
SOURCE CODE PLAGIARISM DETECTION ENGINE
(CODEVISION)

 Saeed A. Anabtawi , Basil Hassan

Supervisor: Dr.Othman Othman

CS department, An-Najah University, Palestine

ABSTRACT

In this project, we used different source code plagiarism
detection methods such as Structure-based and keyword
based to compare the accuracy and their ability to solve
the problem. We build a modular scalable system that
clusters and detects plagiarism in a visible form within a
corpus of source files and test it aginst existing programs
such as JPlag.

Keywords: Similarity Detection, Jaccard, Longest
Common Sub-sequence, Weighted Directed Graph,
Clustering, Code Plagiarism.

1. INTRODUCTION

Source code plagiarism is the act of copying code from
others without giving any credit to the original
programmer.The problem of code plagiarism could be in
any education institute that teaches how to code and this
problem affect the quality of educational in this institute.
Moreover graduates of this institute will lack honesty and
skill. This will lead to a major education problem, that is
very necessary to be solved. Furthermore, the internet
access became much easier in addition to the large
number of programming code available on the Internet.
All of this lead to creating different techniques to detect
plagiarism in the source code. But the problem is the
evaluation results might become misleading and unreal
due to the plagiarism problem. Manual detection was
found to be inefficient but it is effort and time consuming
due to the vast amount of contents available, an
automated plagiarism detection system becomes
essential. “The definition of Plagiarism in software: a
program which has been produced from another program

with a small number of routine transformation challenge
is to detect the techniques that the implicated students
tend to use to disguise the copied code in order to
mislead the grader”(A.Jadalla and A.Elnagar, 2007,[1]).
Types of plagiarism: Intentional plagiarism is using other
people work without any acknowledgment. Unintentional
plagiarism the work is incidental but the authors are
different and they used the same logic.
Most common disguises:

 Changing comments.
 Changing identifiers.
 Changing the order of operands in expressions.
 Changing data types.
 Replacing expressions by equivalents.
 Adding redundant statements.
 Changing the order of time-independent

statements.
 Changing the structure of iteration statements.
 Changing the structure of selection statements.
 Reordering of the code.

2. LITERATURE REVIEW

Plagiarism detection systems are classified into two main
categories :

 The attribute-counting based (feature-based)
systems :counting number of operands,
operators, control statements, loop statements,
conditional statements, and variables, to
compute similarity, feature-based systems are
more efficient and have relatively lower
performance, but the problems are: It ignores the
program’s structure. Two programs might share
the same measures while they have completely
different logic. It can hardly have very good
performance because it throws away too much
structural information.

 The structure-based system: have better
performance and are less efficient, it compares
the structures of two programs directly, It shows
high performance in detecting source-code
plagiarism, it uses four common techniques:
String matching, Abstract syntax tree, Program
dependence graph, Tokenization.

The first known plagiarism detection tool was an
attribute counting program developed by Ottenstein. It
uses the basic Halstead metrics to compare two
FORTRAN programs. There are several examples of
source code plagiarism tools. Focus in this section will be
on: JPlag, SIM, and MOSS as a sample.

• JPlag: “Its a web-based plagiarism detection tool, its
available for free and easy to use”[2].

• SIM: This is a tool that is developed to detect c code
plagiarism, text plagiarism and DNA string comparison.
The output is a similarity score value between 0 and 1
based on the level of similarity between codes.

• MOSS: its a popular free code plagiarism tool. It
supports different operating systems. The tool divided the
code into several finger prints and matching or similarity
is evaluated based on the number of similar finger prints
between the evaluated codes.

3. SYSTEM PIPELINE

4.1. Processing Sources

The first phase in the system is to load program source
files, then process and apply multiple processing
operations like filtration which includes filtration of
noise elements such as comment, includes,...etc that
could affect parsing operation that delivers a specific
format for the next phase.

The filtration is done by regular expression. It handles
and solves most cases of noise elements such as a
comment written in a string, comment written between
variables, includes any element that does not affect code
logic.

After filtering program source files into a clean format
the system performs a parsing and tokenization
operations, this parsing and tokenization will generate a
specific format that depends on the second phase,
formats like AST (abstract parsing tree), a run list of
tokens, list of keywords, a mapped abstracted code. The
second phase similarity detection is a phase when the
system detects the similarity between program source
files using similarity detection method.
The input is provided as a set of source code files.
Program files can't be compared directly because of noise
elements such as useless “headers and include”,
comments and blank lines, comments could contain fake
codes which effect plagiarism detection system. Each
comparing operation requires a specific format.

4.2. Similarity Detection

Each method takes a different format, The keyword-
based method takes a list of keywords, The code is
tokenized and transformed into a list of keyword. Then
after that, a Jaccard similarity measure is applied on two
lists of keywords each list represents a program and the
result is a ratio between 0 and 1.

The Structure based method takes a mapped code as
input. Then apply a modified Jaccard rule to compare 2
strings those strings are the mapped code of each
program. The output of phase (2) is a similarity list that
represents similarity between each file in the corpus. In
phase (3) The similarity list is transformed into a
weighted directed graph to apply the weighted graph
clustering algorithm and perform weighted cuts. The
system output is a cluster and it represents plagiarism in
a form of groups

4.2.1 Keyword based
The output of the parse tree gets transformed into lists of
keywords, which represents the program logic and
structure. And similarity is computed using this statistical
formula. The result is a ratio 0 – 1. If p1, p2 are two
programs and T (p) is the indexed set of substitute
keywords of program p [3], like T(P1) = [int1, int2,
float1, for1, if1] a similarity measure we called the
Jaccard coefficient [3] is defined by:

4.2.2 Structrue based
It transforms the code to a sequence of symbols and
character, That define program structure and components
such as (type, class, objects,…..etc) and it gets mapped
into a sequence of characters and symbol without any
spaces [4]. We transfer each program into the signature
from the run the formula, similarity between s1 which is
program 1 and program will equal the length of longest
common sequence times 2 divided by the length of s1 +
length of s2. The result is a ratio between 0 – 1.

The first step is to transform the source code into a
sequence of well-defined identifier tokens[4]. The
identified tokens are STRUCT: user defined struct type,
different from the keyword, FUNC: functions defined in
the program, ID: data variables, CON: constants, ARR:
array, the keywords is still written as they are.

After that the system will insert them into mapping table,
the output is a signature that represents the structure of
the program.Then run the equation below on every 2
program signature:

We have implemented the algorithm using the numbers
instead of character to improve scalability and modified
the LCS to work on an array of numbers instead of
characters. to improve the scalability of the algorithm .

4.3. Clustering

3.3.1. Weighted Directed Graph
we construct a weighted non-directed graph G = (V, E)
such that vertices V represent program identifiers and
weighted edges E represent the similarity (evaluated by
the Jaccard coefficient) between programs. In this graph
we take into account program pairs only if their program
members are associated with a Jaccard coefficient value
higher than a considered cutoff criterion value (threshold)
[3] , sim(p, p) = 1 and sim(p1, p2) sim(p2, p1) from those
two rules the number of edges in the graph equal [n[n-
1]]/2 [3].

Graph representation of similarity list

a b 0.8

b c 0.2

b e 0.2

b d 0.2

c e 0.8

d e 0.8

c d 0.8

4.3.2. Grouping
The grouping algorithm (weighted graph clustering
algorithm)[3] takes the result of the previous operation
that outputs a weighted graph. Then using threshold and
the clustering algorithm it generates groups or clusters
from the weighted graph like in the next figure

Note: threshold = 0.80, the grouped nodes are shaded in gray

In the Figure, the weighted directed graph after
clustering, in the beginning, it was clustered into one
cluster, whereas the graph clustering algorithm optimizes
the weighted edge connectivity and clusters and split it
into two clusters. Although node (b) is connected to three
nodes (c, d, e) but the weight of each connection is under
0.8 and the connection between the node (c, d, e) is over
0.8,therefore (c, d, e) is a cluster, whereas the weight of
edge (a, b) is 0.8,(a, b) is another cluster. Thus, we may

consider that edges (b, c), (b, d) and (b, e) have been
eliminated by clustering. Since these edges represent
similarity between programs, their elimination facilitates
in some cases the discovery of false detection's. The
algorithm initially assigns a cluster to each node of a
graph and proceeds to merge nodes to clusters according
to the weights of their edges. The algorithm terminates
when no further merging is possible.

The clustering algorithm (weighted graph clustering) is
able to divide the results into groups, This feature helps
to identify plagiarism in a more visible way. The
threshold is the main component of the clustering
algorithm if the system set it to low the clusters would
become noisy, having too many elements and it will
affect system accuracy. If it's too high, some source
codes can't be detected. The system must analyze the
data first and find the maximum similarity, minminm
similarity and the average similarity (MMA model), this
analysis well aid the process of selecting the right
threshold for a given dataset.

4.3.3. Min-Max-Avg model (MMA)

The model we propose helps specify the value of the
threshold by analyzing each data set we have. because
every data set is unique there is no threshold work
perfectly for each data set.After we process the data into
different stages in system pipeline the result from stage
number 2 is the similarity list. we analysis the similarity
list to extract (min similarity, max similarity, average
similarity).

The value of the threshold belongs in the domain [avg,
max], theshhold>min, threshold < max. set the value
below Avg will result of noise cluster that contains too
many nodes, Avg: average similarity represent the normal
percentage required to write a solution to solve the same
problem if the question was to simple to solve the
average would be very high for example 90% of data we
tested on we set threshold to 99% to be able to cluster the
dataset we have . otherwise, all nodes would be in one
cluster. The MMA model helps to specify the domain to
select the threshold from. it save up the time required to
search entire domain to smaller domain depending on the
data set given.

5. EXPERRMENT

We implemented the last two algorithms in python and
using pycparser[5] to handle c99 programming language
and make some experiments in order to choose the best
of them.

5.1. Trial Experiment (Artificial dataset)

In this experiment we have a set of three problems, each
one has a set of solutions (code sources).We generate
some solutions from original ones as they been
plagiarized. Then we test similarity detection algorithms.
The perpouse of expermint is test main futuers of the
system such ass accuracry and speed.

Experiment 1: 16 solutions included the 7 plagiarized ones &
similarity threshold 80%.

Structure
based

Keyword
based

of correct
guesses

6 3 Higher is better

of incorrect
guesses

0 1 Lower is better

of gross
incorrect
guesses

0 1 Lower is better

Experiment 2 : 16 solutions included the 7 plagiarized ones &
similarity threshold 70%.

Structure
based

Keyword
based

of correct
guesses

7 4 Higher is better

of
incorrect
guesses

2 7 Lower is better

of gross
incorrect
guesses

0 4 Lower is better

Note: “gross incorrect guess” is give high similarity for two
solutions that belongs to two different problems

Increase the threshold will decrease the number of
correct guesses, but also decreases the number of
incorrect guesses. Each algorithm works better on
different data set. We still need more experiments to
decide which algorithm better at given data set and
threshold and what to improve on the system. But in
general both algorithm are very good at detecting code
plagiarism, according to experiment Structure based is
better than keyword-based.

5.2. Functional experiment

In this experiment, we will perform a comparison
between our implementation vs Jplag. the goal of this
experiment is to test most common techniques used in
source code plagiarism. and to find which system is
better and if it immune to all techniques . The most
common techniques used are:

1. Add and remove comments.
2. Rename identifiers.
3. Changing data types.
4. Reorder sequantial code
5. Reorder functional code.
6. Adding redundant statements.
7. Changing the structure of iteration and selection

statements

Jplag OUR

1 PASS PASS

In both algorithms comments are not consederd; so adding or
delete them will not effect the results

2 PASS PASS

In both algorithms identifiers’ names are not consederd; so
renaming them will not has an effect

3 FAIL PASS

In Jplag changing data types will affect it’s result , if there is a
lot of changes the detection will fail
In OUR changing data types will not affect it’s result.

4 FAIL/PASS FAIL/PASS

In both algorithms the results aproximitly the same
In OUR reslut is slitly better than Jplag
In general reorder the sequantial code is not easy and there
limit to do it

5 FAIL/PASS FAIL/PASS

In both algorithms the results aproximitly the same
In Jplag result is slitly better than OUR
Reorder functions decleration in functional code is easy, but
the call of these functions will be sequantial wich helps OUR
to detect some good similarity

6 FAIL/PASS FAIL/PASS

In OUR reslut is better than Jplag
Adding redundant statements bettwen original code
statements

7 FAIL/PASS FAIL/PASS

In OUR reslut is better than Jplag

6. CONCLUSION

Hybrid algorithm proved to be much more accurate from
the experiments that we conduct, And the system we
build turned out be better than . We need to work some
rare cases and involve more machine learning

7. REFERENCES

[1] A.Jadalla and A.Elnagar“PDE4Java: Plagiarism Detection
Engine For Java Source Code: A Clustering Approach ”, 2007.

[2] L. Prechelt, M. Guido and M. Phlippsen, “JPlag: Finding
plagiarisms among a set of programs”, Journal of Universal
Computer Science, vol. 8, no. 11, 2000.

[3] L.Mousslades and A. Vakali “PDetect: A Clustering
Approach for Detecting Plagiarism in Source Code Datasets “ ,
2000.

[4] W.Chen, C.Duan, L.Zheng and Y.Zhao “A Structure based
Method for Detecting Source-code Plagiarism in Computer
Programming”,The European Conference on Education ,2013.

[5] Pycparcer, Retrieved from
(pypi.python.org/pypi/pycparser)

[6] Clang, LLVM, Retrieved from (clang.llvm.org)

	Abstract

