Phosphate-Free and Sodium-Reduced Roasted Turkey Breast.

Prepared by : Maram Sbeihat and Heba Tome

Why Ma?

Importance of sodium to body.

- regulating the body's electrolyte
- balance, preventing dehydration and maintaining
- many of the body's cellular functions
- Preventing nutrient deficiencies
 - "Iodin VS Goiter "

Why Na?!

- blood pressure ----
- cause of cardiovascular diseases

- * 62% of stroke
- * 49% of coronary heart disease
- gastric cancer "H pylori"
- decreased bone mineral density
- possibly obesity

Why STPP?

Why STPP ?!

Role of STPP in meat processing.

synergistic effect between sodium chloride & phosphate

The contribution to ionic strength of polyphosphates has little effect in the presence of an overall level of 2% salt.

 The chloride ion is more important than the sodium ion for achieving increased water binding capacity.

Material and Methods.

• 60 samples from turkey breast from the same batch (similar flock and breed)

• Samples should distributed into 4 groups (n=15/group) where each group has no significant differences in pH

	Group B1	Group B2	Group B3	Group B4
NaCl	100%	85%	70%	55%
KCL	0%	15%	30%	45%
STPP	0%	0%	0%	0
Sodium bicarbonate	100%	100%	100%	100%

Methodology

Sample preparation and labeling.

 Marination by using small scale vacuum tumbler.

Storage at refrigeration 48 hours.

Vacuum packaging

cooking $(80 \circ C, 20 \text{ m})$

	B1	B2	В3	B4
Marinade uptake	16	17.9	17.8	16.5
Purge loss	3.15	1.1	2.1	1.8
Cooking loss	24.6	26.5	23.4	24.9
yield	84.8	84	89	86

Sensory Evaluation

	B1 control	B2	В3	B4
Color	4.7	5	4.6	5.6
Juiciness	4.3	4.3	5	4
Saltiness	4	5.3	4.3	4.3
Degree of fatness	2.3	2.6	2.6	2.3
Overall acceptance	3.6	6.3	6	4.7
texture	6.3	5.3	5.7	6.6
average	3.9	4.4	4.3	4.2

References

- 1-Theoretical aspects of water-holding in meat, E. Puolanne, Marjo Halonen.Department of Food and Environmental Sciences, University of Helsinki, Viikki .Finland
- 2-Global Sodium Consumption and cardiovascular Causes, D.Mozaffarian 2014
- 3-Gradual Reduction in Sodium Content In Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evalution and a Multimodal Machine Vision System Kirsti Greiff, John Reidar Mathiassen, Ekrem Misimi, Margrethe Hersleth, Ida G. Aursand Published: September 30, 2015