1

𝑧(𝑧 + 3) 
, 0 ] + 𝑅𝑒𝑠 [

1

𝑧(𝑧 + 3) 
, −3 ] =

1

3 
+
−1

3 
= 0 

For 𝑛 = −2, 

𝑥(−2) =
1

2𝜋𝑗
 ∮

1

𝑧2(𝑧 + 3) 
𝑑𝑧

𝐶

         

                                                 = 𝑅𝑒𝑠 [
1

𝑧2(𝑧 + 3) 
, 0 ] + 𝑅𝑒𝑠 [

1

𝑧2(𝑧 + 3) 
, −3 ] 

                                               =
1

(1)!

𝑑

𝑑𝑧

1

(𝑧 + 3) 
| .𝑧 = 0

𝑎𝐴 +
1

9 
=
−1

9 
+
1

9 
= 0 

Continuing this procedure it can be verified that 𝑥(𝑛) = 0, 𝑛 < 0. So 

𝑥(𝑛) =   { 
(−3)𝑛   , 𝑛 ≥ 0
0         , 𝑛 < 0

 

or 

𝑥(𝑛) = (−3)𝑛𝑢(𝑛) 

Example 3.2: Find the inverse Z-transform of  

𝑋(𝑧) = 𝑧2 + 6 + 7𝑧−3,   0 < |𝑧| < ∞ 
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Solution: 

From Eq(3.7) 𝑥(𝑛), will be 

𝑥(𝑛) =
1

2𝜋𝑗
 ∮(𝑧2 + 6 + 7𝑧−3) 𝑧𝑛−1𝑑𝑧
𝐶

 

where 𝐶 is the unit circle taken counterclockwise . 

𝑥(𝑛) =
1

2𝜋𝑗
 [∮ 𝑧𝑛+1𝑑𝑧

𝐶

+ 6∮ 𝑧𝑛−1𝑑𝑧
𝐶

+ 7∮ 𝑧𝑛−4𝑑𝑧
𝐶

] 

From Cauchy integral formula in Eq(3.1) we get, 

𝑥(−2) =
1

2𝜋𝑗
 [2𝜋𝑗 ∙ 1 + 0 + 0] = 1 

𝑥(0) =
1

2𝜋𝑗
 [0 + 6 ∙ 2𝜋𝑗 + 0] = 6 

𝑥(3) =
1

2𝜋𝑗
 [0 + 0 + 7 ∙ 2𝜋𝑗] = 7 

For 𝑛 ≠  −2, 0, 3 

𝑥(𝑛) = 0 

So 

𝑥(𝑛) =  {

 1 ,       𝑛 = −2  
6 ,       𝑛 = 0     
7 ,       𝑛 = 3     
0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note: Integration method is particularly useful if only a specific values of 

x(n) are needed.  

We now prove the Multiplication of Two Sequences Property and 

Parseval's Theorem. 

Multiplication of Two Sequences Property: 

If 𝑋(𝑧) is the Z-transform of 𝑥(𝑛) with 𝑅𝑂𝐶 𝑟𝑥 < |𝑧| < 𝑅𝑥 and 𝑌(𝑧) is the 

Z-transform of 𝑦(𝑛) with 𝑅𝑂𝐶  𝑟𝑦 < |𝑧| < 𝑅𝑦, then 
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𝑍(𝑥(𝑛)𝑦(𝑛)) =
1

2𝜋𝑗
 ∮ 𝑋(𝑣)𝑌 (

𝑧

𝑣
)
1

𝑣
𝑑𝑣

𝐶

,                    (3.9) 

𝑅𝑂𝐶: 𝑟𝑥𝑟𝑦 < |𝑧| < 𝑅𝑥𝑅𝑦 

where 𝐶 is a counterclockwise closed contour that encloses the origin and 

lies within the common region of convergence of 𝑋(𝑣) and 𝑌 (
𝑧

𝑣
).  

Proof: [14] 

Let 𝐶 be as given in the above theorem and  

 𝑤(𝑛) =  𝑥(𝑛)𝑦(𝑛)                                     (3.10)  

Then, the Z-transform of 𝑤(𝑛) is 

𝑊(𝑧) = ∑ 𝑥(𝑛)𝑦(𝑛)𝑧−𝑛
∞

𝑛=−∞

                          (3.11) 

But 

𝑥(𝑛) =
1

2𝜋𝑗
 ∮𝑋(𝑣) 𝑣𝑛−1𝑑𝑣
𝐶

                         (3.12) 

Substituting 𝑥(𝑛) in Eq(3.11) and interchanging the order of summation 

and integration we obtain 

𝑊(𝑧) =
1

2𝜋𝑗
 ∮𝑋(𝑣)
𝐶

[ ∑ 𝑦(𝑛) (
𝑧

𝑣
)
−𝑛

∞

𝑛=−∞

]
1

𝑣
 𝑑𝑣            (3.13) 

The sum in the brackets of Eq(3.13) is simply the transform 𝑌(𝑧) evaluated 

at 𝑧/𝑣. Therefore, 

𝑊(𝑧) =
1

2𝜋𝑗
 ∮ 𝑋(𝑣)𝑌 (

𝑧

𝑣
)
1

𝑣
𝑑𝑣

𝐶

 

To obtain the 𝑅𝑂𝐶 of 𝑊(𝑧) we note that if 𝑋(𝑣) converges for 𝑟𝑥 < |𝑣| <

𝑅𝑥  and 𝑌(𝑧) converges for 𝑟𝑦 < |𝑧| < 𝑅𝑦, then the 𝑅𝑂𝐶 of 𝑌(𝑧/𝑣) is 

𝑟𝑦 < |
𝑧

𝑣
| < 𝑅𝑦 

Hence the 𝑅𝑂𝐶 for 𝑊(𝑧) is at least 

𝑟𝑥𝑟𝑦 < |𝑧| < 𝑅𝑥𝑅𝑦 
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Parseval’s Theorem 

Let 𝑋(𝑧) be the Z-transform of 𝑥(𝑛) with 𝑅𝑂𝐶  𝑟𝑥 < |𝑧| < 𝑅𝑥 

and let 𝑌(𝑧) be the Z-transform of 𝑦(𝑛) with 𝑅𝑂𝐶  𝑟𝑦 < |𝑧| < 𝑅𝑦, with 

𝑟𝑥𝑟𝑦 < |𝑧| = 1 < 𝑅𝑥𝑅𝑦 

then we have 

∑ 𝑥(𝑛)𝑦∗(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑧)Y∗ (

1

𝑧∗
)
1

𝑧
𝑑𝑧

𝐶

             (3.14) 

where 𝐶 is a counterclockwise closed contour that encloses the origin and 

lies within the common region of convergence of 𝑋(𝑧) and Y∗(1/z∗). 

Proof: [9] 

Let 

 𝑤(𝑛) = 𝑥(𝑛)𝑦∗(𝑛)                                (3.15) 

 Noting that 

∑ 𝑤(𝑛)

∞

𝑛=−∞

= 𝑊(𝑧)|𝑧=1                         (3.16) 

By the multiplication of two sequences and the conjugation of Z-transform 

properties, Eq(3.16) becomes 

∑ 𝑥(𝑛)𝑦∗(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑣)𝑌∗ (

1

𝑣∗
)
1

𝑣
𝑑𝑣

𝐶

               (3.17) 

Replace the dummy variable 𝑣 with 𝑧 in  Eq(3.17) we obtain 

∑ 𝑥(𝑛)𝑦∗(𝑛)

∞

𝑛=−∞

= 
1

2𝜋𝑗
 ∮ 𝑋(𝑧)𝑌∗ (

1

𝑧∗
)
1

𝑧
𝑑𝑧

𝐶

 

where 𝐶 is a counterclockwise closed contour that encloses the origin and 

lies within the common region of convergence of 𝑋(𝑧) and 𝑌∗(1/z∗).  
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2. Power Series Method 

The idea of this method is to write 𝑋(𝑧) as a power series of the form 

𝑋(𝑧) = ∑ 𝑐𝑛𝑧
−𝑛

∞

𝑛=−∞

                                  (3.18) 

which convergence in the 𝑅𝑂𝐶. Then by uniqueness of 𝑋(𝑧) we can say 

that 𝑥(𝑛) = 𝑐𝑛 for all 𝑛. 

Example 3.3: Find the inverse Z-transform of   

𝑋(𝑧) = 𝑧2 + 6 + 7𝑧−3,   0 < |𝑧| < ∞ 

Solution: 

Since 𝑋(𝑧) is a finite-order integer power function, 𝑥(𝑛) is a finite-length 

sequence. Therefore, 𝑥(𝑛) is the coefficient that multiplies 𝑧−𝑛 in 𝑋(𝑧). 

Thus, 𝑥(3) = 7, 𝑥(0) = 6 and 𝑥(−2) = 1. 

∴ 𝑥(𝑛) =  {

 1 ,       𝑛 = −2  
6 ,       𝑛 = 0     
7 ,       𝑛 = 3     
0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note: Comparing Example 3.3with Example 3.2 we note that the power 

series method is easier than integration method in such cases. 

Example 3.4: Find the inverse Z-transform of 

𝑋(𝑧) = 𝑠𝑖𝑛 𝑧 , |𝑧| ≥ 0 

 

Solution: 

Using Taylor series for 𝑠𝑖𝑛 𝑧 about 𝑧 =  0 we get, 

𝑋(𝑧) = ∑
(−1)𝑚𝑧2𝑚+1

(2𝑚 + 1)!

∞

𝑚=0
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But 

𝑋(𝑧)  = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

 

So 

∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑
(−1)𝑚𝑧2𝑚+1

(2𝑚 + 1)!

∞

𝑚=0

 

Comparing the powers of 𝑧 on the both sides of the previous equation we 

find 

– 𝑛 = 2𝑚 + 1,𝑚 ∈ ℕ 

So – 𝑛 is odd integer, 

𝑛 = −1,−3,−5,… 

Thus 𝑥(𝑛) becomes 

𝑥(𝑛) =
(−1)

−(
𝑛+1
2
)

(−𝑛)!
 , 𝑛 = −1,−3,−5,… 

Example 3.5: Find the inverse Z-transform of  

a) 𝑋(𝑧) =
𝑧

𝑧 +  3  
 ,   |𝑧| > 3 

b) 𝑋(𝑧) =
𝑧

𝑧 +  3  
 ,   |𝑧| < 3 

Solution: 

a) Since the region of convergence is the exterior of a circle, the sequence is 

a right-sided sequence. Furthermore, since lim
𝑧→∞

𝑋(𝑧) = 1 = constant, it's a 

causal sequence. By long division to obtain power series in 𝑧−1. 
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∴ 𝑋(𝑧) = 1 − 3𝑧−1 + 9𝑧−2 +⋯ =∑(−3)𝑛
∞

𝑛=0

𝑧−𝑛 

So that  

𝑥(𝑛) = (−3)𝑛𝑢(𝑛) 

b) Since the region of convergence is the interior of a circle, the sequence is 

a left-sided sequence and since 𝑋(0) = 0, the sequence is anticausal. Thus 

we divide to obtain a series in powers of  z. 
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∴ 𝑥(𝑛) = −(−3)𝑛𝑢(−𝑛 − 1) 

3. Partial-Fraction Method. 

If 𝑋(𝑧) is rational function then the partial fraction method is often useful 

method to find its inverse [9]. The idea of this method is to write 𝑋(𝑧) as 

𝑋(𝑧) = 𝛼1𝑋1(𝑧) + 𝛼2𝑋2(𝑧) + ⋯+ 𝛼𝑘𝑋𝑘(𝑧)                 (3.19) 

where each 𝑋𝑖(𝑧) has inverse Z-transform  𝑥𝑖(𝑛) and 𝛼𝑖 ∈ ℂ for 𝑖 =

1, 2,… , 𝑘. 

If 𝑋(𝑧) is rational function of 𝑧 then 𝑋(𝑧) can be expressed as 

𝑋(𝑧) =
𝐴(𝑧)

𝐵(𝑧)
=
𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2  + ⋯+ 𝑎𝑀𝑧
𝑀 

𝑏0 + 𝑏1𝑧 + 𝑏2𝑧
2  + ⋯+ 𝑏𝑁𝑧

𝑁
              (3.20) 

where 𝑀,𝑁 ∈ ℕ. 

If 𝑁 ≠ 0 and 𝑀 < 𝑁 then 𝑋(𝑧) is called proper rational function, otherwise 

𝑋(𝑧) is improper, and it can always be written as a sum of polynomial and 

proper rational function. i.e. 

𝑋(𝑧) = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧
2  + ⋯+ 𝑐𝑘𝑧

𝑘 +
𝐴1(𝑧)

𝐵(𝑧)
             (3.21) 

The inverse of the polynomial can be easily found but to find the inverse of 

the proper rational function we need to write it as a sum of simple functions, 

for this purpose we factorized the denominator into factor of poles 𝑝0, 𝑝1, … 

, 𝑝𝑚of 𝑋(𝑧).  

Remark: [5] Sometimes it's better to expand 𝑋(𝑧)/𝑧 rather than 𝑋(𝑧) 

because most Z-transforms have the term z in their numerator.  

We have two cases for the poles[5]. 

Case 1: Simple poles. 
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If all poles of 𝑋(𝑧) are simple then 

𝑋(𝑧) =∑
𝐴𝑖

𝑧 − 𝑝𝑖

𝑚

𝑖=1

                                    (3.22) 

where 

𝐴𝑖 = (𝑧 − 𝑝𝑖)𝑋(𝑧)| .𝑧 = 𝑝𝑖
𝑎𝐴                       (3.23) 

Then 

𝑍−1 [
𝑧

𝑧 − 𝑝𝑖
] = {

(𝑝𝑖)
𝑛𝑢(𝑛)                   𝑖𝑓   𝑅𝑂𝐶 |𝑧| > |𝑝𝑖|

−(𝑝𝑖)
𝑛𝑢(−𝑛 − 1)    𝑖𝑓   𝑅𝑂𝐶 |𝑧| < |𝑝𝑖|

      (3.24) 

If 𝑥(𝑛) is causal and some poles of 𝑋(𝑧) are complex then if 𝑝 is a pole 

then 𝑝∗ is also a pole and in this case 

𝑥(𝑛) = [𝐴(𝑝)𝑛 + 𝐴∗(𝑝∗)𝑛]𝑢(𝑛)                    (3.25) 

In polar form Eq(3.25) become 

𝑥(𝑛) = 2|𝐴||𝑝|𝑛 𝑐𝑜𝑠(𝜃𝑛 + 𝜑)𝑢(𝑛)               (3.26) 

where 𝜃 and 𝜑 are the argument of the pole 𝑝 and the argument of the 

partial fraction coefficient 𝐴, respectively. 

Case 2: Multiple poles. 

For a function 𝑋(𝑧) with a repeated pole of multiplicity 𝑟, 𝑟 partial fraction 

coefficients are associated with this repeated pole. The partial fraction 

expansion of 𝑋(𝑧) will be of the form 

𝑋(𝑧) = ∑
𝐴1𝑘

(𝑧 − 𝑝1)
𝑟+1−𝑘   

𝑟

𝑘=1

+ ∑
𝐴𝑘

𝑧 − 𝑝𝑘   

𝑚

𝑘=𝑟+1

         (3.27) 

where 

𝐴1𝑘 =
1

(𝑘 − 1)!

𝑑𝑘−1

𝑑𝑧𝑘−1
(𝑧 − 𝑝1)

𝑟𝑋(𝑧)| .𝑧 = 𝑝1
𝑎𝐴 , 𝑘 = 1, 2,… , 𝑟    (3.28) 

Example 3.6: Find the inverse Z-transform of  
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𝑋(𝑧) =
𝑧2 + 3𝑧

𝑧2 − 3𝑧 + 2  
 if 𝑅𝑂𝐶 is 

a) |𝑧| > 1 

b)   |𝑧| < 2 

c)   1 < |𝑧| < 2 

Solution: 

First we write 𝑋(𝑧)/𝑧 as a partial fraction 
𝑋(𝑧)

𝑧
=

𝑧 + 3

𝑧2 − 3𝑧 + 2  
=

𝑧 + 3

(𝑧 − 2)(𝑧 − 1)
  

                                         =
𝐴

𝑧 − 2  
+

𝐵

𝑧 − 1  
 

𝐴 = (𝑧 − 2)
𝑋(𝑧)

𝑧
| .𝑧 = 2

𝑎𝐴 = 5 

  𝐵 = (𝑧 − 1)
𝑋(𝑧)

𝑧
| .𝑧 = 1

𝑎𝐴 = −4 

So 

𝑋(𝑧) = 5
𝑧

𝑧 − 2  
− 4

𝑧

𝑧 − 1  
 

For (a): 

Since the 𝑅𝑂𝐶 of 𝑋(𝑧) is |𝑧| > 1, the sequence 𝑥(𝑛) is causal sequence so 

we obtain, 

𝑥(𝑛) = (5 (2)𝑛 − 4)𝑢(𝑛) 

b) The 𝑅𝑂𝐶 of 𝑋(𝑧) is |𝑧| < 2 so the sequence 𝑥(𝑛) is anticausal so, 

𝑥(𝑛) = (−5 (2)𝑛 + 4)𝑢(−𝑛 − 1) 

c) The last 𝑅𝑂𝐶 1 < |𝑧| < 2 of 𝑋(𝑧) is annular, so the sequence 𝑥(𝑛) is two-

sided. Thus one of the terms is causal and the other is anticausal. The 𝑅𝑂𝐶 is 

overlapping |𝑧| > 1and |𝑧| < 2 so the pole 𝑝1 = 1 provides the causal 

sequence and the pole 𝑝2 = 2 provides the anticausal sequence.  

Thus 



46 

𝑥(𝑛) = −4𝑢(𝑛) − 5 (2)𝑛𝑢(−𝑛 − 1) 

Example 3.7: Find the inverse Z-transform of  

𝑋(𝑧) =
𝑧 + 1

𝑧2 − 2𝑧 + 2  
 𝑅𝑂𝐶|𝑧| > √2    

Solution: 

We write 𝑌(𝑧) = X(z)/z as a partial fraction 

𝑌(𝑧) =
𝑋(𝑧)

𝑧
=

𝑧 + 1

𝑧(𝑧2 − 2𝑧 + 2)  
=
𝐴

𝑧
+

𝐵

𝑧 − (1 + 𝑗)  
+

𝐶

𝑧 − (1 − 𝑗) 
 

𝐴 = 𝑧𝑌(𝑧)| .𝑧 = 0
𝑎𝐴 =

1

2
 

𝐵 = [𝑧 − (1 + 𝑗)]𝑌(𝑧) | .𝑧 = 1 + 𝑗
𝑎𝐴 =

2 + 𝑗

2𝑗 − 2
= −(

1 + 3𝑗

4
) 

𝐶 = [𝑧 − (1 − 𝑗)]𝑌(𝑧) | .𝑧 = 1 − 𝑗
𝑎𝐴 =

2 − 𝑗

−(2 + 2𝑗)
= −(

1 − 3𝑗

4
) 

𝑋(𝑧) =
1

2
− (

1 + 3𝑗

4
)

𝑧

𝑧 − (1 + 𝑗)  
− (

1 − 3𝑗

4
)

𝑧

𝑧 − (1 − 𝑗) 
 

∴ 𝑥(𝑛) =
1

2
𝛿(𝑛) − (

1 + 3𝑗

4
) (1 + 𝑗)𝑛𝑢(𝑛) − (

1 − 3𝑗

4
) (1 − 𝑗)𝑛𝑢(𝑛) 

Note that: 

𝑥(0) =
1

2
− (

1 + 3𝑗

4
) − (

1 − 3𝑗

4
) = 0 

So, 

𝑥(𝑛) = {
−(

1 + 3𝑗

4
) (1 + 𝑗)𝑛 − (

1 − 3𝑗

4
) (1 − 𝑗)𝑛 , 𝑛 ≥ 1 

0                                                                    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

For 𝑛 ≥ 1, 𝑥(𝑛) can be written in polar form as:  

𝑥(𝑛) =  (
√10

2
) (√2)

𝑛
 𝑐𝑜𝑠 (

𝜋

4
𝑛 + tan−1 3) 

    = √5(√2)
𝑛−1

𝑐𝑜𝑠 (
𝜋

4
𝑛 + tan−1 3) 

 

Example 3.8: Find the inverse Z-transform of  

𝑋(𝑧) =
𝑧3

𝑧3 − 𝑧2 − 5𝑧 − 3  
 𝑅𝑂𝐶|𝑧| > 1    
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Solution: 

We write 𝑌(𝑧) = 𝑋(𝑧)/𝑧 as a partial fraction 

𝑌(𝑧) =
𝑋(𝑧)

𝑧
=

𝑧2

𝑧3 − 𝑧2 − 5𝑧 − 3  
=

𝑧2

(𝑧 − 3)(𝑧 + 1)2
 

               =
𝐴

𝑧 − 3  
+

𝐵

𝑧 + 1  
+

𝐶

(𝑧 + 1)2  
        

𝐴 = (𝑧 − 3)𝑌(𝑧)| .𝑧 = 3
𝑎𝐴 =

9

16
 

𝐵 =
1

(2 − 1)!

𝑑

𝑑𝑧
(𝑧 + 1)2𝑌(𝑧)| .𝑧 = −1

𝑎𝐴 =
7

16
 

𝐶 = (𝑧 + 1)2𝑌(𝑧)| .𝑧 = −1
𝑎𝐴 =

−1

4
 

𝑋(𝑧) =
9

16

𝑧

𝑧 − 3  
+
7

16

𝑧

𝑧 + 1  
−
1

4

𝑧

(𝑧 + 1)2  
 

∴ 𝑥(𝑛) = [
9

16
(3)𝑛 +

7

16
(−1)𝑛 +

1

4
𝑛(−1)𝑛] 𝑢(𝑛) 

𝑥(𝑛) =
1

16
[(3)𝑛+2 + (−1)𝑛(7 + 4𝑛)]𝑢(𝑛) 

Example 3.9: Find the inverse Z-transform of   

𝑋(𝑧) =
𝑧5 + 6𝑧3 + 7

𝑧3
,   0 < |𝑧| < ∞ 

Solution: 

𝑋(𝑧) is an improper rational function so it can be written as  

𝑋(𝑧) = 𝑧2 + 6 +
7

𝑧3
                     

So,  

𝑥(𝑛) = 𝛿(𝑛 + 2) + 6𝛿(𝑛) + 7𝛿(𝑛 − 3) 

or 

𝑥(𝑛) =  {

 1 ,       𝑛 = −2  
6 ,       𝑛 = 0     
7 ,       𝑛 = 3     
0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Section 3.2: The Relation Between Z-transform and the Discrete Fourier 

Transform.  

Let 𝑥(𝑛) be a sequence, then the discrete Fourier transform (DFT) of 𝑥(𝑛) 

is [5], 

𝑋(𝑒𝑗𝜔) = ∑ 𝑥(𝑛)𝑒−𝑛𝜔𝑗
∞

𝑛=−∞

                                 (3.29) 

where 𝜔 is real. 

The Z-transform of 𝑥(𝑛) is 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

                                    (3.30) 

where 𝑧 is a complex variable. 

In polar form 𝑧 is written as 

𝑧 = 𝑟𝑒𝑗𝜔                                                 (3.31) 

where 𝑟 = |𝑧| and 𝜔 = 𝑎𝑟𝑔 (𝑧). 

Substituting Eq(3.31) in Eq(3.30) we obtain 

𝑋(𝑧) = ∑ 𝑥(𝑛)(𝑟𝑒𝑗𝜔)
−𝑛

∞

𝑛=−∞

= ∑ 𝑥(𝑛)𝑟−𝑛(𝑒𝑗𝜔)−𝑛
∞

𝑛=−∞

       (3.32) 

which is the discrete Fourier-transform for [𝑥(𝑛)𝑟−𝑛]. If 𝑟 = 1, then 𝑧 =

𝑒𝑗𝜔and the Z-transform of 𝑥(𝑛) becomes the discrete Fourier-transform. 

i.e 

𝑋(𝑧) | .
𝑧 = 𝑒𝑗𝜔

𝑎𝐴 = 𝑋(𝑒𝑗𝜔) 

So, Z-transform is generalization of discrete Fourier-transform. 
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Section 3.3: The Relation Between Z-transform and Laplace Transform.  

Let 𝑓(𝑡) be a continuous function, then we can take a sampled discrete 

function 𝑓𝑠(𝑡) which can be written as [13] 

𝑓𝑠(𝑡) = ∑ 𝑓(𝑡)𝛿(𝑛 − 𝑡)

∞

𝑛=−∞

= ∑ 𝑓(𝑛)𝛿(𝑛 − 𝑡)

∞

𝑛=−∞

            (3.33) 

The Laplace transform of sampled function 𝑓𝑠(𝑡) is: 

𝑋(𝑠) = ℒ[𝑓𝑠(𝑡)] = ∫ [ ∑ 𝑓(𝑛)𝛿(𝑡 − 𝑛)

∞

𝑛=−∞

] 𝑒−𝑠𝑡𝑑𝑡

∞

−∞

         (3.34) 

where 𝑠 = 𝜎 + 𝑗𝜔, 𝜎 and 𝜔 are real variables, by interchanging the order of 

the summation and the integration of Eq(3.34) we get 

                𝑋(𝑠) = ∑ 𝑓(𝑛)

∞

𝑛=−∞

[ ∫ 𝛿(𝑡 − 𝑛)𝑒−𝑠𝑡𝑑𝑡

∞

−∞

] = ∑ 𝑓(𝑛)

∞

𝑛=−∞

𝑒−𝑛𝑠 

= ∑ 𝑓(𝑛)

∞

𝑛=−∞

(𝑒𝑠)−𝑛 = 𝑋(𝑧) | .𝑧 = 𝑒𝑠
𝑎𝐴                        (3.35) 

So the relation between Laplace-transform and Z-transform is 

𝑋(𝑠) = 𝑋(𝑧) | .𝑧 = 𝑒𝑠
𝑎𝐴                                 (3.36) 

or 

𝑋(𝑧) = 𝑋(𝑠) | .𝑠 = 𝑙𝑛 𝑧
𝑎𝐴                                (3.37) 

The most important correspondence between the s-plane and z-plane are: 

1. The points on the jω-axis in the s-plane mapped onto the unit circle in 

the z-plane. 

2. The points in the right half of the s-plane mapped outside the unit circle 

in the z-plane where the points in the left half mapped inside the unit 

circle. 
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3. The lines 𝑠 = 𝜎 parallel to the jω-axis in the s-plane mapped into 

circles with radius|𝑧| = 𝑒𝜎in z-plane where the lines 𝑠 = 𝑗𝑢 parallel to 

the 𝜎-axis mapped into rays of the form 𝑎𝑟𝑔 𝑧 =  𝑢 radians from 𝑧 =  0. 

4. The origin of the s-plane mapped to the point z =  1 in the z-plane. 

Section 3.4: The Two-Dimensional Z-transform.  

3.4.1: Definition of the Two-Dimensional Z-transform. 

Definition 3.1:[20] The two-dimensional Z-transform 𝑋(𝑧1, 𝑧2) of a 

sequence  𝑥(𝑛,𝑚) is defined as 

𝑋(𝑧1, 𝑧2) = ∑ ∑ 𝑥(𝑛,𝑚)𝑧1
−𝑛

∞

𝑚=−∞

∞

𝑛=−∞

𝑧2
−𝑚             (3.38) 

 where (𝑧1, 𝑧2) ∈ ℂ
2 and the 𝑅𝑂𝐶 is the set of all (𝑧1, 𝑧2) points for which 

∑∑|𝑥(𝑛,𝑚)||𝑧1
−𝑛||𝑧2

−𝑚|

𝑚

< ∞

𝑛

 

Example 3.10: Find the two-dimensional Z-transform of 

𝑥(𝑛,𝑚) = {

   3,   𝑛 = 0,𝑚 = −2
1,   𝑛 = 0,𝑚 = 0
4,   𝑛 = 5,𝑚 = 3
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Solution:  

𝑋(𝑧1, 𝑧2) = ∑ ∑ 𝑥(𝑛,𝑚)𝑧1
−𝑛

∞

𝑚=−∞

∞

𝑛=−∞

𝑧2
−𝑚 

         = 3𝑧2
2 + 1 + 4𝑧1

−5𝑧2
−3 

𝑅𝑂𝐶 all ℂ2 except 𝑧1 = 0 or 𝑧2 = 0,∞. 

Example 3.11: Find the two-dimensional Z-transform of 

𝑥(𝑛,𝑚) =  2𝑛𝛿(𝑛 −𝑚)𝑢(𝑛,𝑚) 

Solution:  
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𝑋(𝑧1, 𝑧2) = ∑ ∑ 𝑥(𝑛,𝑚)𝑧1
−𝑛

∞

𝑚=−∞

∞

𝑛=−∞

𝑧2
−𝑚 

                                       = ∑ ∑ 2𝑛𝛿(𝑛 −𝑚)𝑢(𝑛,𝑚)𝑧1
−𝑛

∞

𝑚=−∞

∞

𝑛=−∞

𝑧2
−𝑚 

                                           = ∑ ∑ 2𝑛𝛿(𝑛 −𝑚)𝑢(𝑛)𝑢(𝑚)𝑧1
−𝑛

∞

𝑚=−∞

∞

𝑛=−∞

𝑧2
−𝑚 

                 = ∑ ∑ 2𝑛𝛿(𝑛 −𝑚)𝑧1
−𝑛

∞

𝑚=0

∞

𝑛=0

𝑧2
−𝑚 

                                        = ∑2𝑛𝑧1
−𝑛

∞

𝑛=0

𝑧2
−𝑛 =

𝑧1𝑧2
𝑧1𝑧2 − 2

, |𝑧1||𝑧2| > 2   

3.4.2: Properties of the Two-Dimensional Z-transform.  

The properties of the two-dimensional Z-transform are the same as the 

properties of Z-transform and their proofs are parallel with an additional 

important property, the separable of sequences propriety.  

Let 𝑋(𝑧1, 𝑧2) be the two-dimensional Z-transform of 𝑥(𝑛,𝑚) with 𝑅𝑂𝐶  𝑅̃𝑥 

and 𝑌(𝑧1, 𝑧2) the Z-transform of 𝑦(𝑛,𝑚) with 𝐶 𝑅̃𝑦. Then the properties are 

1. Linearity. 

For any complex numbers α, β we have 

𝑍[𝛼𝑥(𝑛,𝑚)  +  𝛽𝑦(𝑛,𝑚)] = 𝛼𝑋(𝑧1, 𝑧2)  +  𝛽𝑌(𝑧1, 𝑧2)    (3.39) 

𝑅𝑂𝐶: at least 𝑅̃𝑥 ∩ 𝑅̃𝑦 

2. Shifting. 

 For 𝑛1, 𝑚1 ∈ ℤ  

𝑍[𝑥(𝑛 + 𝑛1, 𝑚 +𝑚1)] = 𝑧1
𝑛1  𝑧2

𝑚1𝑋(𝑧1, 𝑧2)          (3.40) 

𝑅𝑂𝐶: 𝑅̃𝑥with possible exceptions |𝑧1| = 0,∞ and |𝑧2| = 0,∞ 

3. Multiplication by Exponential.  
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For  𝑎, 𝑏 ∈ ℂ  

𝑍[𝑎𝑛𝑏𝑚𝑥(𝑛,𝑚)] =  𝑋(𝑎−1𝑧1, 𝑏
−1𝑧2)               (3.41) 

𝑅𝑂𝐶: 𝑅̃𝑥scaled by |a| in the 𝑧1variable and by |𝑏| in the 𝑧2 variable. 

4. Time Reversal. 

𝑍[𝑥(−𝑛,−𝑚) ] = 𝑋(𝑧1
−1, 𝑧2

−1)                     (3.42) 

𝑅𝑂𝐶: 𝑧1
−1, 𝑧2

−1 𝑖𝑛 𝑅̃𝑥 

5. Conjugation. 

𝑍[𝑥 ∗(𝑛,𝑚)] = 𝑋∗(𝑧1
∗, 𝑧2

∗)                            (3.43) 

 𝑅𝑂𝐶: 𝑅̃𝑥 

6. Multiplication by n or Differentiation of the Transform  

𝑍[𝑛 𝑚 𝑥(𝑛,𝑚) ] = 𝑧1𝑧2
𝜕2𝑋(𝑧1, 𝑧2)

𝜕𝑧1𝜕𝑧2
                 (3.44) 

 𝑅𝑂𝐶: 𝑅̃𝑥 

7. Convolution of Two Sequences. 

𝑍[𝑥(𝑛,𝑚) ∗ 𝑦(𝑛,𝑚)] = 𝑋(𝑧1, 𝑧2) 𝑌(𝑧1, 𝑧2)            (3.45) 

 𝑅𝑂𝐶: at least 𝑅̃𝑥 ∩ 𝑅̃𝑦 

8. Multiplication of Two Sequences 

𝑍[𝑥(𝑛,𝑚))𝑦(𝑛,𝑚)] = (
1

2𝜋𝑗
)
2

∮ ∮ 𝑋(𝑧1, 𝑧2)𝑌 (
𝑧1

𝑣1
,
𝑧2

𝑣2
)
1

𝑣1

1

𝑣2
𝑑𝑣1𝑑𝑣2𝐶1𝐶2

     (3.46) 

9. Separable of  Sequences Property  

If 𝑋1(𝑧1), 𝑋2(𝑧2) are the Z-transform of 𝑥1(𝑛), 𝑥2(𝑚) respectively and 

If 𝑥(𝑛,𝑚) = 𝑥1(𝑛) ∙ 𝑥2(𝑚) then 

𝑋(𝑧1, 𝑧2) = 𝑋1(𝑧1) ∙ 𝑋2(𝑧2)                         (3.47) 

with 𝑅𝑂𝐶: 𝑧1 ∈ 𝑅𝑂𝐶 𝑋1(𝑧1) and 𝑧2 ∈ 𝑅𝑂𝐶 𝑋2(𝑧2) 

Example 3.11: Find the two-dimensional Z-transform of   
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𝑥(𝑛,𝑚) =  
3𝑛−𝑚

𝑛!
𝑢(𝑛,𝑚) 

Solution:  

𝑥(𝑛,𝑚) =  
3𝑛−𝑚

𝑛!
𝑢(𝑛,𝑚) =

3𝑛

𝑛!
𝑢(𝑛) ∙

1

3𝑚
𝑢(𝑚) = 𝑥1(𝑛) ∙ 𝑥2(𝑛) 

 Using separable of  sequences propriety we get, 

𝑋(𝑧1, 𝑧2) = 𝑋1(𝑧1) ∙ 𝑋2(𝑧2)      

           = 𝑒3 𝑧1⁄ ∙
𝑧2

𝑧2 −
1
3

 

 𝑅𝑂𝐶  |𝑧1| > 0, |𝑧2| >
1

3
 

3.4.3: The Inverse of the Two-Dimensional Z-transform  

Definition 3.2:[12] The inverse of the two-dimensional Z-transform 

𝑋(𝑧1, 𝑧2) is 

𝑥(𝑛,𝑚) = (
1

2𝜋𝑗
)
2

 ∮ ∮ 𝑋(𝑧1, 𝑧2) 𝑧1
𝑛−1 𝑧2

𝑚−1
𝑑𝑧1 𝑑𝑧2 

𝐶1𝐶2

     (3.48) 

where C1and 𝐶2 are a counterclockwise closed contours encircling the 

origin and within the 𝑅𝑂𝐶 of 𝑋(𝑧1, 𝑧2). 

Example 3.12: Find the inverse of the two-dimensional Z-transform  

𝑋(𝑧) =
3𝑧1

3𝑧1 − 𝑧2
,   |𝑧1| >

|𝑧2|

3
 

Solution: 

𝑥(𝑛,𝑚) = (
1

2𝜋𝑗
)
2

 ∮ ∮ 𝑋(𝑧1, 𝑧2) 𝑧1
𝑛−1 𝑧2

𝑚−1
𝑑𝑧1 𝑑𝑧2 

𝐶1𝐶2

 

                 = (
1

2𝜋𝑗
)
2

 ∮ ∮
3𝑧1

3𝑧1 − 𝑧2
 𝑧1

𝑛−1 𝑧2
𝑚−1

𝑑𝑧1 𝑑𝑧2 
𝐶1𝐶2

 

where C1and 𝐶2 are a counterclockwise closed contours encircling the 

origin and within the 𝑅𝑂𝐶 of 𝑋(𝑧1, 𝑧2). 
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          =
1

2𝜋𝑗
 ∮  𝑧2

𝑚−1 [
1

2𝜋𝑗
∮

 𝑧1
𝑛

𝑧1 −
𝑧2
3

𝑑𝑧1  
𝐶1

] 𝑑𝑧2
𝐶2

 

By using residue theorem and since |𝑧1| >
|𝑧2|

3
 

1

2𝜋𝑗
∮

 𝑧1
𝑛

𝑧1 −
𝑧2
3

𝑑𝑧1
𝐶1

= 𝑅𝑒𝑠 [
 𝑧1

𝑛

𝑧1 −
𝑧2
3

,
𝑧2
3
 ] = (

𝑧2
3
)
𝑛

𝑢(𝑛) 

So 

𝑥(𝑛,𝑚) =
1

2𝜋𝑗
 ∮  𝑧2

𝑚−1 (
𝑧2
3
)
𝑛

𝑢(𝑛)𝑑𝑧2
𝐶2

 

                 =
1

2𝜋𝑗
 ∮  𝑧2

𝑚+𝑛−1 (
1

3
)
𝑛

𝑢(𝑛)𝑑𝑧2
𝐶2

 

= (
1

3
)
𝑛

𝛿(𝑛 +𝑚)                
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Chapter Four 

Z-transform and Solution of Some Difference Equations 

One of the most important applications of Z-transform is solving some linear 

difference equations. Z-transform is also one of the most effective methods 

for solving Volterra difference equations of convolution type[4]. 

Section 4.1: Linear Difference Equations with Constant Coefficients. 

Definition 4.1: [3] A linear difference equation with constant coefficients 

has the form,                   

𝑦(𝑛 + 𝑘) + 𝑎1𝑦(𝑛 + 𝑘 − 1) + 𝑎2𝑦(𝑛 + 𝑘 − 2) +⋯+ 𝑎𝑘𝑦(𝑛) = 𝑥(𝑛)    (4.1) 

where 𝑎𝑖 's are real or complex constants for all 𝑖 = 1, 2,… , 𝑘. If 𝑥(𝑛) = 0 

then the equation is called homogeneous otherwise its non homogeneous. 

The order of linear difference equation is the difference between the largest 

and smallest indices of the unknown sequence 𝑦(𝑛). 

If the initial values 𝑦(0), 𝑦(1), 𝑦(2), … , 𝑦(𝑘 − 1) are all given, then Eq(4.1) 

is called initial value problem (IVP). 

Theorem 4.1: [7] On the Existence of a Unique Solution 

Consider the general 𝑘th IVP, 

𝑦(𝑛 + 𝑘) = 𝑔(𝑛, 𝑦(𝑛), 𝑦(𝑛 + 1),… , 𝑦(𝑛 + 𝑘 − 1), 𝑘 = 0, 1, 2, …        (4.2) 

where 𝑦(0) = 𝑦0, 𝑦(1) = 𝑦1, 𝑦(2) = 𝑦2, … , 𝑦(𝑘 − 1) = 𝑦𝑘−1, are given 

and the function g is defined for all its arguments 𝑛, 𝑦(𝑛), 𝑦(𝑛 + 1),

𝑦(𝑛 + 2),… , 𝑦(𝑛 + 𝑘 − 1). Then the IVP has a unique solution 
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corresponding to each arbitrary set of the 𝑘 initial values 

𝑦(0), 𝑦(1), 𝑦(2),… , 𝑦(𝑘 − 1).  

Proof: see [7].        

Method of Solution: 

For solving linear difference equation by using Z-transform method we take 

Z-transform of the difference equation which transforms the unknown 

sequence 𝑦(𝑛) into an a algebraic equation on Z-transform 𝑌(𝑧) then we 

obtain the sequence 𝑦(𝑛) from 𝑌(𝑧) by taking the inverse Z-transform of 

𝑌(𝑧).[4] 

In order to solve linear difference equations with constant coefficients with 

non zero initial conditions we use the one sided Z-transform.  

Example 4.1: Use the Z-transform method to solve the linear difference 

equation 

𝑦(𝑛 + 2) = 𝑦(𝑛 + 1) +  𝑦(𝑛)  

where 𝑦(0) = 0 and 𝑦(1) = 1. 

Solution: 

Take the one-sided Z-transform for both sides of  the linear difference 

equation , we get, 

𝑍+[𝑦(𝑛 + 2)] = 𝑍+[𝑦(𝑛 + 1)] + 𝑍+[𝑦(𝑛)] 

𝑧2𝑌+(𝑧) − 𝑧2𝑦(0) − 𝑧 𝑦(1)  = 𝑧𝑌+(𝑧) − 𝑧𝑦(0) + 𝑌+(𝑧) 

𝑌+(𝑧)[𝑧2 − 𝑧 − 1] = 𝑧2𝑦(0) − 𝑧𝑦(0) + 𝑧 𝑦(1)  

Substitute 𝑦(0) = 0 and 𝑦(1) = 1  in the previous equation we get, 

𝑌+(𝑧)[𝑧2 − 𝑧 − 1] = 𝑧  

So, let 
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𝑊(𝑧) =
𝑌+(𝑧)

𝑧
=  

1

𝑧2 − 𝑧 − 1
=

1

[𝑧 − (
1 + √5
2 )] [𝑧 + (

1 − √5
2 )]

 

Using partial fraction method we get, 

𝑊(𝑧) =  
𝐴

𝑧 − (
1 + √5
2 )

+
𝐵

𝑧 + (
1 − √5
2 )

 

                          =
1

√5
 

1

𝑧 − (
1 + √5
2 )

−
1

√5

1

𝑧 + (
1 − √5
2 )

 

So 

𝑌+(𝑧) =
1

√5
 

𝑧

𝑧 − (
1 + √5
2 )

−
1

√5

𝑧

𝑧 + (
1 − √5
2 )

 

Taking the inverse Z-transform we get, 

𝑦(𝑛) =
1

√5
 [(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

] 

Using binomial theorem we get,  

𝑦(𝑛) =
1

2𝑛 √5 
 [∑(

𝑛
𝑟
)

𝑛

𝑟=0

(√5)
𝑟
−∑(

𝑛
𝑟
)

𝑛

𝑟=0

(−√5)
𝑟
] 

      =
2

2𝑛 √5 
 [∑(

𝑛
2𝑟 + 1

)

𝐿

𝑟=0

(√5)
2𝑟+1

] , 𝐿 = ⌊
𝑛 − 1

2
⌋ 

=
1

2𝑛−1 
 [∑(

𝑛
2𝑟 + 1

)

𝐿

𝑟=0

5𝑟] ,   𝑛 > 0                  

Remark: The sequence in our example is called Fibonacci sequence. 

 

Example 4.2: Solve the linear difference equation 

𝑦(𝑛) −
1

3
𝑦(𝑛 − 1) = 𝑢(𝑛), 𝑦(−1) = 2 
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Solution: 

We take the one sided Z-transform of the linear difference equation, to get 

𝑌+(𝑧) −
1

3
[𝑧−1𝑌+(𝑧) + 𝑦(−1)] =

𝑧

𝑧 − 1
 

Substitute 𝑦(−1) = 2 in the previous equation we get, 

𝑌+(𝑧) [1 −
1

3
𝑧−1] −

2

3
=

𝑧

𝑧 − 1
 

By some mathematical operation we obtain, 

𝑌+(𝑧) =
𝑧(5𝑧 − 2)

(3𝑧 − 1)(𝑧 − 1)
 

Then, write as 𝑌+(𝑧)/z as a partial fraction 

𝑌+(𝑧)

𝑧
=

(5𝑧 − 2)

(3𝑧 − 1)(𝑧 − 1)
=

𝐴

3𝑧 − 1
+

𝐵

𝑧 − 1
 

 Using partial fraction method we get,  

𝐴 =
𝑌+(𝑧)

𝑧
(3𝑧 − 1) | .

𝑧 =
1
3

𝑎𝐴 =
1

2
 

𝐵 =
𝑌+(𝑧)

𝑧
(𝑧 − 1)| .𝑧 = 1

𝑎𝐴 =
3

2
 

Then 

𝑌+(𝑧) =
1

2

𝑧

3𝑧 − 1
+
3

2

𝑧

𝑧 − 1
 

          =
1

6

𝑧

𝑧 −
1
3

+
3

2

𝑧

𝑧 − 1
 

Take the inverse Z-transform we obtain 

𝑦(𝑛) = [
1

6
(
1

3
)
𝑛

+
3

2
] 𝑢(𝑛) 

              =
1

2
[(
1

3
)
𝑛+1

+ 3]𝑢(𝑛) 
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Section 4.2: Volterra Difference Equations of Convolution Type. 

In this section we will use Z-transform to solve Volterra difference equations 

of convolution type. 

Definition 4.2: [18] Volterra difference equation of convolution type of the 

first kind is of the form 

𝑥(𝑛) = ∑ 𝐾(𝑛 −𝑚)𝑦(𝑚)

𝑛

𝑚=0

                               (4.3) 

where 𝑛 = 0, 1, 2, … 𝐾(𝑛) and 𝑦(𝑛) are sequences and 𝐾(𝑛) is called the 

kernel. 

For solving Eq(4.3), take the Z-transform for both sides of Eq(4.3) we get, 

𝑋(𝑧) = 𝐾(𝑧)𝑌(𝑧) 

So 

𝑌(𝑧) =
𝑋(𝑧)

𝐾(𝑧)
 

Thus 

𝑦(𝑛) = 𝑍−1 [
𝑋(𝑧)

𝐾(𝑧)
] 

Definition 4.3: [18] Volterra difference equation of convolution type of the 

second kind is of the form 

𝑦(𝑛) = 𝑓(𝑛) + ∑ 𝐾(𝑛 −𝑚)𝑦(𝑚)

𝑛

𝑚=0

                         (4.4) 

where 𝑛 = 0, 1, 2, …. 𝑓(𝑛), 𝐾(𝑛), 𝑦(𝑛) are sequences and 𝐾(𝑛) is called the 

kernel. 

For solving Eq(4.4), take the Z-transform for both sides of Eq(4.4) we get, 
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𝑌(𝑧) = 𝐹(𝑧) + 𝐾(𝑧)𝑌(𝑧) 

So 

𝑌(𝑧) =
𝐹(𝑧)

1 − 𝐾(𝑧)
 

Thus 

𝑦(𝑛) = 𝑍−1 [
𝐹(𝑧)

1 − 𝐾(𝑧)
] 

Example 4.3: Solve Volterra difference equation 

𝑛2 = ∑(𝑛 −𝑚)𝑢(𝑛 −𝑚)𝑦(𝑚)

𝑛

𝑚=0

 

Solution: 

We can write the above equation as: 

𝑛2 = 𝑛𝑢(𝑛) ∗ 𝑦(𝑛)  

Take the Z-transform for both sides we get, 

𝑍[𝑛2] = 𝑍[𝑛𝑢(𝑛) ∗ 𝑦(𝑛) ] 
𝑧(𝑧 + 1)

(𝑧 − 1)3
=

𝑧

(𝑧 − 1)2
𝑌(𝑧)             

Simplify, we get 

𝑌(𝑧) =
𝑧 + 1

𝑧 − 1
  

                        =
𝑧

𝑧 − 1
+

1

𝑧 − 1
 

                                =
𝑧

𝑧 − 1
+ 𝑧−1

𝑧

𝑧 − 1
 

Taking the inverse Z-transform we get 

𝑦(𝑛) = 𝑢(𝑛) + 𝑢(𝑛 − 1) = 2𝑢(𝑛) − 𝛿(𝑛) 
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Chapter Five 

Z-transform and Digital Signal Processing 

In this chapter we study some applications of Z-transform in digital signal 

processing such as analysis of linear shift invariant systems, realization of 

finite-duration impulse response (FIR) and infinite-duration impulse 

response (IIR) systems and design of IIR filters from analog filters.  

Section 5.1: Introduction  

In this section we introduce some necessary definitions and theorems in 

digital signal processing. 

A signal is any physical quantity that varies with time, space or any 

independent variable or variables. Mathematically, we describe a signal as a 

function of one or more independent variables. In this chapter, time will be 

the independent variable whether it's continuous or discrete. If it's continuous 

then the signal is called continuous-time signal and it's represented by a 

function -of continuous variable 𝑓(𝑡). But, if the time is in discrete form the 

signal is called discrete-time signal and is represented by a sequence of 

numbers {𝑎𝑛} where ∈ ℤ [9,14].  

Also, the range of the signal (amplitude) can be continuous or discrete.  

Analog time signals are signals with continuous time and amplitude, where 

digital signals are signals with discrete time and amplitude and they are 

represented by a function of an integer independent variable 𝑛 and its values 

are taken from a finite set [9,14]. 
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Definition 5.1:[14] A system is a physical device that performs an operation 

on a signal. These operations are usually referred to as signal processing. 

Continuous-time systems are systems for which the input and output are 

continuous-time signals, where the discrete-time systems are systems with 

discrete-time input and output signals, and its represented by the notation 𝑇[. ] 

which transforms the input signal 𝑥(𝑛) into the output signal 𝑦(𝑛). We  write 

𝑇[𝑥(𝑛)] = 𝑦(𝑛) 

Note that any sequence 𝑥(𝑛) can be expressed as a sum of scaled and delayed 

unit samples. i.e 

𝑥(𝑛) = ⋯+ 𝑥(−1)𝛿(𝑛 + 1) + 𝑥(0)𝛿(𝑛) + 𝑥(1)𝛿(𝑛 − 1) + ⋯    (5.1)   

Eq(5.1) can be written as 

𝑥(𝑛) = ∑ 𝑥(𝑘)𝛿(𝑛 − 𝑘)

∞

𝑘=−∞

                              (5.2) 

In discrete-time system, the output of 𝑥(𝑛) is 

𝑇[𝑥(𝑛)] = 𝑦(𝑛) = 𝑇 [ ∑ 𝑥(𝑘)𝛿(𝑛 − 𝑘)

∞

𝑘=−∞

]             (5.3) 

Definition 5.2:[6] A system is said to be linear if 

𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = 𝑎𝑇[𝑥1(𝑛)] + 𝑏𝑇[𝑥2(𝑛)] 

for any two inputs 𝑥1(𝑛) and 𝑥2(𝑛) and for any complex constants a and b. 

If the system is linear, then Eq(5.3) become 

𝑦(𝑛) = ∑ 𝑇

∞

𝑘=−∞

[𝑥(𝑘)𝛿(𝑛 − 𝑘)]                             (5.4) 

But 𝑥(𝑘) is constant with respect to 𝑛, so 

𝑦(𝑛) = ∑ 𝑥(𝑘)𝑇[𝛿(𝑛 − 𝑘)]

∞

𝑘=−∞

                               (5.5) 
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Let ℎ𝑘(𝑛) be the response of the system to at unit sample at 𝑛 = 𝑘, then 

Eq(5.5) become 

𝑦(𝑛) = ∑ 𝑥(𝑘) ℎ𝑘(𝑛) 

∞

𝑘=−∞

                           (5.6) 

Definition 5.3:[6] Let 𝑦(𝑛) be the response of a system to an arbitrary input 

𝑥(𝑛). The system is said to be shift-invariant if, for any delay 𝑛0, the response 

to 𝑥(𝑛 − 𝑛0) is 𝑦(𝑛 − 𝑛0). Otherwise, the system is shift-varying. 

Definition 5.4: [6] A system is called a linear shift-invariant (LSI) system if 

it's linear and shift-invariant. 

If we have LSI system  Eq(5.6) become 

𝑦(𝑛) = ∑ 𝑥(𝑘)

∞

𝑘=−∞

ℎ(𝑛 − 𝑘)                                  (5.7) 

= 𝑥(𝑛) ∗ ℎ(𝑛)                                                 (5.8) 

where ℎ(𝑛) is the unit sample response (response of 𝛿(𝑛) ).  

An LSI system are classified as finite-duration impulse response (FIR) and 

infinite-duration impulse response (IIR) according to whether ℎ(𝑛) has finite 

or infinite duration, respectively. 

Definition 5.5: [11]: A system is said to be causal if the output of the system 

at 𝑛𝑜 depends on the input at 𝑛 ≤  𝑛𝑜. 

Theorem 5.1:[14] A LSI system is causal if and only if the unit sample 

response ℎ(𝑛) equals zero for 𝑛 <  0. 

Proof: see [14] 

Definition 5.6:[11] A system is said to be bounded input–bounded output 

(BIBO) stable if the response of any bounded input remains bounded. 
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Theorem 5.2:[9] A LSI system is (BIBO) stable if and only if  the unit 

sample response ℎ(𝑛) is absolutely summable. 

∑ |ℎ(𝑛)| < ∞

∞

𝑛=−∞

 

Proof: see [9] 

Definition 5.7:[6]: A system whose output 𝑦(𝑛) depends on any number of 

past outputs is called recursive. In contrast, if the output of the system 

depends only on the present and past inputs is called non recursive.   

Section 5.2: Analysis of Linear Shift-Invariant (LSI) Systems and Z-

transform. 

If we have an LSI system with input 𝑥(𝑛) and output 𝑦(𝑛), then as in Eq(5.8)  

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) 

where ℎ(𝑛) is the sample response. 

Taking Z-transform for both sides of Eq(5.8) we get, 

𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧)                                                  (5.9) 

where 𝐻(𝑧) is the Z-transform of ℎ(𝑛) and is called the transfer function.  

Theorem 5.3:[9] The LSI system is causal if and only if the 𝑅𝑂𝐶 of transfer 

function is the exterior of a circle centered at the origin. 

Proof: 

The LSI system is causal if and only if the unit sample response is causal if 

 and only if the 𝑅𝑂𝐶 of the Z-transform of the sample response (transfer 

function) is the exterior of a circle centered at the origin. 
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Theorem 5.4:[14] The LSI system is BIBO stable if and only if the 𝑅𝑂𝐶 of 

transfer function contains the unit circle. 

Proof:                                                                                                             a) 

Suppose the LSI system is BIBO stable  

The transfer function of LSI system is 

𝐻(𝑧) = ∑ ℎ(𝑛)

∞

𝑛=−∞

𝑧−𝑛 

Then 

|𝐻(𝑧)| = | ∑ ℎ(𝑛)

∞

𝑛=−∞

𝑧−𝑛| ≤ ∑ |ℎ(𝑛)𝑧−𝑛|

∞

𝑛=−∞

= ∑ |ℎ(𝑛)|

∞

𝑛=−∞

|𝑧−𝑛| 

If |𝑧| = 1, then 

|𝐻(𝑧)| ≤ ∑ |ℎ(𝑛)|

∞

𝑛=−∞

 

But the LSI system is BIBO stable so from Theorem (5.2)  

∑ |ℎ(𝑛)|

∞

𝑛=−∞

< ∞ 

Therefore 

|𝐻(𝑧)| ≤ ∑ |ℎ(𝑛)|

∞

𝑛=−∞

< ∞ 

So ℎ(𝑛)𝑧−𝑛 is summable at each value of 𝑧 of magnitude 1, so                

                                     {|𝑧| = 1} ⊆ 𝑅𝑂𝐶 of 𝐻(𝑧) 

b) Suppose {|𝑧| = 1} ⊆  𝑅𝑂𝐶 of 𝐻(𝑧)  

Since {|𝑧| = 1} ⊆ 𝑅𝑂𝐶, then ℎ(𝑛)𝑧−𝑛 is summable for each value of 𝑧 of  

magnitude 1, which gives 

∑ |ℎ(𝑛)|

∞

𝑛=−∞

< ∞ 
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So, from Theorem (5.3) the system is BIBO stable. 

There are many methods for analyzing  the behavior or response of linear 

systems. One of these methods is to solve the input-output equation of the 

system which is for an LSI system with input 𝑥(𝑛) and output 𝑦(𝑛) is a linear 

difference equation with constant-coefficient of the form 

∑𝑎(𝑘)𝑦(𝑛 − 𝑘)

𝑁

𝑘=0

=∑𝑏(𝑟)𝑥(𝑛 − 𝑟)

𝑀

𝑟=𝑜

                      (5.10) 

where 𝑀,𝑁 are integers and 𝑁 is the order of the difference equation.  

Example 5.1: An LSI system is represented by the linear difference equation  

𝑦(𝑛) − 𝑦(𝑛 − 1) +
1

4
𝑦(𝑛 − 2) = 𝑥(𝑛) −

1

4
𝑥(𝑛 − 1) 

a) Find the unit sample response of the system. 

b) Is the system stable? 

c) Find the response of the input signal 𝑥(𝑛) = (
1

4
)
𝑛
𝑢(𝑛). 

Solution: 

a) We take the Z-transform of the linear difference equation and get 

𝑌(𝑧) − 𝑧−1𝑌(𝑧) +
1

4
𝑧−2𝑌(𝑧) = 𝑋(𝑧) −

1

4
𝑧−1𝑋(𝑧) 

𝑌(𝑧) (1 − 𝑧−1 +
1

4
𝑧−2) = 𝑋(𝑧) (1 −

1

4
𝑧−1) 

So the transfer function is, 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1 −
1
4
𝑧−1

1 − 𝑧−1 +
1
4
𝑧−2

=
𝑧 (𝑧 −

1
4)

𝑧2 − 𝑧 +
1
4

 

∴
𝐻(𝑧)

𝑧
=

𝑧 −
1
4

𝑧2 − 𝑧 +
1
4

=
𝑧 −

1
4

(𝑧 −
1
2)

2 =
𝐴

𝑧 −
1
2

+
𝐵

(𝑧 −
1
2)

2 

𝐴 (𝑧 −
1

2
) + 𝐵 = 𝑧 −

1

4
                                  (5.11) 
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If 𝑧 =
1

2
 then, 𝐵 =

1

4
 

Differentiate both sides of Eq(5.11) with respect to 𝑧 we get 𝐴 = 1, then the 

transfer function can be written as, 

𝐻(𝑧) =
𝑧

𝑧 −
1
2

+
1

4

𝑧

(𝑧 −
1
2)

2 

Since the linear difference equation is causal, the 𝑅𝑂𝐶 of 𝐻(𝑧) is |𝑧| >
1

2
 , so 

the inverse of the transfer function (sample response of the system) is, 

ℎ(𝑛) = (
1

2
)
𝑛

𝑢(𝑛) +
1

2
𝑛 (
1

2
)
𝑛

𝑢(𝑛) 

= [1 +
𝑛

2
] (
1

2
)
𝑛

𝑢(𝑛)       

b) Since the 𝑅𝑂𝐶 of the transfer function contains the unit circle the system 

is stable. 

c) To find the response 𝑦(𝑛) of the input signal 𝑥(𝑛)we first find the Z-

transform of 𝑦(𝑛) 

𝑌(𝑧) =  𝑋(𝑧)𝐻(𝑧) =
𝑧

𝑧 −
1
4

 
𝑧 (𝑧 −

1
4)

𝑧2 − 𝑧 +
1
4

 

                                            =
𝑧2

𝑧2 − 𝑧 +
1
4

=
𝑧2

(𝑧 −
1
2)

2 

                                       =  
𝑧

𝑧 −
1
2

+
1

2

𝑧

(𝑧 −
1
2)

2  

The 𝑅𝑂𝐶 of 𝐻(𝑧) can be either |𝑧| >
1

2
 or |𝑧| <

1

2
 but since the 𝑅𝑂𝐶 of 𝑋(𝑧) 

is |𝑧| >
1

4
 , and by convolution property of Z-transform the 𝑅𝑂𝐶 of  𝑌(𝑧) is 

at least the intersection of 𝑅𝑂𝐶 of  𝑋(𝑧) and 𝑅𝑂𝐶 of  𝐻(𝑧),                        the 

𝑅𝑂𝐶 of 𝐻(𝑧) is |𝑧| >
1

2
 so the response of 𝑦(𝑛) is, 

𝑦(𝑛) = (
1

2
)
𝑛

𝑢(𝑛) + 𝑛 (
1

2
)
𝑛

𝑢(𝑛) 
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= [1 + 𝑛] (
1

2
)
𝑛

𝑢(𝑛).   

Consider Eq(5.10) again with 𝑎(0) = 1 we get, 

𝑦(𝑛) = −∑𝑎(𝑘)𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

+∑𝑏(𝑟)𝑥(𝑛 − 𝑟)

𝑀

𝑟=𝑜

              (5.12) 

To find the transfer function for the LSI system we take Z-transform of both 

sides of Eq(5.12), we get 

𝑌(𝑧) +∑𝑎(𝑘)𝑧−𝑘𝑌(𝑧)

𝑁

𝑘=1

=∑𝑏(𝑟)𝑧−𝑟𝑋(𝑧)

𝑀

𝑟=𝑜

             (5.13) 

So the transfer function is of the form 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑏(𝑟)𝑧−𝑟𝑀
𝑟=𝑜

1 + ∑ 𝑎(𝑘)𝑧−𝑘𝑁
𝑘=1

                  (5.14) 

So, an LSI system represented by a linear difference equation with constant 

coefficient has a rational transfer function as in Eq(5.14). There are many 

cases for the values of 𝑏(𝑟) and 𝑎(𝑘). 

Case 1: 𝑎(𝑘) = 0 for 1 ≤ 𝑘 ≤ 𝑁 then, Eq(5.14) becomes, 

𝐻(𝑧) =∑𝑏(𝑟)𝑧−𝑟
𝑀

𝑟=𝑜

=
1

𝑧𝑀
∑𝑏(𝑟)𝑧𝑀−𝑟
𝑀

𝑟=𝑜

                     (5.15) 

From Eq(5.15) there is a multiple-pole of order 𝑀 at 𝑧 = 0 and 𝑀 zeros for 

𝐻(𝑧). If the transfer function in Eq(5.15) contains 𝑀 nontrivial zeros then 

the system is called all-zero system, and has finite-duration impulse response 

(FIR).  

Case 2: if 𝑏(𝑟) = 0 for 1 ≤ 𝑟 ≤ 𝑀 then, Eq(5.14) become, 

𝐻(𝑧) =
𝑏(0)

1 + ∑ 𝑎(𝑘)𝑧−𝑘𝑁
𝑘=1

                                       (5.16) 

                          =
𝑏(0)𝑧𝑁

∑ 𝑎(𝑘)𝑧𝑁−𝑘𝑁
𝑘=0

,   𝑎(0) = 1                       (5.17) 
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In Eq(5.17) 𝐻(𝑧) has 𝑁 poles and a multiple-zero of order 𝑁 at 𝑧 = 0. If the 

transfer function in Eq(5.17) has 𝑁 nontrivial poles then the system is called 

all-pole system. Due to the presence of poles, the impulse response of such 

systems is infinite in duration, and hence it is an infinite-duration impulse 

response (IIR). But the general case of 𝐻(𝑧) is to have both zeros and poles, 

such system is called a pole-zero system and due to the presence of poles it 

is an IIR system.  

Schür-Cohn Stability Test [14]. 

Schür-Cohn stability test is a test used to determine if the causal linear shift 

invariant system is stable or not depends on the theorem which say a linear 

shift invariant system is causal and stable if and only if all its poles lies inside 

the unit circle. 

Before set Schür-Cohn stability test we need to define some important 

notations.  

We know that the transfer function of LSI system is rational, i.e. 

𝐻(𝑧) =
𝐴(𝑧)

𝐵(𝑧)
 

Where  

𝐵(𝑧) = 1 + 𝑏(1)𝑧−1 + 𝑏(2)𝑧−2 +⋯+ 𝑏(𝑁)𝑧−𝑁 =∑𝑏(𝑘)𝑧−𝑘
𝑁

𝑘=0

 

Let 𝐵𝑚(𝑧) be a polynomial in  𝑧−1 of  degree 𝑚 of the form, 

𝐵𝑚(𝑧) = ∑𝑏𝑚(𝑘)𝑧
−𝑘

𝑚

𝑘=0

, 𝑏𝑚(0) = 1 

where 𝑚 = 0, 1,… ,𝑁 

And 𝐶𝑚(𝑧) is the reverse polynomial in  𝑧−1 of degree 𝑚 defined as, 
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𝐶𝑚(𝑧) = 𝑧
−𝑚𝐵𝑚(𝑧

−1) = 𝑧−𝑚∑𝑏𝑚(𝑘)𝑧
𝑘

𝑚

𝑘=0

 

                                                                      = ∑𝑏𝑚(𝑚 − ℎ)𝑧−ℎ
𝑚

ℎ=0

, ℎ = 𝑚 − 𝑘 

We define the reflection coefficients 𝐾1, 𝐾2, …, 𝐾𝑁 taken from 𝐵𝑚(𝑧). First 

note that  

𝐵(𝑧) = 𝐵𝑁(𝑧) 

Let  

𝐾𝑁 = 𝑏𝑁(𝑁) 

For computing a lower degree of 𝐵𝑚(𝑧), 𝑚 = 𝑁,𝑁 − 1,𝑁 − 2,… , 1 we use 

the recursive equation, 

𝐵𝑚−1(𝑧) =
𝐵𝑚(𝑧) − 𝐾𝑚𝐶𝑚(𝑧)

1 − 𝐾𝑚
2                          (5.18) 

where  𝐾𝑚is defined as, 

𝐾𝑚 = 𝑏𝑚(𝑚) 

From Schür-Cohn stability test the causal LSI system will be stable if and 

only if |𝐾𝑚| < 1, for all 𝑚 = 1, 2,… , 𝑁. 

Example 5.2: A LSI system has the transfer function 

𝐻(𝑧) =
−𝑧

12𝑧2 − 7𝑧 + 3
 

a) Find the difference equation that represented the system. 

b) Is the system stable?  

Solution: 

a) We write 𝐻(𝑧) in term of 𝑧−1 

𝐻(𝑧) =
−𝑧−1

12 − 7𝑧−1 + 3𝑧−2
 

So 
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𝑌(𝑧)

𝑋(𝑧)
=

−𝑧−1

12 − 7𝑧−1 + 3𝑧−2
                               (5.19) 

By cross multiplication of Eq(5.19) we obtain, 

12𝑌(𝑧) − 7𝑧−1𝑌(𝑧) + 3𝑧−2𝑌(𝑧) = −𝑧−1𝑋(𝑧)              (5.20) 

We take the inverse Z-transform for both sides of Eq(5.20) and do some 

operations we get the difference equation which represented the system, 

𝑦(𝑛) =
7

12
𝑦(𝑛 − 1) −

3

12
𝑦(𝑛 − 2) −

1

12
𝑥(𝑛 − 1) 

b) Since the system is causal LSI system we can use Schür-Cohn stability test 

to determine the stability of the system. 

First we write 𝐻(𝑧) as, 

𝐻(𝑧) =
−
1
12
𝑧−1

1 −
7
12
𝑧−1 +

3
12
𝑧−2

 

where 

𝐵2(𝑧) = 1 −
7

12
𝑧−1 +

3

12
𝑧−2 

Hence  

𝐾2 = 𝑏2(2) =
3

12
 

|𝐾2| = |
3

12
| =

3

12
< 1 

Now 

𝐶2(𝑧) = 𝑧
−2𝐵2(𝑧

−1) =
3

12
−
7

12
𝑧−1 + 𝑧−2 

And 

𝐵1(𝑧) =
𝐵2(𝑧) − 𝐾2𝐶2(𝑧)

1 − 𝐾2
2 = 1 −

63

135
𝑧−1 

So  

𝐾1 = 𝑏1(1) =
−63

135
,    

|𝐾1| = |
−36

135
| =

63

135
< 1 



72 

Since |𝐾𝑚| < 1, for 𝑚 = 1, 2, the system is stable. 

Example 5.3: Is the LSI system represented by the following linear 

difference equation stable? 

𝑦(𝑛) = 2.5𝑦(𝑛 − 1) − 𝑦(𝑛 − 2) + 𝑥(𝑛) − 5𝑥(𝑛 − 1) − 6𝑥(𝑛 − 2)    

Solution: 

Since the system is a causal LSI system we can use Schür-Cohn stability test. 

First, we take Z-transform for both sides of the linear difference equation we 

get, 

𝑌(𝑧) = 2.5𝑧−1𝑌(𝑧) − 𝑧−2𝑌(𝑧) + 𝑋(𝑧) − 5𝑧−1𝑋(𝑧) − 6𝑧−2𝑋(𝑧)    

Then, the transfer function is 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=
1 − 5𝑧−1 − 6𝑧−2

1 − 2.5𝑧−1 + 𝑧−2
 

So  

𝐵2(𝑧) = 1 − 2.5𝑧
−1 + 𝑧−2 

From 𝐵2(𝑧) we get 𝐾2 = 1 

Since |𝐾2| = 1 ≮ 1, then by Schür-Cohn stability test the system is unstable. 

Section 5.3: Realization of FIR Systems. 

There are several methods for implementing an FIR system. In this section 

we will present some of these methods like direct-form, cascade-form, and 

lattice realization for an FIR system. 

In general an FIR system is described by the linear difference equation     

𝑦(𝑛) = ∑ 𝑏(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

                                  (5.21) 

or by the transfer function 
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𝐻(𝑧) = ∑ 𝑏(𝑘)𝑧−𝑘
𝑀−1

𝑘=0

                                       (5.22) 

where the unit sample response of FIR system is, 

ℎ(𝑛) = {
𝑏(𝑛),    0 ≤ 𝑛 ≤ 𝑀 − 1   
0   ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

      

1. Direct-Form Realization. 

Direct-form realization is the most common way to implement the FIR 

systems. It follows directly from the non recursive difference equation given 

by Eq(5.21) or equivalently by, 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

                              (5.23) 

 

             

 

2. Cascade-Form Realization. 

Cascade form is alternative to the direct form by factoring the transfer 

function into second-order FIR systems as, 

𝐻(𝑧) = 𝐺∏(1 + 𝑏𝑘(1)𝑧
−1 + 𝑏𝑘(2)𝑧

−2)

𝐾

𝑘=1

                (5.24) 

where 𝐾 is the integer part of (𝑀 + 1) 2⁄  and 𝐺 is called the gain parameter. 

 

Figure (𝟓. 𝟏): Direct-form realization of FIR systems. [14] 
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3. Lattice Realization. 

Let us start by defining a sequence of FIR filters with transfer function 

𝐻𝑚(𝑧) = 𝐴𝑚(𝑧)                                           (5.25) 

where 𝐴𝑚(𝑧) is a polynomial of degree 𝑚 defined by, 

𝐴𝑚(𝑧) = 1 +∑𝑎𝑚(𝑘)𝑧
−𝑘

𝑚

𝑘=1

,   𝑚 ≥ 1                    (5.26) 

and 𝐴0(𝑧) = 1. 

So, the unit sample response ℎ𝑚(𝑘) is 

ℎ𝑚(𝑘) =   { 
1         ,   𝑘 = 0
𝑎𝑚(𝑘),   1 ≤ 𝑘 ≤ 𝑚

 

Lattice realization or FIR lattice filter is a cascade of two-port networks  

each one of them has two inputs 𝑓𝑚−1(𝑛) and 𝑔𝑚−1(𝑛) related to the two 

outputs 𝑓𝑚(𝑛), 𝑔𝑚(𝑛) by the two difference equations give us a relation 

between 𝑚-order direct-form FIR filter and 𝑚-stage lattice filter, 

𝑓𝑚(𝑛) = 𝑓𝑚−1(𝑛) + 𝐾𝑚𝑔𝑚−1(𝑛 − 1),   𝑚 = 1, 2,… ,𝑀 − 1          (5.27) 

𝑔𝑚(𝑛) = 𝐾𝑚𝑓𝑚−1(𝑛) + 𝑔𝑚−1(𝑛 − 1),   𝑚 = 1, 2,… ,𝑀 − 1          (5.28) 

For 𝑚 = 0 

𝑔0(𝑛) = 𝑓0(𝑛) = 𝑥(𝑛) 

Figure (𝟓. 𝟐): Cascade-form realization of FIR systems. 

[14] 
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And the output of (𝑀 − 1)-stage is 

𝑦(𝑛) =  𝑓𝑀−1(𝑛) 

Where 𝐾𝑚 is the reflection coefficient which is the same reflection coefficient 

of Schür-Cohn stability test. 

For each 𝑚 = 0, 1,… ,𝑀 − 1, we will define the transfer function as, 

the transfer function in Eq(5.25), the relation between the input 𝑥(𝑛) and the 

intermediate output 𝑓𝑚(𝑛) is given by,  

𝑓𝑚(𝑛) = ∑𝑎𝑚(𝑘)𝑥(𝑛 − 𝑘)

𝑚

𝑘=0

                     (5.29) 

where 𝑎𝑚(0) = 1. 

By taking the Z-transform of both sides of Eq(5.29) we get, 

𝐹𝑚(𝑧) = 𝐴𝑚(𝑧)𝑋(𝑧)                                   (5.30) 

From Eq(5.27) and Eq(5.28) we can see that for each 𝑚 = 1, 2,… ,𝑀 − 1 the 

coefficients of  𝑔𝑚(𝑛) are the same as those of 𝑓𝑚(𝑛) but in reverse order, i.e 

𝑔𝑚(𝑛) = ∑𝑎𝑚(𝑚 − 𝑘)𝑥(𝑛 − 𝑘)

𝑚

𝑘=0

 

                                           = ∑𝑏𝑚(𝑘)𝑥(𝑛 − 𝑘),

𝑚

𝑘=0

 𝑏𝑚(𝑘) = 𝑎𝑚(𝑚 − 𝑘) 

By taking the Z-transform the previous equation we get, 

𝐺𝑚(𝑧) = 𝐵𝑚(𝑧)𝑋(𝑧) 

where 

𝐵𝑚(𝑧) = ∑𝑏𝑚(𝑘)𝑧
−𝑘

𝑚

𝑘=0

=∑𝑎𝑚(𝑚 − 𝑘)𝑧−𝑘
𝑚

𝑘=0

        

                                                     =∑𝑎𝑚(𝑙)𝑧
𝑙−𝑚

𝑚

𝑙=0

, 𝑙 = 𝑚 − 𝑘  
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                                                                    = ∑𝑎𝑚(𝑙)𝑧
𝑙−𝑚

𝑚

𝑘=0

= 𝑧−𝑚∑𝑎𝑚(𝑙)𝑧
𝑙

𝑚

𝑘=0

 

= 𝑧−𝑚𝐴𝑚(𝑧
−1)                            (5.31) 

So 

𝐺𝑚(𝑧) = 𝑧
−𝑚𝐴𝑚(𝑧

−1)𝑋(𝑧)                   (5.31) 

Taking the Z-transform for both sides of Eq(5.27) and Eq(5.28) and divide 

them with 𝑋(𝑧) then solve the result equations with Eq(5.30) and Eq(5.31) 

to get the recurrence relation 

𝐴𝑚(𝑧) = 𝐴𝑚−1(𝑧) + 𝐾𝑚𝑧
−𝑚𝐴𝑚−1(𝑧

−1),    𝑚 = 1,2,… ,𝑀 − 1     (5.32) 

and 𝐴0(𝑧) = 1. 

This recurrence relation called step-up recurrence and it used to converse the 

lattice reflection coefficient to direct-form filter coefficient. 
 

                                 

 

Example 5.4: Given a three-stage FIR lattice filter with reflection 

coefficients 𝐾1 =
1

2
, 𝐾2 =

−1

3
, 𝐾3 =

1

4
, determine the FIR filter coefficients for 

the direct-form structure.  

Solution: 

Figure (5.3):An (𝑀 − 1)-stage lattice filter with typical stage 

[14]. 
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First, 

𝐴0(𝑧) = 𝐴0(𝑧
−1) = 1 

From the step-up recurrence in Eq(5.32) with 𝑚 = 1 we get the single-stage 

lattice 

𝐴1(𝑧) = 𝐴0(𝑧) + 𝐾1𝑧
−1𝐴0(𝑧

−1) 

 = 1 +
1

2
𝑧−1                

So, the coefficients of an FIR filter corresponding to single-stage lattice are    

𝑎1(0) = 1, 𝑎1(1) =
1

2
. 

Next, for 𝑚 = 2 we get the second-stage of lattice filter, 

𝐴2(𝑧) = 𝐴1(𝑧) + 𝐾2𝑧
−2𝐴1(𝑧

−1) 

                            = 1 +
1

2
𝑧−1 +

−1

3
 𝑧−2 (1 +

1

2
𝑧)       

= 1 +
1

3
𝑧−1 −

1

3
𝑧−2  

Hence, the coefficients of an FIR filter corresponding to second-stage lattice 

are 𝑎2(0) = 1, 𝑎2(1) =
1

3
. 𝑎2(2) =

−1

3
. 

Finally, for 𝑚 = 3 we get the result of  the third-stage of lattice filter, 

𝐴3(𝑧) = 𝐴2(𝑧) + 𝐾3𝑧
−3𝐴2(𝑧

−1)     

                                                 = 1 +
1

3
𝑧−1 −

1

3
𝑧−2 +

1

4
 𝑧−3 (1 +

1

3
𝑧 −

1

3
𝑧2 ) 

              = 1 +
1

4
𝑧−1 −

1

4
𝑧−2 +

1

4
𝑧−3 

Hence, direct-form of an FIR filter is characterized the coefficients, 

𝑎3(0) = 1, 𝑎3(1) =
1

4
, 𝑎3(2) =

−1

4
, 𝑎3(3) =

1

4
. 

To find the lattice reflection coefficients from direct-form FIR filter 

coefficients we use the step-down recurrence relation determined from step-

up recurrence in Eq(5.32), 
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𝐴𝑚(𝑧) = 𝐴𝑚−1(𝑧) + 𝐾𝑚𝑧
−𝑚𝐴𝑚−1(𝑧

−1),    𝑚 = 1,2,… ,𝑀 − 1      

If we substitute 𝑧−1 instead of  𝑧 in Eq(5.32)  we get, 

𝐴𝑚(𝑧
−1) = 𝐴𝑚−1(𝑧

−1) + 𝐾𝑚𝑧
𝑚𝐴𝑚−1(𝑧),    𝑚 = 1,2,… ,𝑀 − 1     (5.33) 

If we solve Eq(5.33) for 𝐴𝑚−1(𝑧
−1) we obtain, 

𝐴𝑚−1(𝑧
−1) = 𝐴𝑚(𝑧

−1) − 𝐾𝑚𝑧
𝑚𝐴𝑚−1(𝑧),    𝑚 = 1,2,… ,𝑀 − 1     (5.34) 

Substitute Eq(5.34) in Eq(5.32), 

𝐴𝑚(𝑧) = 𝐴𝑚−1(𝑧) + 𝐾𝑚𝑧
−𝑚(𝐴𝑚(𝑧

−1) − 𝐾𝑚𝑧
𝑚𝐴𝑚−1(𝑧))                 

 𝑚 = 1,2,… ,𝑀 − 1         (5.35) 

If we solve Eq(5.35) for 𝐴𝑚−1(𝑧) we get, 

𝐴𝑚−1(𝑧) =
1

1 − 𝐾𝑚
2 (𝐴𝑚(𝑧) − 𝐾𝑚𝑧

−𝑚𝐴𝑚(𝑧
−1))                (5.36)  

where 𝑚 = 𝑀 − 1,𝑀 − 2,… , 1 

Observe that the step-down recurrence works if |𝐾𝑚| ≠ 1,                     𝑚 =

1,2,… ,𝑀 − 1  

Example 5.5: Determine the lattice coefficients corresponding to the third-

order FIR filter with transfer function. 

𝐻(𝑧) = 𝐴3(𝑧) = 1 +
1

4
𝑧−1 −

1

4
𝑧−2 +

1

4
𝑧−3            

Solution: 

𝐾3 = 𝑎3(3) =
1

4
 

From the step-down relation Eq(5.36) with 𝑚 = 3 we get, 

𝐴2(𝑧) =
1

1 − 𝐾3
2 (𝐴3(𝑧) − 𝐾3𝑧

−3𝐴3(𝑧
−1))  

     =
1

1 − (
1
4)

2 [1 +
1

4
(𝑧−1 − 𝑧−2 + 𝑧−3) −

1

4
𝑧−3 (1 +

1

4
(𝑧 − 𝑧2 + 𝑧3 ))] 

=
16

15
(
15

16
+
5

16
𝑧−1 −

5

16
𝑧−2)                                                                 
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= 1 +
1

3
𝑧−1 −

1

3
𝑧−2                                                                                 

So, 

𝐾2 = 𝑎2(2) =
−1

3
 

Now, by repeating the step-down relation in Eq(5.36) with 𝑚 = 1 we get, 

𝐴1(𝑧) =
1

1 − 𝐾2
2 (𝐴2(𝑧) − 𝐾2𝑧

−2𝐴2(𝑧
−1))                                      

                      =
1

1 − (
−1
3 )

2 [1 +
1

3
𝑧−1 −

1

3
𝑧−2 −

−1

3
𝑧−2 (1 +

1

3
𝑧 −

1

3
𝑧2 )] 

   =
9

8
(
8

9
+
4

9
𝑧−1)                                                          

= 1 +
1

2
𝑧−1                                                                

Hence, 

𝐾1 = 𝑎1(1) =
1

2
 

Section 5.4: Realization of IIR Systems. 

As in FIR systems, IIR systems have many types of realization, including 

direct form, cascade form, parallel form and lattice form. 

IIR systems are described by the difference equation in Eq(5.12) or by the 

transfer function in Eq(5.14) for 𝑁 ≠ 0. 

1. Direct-Form Realization. 

In direct-form realization of IIR systems the transfer function in Eq(5.14) can 

be written as a cascade of two transfer functions, as 

𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧)                                       (5.37) 

where 

𝐻1(𝑧) =∑𝑏(𝑟)𝑧−𝑟
𝑀

𝑟=𝑜

                                           (5.38) 
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and 

𝐻2(𝑧) =
1

1 + ∑ 𝑎(𝑘)𝑧−𝑘𝑁
𝑘=1

                               (5.39) 

𝐻1(𝑧) consists of the zeros of 𝐻(𝑧) where 𝐻2(𝑧) consists of the poles of 

𝐻(𝑧). There are two direct forms to realize IIR systems depending whether 

𝐻1(𝑧) precedes 𝐻2(𝑧) or vice versa. If all-zero filter 𝐻1(𝑧) placed before all-

pole filter 𝐻2(𝑧), then we get direct-form Ι realization which need 𝑀 +𝑁 +

1 multiplications, 𝑀 +𝑁 additions and 𝑀 +𝑁 delays and is depicted in 

Fig(5.4). But if the first filter is 𝐻2(𝑧), then we obtain direct-form ΙΙ and the 

system becomes a cascade of the recursive system 

𝑤(𝑛) = −∑𝑎(𝑘)𝑤(𝑛 − 𝑘)

𝑁

𝑘=1

+ 𝑥(𝑛)                     (5.40) 

with input 𝑥(𝑛) and output 𝑤(𝑛), followed by the non recursive system  

𝑦(𝑛) = −∑𝑏(𝑘)𝑤(𝑛 − 𝑘)

𝑀

𝑘=1

                            (5.41) 

which has 𝑤(𝑛) as input and 𝑦(𝑛) output. 

Direct-form ΙΙ require 𝑀 +𝑁 + 1 multiplications, 𝑀 +𝑁 additions but 

𝑚𝑎𝑥{𝑀,𝑁} delays and its depicted in Fig(5.5). Since 𝐻2(𝑧) need less 

number of delays to realize 𝐻(𝑧) it's called canonic. 
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Figure (𝟓. 𝟒): Direct-form Ι realization of IIR systems  [14]. 

Figure (𝟓. 𝟓): Direct-form ΙΙ realization of IIR systems for 𝑀 = 𝑁 

[14]. 



82 

2. Cascade-Form Realization. 

Cascade-form realization is derived by factoring the transfer function in 

Eq(5.14) into a cascade of second-order sections. We start by considering 

𝑁 ≥ 𝑀 then 𝐻(𝑧) factored as 

𝐻(𝑧) = 𝐺∏𝐻𝑘(𝑧)

𝐾

𝑘=1

                                 (5.42) 

where is 𝐾 the integer part of (𝑁 + 1) 2⁄  and 𝐻𝑘(𝑧) has the general form 

𝐻𝑘(𝑧) =
1 + 𝑏𝑘(1)𝑧

−1 + 𝑏𝑘(2)𝑧
−2

1 + 𝑎𝑘(1)𝑧
−1 + 𝑎𝑘(2)𝑧

−2
                     (5.43) 

Where 𝐺 is the gain parameter and equal 𝑏(0), the coefficients 𝑎𝑘(𝑖), 𝑏𝑘(𝑖) 

are real coefficients for 𝑖 = 1,2 and 𝑘 =  1 , … , 𝐾.The chosen of the 

numerator and denominator of 𝐻𝑘(𝑧) are arbitrary. If 𝑁 < 𝑀, then some 

coefficients of the denominator of the second-order sections will equal zero. 

 

 

 

 

3. Parallel-Form Realization. 

Parallel-form realization can be obtained by expanding the transfer function 

𝐻(𝑧) in Eq(5.14) using partial fraction method. Without loss of generality, 

we assume that the poles of 𝐻(𝑧) are distinct. If 𝑁 > 𝑀, then 𝐻(𝑧) expressed 

as 

𝐻(𝑧) = ∑
𝐴𝑘

1 − 𝑝𝑘𝑧
−1

𝑁

𝑘=1

                                  (5.44) 

Figure (𝟓. 𝟔): Cascade-form realization of IIR system 
[14]. 
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where 𝐴𝑘 's are the coefficients of 𝐻(𝑧) and 𝑝𝑘 's are the poles. 

In general, the poles of 𝐻(𝑧) are complex so there corresponding coefficients 

are complex. To avoid multiplication of complex numbers we combine the 

complex-conjugate poles to have second-order section 𝐻𝑘(𝑧) of the form 

𝐻𝑘(𝑧) =
𝑏𝑘(0) + 𝑏𝑘(1)𝑧

−1

1 + 𝑎𝑘(1)𝑧
−1 + 𝑎𝑘(2)𝑧

−2
                         (5.45) 

where the coefficients  are real, then 𝐻(𝑧) become 

𝐻(𝑧) = ∑𝐻𝑘(𝑧)

𝐾

𝑘=1

                                      (5.46) 

where 𝐾 is the integer part of (𝑁 + 1) 2⁄ . 

If 𝑁 ≤ 𝑀, then the partial fraction expansion will contain a term of the form 

𝐶 = 𝑐0 + 𝑐1𝑧
−1 +⋯+ 𝑐𝑀−𝑁𝑧

−(𝑀−𝑁) 

which is FIR filter placed in parallel with the other terms of expansion of 

𝐻(𝑧). 

 

 

Example 5.6: Determine the transfer function for cascade and parallel 

realizations for the system described by the transfer function 

Figure (𝟓. 𝟕): Parallel -form realization of IIR systems. [14] 
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𝐻(𝑧) =
(1 −

1
2
𝑧−1) (1 +

3
4
𝑧−1)

(1 − (
1
2
+
1
2
𝑗) 𝑧−1) (1 − (

1
2
−
1
2
𝑗) 𝑧−1) (1 −

1
4
𝑧−1)

 

 

Solution: 

Since 𝑁 = 3 > 𝑀 = 2 then 𝐾 = integer part of  (3 + 1) 2⁄ = 2 

For cascade realization, 

𝐻(𝑧) =∏𝐻𝑘(𝑧)

2

𝑘=1

      

A possible paring for poles and zeros is 

𝐻1(𝑧) =
1 −

1
2
𝑧−1

(1 − (
1
2
+
1
2
𝑗) 𝑧−1) (1 − (

1
2
−
1
2
𝑗) 𝑧−1)

 

=
1 −

1
2
𝑧−1

1 − 𝑧−1 +
1
2
𝑧−2

                                  

𝐻2(𝑧) =
1 +

3
4
𝑧−1

1 −
1
4
𝑧−1

                                                           

So 

𝐻(𝑧) =
1 +

3
4
𝑧−1

1 −
1
4
𝑧−1

 
1 −

1
2
𝑧−1

1 − 𝑧−1 +
1
2
𝑧−2

 

For parallel-form realization we need to expand 𝐻(𝑧) using partial fraction 

method, 

𝐻(𝑧) = ∑
𝐴𝑘

1 − 𝑝𝑘𝑧
−1

3

𝑘=1

                                            

                                    =
𝐴1

1 −
1
4
𝑧−1

+
𝐴2

1 − (
1
2
+
1
2
𝑗) 𝑧−1

+
𝐴3

1 − (
1
2
−
1
2
𝑗) 𝑧−1

 

Where the coefficients 𝐴1, 𝐴2, 𝐴3  are 
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𝐴1 = 𝐻(𝑧) (1 −
1

4
𝑧−1) | .

𝑧−1 = 4
𝑎𝐴 =

−4

5
     

𝐴2 = 𝐻(𝑧) [1 − (
1

2
+
1

2
𝑗) 𝑧−1] | .

𝑧−1 = 1 − 𝑗
𝑎𝐴 =

9 − 8𝑗

10
    

𝐴3 = 𝐻(𝑧) [1 − (
1

2
−
1

2
𝑗) 𝑧−1] | .

𝑧−1 = 1 + 𝑗
𝑎𝐴 =

9 + 8𝑗

10
 

So, the transfer function become 

𝐻(𝑧) =
−4

5

1

1 −
1
4
𝑧−1

+
1

10

9 − 8𝑗

1 − (
1
2
+
1
2
𝑗) 𝑧−1

+
1

10

9 + 8𝑗

1 − (
1
2
−
1
2
𝑗) 𝑧−1

 

or 

𝐻(𝑧) =
−4

5

1

1 −
1
4
𝑧−1

+
1

10

18 − 𝑧−1

1 − 𝑧−1 +
1
2
𝑧−2

 

4. Lattice-Form Realization. 

In this section we will develop a lattice filter structure equivalent to IIR 

systems, and our notations is the same as in the Lattice realization of FIR 

filters. 

Let us start with all pole system which has the transfer function 

𝐻(𝑧) =
1

1 + ∑ 𝑎𝑁(𝑘)𝑧
−𝑘𝑁

𝑘=1

=
1

𝐴𝑁(𝑧)
                       (5.47) 

The direct form realization of the previous system represented by the 

difference equation 

𝑦(𝑛) = −∑𝑎𝑁(𝑘)𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

+ 𝑥(𝑛)              (5.48) 

If we interchange the input signal 𝑥(𝑛) with the output signal 𝑦(𝑛) and the 

output 𝑦(𝑛) with the input 𝑥(𝑛) we get   

𝑥(𝑛) = −∑𝑎𝑁(𝑘)𝑥(𝑛 − 𝑘)

𝑁

𝑘=1

+ 𝑦(𝑛)                 (5.49) 

Which can be written as 
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𝑦(𝑛) = 𝑥(𝑛) +∑𝑎𝑁(𝑘)𝑥(𝑛 − 𝑘)

𝑁

𝑘=1

                 (5.50) 

Which is the linear difference equation describe an FIR system having the 

transfer function 𝐻(𝑧) = 𝐴𝑁(𝑧). 

So, we can obtain the IIR lattice filter from an FIR by interchanging the input 

and the output. Therefore, the definition of IIR lattice filter is the opposite of  

FIR lattice filter. 

By solving Eq(5.27) for 𝑓𝑚−1(𝑛) and let Eq(5.28) stay the same for 𝑔𝑚(𝑛) 

we get the following rules for IIR lattice filter 

𝑓𝑚−1(𝑛) = 𝑓𝑚(𝑛) − 𝐾𝑚𝑔𝑚−1(𝑛 − 1),   𝑚 = 𝑁,𝑁 − 1,… , 1          (5.51) 

𝑔𝑚(𝑛) = 𝐾𝑚𝑓𝑚−1(𝑛) + 𝑔𝑚−1(𝑛 − 1),   𝑚 = 𝑁,𝑁 − 1,… , 1         (5.52) 

with 

𝑔0(𝑛) = 𝑓0(𝑛) = 𝑦(𝑛)  

𝑓𝑁(𝑛) = 𝑥(𝑛) 

In general, the transfer function for all-pole IIR system is 

𝐻𝑎(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=
𝐹0(𝑧)

𝐹𝑚(𝑧)
=

1

𝐴𝑚(𝑧)
                   (5.53) 

And for all-zero FIR system is 

𝐻𝑏(𝑧) =
𝐺𝑚(𝑧)

𝑌(𝑧)
=
𝐺𝑚(𝑧)

𝐺0(𝑧)
=   𝑧−𝑚𝐴𝑚(𝑧

−1)              (5.54) 

So, for the IIR system contains both poles and zeros has the transfer function 

𝐻(𝑧) =
∑ 𝑐𝑀(𝑘)𝑧

−𝑘𝑀
𝑘=1

1 + ∑ 𝑎𝑁(𝑘)𝑧
−𝑘𝑁

𝑘=1

=
𝐶𝑀(𝑧)

𝐴𝑁(𝑧)
                   (5.55) 

Without loss of generality, if 𝑀 ≤ 𝑁, then 𝐻(𝑧) consists of two components 

the first is an all-pole lattice with parameters 𝐾𝑚, 1 ≤ 𝑚 ≤ 𝑁, and the other 

is a tapped delay line with coefficients 𝑐𝑀(𝑘).  

If 𝑀 = 𝑁 then 



87 

𝐶𝑚(𝑧) = 𝐶𝑚−1(𝑧) + 𝑐𝑚(𝑚)𝑧
−𝑚𝐴𝑚(𝑧

−1),𝑚 = 1,2,… ,𝑀            (5.56) 

 

 

Section 5.5: Design of IIR Filters From Analog Filters. 

Before talking about designing IIR filter from analog filter we need to sample 

the analog signal 𝑥𝑎(𝑡) by using uniform sample described by the relation 

𝑥(𝑛) = 𝑥𝑎(𝑛𝑇)                                           (5.57) 

where 𝑇 is the sample period and 𝑥(𝑛) is the discrete signal obtained by  

sampling the analog signal 𝑥𝑎(𝑡). 

Note: The subscript 𝑎 will denote analog signal.  

An analog filter may be described by the transfer function 

𝐻𝑎(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
=
∑ 𝑏(𝑘)𝑠𝑘𝑀
𝑘=0

∑ 𝑎(𝑘)𝑠𝑘𝑁
𝑘=0

                           (5.58) 

where 𝑏(𝑘)'s, 𝑎(𝑘)'s are the filter coefficients.  

Or by its impulse response related to 𝐻𝑎(𝑠) by Laplace transform  

𝐻𝑎(𝑠) = ∫ ℎ(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

−∞

                                    (5.59) 

Figure (𝟓. 𝟖): Lattice-form realization of IIR systems 

[14]. 
 

𝑐1(1) 

 
𝑐𝑁−1(𝑁 − 1) 𝑐𝑁(𝑁) 

 

𝑐0(0) 

 
𝑐2(2) 
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Also, such filters can be described by the differential equation 

∑𝑎(𝑘)
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘

𝑁

𝑘=0

=∑𝑏(𝑘)

𝑀

𝑘=0

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
                   (5.60) 

where 𝑥(𝑡) is the input signal and 𝑦(𝑡) is the output signal. 

If all poles of the transfer function are in the left half of s-plane then the 

system is stable. For effective conversion from analog  signal to digital signal 

the mapping which we use should map the points on the 𝑗Ω-axis in the s-plane 

into the unit circle in the z-plane and the points in the right half of the s-plane 

into outside the unit circle in the z-plane where the points in the left half 

mapped inside the unit circle. 

In this section we will design IIR filter from analog filter by using two 

methods impulse invariant and bilinear transform. 

1. Impulse Invariant Method. 

In impulse invariant method the digital IIR filter is designed by sampling the 

impulse response of the analog filter.  

ℎ(𝑛) = ℎ𝑎(𝑛𝑇)                                         (5.61) 

where T is the sampling interval. 

From sampling theorem, if we have a continuous time signal 𝑥𝑎(𝑡) with 

spectrum 𝑋𝑎(𝐹) sampled at a rate 𝐹𝑠 = 1 𝑇⁄  sample per second, the spectrum 

of the sampled signal 𝑋(𝑓) is the periodic repetition of the scaled spectrum 

𝐹𝑠𝑋𝑎(𝐹) with period 𝐹𝑠. Specially the relation is 

𝑋(𝑓) = 𝐹𝑠 ∑ 𝑋𝑎[(𝑓 − 𝑘)𝐹𝑠]

∞

𝑘=−∞

                        (5.62) 

where 𝑓 = 𝐹 𝐹𝑠⁄ is the normalized frequency. 
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If we apply Eq(5.62) for impulse response of an analog filter with frequency 

response 𝐻𝑎(𝐹), then the unit sample response ℎ(𝑛) = ℎ𝑎(𝑛𝑇) for digital 

filter has the frequency response. 

𝐻(𝑓) = 𝐹𝑠 ∑ 𝐻𝑎[(𝑓 − 𝑘)𝐹𝑠]

∞

𝑘=−∞

                        (5.63) 

or, equivalent to 

𝐻(𝜔) = 𝐹𝑠 ∑ 𝐻𝑎[(𝜔 − 2𝜋𝑘)𝐹𝑠]

∞

𝑘=−∞

                        (5.64) 

or 

𝐻(Ω𝑇) =
1

𝑇
∑ 𝐻𝑎 (Ω −

2𝜋𝑘

𝑇
)

∞

𝑘=−∞

                          (5.65) 

To obtain the mapping between the z-plane and the s-plane implied by 

sampling process, with a generalization of Eq(5.65) which relates the Z-

transform of ℎ(𝑛) to Laplace transform of ℎ𝑎(𝑛𝑇) by the relation  

𝐻(z) | .
𝑧 = 𝑒𝑠𝑇

𝑎𝐴 =
1

𝑇
∑ 𝐻𝑎 (s − 𝑗

2𝜋𝑘

𝑇
)

∞

𝑘=−∞

                          (5.66) 

where 

𝐻(z) = ∑ℎ(𝑛)𝑧−𝑛
∞

𝑛=0

 

So 

𝐻(z) | .
𝑧 = 𝑒𝑠𝑇

𝑎𝐴 =∑ℎ(𝑛)𝑒−𝑠𝑇
∞

𝑛=0

                    (5.67) 

The general characteristic of our mapping is 

𝑧 = 𝑒𝑠𝑇                                                    (5.68) 

where 

𝑠 = 𝜎 + Ω𝑗                                                 (5.69) 
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Substitute Eq(5.69) in Eq(5.68), then express the result equation in polar 

form we get 

𝑟𝑒𝑗𝜔 = 𝑒𝜎𝑇𝑒ΩT𝑗 

 

Clearly 

𝑟 = 𝑒𝜎𝑇   

𝜔 = ΩT 

To see how poles and zeros of the analog filter mapped using impulse 

invariant method we express the transfer function of the analog filter in partial 

fraction form. With assumption that the poles of the transfer function of the 

analog filter are distinct we get 

𝐻𝑎(𝑠) = ∑
𝑐𝑘

𝑠 − 𝑝𝑘   

𝑁

𝑘=1

                                  (5.70) 

where 𝑁 is a positive integer, 𝑝𝑘 , 𝑘 = 1, 2,… ,𝑁 are the poles of the transfer 

function of the analog filter and 𝑐𝑘, 𝑘 = 1, 2,… , 𝑁 are the coefficients of the 

partial fraction expansion. So, the unit sample response is 

ℎ𝑎(𝑡) = ∑𝑐𝑘𝑒
𝑝𝑘t

𝑁

𝑘=1

, 𝑡 ≥ 0                           (5.71)  

If we sampled ℎ𝑎(𝑡) periodically at 𝑡 = 𝑛𝑇 we have 

ℎ(𝑛) = ℎ𝑎(𝑛𝑇) = ∑𝑐𝑘𝑒
𝑝𝑘Tn

𝑁

𝑘=1

                    (5.72)  

Now, substitute the unit sample response in Eq(5.72) in the transfer function 

of digital IIR filter we get 

𝐻(z) = ∑ℎ(𝑛)𝑧−𝑛
∞

𝑛=0
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                              = ∑(∑𝑐𝑘𝑒
𝑝𝑘Tn

𝑁

𝑘=1

)

∞

𝑛=0

𝑧−𝑛 

=∑𝑐𝑘∑[𝑒𝑝𝑘T𝑧−1]𝑛
∞

𝑛=0

𝑁

𝑘=1

                     (5.73) 

  The inner summation of Eq(5.73) is converges because 𝑝𝑘 < 0, so 

𝐻(z) = ∑𝑐𝑘
1

1 − 𝑒𝑝𝑘T𝑧−1

𝑁

𝑘=1

                       (5.74) 

Therefore, the transfer function of the digital IIR filter has poles at 

𝑧 = 𝑒𝑝𝑘T, 𝑘 = 1, 2,… ,𝑁                           (5.75) 

If some poles are complex we can combined them to form two-pole filter 

section. 

The impulse invariant method is appropriate only for low pass filters and    a 

limited class of band pass filters.  

Example 5.7: Convert the analog filter with transfer function 

𝐻𝑎(𝑠) =
𝑠 + 1

(𝑠 + 1)2 + 9
 

into a digital IIR filter by impulse invariant method. 

 

Solution: 

𝐻𝑎(𝑠) has two poles at 𝑝 = −1 + 3𝑗,−1 − 3𝑗, so the transfer function can 

be written as 

𝐻𝑎(𝑠) =
𝑠 + 1

[𝑠 − (−1 + 3𝑗)][𝑠 − (−1 − 3𝑗)]
 

By partial fraction expansion 

𝐻𝑎(𝑠) =
1

2

1

[𝑠 − (−1 + 3𝑗)]
+
1

2

1

[𝑠 − (−1 − 3𝑗)]
 

Then 
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          𝐻(𝑧) =
1

2

1

[1 − 𝑒(−1+3𝑗)𝑇𝑧−1]
+
1

2

1

[1 − 𝑒(−1−3𝑗)𝑇𝑧−1]
 

 =
1 − 𝑒−𝑇 cos 3𝑇 𝑧−1

1 − 2𝑒−𝑇 cos 3𝑇 𝑧−1 + 𝑒−2𝑇𝑧−2 
  

 

2. Bilinear Transformation Method. 

The bilinear transform overcome the limitations of impulse invariant. The 

bilinear transformation transform the 𝑗Ω-axis in the s-plane into the unit circle 

in the z-plane only once. The bilinear transformation linked to the trapezoidal 

formula for numerical integration. For example, consider an analog filter has 

the transfer function. 

𝐻(𝑠) =
𝑏

𝑠 + 𝑎
                                          (5.76) 

The transfer function in Eq(5.76) can be represented by the differential 

equation 
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦(𝑡) = 𝑏𝑥(𝑡)                                 (5.77) 

Integrate the derivative in Eq(5.77)  

𝑦(𝑡) = ∫𝑦′(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑦(𝑡0)                         (5.78) 

where 𝑦′(𝑡) is the derivative of y(t). 

By using the trapezoidal formula at 𝑡 = 𝑛𝑇 and 𝑡0 = 𝑛𝑇 − 𝑇 to approximate 

the integral in Eq(5.78), we get 

𝑦(𝑛𝑇) =
𝑇

2
[𝑦′(𝑛𝑇) + 𝑦′(𝑛𝑇 − 𝑇)] + 𝑦(𝑛𝑇 − 𝑇)           (5.79) 

The derivatives of 𝑦(𝑡) at 𝑡 = 𝑛𝑇 and 𝑡 = 𝑛𝑇 − 𝑇  according to Eq(5.77) are 

𝑦′(𝑛𝑇) = −𝑎𝑦(𝑛𝑇) + 𝑏𝑥(𝑛𝑇)                                 (5.80) 

𝑦′(𝑛𝑇 − 𝑇) = −𝑎𝑦(𝑛𝑇 − 𝑇) + 𝑏𝑥(𝑛𝑇 − 𝑇)               (5.81) 
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Substitute Eq(5.80) and Eq(5.81) in Eq(5.79), we obtain the linear 

difference equation. With 𝑦(𝑛) = 𝑦(𝑛𝑇) and 𝑥(𝑛) = 𝑥(𝑛𝑇) we get 

(1 +
𝑎𝑇

2
)𝑦(𝑛) − (1 −

𝑎𝑇

2
)𝑦(𝑛 − 1) =

𝑏𝑇

2
[𝑥(𝑛) + 𝑥(𝑛 − 1)]     (5.82) 

Take the Z-transform of the difference equation in Eq(5.82), we get 

(1 +
𝑎𝑇

2
)𝑌(𝑧) − (1 −

𝑎𝑇

2
) 𝑧−1𝑌(𝑧) =

𝑏𝑇

2
(1 + 𝑧−1)𝑋(𝑧)     (5.83) 

So, the transfer function is 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

(𝑏𝑇 ⁄ 2)(1 + 𝑧−1)

1 + 𝑎𝑇 2⁄ − (1 −
𝑎𝑇
2 )

𝑧−1
           (5.84) 

or, equivalent to  

𝐻(𝑧) =
𝑏

2
𝑇 (
1 − 𝑧−1

1 + 𝑧−1
) + 𝑎

                         (5.85) 

Therefore, the mapping from the s-plane to the z-plane is 

𝑠 =
2

𝑇
(
1 − 𝑧−1

1 + 𝑧−1
)                                    (5.86) 

 Which called the bilinear transformation. 

Our previous work was for first-order differential equation. In general for 𝑁th 

order differential equation let. 

𝑧 = 𝑟𝑒𝑗𝜔  

𝑠 = 𝜎 + Ω𝑗 

Then Eq(5.86) can be expressed as 

𝑠 =
2

𝑇

𝑧 − 1

𝑧 + 1
                                                      

=
2

𝑇

𝑟𝑒𝑗𝜔 − 1

𝑟𝑒𝑗𝜔 + 1
                                              

        =
2

𝑇
[

𝑟2 − 1

1 + 𝑟2 + 2𝑟 cos𝜔
+ 𝑗

2𝑟 sin𝜔

1 + 𝑟2 + 2𝑟 cos𝜔
]    (5.87) 
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So 

𝜎 =
2

𝑇

𝑟2 − 1

1 + 𝑟2 + 2𝑟 cos𝜔
                                 (5.88) 

Ω =
2

𝑇

2𝑟 sin𝜔

1 + 𝑟2 + 2𝑟 cos𝜔
                                  (5.89) 

 

Note, if 𝑟 < 1, then 𝜎 < 0 and if 𝑟 > 1, then 𝜎 > 0. But, if 𝑟 = 1 then 𝜎 = 0 

and 

Ω =
2

𝑇

 sin𝜔

1 + cos𝜔
  

=
2

𝑇
tan

𝜔 

2
                                                (5.90) 

or 

𝜔 = 2 tan−1
Ω𝑇

2
                                           (5.91) 
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Chapter Six 

The Chirp Z-transform Algorithm and Its Applications 

The chirp Z-transform algorithm is a computational algorithm for numerical 

evaluation of Z-transform for a sequence of 𝑁 points. By using it we can 

easily find Z-transform of 𝑀 points in the z-plane lying on circular or spiral 

contour beginning at any an arbitrary point in the z-plane. The algorithm 

based on the fact that the value of Z-transform on a circular or spiral contour 

can be expressed as a discrete convolution [16].   

We will restrict our work to the Z-transform of sequences of a finite number 

𝑁 of non zero points. Therefore Z-transform of these sequences can be 

written without loss of generality as, 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
𝑁−1

𝑛=0

                                     (6.1) 

Note that 𝑋(𝑧) converges for all 𝑧 except 𝑧 = 0. 

If we have a train of impulses with equally space 𝑇 of magnitude 𝑥(𝑛), it will 

be of the form 

∑𝑥(𝑛)

𝑛

𝛿(𝑡 − 𝑛𝑇) 

Its Laplace transform will be 

∑𝑥(𝑛)

𝑛

𝑒−𝑠𝑛𝑇 

which is the same of Eq(6.1) if we set 

𝑧 = 𝑒𝑠𝑇                                                      (6.2) 

Since we can compute Z-transform for a finite set of samples, we can evaluate 

it for a finite number of points 𝑧𝑘where 0 ≤ 𝑘 ≤ 𝑀 − 1 in z-plane, so Z-

transform of 𝑥(𝑛) evaluated at 𝑧𝑘 will be written as, 
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𝑋(𝑘) = 𝑋(𝑧𝑘) = ∑ 𝑥(𝑛)[𝑧𝑘]
−𝑛

𝑁−1

𝑛=0

                       (6.3) 

We are interested in the set of points equally spaced around the unit circle, 

these points are of the form 

𝑧𝑘 = 𝑒𝑥𝑝 (𝑗
2𝜋

𝑁
𝑘) ,    k = 0, 1,… , N − 1               (6.4) 

If we substitute Eq(6.4) in Eq (6.3) we get 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒𝑥𝑝 (−𝑗
2𝜋

𝑁
𝑛𝑘)

𝑁−1

𝑛=0

,    𝑘 = 0, 1,… , 𝑁 − 1        (6.5) 

Eq(6.5) is the discrete Fourier transform with (𝜔 =
2𝜋𝑘

𝑁
) which has many 

applications but finding it requires 𝑁2additions and multiplications so we use 

fast Fourier transform to compute it which requires 𝑁 log2𝑁 operation if 𝑁 

is a power of 2 and  𝑁∑ 𝑚𝑖𝑖 operation if 𝑁 is not a power of 2 where 𝑚𝑖 is 

the prime factored of 𝑁. 

Because fast Fourier transform has many limitations we use chirp             Z-

transform which eliminates some of these limitations, for example the 

number of samples of the sequence 𝑥(𝑛) need not to be equal to the number 

of samples in the z-plane. Neither 𝑁 nor 𝑀 need be composite integers, they 

can be primes. The angular spacing of 𝑧𝑘 is arbitrary and the contour need 

not to be a circle, it can be a spiral in or out with respect to the origin [9,17]. 

Let's compute Z-transform on the more general contour of the form 

𝑧𝑘 = 𝐴𝑊
−𝑘 ,     𝑘 = 0, 1,… ,𝑀 − 1                     (6.6)     

where 𝑀 is arbitrary integer and 𝐴, 𝑊 are arbitrary complex numbers of the 

form 

𝐴 = 𝐴0𝑒𝑥𝑝 (𝑗2𝜋𝜃0) 
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and  

𝑊 = 𝑊0𝑒𝑥𝑝 (𝑗2𝜋𝜑0) 

The case where 𝐴 = 1, 𝑀 = 𝑁 and 𝑊 =  𝑒𝑥𝑝 (−𝑗2𝜋 𝑁⁄ ) correspond to the 

discrete Fourier transform. 

The equivalent s-plane contour of Eq(6.6) begins with the point 

𝑠0 = 𝜎0 + 𝑗𝑤0 =
1

𝑇
ln𝐴                                      (6.7) 

And the form of general contour on the s-plane is 

𝑠𝑘 = 𝑠0 + 𝑘(∆𝜎 + 𝑗∆𝑤)                                

=
1

𝑇
(ln𝐴 − 𝑘 ln𝑊),     𝑘 = 0, 1,… ,𝑀 − 1             (6.8) 

Note that the z-plane contour maps into arbitrary finite length straight line in 

the s-plane. 

To compute Z-transform a long the contour described by Eq(6.6) we need 

𝑀𝑁 multiplications and additions. 

Now we will derive the chirp Z-transform algorithm [16,19]. 

If we find the Z-transform for the point along the contour represented in 

Eq(6.6) we get, 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝐴−𝑛𝑊𝑛𝑘

𝑁−1

𝑛=0

, 𝑘 = 0, 1,… ,𝑀 − 1            (6.9) 

If we use the Bluestein's ingenious substitution  

𝑛𝑘 =
𝑛2 + 𝑘2 − (𝑘 − 𝑛)2

2
                                      (6.10) 

in Eq(6.9) we get 

                      𝑋(𝑘) = ∑ 𝑥(𝑛)𝐴−𝑛𝑊(𝑛2 2⁄ )𝑊(𝑘2 2⁄ )𝑊−(𝑘−𝑛)2 2⁄

𝑁−1

𝑛=0

 

𝑘 = 0, 1,… ,𝑀 − 1                  (6.11) 
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Eq(6.11) can be divided into three steps, 

1. Forming a sequence 𝑦(𝑛) of the form 

𝑦(𝑛) = 𝑥(𝑛)𝐴−𝑛𝑊(𝑛2 2⁄ ),    𝑛 = 0, 1,… ,𝑁 − 1         (6.12) 

2. Define the sequence 𝑣(𝑛) as 

𝑣(𝑛) = 𝑊−𝑛2 2⁄                                         (6.13) 

To get the sequence 𝑔(𝑘)  

𝑔(𝑘) = ∑ 𝑦(𝑛)𝑣(𝑘 − 𝑛)

𝑁−1

𝑛=0

,    𝑘 = 0, 1,… ,𝑀 − 1        (6.14) 

which is a convolution of 𝑦(𝑛) and  𝑣(𝑛) so it can be expressed as 

𝑔(𝑛) = 𝑦(𝑛) ∗ 𝑣(𝑛)                                 (6.15)  

3. Multiply 𝑔(𝑘) with 𝑊(𝑘2 2⁄ ) to give 𝑋(𝑘) 

𝑋(𝑘) = 𝑔(𝑘)𝑊(𝑘2 2⁄ ),      𝑘 = 0, 1,… ,𝑀 − 1     (6.16) 

The steps 1 and 3 need 𝑁, 𝑀 multiplications respectively where step 2 

which is the main step in computation needs the most time. 

In summary the chirp Z-transform algorithm consist of the following steps  

1. Choose 𝐿 to be the smallest integer greater than or equal to 𝑁 +

𝑀 − 1 to be compatible with discrete Fourier transform which 

mean for most users that 𝐿 is a power of 2.  

2. Form the sequence y(n) of L points by the equation 

𝑦(𝑛) = {𝑥(𝑛)𝐴
−𝑛𝑊(𝑛2 2⁄ )   , 𝑛 = 0, 1,… ,𝑁 − 1              

0                               , 𝑛 = 𝑁,𝑁 + 1,… , 𝐿 − 1    
          (6.17) 

3. Use the fast Fourier transform to compute the discrete Fourier 

transform of 𝑦(𝑛) and call them 𝑌(𝑟) , 𝑟 = 0, 1,… , 𝐿 − 1. 

4. Define the sequence 𝑣(𝑛) as 
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𝑣(𝑛) = {
𝑊−𝑛2 2⁄       , 0 ≤ 𝑛 ≤ 𝑀 − 1                                                   
  0                  ,𝑀 − 1 < 𝑛 < 𝐿 − 𝑁 + 1  𝑖𝑓 𝐿 > 𝑁 +𝑀 − 1

𝑊−(𝐿−𝑛)2 2⁄ , 𝐿 − 𝑁 + 1 ≤ 𝑛 < 𝐿                                            

       (6.18) 

Note that if 𝐿 = 𝑁 +𝑀 − 1, then there is no value of 𝑣(𝑛) equal zero. 

5. Compute the 𝐿 point discrete Fourier transform of 𝑣(𝑛) and call 

them 𝑉(𝑟) , 𝑟 = 0, 1,… , 𝐿 − 1. 

6. Multiply 𝑌(𝑟) and 𝑉(𝑟) to get 𝐺(𝑟) 

𝐺(𝑟) = 𝑌(𝑟)𝑉(𝑟)  , 𝑟 = 0, 1,… , 𝐿 − 1  

7. Compute the 𝐿 point of 𝑔(𝑟) by taking the inverse discrete Fourier 

transform of 𝐺(𝑟). 

8. Multiply 𝑔(𝑘) and 𝑊(𝑘2 2⁄ ) to get 𝑋(𝑘) 

𝑋(𝑘) = 𝑔(𝑘)𝑊(𝑘2 2⁄ ),      𝑘 = 0, 1,… ,𝑀 − 1 

where 𝑔(𝑘) for 𝑘 ≥ 𝑀 are discarded. 

The computational time for the chirp Z-transform is proportional to 𝐿 log2 𝐿. 

Therefore the direct method for computing 𝑋(𝑘) is most efficient for small 

values of 𝑁, 𝑀 where chirp Z-transform will be efficient for large values or 

even for relatively modest values of 𝑀 and 𝑁 of the order of 50 [9,16].  

Chirp Z-transform algorithm has many applications as: 

1. Enhancement of Poles. 

Evaluating Z-transform at points outside and inside the unit circle is one of 

the advantages of Z-transform over fast Fourier transform, this advantage 

help us to find the poles and  zeros for systems whose transfer function is of 

polynomial form by making the contour which we use closer to the poles and 

zeros. 
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2. High Resolution, Narrow Band Frequency Analysis. 

The ability to evaluate high resolution, narrow band frequency is an important 

application of chirp Z-transform algorithm because it allows us to chose the 

initial frequency and frequency space independent of the number of time 

sample. Where by using the fast Fourier transform, if the frequency resolution 

≤ ∆𝐹 and sampling frequency 1 𝑇⁄ , then we require 

𝑁 ≥ 1 (𝑇∆𝐹)⁄  samples which will be very large for small values of ∆𝐹. 
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Conclusion 

For finding the inverse of Z-transform three methods are used: integration 

method is useful for finding a few values of 𝑥(𝑛), where the power series 

method is efficient when we find the inverse of finite-order integer power 

function with partial fraction method is suitable for finding the inverse of 

rational Z-transform. Z-transform is a transform for discrete data equivalent 

to Laplace transform  for continuous data and it's a generalization of discrete 

Fourier transform. It's an efficient method for solving linear difference 

equations with constant coefficients and Volterra difference equations of 

convolution type. Also, it has many important applications in digital signal 

processing as analysis of linear shift-invariant systems, implementation of 

FIR and IIR filters and design of IIR filters from analog filters. Chirp Z-

transform algorithm is an important algorithm that overcomes the limits of 

fast Fourier transform and  has many applications such as enhancement of 

poles and high resolution, narrow band frequency analysis. 
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Appendix A 

Some Maple Commands on Z-transform. 

Example 2.3:  

𝑧𝑡𝑟𝑎𝑛𝑠(𝑎𝑛, 𝑛, 𝑧) 

Example 2.4:  

𝑠𝑢𝑚(−(𝑏 ∗ 𝑧−1)𝑛, 𝑛 = −∞. . −1) 

Example 2.14:  

𝑧𝑡𝑟𝑎𝑛𝑠(7𝑐ℎ𝑎𝑟𝑓𝑐𝑛[0](𝑛) + 3𝑐ℎ𝑎𝑟𝑓𝑐𝑛[1](𝑛) + 0𝑐ℎ𝑎𝑟𝑓𝑐𝑛[2](𝑛) 

+1𝑐ℎ𝑎𝑟𝑓𝑐𝑛[3](𝑛) + 2𝑐ℎ𝑎𝑟𝑓𝑐𝑛[4](𝑛) + 6𝑐ℎ𝑎𝑟𝑓𝑐𝑛[5](𝑛), 𝑛, 𝑧) 

Example 3.6: (a) 

𝑖𝑛𝑣𝑧𝑡𝑟𝑎𝑛𝑠 (
𝑧2 + 3𝑧

𝑧2 − 3𝑧 + 2  
, 𝑧, 𝑛)  

Example 3.8: 

𝑖𝑛𝑣𝑧𝑡𝑟𝑎𝑛𝑠 (
𝑧3

𝑧3 − 𝑧2 − 5𝑧 − 3  
, 𝑧, 𝑛) 

Example 4.1: 

𝑟𝑠𝑜𝑙𝑣𝑒({𝑦(0) = 0, 𝑦(1) = 1, 𝑦(𝑛 + 2) = 𝑦(𝑛 + 1) +  𝑦(𝑛)}, 𝑦) 

Example 4.2: 

𝑟𝑠𝑜𝑙𝑣𝑒 ({𝑦(−1) = 2, 𝑦(𝑛) =
1

3
𝑦(𝑛 − 1) + 1} , 𝑦) 
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Appendix B 

Example on using Chirp Z-transform Algorithm. 

Example: Use chirp Z-transform algorithm to find the Z-transform of the 

sequence 

𝑥(𝑛) = {
1 ,    𝑛 = 0              
2 ,    𝑛 = 1              
0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

at the given points 

𝑧𝑘 = 𝐴𝑊
−𝑘 ,     𝑘 = 0, 1, 2  

where 

𝐴 = 1  and 𝑊 =
1

2
∙ 𝑒

−𝜋𝑗
2  

Solution: 

1. For choosing 𝐿 

𝑁 +𝑀 − 1 = 2 + 3 − 1 = 4 

 So 𝐿 = 4 because 4 is a power of 2. 

2.   

          𝑦(𝑛) = {𝑥(𝑛)1
−𝑛 [

1

2
∙ 𝑒

−𝜋𝑗
2 ]

(𝑛2 2⁄ )

 , 𝑛 = 0, 1              

0                                           , 𝑛 = 2, 3             

  

                       = {
1         , 𝑛 = 0 
1 − 𝑗   , 𝑛 = 1  
   0         , 𝑛 = 2, 3

                                                     

3.  

𝑌(𝑟) = ∑𝑦(𝑛)𝑒
−2𝜋𝑗𝑛𝑟

𝐿

𝐿−1

𝑛=0

,    𝑟 = 0, 1,… , 𝐿 − 1       

𝑌(𝑟) = ∑𝑦(𝑛)𝑒
−𝜋𝑗𝑛𝑟
2

3

𝑛=0

,    𝑟 = 0, 1, 2,3   
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= {

2 − 𝑗      , 𝑟 = 0      
−𝑗          , 𝑟 = 1      
𝑗             , 𝑟 = 2      
2 + 𝑗      , 𝑟 =  3      

              

4.  

     𝑣(𝑛) =

{
 
 

 
 
[
1

2
∙ 𝑒

−𝜋𝑗
2 ]

−𝑛2 2⁄

        , 0 ≤ 𝑛 ≤ 2   

[
1

2
∙ 𝑒

−𝜋𝑗
2 ]

−(4−𝑛)2 2⁄

  , 3 ≤ 𝑛 < 4  

 

                                        = {

1                 , 𝑛 = 0      
1 + 𝑗          , 𝑛 = 1      
−4              , 𝑛 = 2      
1 + 𝑗           , 𝑛 =  3      

              

5.  

𝑉(𝑟) = ∑𝑣(𝑛)𝑒
−𝜋𝑗𝑛𝑟
2

3

𝑛=0

,    𝑟 = 0, 1, 2,3 

        = {

−1 + 2𝑗      , 𝑟 = 0      
5                  , 𝑟 = 1      
−5 − 2𝑗     , 𝑟 = 2      
5                  , 𝑟 =  3      

              

6.  

𝐺(𝑟) = 𝑌(𝑟)𝑉(𝑟)  , 𝑟 = 0, 1, 2 , 3  

     = {

5𝑗            , 𝑟 = 0      
−5𝑗         , 𝑟 = 1      
2 − 5𝑗     , 𝑟 = 2      
10 + 5𝑗   , 𝑟 =  3      

              

 

7.  

𝑔(𝑟) =
1

𝐿
∑𝐺(𝑛)𝑒

2𝜋𝑗𝑛𝑟
𝐿

𝐿−1

𝑛=0

,    𝑟 = 0, 1,… , 𝐿 − 1   

𝑔(𝑟) =
1

4
∑𝐺(𝑛)𝑒

𝜋𝑗𝑛𝑟
2

3

𝑛=0

,    𝑟 = 0, 1, 2,3 
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     = {

3                , 𝑟 = 0      
2                , 𝑟 = 1      
−2            , 𝑟 = 2      
−3 + 5𝑗   , 𝑟 =  3      

              

8.  

𝑋(𝑘) = 𝑔(𝑘) [
1

2
∙ 𝑒

−𝜋𝑗
2 ]

(𝑘2 2⁄ )

,      𝑘 = 0, 1, 2 

= {

3         , 𝑘 = 0      
1 − 𝑗  , 𝑘 = 1      
1

2
         , 𝑘 = 2      
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Appendix C 

A Table of Properties of Z-transform 

Property Sequence Z-transform ROC 

Linearity 𝛼𝑥(𝑛)  +  𝛽𝑦(𝑛) 𝛼 𝑋(𝑧)  +  𝛽 𝑌(𝑧) 𝑟 < |𝑧| < 𝑅 

Shifting 𝑥(𝑛 + 𝑘) 𝑧𝑘 𝑋(𝑧) 𝑟𝑥 < |𝑧| < 𝑅𝑥 

Multiplication 

by Exponential 
𝛼𝑛𝑥(𝑛) 𝑋(𝛼−1𝑧) 

|𝛼|𝑟𝑥 < |𝑧|
< |𝛼|𝑅𝑥 

Time Reversal 𝑥(−𝑛) 𝑋(𝑧−1) 
1

𝑅𝑥
< |𝑧| <

1

𝑟𝑥
 

Conjugation 𝑥∗(𝑛) 𝑋∗(𝑧∗)  𝑟𝑥 < |𝑧| < 𝑅𝑥 

Multiplication 

by n 
𝑛 𝑥(𝑛) −𝑧

𝑑𝑋(𝑧)

𝑑𝑧
  𝑟𝑥 < |𝑧| < 𝑅𝑥 

Convolution of 

Two Sequences 
𝑥(𝑛) ∗ 𝑦(𝑛) 𝑋(𝑧)𝑌(𝑧) 

at least, 𝑅𝑂𝐶 of 

𝑋(𝑧) ∩ 𝑅𝑂𝐶 of 

𝑌(𝑧) 

Correlation of 

Two Sequences 
𝑟𝑥𝑦(𝑙) 𝑋(𝑧)𝑌(𝑧−1) 

at least, 𝑅𝑂𝐶 of 

𝑋(𝑧) ∩ 𝑅𝑂𝐶 of 

𝑌(𝑧−1) 

Multiplication 

of Two 

Sequences 
𝑥(𝑛)𝑦(𝑛) 

1

2𝜋𝑗
∮ 𝑋(𝑣)𝑌 (

𝑧

𝑣
)
1

𝑣
𝑑𝑣

𝐶

 
𝑟𝑥𝑟𝑦 < |𝑧|

< 𝑅𝑥𝑅𝑦 

 

 

 

 

Note: 𝑋(𝑧) is the Z-transform of 𝑥(𝑛) with 𝑅𝑂𝐶 𝑟𝑥 < |𝑧| < 𝑅𝑥 and 𝑌(𝑧) is the Z-

transform of 𝑦(𝑛) with 𝐶  𝑟𝑦 < |𝑧| < 𝑅𝑦, 𝑟 = max(𝑟𝑥, 𝑟𝑦) and 𝑅 = min(𝑅𝑥, 𝑅𝑦). 
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Appendix D 

A Table of Common Z-transform Pair. 

Sequence Z-transform ROC 

𝛿(𝑛) 1 all 𝑧 

𝑢(𝑛) 
𝑧

𝑧 −  1  
 |𝑧| > 1 

𝑛 𝑢(𝑛) 
𝑧

(𝑧 −  1)2 
 |𝑧| > 1 

𝑛2 𝑢(𝑛) 
𝑧(𝑧 + 1)

(𝑧 −  1 )3
 |𝑧| > 1 

𝛼𝑛 𝑢(𝑛) 
𝑧

𝑧 −  𝛼  
 |𝑧| > |𝛼| 

 𝑛𝛼𝑛 𝑢(𝑛) 
𝛼𝑧

(𝑧 −  𝛼 )2 
 |𝑧| > |𝛼| 

−𝑎𝑛 𝑢(− 𝑛 −  1) 
𝑧

𝑧 −  𝑎 
 |𝑧| <  |𝑎| 

−𝑛 𝑎𝑛 𝑢(− 𝑛 −  1) 
𝛼𝑧

(𝑧 −  𝛼 )2 
 |𝑧| <  |𝑎| 

𝑐𝑜𝑠(𝑛𝛼)𝑢(𝑛) 
𝑧2 − 𝑧𝑐𝑜𝑠(𝛼)

𝑧2 − 2𝑧𝑐𝑜𝑠(𝛼) + 1
 |𝑧| > 1 

𝑠𝑖𝑛(𝑛𝛼)𝑢(𝑛) 
𝑧𝑠𝑖𝑛(𝛼)

𝑧2 − 2𝑧𝑐𝑜𝑠(𝑤) + 1
 |𝑧| > 1 
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