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Differential Equations with Application
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Ahmad kassef
Supervisor
Dr. Samir Matar

Abstract

Parabolic Partial Differential equations have clearly emerged in many
branches of science, for example technology, engineering, physics and
many others. So based on the importance of parabolic equations, new
efficient and more accurate numerical methods were discussed, studied and
analyzed.

These numerical methods are Explicit Method, Implicit Method,
Crank-Nicolson Method, Finite Difference Method, Method of Line, And
Pade Approximation.

Each method has been studied and implemented with examples and A
MATLAB code was written for each method to obtain very accurate
results. The Numerical results were compared to determine the best method

which is the most accurate.



Chapter One

Introduction



1.1. Introduction

Mathematics in general is the body of knowledge centered on such
concepts as quantity, structure, space, and change, and also the academic
discipline that studies them. Benjamin Pierce called it " the science that
draws necessary conclusions”. On the other hand, Mathematics is the basis
of all science, no science can do itself without the existence of
mathematics; it is the language of communication in the world that any

specialist can understand.

Applied mathematics, the application of mathematics to such fields,
inspires and makes use of new mathematical discoveries and sometimes

leads to the development of entirely new disciplines. [13]

1.2. Partial Differential Equations

A mathematical formulation of many important scientific and
engineering problems involving rates of change with respect to two or
more independent variables can often be expressed as partial differential
equations(PDEs) [14].

The majority of the problems of physics, science and engineering
fall naturally into one of the following three physical categories:
equilibrium problems, eigenvalue problems and propagation problems[18].
Also, most physical phenomena, whether in the field of fluid flow or the
spread of heat, can be generally described by partial differential equations.
Often, the problems that one would like to solve exceed the capacity of

even the most powerful computers. On the other hand, the time required is
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too large to all inclusion of advanced mathematical models in the design
process.

To solve partial differential equations there are many methods that
are practically applied. One of the methods are to transform the partial
differential equation into an ordinary differential equation. The partial
differential equations can then be solved in two ways; first by analytical
methods (such as the method of separating variables, which allows the
partial differential equation to be converted into a normal differential
equation), and second by numerical methods that convert the partial
differential equation to a set of difference equations or system of
equations, which can then be solved using computer programs.

In general, there are many numerical methods for finding solutions
to these types of equations, both numerically or analytically. But, in
general, each method works well only for a specific class of problems,
often solving some examples. But generally existence of solution for PDE

is a hard problem and one of open problem in mathematics.
1.3. Why Numerical Methods?

Numerical methods are used in the modern world in order to give an
approximation of the solution by using computers in a fraction of a
second’s time. For example, to locate a moving hostile object you need to
locate its position within microseconds. (Elapsed time is 0.0015701
seconds for example). If there is a heat flow, to know the progress of the

heat within a short time is important. [6][7][8][9] [10].

1.4. Order of Convergence
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The order of convergence is one of the primary ways to estimate the
actual rate of convergence, the speed at which the errors go to zero.
Typically, the order of convergence measures the asymptotic behavior of
convergence. For example, Newton's method is said to have quadratic
convergence, so the method has order 2. However, the true rate of
convergence depends on the problem, the initial value taken, etc., and is
typically impossible to quantify exactly. Numerical methods have different

orders of convergence. Developing high order convergence is needed.
Consider a case of a sequence of vectors, {y;}., , Y, €R"is said

to converge to a vector L with order p if there exists a constant 0<K< 1
such that
lyio -t <K yi - [
The above inequality is some type of a contraction mapping in a
metric space.
Knowledge of calculus, partial differential equations, numerical
methods for solving partial and ordinary differential equations is of at most

importance. [1]



Chapter Two

Parabolic Partial Differential Equation



2.1. Introduction

The solutions of PDEs are important in many fields of science and
engineering, because they describe the behavior of electric, gravitational
and fluid potential. Most of the PDEs that arise in mathematical models of
physical phenomena are difficult (if not impossible) to solve analytically,
so we have used numerical methods to approximate the solution.

The general two dimensional second order linear (PDE) for the

function U (X, y) can be written as: [12]

2 2 2
Al L2J+B o’ U +Ca L2J+Da Y, e? U+FU:G... (1)
0 X 0 X0y oy 0 X oy
where A, B, C, D, E, F and G may be continuous functions of the
independent variables x and y.

The solution the function U (x, y) on its domain.

Equation (1) can be classified as:

1) Hyperbolic if B>~ 4 AC >0
2) Parabolic if B> -~ 4 AC =0
3) Ellipticif B>~ 4AC <0

PDEs, which belong to one of the most important parts of
mathematical analysis, are closely related to the physical world. We may
come across the wave equation or the heat equation, and the names of
Euler, Poisson, Laplace, etc., are quite familiar to scientists. One may
encounter PDEs not only in physics, mechanics and engineering, but in

other fields as well, such as biology, finance and in image analysis.
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Many methods were used to solve PDEs. It replaces differential
operators by finite differences and the PDE becomes a finite system of
linear equations, or it can become a finite system of ordinary differential
equations (ODEs). An Algorithm can be established then a computer
implementation is used to solve the PDEs defined on regular or not regular

geometries. [12]

2.2. A simple Experiment on Heat Diffusion

On the assumption that we have a simple issue that we will divide
into three steps:
Step 1: Start with a metal rod (copper, for example) with certain and
suitable dimensions (for example, length and diameter are known, m=L
and diameter =2 cm) under a condition, side surface only (without the two
bases) must be coated with an insulated material. That means that the

leakage of heat will only be from the two bases, not from the side surface.

rod

heat

Figure2.1: Start of experiment
Step 2: Now place the rod into a constant temperature environment (7

Celsius ) for enough to make the temperature of the rod as equal as the
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temperature of that environment(7, Celsius ). Let's assume that the
constant temperature is 10 Celsius.
Step 3: Now we will monitor the changes of heat in the rod in a certain
period of time and we will observe the changes of the rod temperature.

That is called the solution of parabolic partial differential equations. [13]

Heating element Thermocouples (to measure temperature) Heating element
that ensures the that ensures the
temperature at the : temperature at the
leftend is T, right end is T,

u
T
Steady 2
state
- TD
r ;

Screen graphing the temperature
profile at different values of time

Figure2.2: Schematic diagram of the experiment.

2.3. A Model Problem

Many problems in physics, engineering and mathematics are
modelled by some special cases of the linear or nonlinear parabolic
equation for the unknown U (x, Y).

The heat equation describes the evolution of temperature U (x, Y):
2]
o u _K 0 U2
ot oX

(2.3.1)
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u(o,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition t>0and0<x<L

f (x,t) , gx) , and L are given
Step 1. First introduce the points where we will compute the solution
General solutions of the heat equation can be found by more than one
method, but if we use the separation of variables. Some examples appear in
the heat equation article. They are examples of Fourier series for periodic
and Fourier transforms for non-periodic f. Using the Fourier transform, a

general solution of the heat equation has the form: [16]

u(t,x) = i B, e_kt(nL_ﬂ)2 sin (x nL_n) (2.3.2)
n=1

where the arbitrary constants B, n >1 are as yet undetermined.

n-’

And to determine B, ,n >1,we substitute t=0 in (2.3.2) and by using the

initial condition we find
_ nmw
flx) = Z B,, sin (x T) (2.3.3)
n=

The constants B, can be determined in this case by using Fourier

coefficients given by the formula
B —(iijf(x)xsin(”—”x)dx (2.3.4)
) =), 3 3.

Having determined the constants B, , the particular solution

u(t,x)follows immediately.

On the other hand, if the initial condition f(x) is given in terms
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. (n :
of sm(Tﬂx j ,N >1,,the constants B, can be completely determined

by expanding (2.3.2), using the initial condition, and by equating the
coefficients of like terms on both sides. The initial condition in the first
two examples will be trigonometric functions.

To give a clear overview of the method of separation of
variables, we have selected several examples to illustrate the analysis
presented above.

The description of this physical situation requires three types of
equations:

1. Partial differential equation describing the problem under study.
2. Boundary conditions: the physical situation of the problem state.
3. Initial conditions: that describe the physical phenomenon at the

beginning of the movement.
2.4. Conditions of Parabolic Partial Differential Equation:

The parabolic partial equation contains two types of conditions:

1- Initial Condition (IC) when t=0: uX,0)=g(X).for0 < x < L.
2- Boundary Conditions(BC’s): (have 3-types)

i- Dirichlet Boundary Conditions [Value of solution at
boundary] , for0 < x < L,u(0,t)=p(t), u(L,t)=q(1).

i1-  Neumen Boundary Conditions [Rate of change of the

solution at the boundaries 1s given],

u, (0,)=p(t), u,(L,)=q(v).
iii-  Robin Boundary Conditions [Mixed of both (i) and (ii)].

2.5. Some Examples of Parabolic PDEs
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1) The Diffusion equation that gives the concentration of monomers C

(r, t) during heating of a ceramic mold is given by:

_6C:lirD£ +Q O<r<r,,t>0
t ror or

r: is the radius of the cylinder, D is the diffusion coefficient, and Q* is the
rate of production of monomer.[8]

2) Lateral leakage equation Heat:

ou ,0° U
ot 0 X

_ﬂ(u _UO) !ﬁ>0

The heat side leakage is directly proportional to the temperature
difference as the equation above describes the heat flow in a rod as well as
the leakage of heat from (or to) the sides of the rod. If S > 0 then the
leakage from the inside to the outside, but If § < 0 then the leakage from
the outside to the inside. Moreover, in both cases the proportionality is in
direct proportion to the difference between the temperature of the rod U (x,
y) and the temperature of the U, .[9][7]

3) The Convection—Diffusion equation

Assume that some pollution running into a flow with velocity V, the

concentration U (X, Y) is changing as a function of two variables, Distance

(in the positive direction of the flow) and Time. The rate of change U, can

be calculated according to the following:
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o U ) o ou
=
ot ox * OX

a’ aaZUZ : represents the Diffusion , v ZU represents the convection
X X

carrier.

An example about Convection-Diffusion equation, when smoke
rises from chimneys, the smoke particles are being carried upward by the
hot air, in the same time, particles are being diffused in the air due to air

currents, which is explained by the previous equation. [6]
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Chapter Three

Finite Difference Methods
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3.1. Taylor’s Theorem

3.1.1. Taylor’s Theorem for Function of One Variables

A function that is continuous and differentiable up to (n+1)
derivatives can be approximated by using a finite number of terms of its
Taylor series. Taylor's theorem gives quantitative estimates on the error
introduced by the use of such an approximation.

The Taylor series method is of general applicability and it is the
standard to which we can compare the accuracy of various other numerical
methods for solving differential equations problems. It can be used to have
any specified degree of accuracy. Taylor series is a series expansion of a
function about a point x,. [1]

If fx), X)), &), "X F) are continuous at X,:

_ oy £ XX LX) ¢y X=X
f (X)=F (x,)+X —X,) T'(X)+ 5 R o fH(x)+ (4

where ¢ e[x,x,].

f (n+1)(c)

In another form if f(x) has derivatives of all orders at X,

then the infinite Taylor series expansion of f(x) about X, is:

f(x):iw f 6 (x,) 3.1.1.1)
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The equation (3.1.1.1) is called —One dimensional Taylor theorem —
In this method when the number of terms increases then the error is
decreased to a certain extent.
Using Taylor’s Theorem, we can derive some finite difference

formulas that approximate the derivatives
1) Forward-difference formula for f'(X ) is
fo)-f)_h o,

f'(x) =
) h 2!

© x<c<x+h

2) Backward-difference formula for f'(X)

fe)—f (x _h)_ E £/

f'(x) =
) h 2l

© x—h<c<x

3) Central-difference formula for /(X )

h

f (x+h)—f (x—h)
2h

/ h2 1/ /1
f (x)+§ [ en+ 2|

4) Central-difference formula for "' (x)

x-h cl X c2 x+

h

f (X +h)-+f (x—h)=2 f (x)+2 %2' f ”(x)+%j [FOeD+ 92|
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4
% [f Gen+f P 2)] : this is error term ‘second order’ = O(h?)

Drop the error term then:

f(x+h)=2f )+f (x=h) h*
h? 6

f/(x) = [f (4)(C1) o f (4)(02)]

in this way, need x — h and x + h to approximate f "/(x).

3.1.2. Taylor’s Theorem for Function of Two Variables
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Suppose that f (x, y) and its partial derivatives of all order less than
or equal to n+1 are continuous on D = {(x,y):a<x<bandc <y <
d} and let (x4,v,) € D
for every (x,y) € D,3¢ between x and x,,n between y and y,

such that :[12][18]
d 1 (/0
Fen = fo+ (57) -0+ (35) (y—yo>+z{(a—£>o<x—xo)2}+

92 f 92 f 1| /n
2<6xay> (x —x0)(y — YO)+<ay >0(3’ YO)}+ +E Z(})

(5

ox"J dyJ

)(x—xo)" Iy — yo)! }"‘Rn(x»Y)

0

Where a subscript zero on f and its derivatives denotes evaluation at

(x0, ¥o) and R,, is the remainder,
n+1
1 n+1 ontif »
= &I D Z < j ) <—axn+1-f ayf> (x — x0)" I (y
“Jj=0 é&m

- }’O)j}

For example, the Taylor series for f (X, y) about (a, b) is:
fO,y)=f(a,b)+f (x— a)"'fy (- b)+ {fxx(x a)? +fxy(x_a)

R,(x,y)

(y - b) + fyy(y - b)z}

Where all the derivatives are evaluated at (a, b).

Now, consider a Taylor expansion of an analytical function u(x) and

X; = xo + ih, ti = to + jh,fori =0,1,..,N,j=01,..,.M

(x+ht) = ()+§hnan” 3.1.2.1
u(x+h,t) =ulx 1n!6x” (3.1.2.1)
n=
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et ht) = ()+h6u+h262u+h363u+h464u
wxTal) =ulx dx 2 0x%2 310x3 4! 0x*

+ (3.1.2.2)

Then for the first derivative one obtains:
u u(x +h) —u(x)

ox h

+ O0(h)

Drop the error term then:

Ju
a(xiiyj)
ulx;q1,v:) —ulx;, y;
_ ulrien ) —uCx ;) (312.3)
h
Is called a forward difference. And now
- =+ Yy 3124
u(x =u(x ( )nlax" (3.1.2.4)
n=1
e—ht) = u(o) h6u+h282u h363u+h464u+ 3125
wx—ht)=ulx dx 2 0x%2 310x3 4! 0x* (3.1.2:5)
So for the first derivative one obtains:
ou u(x)—u(x+h)
i A + 0(h)
Drop the error term then:
ou u(x;,y;)—ulxjyq,Vvi
(g, yp) = u(xi1y5) (3.12.6)

ax h
From (3.1.2.2) and (3.1.2.5)

6u_u(x+h,t)—u(x—h,t)

o _ 2
0x 2h +0(%)

Drop the error term then:
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() = ulxiss, )z;lu(xi'l'yj) (31.2.7)

The second derivative can be found in the same way using the linear
combination of different Taylor expansions. For instance, consider
ou (2h)?0%*u N (2h)3 03u

ube+2h6) =ul) +2han+ =55+ 3 50

(3.1.2.8)

Subtracting from the last equation (3.1.2.2) multiplied by 2,one get the

following equation

2 3

0“u J°u
u(x + 2h,t) — 2 u(x + 2h) = —u(x) + h? 2 + h3 EPel + (3.1.2.9)

Hence one can approximate the second derivative as:

0%u _ u(x +2h) — 2u(x + h) + u(x)

O(h
%2 2 +0h)
Drop the error term then:
0%u
2%+ 2h) - 2uCx + 1) + u(o)
u(x + —2u(x + + u(x
~ 2 (3.1.2.10)
Similarly
0°u
x?
u(x —2h) —2u(x — h) + u(x
N ( ) ( ) + u(x) 3.1.2.11)

hZ
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Finally, the second derivative reads

0%u u(xip,vi) = 2u(x;, yi) +ulxi_q, y;i
W(’%J’j) ~ GEBT) (hlz p) + ulxin )
Like wise

du u(xi, Yiz1) — ulx;, yi-

@(xi,yj) ~ G ]+1)2h GR7EY

0%u ) ~ u'(xi' yj+1) - Zu(xi; y]) + U(Xi,yj_l)

ay? (i) h2

3.2. Finite Difference Methods

(3.1.2.11)

(3.1.2.12)

(3.1.2.13)

The finite difference method is based on to the approximations that

permit replacing differential equation by finite difference equation. There,

finite difference approximations are algebraic in form, and the solutions

are related to grid points. Thus, a finite difference solution basically

involves three steps: -

1) Dividing the unknown solution u(x,t) into grids of nodes of the

domain.

2) Approximating the given differential equation by finite difference

equivalence that relates the solutions to grid points.

3) Solving the difference equations subject to the prescribed boundary

conditions and/or initial conditions.
3.3. Forward-Difference (Explicit) Method
3.3.1. Approximate the Solution Numerically

Consider the simple diffusion problem:

ou ou
—=f (x,t)+ K
ot (x.0) ox *

O0<x<L,t>0

(3.3.1.1)
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u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition t>0and0 <x <L

f(x,t), gx) , and L are given
Step 1. First introduce the points where we will compute the solution.
Unlike the situation with either IVPs or BVPs, the region over which we
solve the problem is two-dimensional. So our points have the form
(xi,t)) -
The step sizes are h = (L — 0)/ (N + 1) where N+1 is the number of
subintervals in the interval [0, L] and k = T /M where M is the number of

time steps.

Step 2. Evaluate the differential equation at the grid point (x, t) = (X;,t;)

to obtain
A
t U (x, t)
t @ o = &
' P e Y N (xi' tj )
Boundary. = S ~ s il Bound
conditions our} 'ary
b A AN PN conditions
£>0 o A== o
I' k
CF = 2 -
1

? [ ® o @ -

X
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Figure 3.1: The grid system used to find the numerical solution of the heat equation.

Xi:O+ihai:O,1,2, ...... ,N,h: L
N +1
= K] = 0020 M ok =

The above solid grid points are either initial or boundary points
where the solution is given. Initial, it is given by g(X;) . On the other
boundaries the solution in this example (3.3.1.1) is zero unless the
boundary conditions are not homogeneous. The other grid points are the
points at which the solution is to be approximated. We need to evaluate the
boundary and initial conditions at their respective grid points, but this will
be done later once we have taken care of the equation.

Step 3. Evaluate the equation at each interior point (X;,t;)

Where use the first order forward-difference approximation for the

time derivative U, (X;,t;) and 2" order centered difference approximation
u, (Xt =F (x;.t,) +u, (x;,t,) where 1=12.N,j=12..M (3.3.1.2)

for the space derivative U,, (X;,t;)
u(x;,t;,,)—u(x; ,tj)_£

u (X;,t;) = " > Uy (X5 8;) 5 €|:tj > tj+1:|
UXiLpt) =2 uXt) +uXty) 2
uxx(Xi’tj): J hz J J _E uxxxx(zuiﬂtj) s /ui e|:Xi—1 b Xi+1:|

Then we replace U, (X;,t;) and U, (X;,t;) in (3.3.1.2), then equation

(3.3.1.2) become :

u(x; b)) -ulx.t) k U(Kipot) =2 UKL UK 2

K 5 Un(Xi,ﬂj)=f (Xiatj)+ h? _E UW(Matj)

2
The truncation error z; ; :% un(xi,ﬁj)—:]—2 U, (,ui,tj)=0(k)+0(h2)
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k
After that we drop the truncation error term , multiply by k , let A= n?
and let Uj j be the value that satisfies the new difference equation :
Ui ja =4 Uy, +0-2) U +4 U -k £ (3.3.1.3)
vV i1=12,...,N

v j=0,12,..,M -1
U; , =g(x;) initial comdition

Uy,p;=U,; =0 boundary conditions

The derivation of the finite difference approximation of the heat
equation problem is now complete. As written in (3.3.1.3) the method is
explicit in the sense that U, ;,is given explicitly in terms of known
quantities.

3.3.2. The Stencil and Matrix Form for Explicit Forward-Difference

Method is:

i,j+l

i—1,j ui,j ui+l,j

u
Figure 3.2: The Stencil for Explicit Forward-Difference Method
We can write this equation (3.3.1.3) in matrix system to facilitate

numerical analysis:

vector of the unknowns at the time level j is

T
u, =[u1,j s Upyj s e, , uN,J} and

T
fJ:|:f1,] , f2,j 5 eeesesnaeens ) fN,j:|
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and the left hand side of equation (3.3.1.3) U, ,then equation depends on

jH

the three values U u u in the vector U, from time level j

i-nj oY oYiaj
.Therefore , for each time level j = 0,1, .....M — 1 we get the system

u,=A u, -k f,

[1-24 2 0 0 0 |
A 1=-24 2 0 0 0 0
0 A 1-22 2 0 O 0
Where A =| 0 0 A 1-24 0 0 4/1:%
0 0 0 : 0
0 0 0 0 . A
| 0 0 0 0 0 4 1-21]
The system is:
U] [1-24 4 0 0 00 0 Juyl| [f,]
Uy A 1-24 A 0 00 0 |lUy; f2’j
Us 0 A 1-22 A 00 0 U ; f37j
Ugju |=| O 0 A 1-21 0 0 |lUy; -k f47j
0 0 0 0
0 0 0 .. A . :
(Unju | L 0 0 0 0 0 4 I—ZJ,J_UN,J-_ _fN,J-_

Note that: The first and last equation U,; =Uy,,; =0(boundary

points).The time level j = 0 is used to approximate the solution at time
level j = 1. Then time level j = 1 is used to approximate the solution on
time level j = 2 and so on until the solution is approximated on all time

levels.
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3.3.3. Stability Analysis for Explicit Forward-Difference Method

(Fourier Stability Analysis):

Consider the simple diffusion problem:
o U o°U
—=f (x,t)+

71 (x,1) ;

u(0,t)=u(L,t)=0 boundary conditions

0<x<L,t>0

ux,0)=g(x) initial condition
g(x) , and L are given

In the method of separation variable one finds that the solution is

u(x, t)
= z A, e Mt sin(4,x) (3.3.3.1)
n=1
And
1
A, = 2] g(x) sin(A,x) dx (3.3.3.2)
0

To analyze the magnitude of the solution as time increases:

equation that arises for radioactive decay. The approach used for
partial differential equations is different, and instead we investigate how
the method does with a test solution. The problem considered is the
homogeneous version of the differential equation. So, in (3.3.1.1) we set
f (x, t) = 0. To explain how the test solution is selected, one sees in
(3.3.3.1) that the separation of variables solution consists of the
superposition of functions that are oscillatory in x. In deciding whether a
numerical method is stable we determine how well the method does with
such solutions. In particular, the start-off assumption to decide on stability

is that the solution of the finite difference equation has the form [12] [11]
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LetW, =e™i,] =v=1, X;=1 h r>o0

The form of forward is:

ui,j+1:ﬂ' ui+1,j+(1_2ﬂ‘) ui,j+ﬂ’ Uiy
Equation implies 1s
roxl r x4l roxl r Xl
Wi, et aw e a2 e e
r x;l r (x;-hl r x;l r (x; +hl
Wi, e w2 e -2 o ez e
rox;l rx | -r h | rox;l rx | rhil
Wi, et ae e g e e e
rox;l rox; | -r h 1 rhil
e L e R

W

j+ i

W, [z e " a2 42 e " '}

-r h

| r hil
W, =W, [z @  +e )+1—2/1J

Note that:

ol

e =cos O+ sin 6

e =cos -1 sin 6

-0l +e€|

2
Wi, =W, [2 2 cos(rh)+1-22]

cos 0=

r h

2

r h
24 cos(r h)y=21-42 sinz(T)

24 cos(r h)=24(1-2 sin’( )

r h
W. =W.|241-44 sinz(T)+1—2ﬂ}

i r h
W, =W, |1-44 sinz(T)}
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r h
77:|:1—4ﬂ, sinz(T)} then w i1 =W in

The factor 7 1is called the amplification factor since it is responsible

for ‘amplifying’ the solution as j increases (i.e. as time increases).
If‘n‘>1 ,then ) o0 & | >

For stability, require this factor to be a fraction or one:
‘77‘ <1

For the forward difference method, this means:

rh
{14/1 sinz(T)}

r h
|:1—4ﬂ, sinz(T)}

r h
-2< —4/1 Sinz(T) <0

<1

-1< <1

r h

The left inequality (0 < ) is always true

To right inequality is true regardless of r if we choose

_ r h
42 <2 since sin’(

)<1

Therefore, the method is stable under the condition:

A<t
2

Where A :F which implies the condition

2k <h?
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The explicit forward difference is conditionally stable with stability

condition
h 2

So, for stability of this method, the time and space step size must satisfy
the relation 2k <h?.

3.3.4. Error Analysis for Explicit Forward-Difference Method:

Error analysis provides a widely applicable framework for analyzing
the accuracy of difference method. This type of analysis can also be used if
the discrete equations are written in difference form. The result of the
analysis is an asymptotic estimate of the error in the method.

Knowing the exact solution gives understanding of the accuracy of
the method. From examining the symbolic expressions of the truncation
error we can add correction terms to the differential equations in order to

increase the numerical accuracy. [12]

U (X;,t;): be the exact solution at (X;,t;).

U; ; :be the exact solution of the difference equation.

u;; :be the computed solution of the difference equation using Matlab or

any computer software.

Then the actual error is:

e; ; =|exact —computed |

€i :‘U (Xiatj)_ui,j‘
Che :‘U (X)) —u; ; +uU; —ui,j‘

use triangle inequality |a+b|<[a|+|b]|

CH S\U (xi,tj)—uiwj‘+

Ui ; _ui,j‘
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e; ; <(trancation error)+ (rounding error)

Ei; =l (x.t)-u; |
E; ;: is the error due to truncating error terms in approximating derivatives,

assuming exact calculations which is the truncation error.

T ‘ :is the error in evaluating the difference equation due to using

i
finite machine which is the rounding error.
This means there are two sources of errors in approximation solution

(truncation and rounding) error.

A key issue is how accurate the numerical solution is. The ultimate
way of addressing this issue would be to compute the error lﬁ at the
mesh points. This is usually extremely demanding. In very simplified
problem settings we may, however, manage to derive formulas for the
numerical solution u, and therefore closed form expressions for the error
l: . Such special cases can provide considerable insight regarding
accuracy and stability, but the results are established for special problems.

[12]

The explicit forward-difference Method implies:

E . ju=4E.; +(-20)E, ; +AE, ; +k7
_ k h2 _ k h2
Tiaj _E utt(xi’ﬁj)_a uxxxx(:ui?tj)_o( )+O( )
E,; =Ex..; =E;; =0 (initially and boundaries conditions)

k 1
Assuming stability A :FSE and E, = max E,;| » where Ej;is

maximum error at the j" time level.

Eiju|=A[E;; |+ A-22)|E, ;| +2]E
E, . <AE, +E, —24E, +E, +kz,

i 41, i—1,j‘+kfw



30

The result is the recursive formula

Eijal<E; +kz,
Eijal<E;, +2kz,
Eijal<E;,+3kz,
Eija|SE;;+4ke,
‘Ei,j+1 <E,+(+Dkz,
But(G+)k=t, ,<T and E, =0, 0<t<T .Therefore ‘EHH‘ST T,

Now, 7, =O(k)+O(h?)
E, =0(k)+O(h?)
Hence, E; ; =u(x;,t;)—u; ; =0(k)+0(h?)

Means E, ; -0 as h—»0 and k -0

Which all of them means the above method is consistent.
3.4. Backward-difference (implicit) Method
3.4.1 Approximate the Solution Numerically
To solve 3.3.1.1 by this method, use 1% order backward-difference

approximation for the time derivative U,(X;,t;) and 2" order centered

difference approximation for the space derivative U,, (X;,t;):

0 1) =" ) Ky oy et ]
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u(Xi+19tj)_2 U(Xiatj)+u(xi—1atj) h?
H2 D Uoo (451;) » 4 €|:Xi—1 ) Xi+1:|

We can replace U (X;,t;) and U, (X;,t;) in (3.3.1.2), then

Uy (X;,t;)=

equation (3.3.1.2) becomes :

U £ )-uex ot ) k U082 UGGLE )UK _E) 2
( J)k( : )¥2 qt(xi’ﬂj):f(xiatj)+ : K : J _E l'loo«(/{atj)

2
The truncation error 7; ; :kE utt(xi,ﬁj)—T—2 U (yi,tj):O(k)+O(h2)

k
We then drop the truncation error term , multiply by k , let A = he
and let Ui ,j be the value that satisfies the new difference equation :

k f. . (3.4.1.1)

—ui’j_lz/l u —-(1+24) Ui ; +A Uiy — .

i-L]

Ui, =9(x;) initial comdition

Uy, =U,; =0 boundary conditions

N+Lj

The derivation of the finite difference approximation of the heat

equation problem is now complete. As written in (3.4.1.1) the method is

explicit in the sense that U, ;,,is given explicitly in terms of known

quantities.

3.4.2. The Stencil and Matrix Form for Implicit Backward-Difference

Method:
u . u

<ijl,j H I/J{l i+,j+
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ul ,j

Figure 3.3: The Stencil for Implicit Backward-Difference Method
For each interior point we get a linear equation which contains three
unknowns except near the boundaries and initial points U; ; , is known.
Can write this equation derived above (3.4.1.1) in matrix system to
facilitate numerical analysis:

vector of the unknowns at the time level j is

T T
u =[U1,j TR , uNJ} , fj:[fu I A , fNJ]

Au. = u, -k f. for j=12,.,M

]

Where U,=0(X)and A is the NxN symmetric tridiagonal matrix

given as ) .
1+24 -A 0 0 0 O 0
—A 1+24 -1 0 0 O 0
0 —A 1+24 -A 0 O 0
Where A = 0 0 A 1+24 0 0
0 0 0 0
0 0 0 . . —A

0 0 0 0 0 -1 1+24

The system is:



1-24 A 0 0 00 0 Ju,]| [u;, fij
A 1-24 A 0 00 0 |uy| |Uy fa)
0 A 1=24 2 00 0 [Uy]| Uy, fs
0 0 A 1=22 . 0 0 |Uy |={ug. |-k| Ty
0 0 0 0
0 0 0 0o . . 2

0 0 0 0 0 A4 1-24Juy | U] |fy]

3.4.3. Stability Analysis for Explicit Forward-Difference Method is:

Consider the simple diffusion problem:
o VU o°U
—=1 (X,t)+

71 (x.,t) 2

u(0,t)=u(L,t)=0 boundary conditions

0<x<L,t>0

u(x,0)=g(x) initial condition

f(x,t) , g(x) , and L are given

In the method of separation variable one finds that the solution is

u(x, t) = z A, et sin(4,x) (3.4.3.1)
n=1
And
L
A, = 2] g(x) sin(A,x) dx (3.4.3.2)
0

To analyze the magnitude of the solution as time increases:

equation that arises for radioactive decay. The approach used for
partial differential equations is different, and instead we investigate how
the method does with a test solution. The problem considered is the
homogeneous version of the differential equation. So, in (3.3.1.1) we set

(x, t) = 0. To explain how the test solution is selected, one sees in (3.4.3.1)
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that the separation of variables solution consists of the superposition of
functions that are oscillatory in x. In deciding whether a numerical method
is stable we determine how well the method does with such solutions. In
particular, the start-off assumption to decide on stability is that the solution
of the finite difference equation has the form [12] [11]
LetW, =e™i,[=v=1, X; =1 h r>o0

The form of backward is:
-U; ;=4 U ;-(1+24) u;;+4 u

i+1,]
Equation implies is

—\N._l er xil |:ﬂ, er X; il —(1—}-2},) er X ) er xi+lli|

]

Y
rox;l r (x;-hl r x;l r (x; +hl
e :Wj[ﬂ e -(1+24) e  +A4 e }

rox;l il —-r h Xl r

e :wj[/l e e a2 e M e

il rhi
€

rox;l -r h

e =W, erxil[ﬂ e

W,
W,
W, —+2p 42e "
W,

-r h 1 rhi
w4 e o vae

-r h 1 r hl
L R
Note that:
e? =cos O+ sin O
e =cos -1 sin 6
-0l ol

W, =W, [2 2 cos(rh)-1-22]

r h
24 cos(r h)=21(1-2 sinz(T))
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rh
24 cos(r h)y=241-42 sinz(T)

i r h
W, =W, |21-44 sinz(T)—l—u}

i r h
W . =W . -1- 41 sinz(T):|

1
n= h then w, , =w, »

1+44 sin’(——
sin”( 2)

The factor 7 1is called the amplification factor since it is responsible

for ‘amplifying’ the solution as j increases (i.e. as time increases).

If [7| =1 , then n >0 & joow

For stability, we require this factor to be a fraction or one:
<1

For the backward difference method, this means:

! <1

r h
ER

r h
1<1+42 sin2(T)

1+44 sin’(

r h
0<44 Sinz(T)

Which is always true, then the implicit backward difference is stable

without stability condition.
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3.5. Crank-Nicolson (Implicit) Method

3.5.1. Approximate the Solution Numerically

In numerical analysis, the Crank—Nicolson method is a finite
difference method used to approximate the solution of the heat equation
like parabolic partial differential equations. This method is a second order
method in time, the method was developed by John Crank and Phyllis
Nicolson in the middle 20th century. [13]

Crank-Nicolson method can be derived using the Trapezoid rule:

Consider the simple diffusion problem:

OV ¢ xys 2V 0<x<Lt>0 (3.5.1.1)
ot ox *

The first partial derivative of time y_is a function of time t and space x

,then can write the on form [12]
u, =F(x.t) (3.5.12)

Integrating both sides of (3.5.1.2) from t, to t,, gives

t]+l tj+1
Iut.dt = j F(x,t)dt
U t
tj+l
Ut ) —u (ot = | F(x, 0.t (3.5.1.3)
L
tj+l
Use Trapezoid rule to determine I F(x,t).dt

t;

tJH

F(x,t)dt = [F(x,t]+1)+F(x,tj )|+0(h?)

t;

L

+

F(X t)dt _%[uxx (X|9tj+l) F(X|7tj+l)+uxx (XM J) F(XM J):|+O(h )

t;
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Drop the truncation error term , and let Ui ,j be the value that satisfies the

new equation : [12]
t
|:ui+l,j+1 _mi JH +ui—1,j+1 _I_ui+1,j _mi,j +ui—1,j } K [f

j+

I HxHdt =—

k
2 v o gatfii ] G514

k
Put (3.5.1.3) in (3.5.1.4) and multiply by k , let 4 :F and let U, ,j be the

value that satisfies then gives new equation :

A k
Ui j —Ui ZE[UHIJH_2ui,j+1+ui—1,j+l+ui+1,j -2, ; +ui—1,j:|_5|:fi,j+l+fi,j:|

3.5.2. The Stencil and Matrix Form for Explicit Forward-Difference

Method is:

@
)
\—

O

i+1,j+1

¢ d ?

i-1,j ul,j i+l,]

u

Figure 3.4: The Stencil and Matrix Form for Explicit Forward-Difference Method
That Crank-Nicolson does so much better than either forward and

backward method is not unexpected, given its better truncation error.

T T
u; =[uu s Uy s s , uN,J} and f, =[f1’j N P e , fNJ

B+1)u,= (A+l)u, —k (f,+f) for j=02,,M —1

j+l

Where U, =0(X)



1+24 -4 0 0 0 O 0
-4 1+224 -4 0 0 O 0
0 -4 1+22 -4 0 0 0
AndB =| 0 0 A 1+24 0 0
0 0 0 . . 0
0 0 0 0 . -4
0 0 0 0 0 -2 1+24]
1-24 A 0 0 00 0 ]
A 1-24 A 0 0 0 0
0 A 1-22 A 0 0 0
A= 0 0 A 1-22 0 0
0 0 0 0
0 0 0 . A
0 0 0 0 0 A 1-24]
Chapter Four

Method of Line for Solving Parabolic Partial
Differential Equation
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4.1 Introduction

The method of line(MOL) is a method that enables conversion of
parabolic PDEs into sets of ODEs that, in some sense, are equivalent to the
PDEs. The basic idea behind the MOL algorithm is discretized along the
spatial coordinates only. This approximation is what we call semi
discretization. If we discretize in space and leave time continuous, a
system of ODEs is obtained.

Then, one of the way salient face of the MOL is the use of existing
established numerical methods for ODEs. The derivative of the parabolic
PDE problem is approximated by linear combination of function values at
the form grid points. On the other hand, arbitrary order approximations can

be derived from a Taylor series expansion, [15]

o0

U(x)= Z—(X _n’;o)n (U™ (x,))

n=0
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For parabolic PDE’s, an initial semi discretization in space results in
a system of ODEs. Solving this system of ODEs yields a discrete solution
along lines in time, which is why the way is called method of lines. We
exemplify the derivation of such ODEs with a finite difference
approximation of the spatial derivatives of the PDE.

The challenge is therefore to convert PDE to ODE’s system. Once
we have done this, we can apply any algorithm to the initial values of the
ODEs to calculate the approximate solution for the PDE (like RK4). Thus,
an important of the MOL is the use of current and well distributed ODE’s
methods, in other words, the basic idea of the MOL is to replace spatial
derivatives in the PDE with algebraic estimates. Once this is done, spatial
derivatives will not be explicitly mentioned in terms of spatially

independent variables in this problem. [15]

4.2. Conversion Partial Differential Equation to System of Ordinary

Differential Equations

This is done by introducing approximations for the x derivatives,
and then using some methods to solve the resulting problem. To explain
this procedure, we carry out the steps for the parabolic heat

equation(3.3.1.1), where the boundary conditions are u (0, t) =u (1, t) = 0.

u, (X;,t )y=u,(x;,t )+f (x;,t ) where i=12,.N, (4.2.1)
[17]
Step (1): Evaluate the equation at each interior point (X;,t.)

127]

step (2): Is to evaluate the equation (3.3.1.1) at X =X, , giving us



41
ou _ou

S (422)

Step(3): Use 2™ order centered difference approximation for the space
derivative U, (X;,t;)

UX; ot )2 Ukt )HIX Lt )

v 423

uxx(xi )=

L EX X s Xy Xyt

Step (4): Substitute the centered difference approximation for the spatial

derivative in (4.2.2), we obtain:
t)—=2 u(x;,t)+ulx; .t )
h2

u(x

i+

—f (x,,t )+O(h’) (4.24)

U, (X;,t )=
i=012,........,N

Step (5): Dropping the error term from (4.2.4) yields

d Ui, —2 U +U;

—U. =
dt h?

—f.(t )+OM?), fori =0,1,2, ... ........,N
(4.2.5)

Where u;(t)is the approximation of the implementation of

U (x;,t)and f, (1) = f(x,,t) . Collecting all u; together, this last result

can be written in vector form as

g_tui =Au —f (t ),fort <0 (4.2.6)

Where



2 1 0 00 0
s O] 1 =2 1 0 00 0
ul(t) fl(t) 0 1 21000 0
u(t)= 2 f(t)= 2 Azl 0 01 000 (4.2.7)
LY T P no 0 o0 0 0 -
' '(t) . '(t) 0O 0 0 0 . 0
=N - N 0 0 0 00 o1
0 0 0 0 1 -2
Step (6):The initial condition U (X,t) = g (X ) takes the form
T
9,
u)=| . (4.2.8)
L9

With (4.2.6) and (4.2.7) we have a system of ODEs.
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4.3. Temporal discretization

In our implementation, the governing PDEs are often integrated in

time with the classical second-order two-order Runge-Kutta (RK2)

method or the fourth-order four-stage Runge-Kutta (RK4) method.

Assuming that the governing equation is [15]

ouU |
[?]—R(U)

Where R(U) denotes the residual. [17]

(4.3.1)

The classical RK4 method integrates from time to (stepn) to to +h

(step nt+1)

through the operations

U,=u(x,t), k,=h RU,)

U1=U0+%, kiy=h RU))

K
U,=U,+=5 ko=h RU,)
KZ
U,=U,+—2%, k,=h RU,)

Un+1=U0+%[K0+2K1+2K2+K3]

(4.3.2)
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In order to save computational cost, sometimes the low-order accurate

RK2 scheme is preferred. The classical RK2 method integrates from time

ty(stepn)to ty+h (step n+1) through the operations
U,=u(x,t,), k,=h RU,)

U =U,+K, k,=h RU))

U,=U,+K, (4.3.3)

1
U, :5[U0+U2]
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Chapter Five

Pade Approximation Method



47

5.1. Introduction

There are several polynomials to approximate any continuous
differentiable function f(x) on a closed interval, Padé approximants are
rational approximations that can be constructed from the coefficients of a
given series. The Padé approximant often gives good approximation of the
function f(x), Padé approximants are used extensively in computerized
environments such as software’s like Maple or Matlab. The polynomials
are also easily evaluated at arbitrary values. But polynomial
approximations have a disadvantage in their tendency for oscillation.
This often causes error bounds in polynomial approximation to
significantly exceed the average approximation error, because error bounds

are determined by the maximum approximation error [1].

Let pu(x) is a rational function of degree N, and

n pi Xi
Py +PX +--+PX ;:‘

H(x) = =
O +qX +---+(Q, X Zq X

i=0

Where p(X) and CI(X) are polynomials whose degree n and m ,and

n(x)is the approximation function for f(x) on a closed interval [a , b].For
the interval containing zero, it is required to haveQ, #0in order to make
u(x) defined at zero, but can assume that 0, =1, for if this is not the case
we simply replace P(X) by P(X)/qg,and Qq(X) by Q(X)/q,.Every

polynomial is considered as a rational function if we set Q(X) =1,
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5.2. Technique Padé Approximation

If we consider that Padé Approximation way is the extension of

Taylor polynomial approximation to rational functions [1].

If we want to approximate the function f(x) on the period between a

and b, then consider the

F(x)-px)=f (x)— P& (5.2.1)
q(x)

f (X)—H(X)=f (X)q(X)—p(X)

522
q(x) (22

Now, the Maclaurin series for f (x ) = iai x ' ,then
i=0

Zax qu —pr

() =H00 = m, (5:2.3)

Now to calculate the values of the constants (;,0,,........... .0, and

N ,P, to obtain that f V’(x)—pV’(x)=0 for j=0,1,...,N .

For example the Padé approximation to the f (X ) =e* of degree 6

where n =3 and m=3 can be evaluated as the Maclaurin series for

2 3 4

x> X
f(x)= Z)ll_ 1+x +5+§+T!+ .......
2 3 4

so we have that e* =1+x +X— +X— +§‘+ ....... ,then
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1+x+x—2+x—3+x—4 x X6+ (140X +0> +0.%°)~( p, +pX + X +px°) =0
276 T 0 0 v R

And then we give:

XX X (140X +0% +0° ) =( P, + pX +PX +px°)
276 4 0 0" vl R

Use Maple to expand,

expand | [ 1+ X +£+X_3+£+X_5+X_6 (1+qx+q x2+qx3)
2 6 24 120 720 ! 2 3

when run this statement then the result is:

1+Hqu+¢f+¢f+¢ﬁ+¢£+¢£+%¢£+%¢f+%wf

-I-%q3x6-l-%q2x5-l-

Lo
T 0 T g 720
L S ST S S S B )
-|-120x+24x-|-6x-|-2x

1 1 1
q2x +— o q]x + 0 q3x

6
]
9 x'k7m)

1 1
I+ — g3
61 x'F24q x’*24

q]x + = q3x + == qu + =

720 720

By expanding and collection all of terms , coefficients of x ! for

j =0,1,2,3,4,5,6are zeros ,then



Lx':1+q,=p,

N o
I

) 1
J=Lx%qﬁw2+5=p2

j:3ax3:q3+q2+lq1+l:p3
2 6

. 1 1 1
:4,X4: + — + — +—:O
J d; 2Qz 6q1 24

. 1 1 1 1
=5x:=Q,+—Q,+—q,+—=0
J 2q3 6q2 24Q1 120
. 1 1 1 1
=6,X°: =0, +—0(, + + =0
J 6q3 24qz 120Oll 720

We can write the previous equation in a system as

1 0 0 -1 0 0 | -1
1 1 0 0 -1 0o | _ b
1 ql 2
- 1 1 0 0 ~1]] g 1
2 2 _6_
1 1 s |
- — 1 0 0 0 = 1
6 2 P, -
1 1 1 24
T A
1 1 1 -0 120
20 24 6 0 0 .
- - . 720 |

Solve previous system by Matlab then we get that

format rat

A=[100-100;1100-10;1/21100-1;1/61/21000;1/241/6 1/20
00;1/120 1/24 1/6 0 0 0];

b=[-1; -1/2; -1/6; -1/24; -1/120; -1/720];

r=invl AY¥h
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Then,

1 1 1 1

q, = 79, q3:_m

P =120 2°1 T 1

P, =1 p"l'p =T
0 PrT P T g

Then the (3,3) Padé approximation for f(x)=e* of degree 6 with n=3 and
m=3 is

T+ iy 4 Ly Ly
e¥ -2 10 120
B 1 1 1
X2 3

- —X 4+ —X"—=—-X
2 10 120
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5.3. General Padé Approximants

Padé approximation 1s a rational approximation where Padé

approximant to the function f (€)on interval [a.b ]is the quotient of two

polynomials P, (f)and of degree k and Q _(#)of degree x. So we

denote this quotient

Mk,m(é’):pk—?mw“m“) (5.3.1)

m

But if K =M jthen will be called M, (0) is a diagonal Padé

approximation[2].

Padé approximant M,  (€)will be evaluated for f () =e’as the

following [3],[4]

& mAk -k
Pk(ﬁ)—jz_;, (m+k)!j!(k_j)!e (5.3.2)

And

& (m+k—j)m!
Qmw)-; (m+k)!ji(m—j)!

(-6)’ (5.3.3)
Now, we can write, the Padé approximation
e’ = RO (5.34)
Q.(0)

5.4. Convergence of the Padé Approximants

Following the approach used by Padé and by each successive
generation of mathematicians, we shall examine by means of specific

examples how approximants imitate the analytic structure of the functions
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they represent. Then, offer a brief overview of the convergence theorems

that have been proven.

If we substitute (k ,M) , Produce the Padé table

Table 5.1: The Pade’ approximation table

kK /m 0 1 2

0 - (1)) (0.2)
1 (1,0) (1,1) (1,2)
2 (2,0) 2,1) (2,2)

M, . (0)is called the Padé approximant of order (k + m)to e and has

a leading error term of order (k +m+1).

1+p@+-+p6"

+C
1+q,0+---+q,0"

8k+m+1 [1 1]

In general M (X ) =

k +m+1

5.5. Padé Approximation (1,1) For Solving Parabolic Partial
Differential equations
For Padé approximation (1,1) where k =1 and M =1 using equation

(5.3.2) and (5.3.3) we get that
! : 1! 1!
P(o)=y, DI '—[ 25U | I el}zule

o A=) 201! 210! 9
1 -
2-pit i 21! o, Il 1
0=, O =5 1--6
° @ JZ; (2)!j!(2—j)!( ) {2!><0!><1!( )+ 211k 1,( )} 5
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Using Taylor series,

ut+k)=u(t)+K) U/(t)+(k2?2 u”(t)+(1;)'3 u’@cl) ccleftet+k] (550

It is possible to write the previous equation on the form

u +k)EU(t)+kDJ(t)+k?T Du()

So
k2
u( +k);u(t){1+kD +2'D2}

And
ut+k) = u() e® (5.52)

Where D is the differential operator and is a step size distance
between any sub interval. Now using the relation in the above relation and

e'® can be replaced by Padé approximation with operator D , get that

kD
1+—
ut+k) = k% u(t)
11— ———
2

But when u(x) is a vector, this is becoming

kD kD
[I —2} uct+k) {l +2} ut) (5.5.3)



55

Now consider the following given PDE with the conditions

ou o°u
—=f (x;,t)+
ot (Xi.t) ox ?

0<x<L,t>0

u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition

g(x) , and L are given

(5.5.4)

Assume that the boundary value associated with (5.5.3) are zero, and

by (5.5.4) the (2,2) Padé approximant approximates

ut+k) = u@) e

And substituting value of e"Cthen

1+lkD

-0
2

ut+k) = u()

Equation (5.5.6) in vector — matrix form becomes

1 1
(I—Eijua+k)—£l+§iju¢)

Then on discrete points t;,

(I—%kD)u¢j+ky{}+ékD)uap i =012...

(5.5.5)

(5.5.6)

(5.5.7)

(558)



Where u(t; +k)=

1,j+1
2,j+1

3,j+1

| 7 N-Lj+l |
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and matrix D=—

1
h2

o O O

0 01

Applying them on the discrete point where t; =t; + jk = jk

I—lkD):
2
(1 0 0 0 0 O]
O 1 0 0 0 O
0 0 1 0 O
o o0 . 0
o o0 o . . O
0 0 0 0 0 1
Let be rz% then | | — —
IL+r —1—r 0
2
1 1
-—r 14+r —-—=r
2 2
0 —1—r 1L+
2
0 0 —Lr
2
0 0 .
0 0 0
0 0 0
0 0 0

S O o o =

oS O O =

0 0 0

1 0 0

2 .0

0 .

0 0 1

0 0

0 0

0 0

0 0

0 —Lr
2

- o O O O

-2

- o O O O
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Now

I +1—kD j =
2
‘1T 0 0 0 0 O] -2 1 0 0O O 0 |
O 1 0 O o0 o 1 -2 1 0 O 0
0O O 0 O N k 0 1 -2 0
o o0 . 0 2h?] 0 0 0
o 0 o . 0 0 0 ) 1
00 0 0 0 1] 0 0 0 0 1 -2
And then
Let be I’=L2 then(| +lij=
h 2
_ | _
1 -1 —r 0 0 0 0 0 0
2
1—r 1-7r 1—r 0 0 0 0 0
2 2
0 1—r l1-7r 1—r 0 0 0 0
2 2
1 5 1
0 0 —r 1-r —r 0 0 0
2 2
0 0 0
0 0 0 0
0 0 0 0 1—r
2
1
0 0 0 0 0 0 Er 1—-7r

Finally, after substituting all the previous matrices in (5.5.8),

produce the system:
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B 1 ] 1,j+1
1+r —Er 0 0 0 0 0 0
1 1 Us s
——r 14r ——r 0 0 0 0 0
2 2 4
1 1 3,j+1
0 ——r 14+4r —-——r 0 0 0 0 u
2 2 4,i+1
1 1
0 0 -——r 1+r ——r 0 0 0 =
2 2
0 0 0
0 0 0 0
1
0 0 0 0 ——r
2
0 0 0 0 0 0 —lr 1+r
i 2 i Uo ..
N-Lj+1 |
i 1 11 Yuj
l-r —r 0 0 0O 0 O 0
2 UZ,J
ey Yy 0 0 0 0 o s,
2
0 lr 1-r lr O 0 O 0
2 2
0 0 lr 1-r? lr 0 0 0 =0.1
2 2 J - 9Ly
0 0 0 0
0 0 0 0 lr
2
1
0 0 0 0 0O 0 —r 1-r7r
L 2 . _uN—l,j_
1 1 1
- r|:ui—1,j+1:|++(_§r)|: i+1,j+1:|: r[ui—11:|+(1 r)[u. J:|+Er':ui+l,j:|
for 1 =2,3,4,............. N =1, J=123,.......... ,N—1

The previous linear system equation can be solved using LU-

Decomposition to get the approximated solution.
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5.6. Padé Approximation (0,2) For Solving Parabolic Partial

Differential Equations

For Padé approximation (0,2) where k =0 and M = 2 using

equation (5.3.2) and (5.3.3) we get that

P,(@)=1
& - j_{ 22 X2 Ok 2}_ R
QZ(Q)_,; oie-p 7 2™ ™ Tz 0439
So
el = ! 1
1-0+ -6°
2

Using Taylor series,

u(t+k)=u(t)+(k) u/(t)+(k2?2 U//(t)-l-(l;): u”cl) «cleftct+k] (5.6.1)

It is possible to write the previous equation (5.6.1) on the form

u(t +k);u(t)+kDu(t)+l;D2u(t)

So
k2
u( +k);u(t){1+kD +2'D2}

And
ut+k) = uc) e (5.62)

Where D is the differential operator and a step size distance between
any sub interval. Now using the relation in (5.5.2), which can be replaced

by Padé approximation with operator D, get that

ut+k) = ! ] u(t)
1—(kD)+5(kD)2




60

But when u(t) is a vector, it becomes

[1—(kD)+;(kD)2} utt+k) =[1] ue) (5.6.3)

Now consider the following given PDE with the conditions

2

sTu:f(xi,t)+2u2 0<x<L,t>0
X

(5.6.4)

u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition

g(x) , and L are given

d
After we convert (5.6.4) to be system &u‘ =Au—f (t ),for t <0, the

(2,1) Padé approximant approximates

ut+k) = u@) e® (5.6.5)
And substituting value of e'Cthen

1

ut+k) = u() ] (5.6.6)
1—(kD)+§(kD)2
In vector — matrix form (5.6.6) becomes
(l—(kD)+%(kD)2j ut +k)= ue) (5.6.7)

Then

(l—(kD)Jr%(kD)zj ug, +k)= ug,) j=012... (568)
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0 00 O
1

1

—2

000

1
0 O

-2

0 0 0 01

1
n

and matrix D

ul,j+1

u2,j+l

u3,j+1

Ui

Where u(t; +k)

Now

(kD)’
2

1-(kD)+

-2

0 0 0 0 O
1

1

0

0 0 0 O

0
0 0 0 0 O

1

Letbe I = 2 then
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0007}
2

100000O0OO|[=2r T O O O OO O]
01 000O0O00O0 ro-=2r r O 0 00 O
0O00100O0O0O O r =2r r 0 00 O
0O00010O0O0O O 0 r =2r r 00 O
00001000_000 r =rr 0 O
00O0O0. 0 O O 0 O 0
0000O0. . O O 0 0 O A |
00000001/[0 0 0 0 0 O0r —=2r
(572 4> I 0 0 0 0 0|

“4r* 6o 4> I 0 0 0 0

Ir’ —4r* 6 4> Ir* 0 0 0

1l 0 1r* —4r* 6 —4> I 0 0

20 o ¥ . . . 0

0 0 0 . . . . Ir?

0 0 0 . . . —4r?

0 0 0 0 0 I -4’ x°
Then




2

Lored o r 0 0 0 0 0
2 2
r.2
—-2r*  14+2r+3r* o -2r? 5 0 0 0 0
r’ 2 2 2 r’
— —-2r 1+2r +3r —+=2r — 0 0 0
2 2
r2 r.2
0 — =2 142r+3r° —o-2r* — 0 0
2 2
0 0 0
2
0 0 0 r
2
0 0 0 0 . o 14243 -2
2 2
0 0 0 0 0 r2 o 1o

Finally, after substituting all the previous matrices in (5.6.9), we produce

the system: i )
LA CE 0O 0 0 0 o || |4
2 2 U,
N r22 0 0 0 o || ||
3 3 s
— 4 2 X - 0 0 0 U
2 2 4
r r :
0 > TI-xr a3y X N 0 0 = ]1=Q12..
0 0 0
0 0 0 E
2
0 0 0 0 R T S I o
0 0 0 0 0 ﬁ I 4x i
L 2 210 %}H_ _%J_

Or can be written as

1 2 2 2
Er |:ui72,j+1 +ui+2,j+1:|_(r+2r )':ui—l,jﬂ +ui+1,j+1:|+1+2r +3r |:ui,j+1:|:ui,j



for 1=234,........ N -1, J=1L23,....... ,N—1

The previous linear system equation can be solved using LU-

Decomposition to get the approximated solution.
5.7. Padé Approximation (2,0) For Solving Parabolic Partial
Differential Equations

For Padé approximation (2,0) where k =2 and M = 0 ,using equation

(5.3.2) and (5.3.3) we get that

2 1\ . | | |
P0-3 -jn! 0,{ 2 oo, B2 0x2 (0)2}:1%4102

iz O'e-)) 202! 211! 220! 2
Q=1
So

140+ 10° |
e’ = 2 _—1+60+-6°

1 2

Using Taylor series,

u(t+k)=u(t)+(k) u/(t)+(2)'2 u”(t)+(1;)'3 u”cl) «cleftct+k] (5.7.0)

It is possible to write the previous equation (5.7.1) on the form

ut +k)EU(t)+kD.l(t)+l§ Du(t)

So
k2
u( +k);u(t){1+kD +2'D2}

And
ut+k) = u() e (5.72)
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Where D is the differential operator and a step size distance between
any sub interval. Now using the relation in (5.5.2), which can be replaced

by Padé approximation with operator D, get that

ut+k) :{1+(kD)+(k2)2} u()

But when u(t) is a vector, this is becoming

uct+k) :[I +(kD)+;(kD)2} ut) (5.7.3)
Now consider the following given PDE with the conditions
2
N _fx, )+ 28 0<x<L,t>0
ot X
(5.7.4)

u(o,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition
g(x) , and L are given

After converting (5.7.4) to be system ;ui =Au—f (t ),for t <0, and by

(5.7.4) the (2,0) Padé approximant approximates
ut+k) = u@) e (5.7.5)

And substituting value of e'Cthen

ut+k) = ug) [| +(kD)+%(kD)2} (5.7.6)

Then
u(tj +k):(| +(kD)+%(kD)2j u(tj) j=012.. (5.7.7)
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1 000 0]
21 000
2 .

2
1

110

00
0

1

0
0 0 001

-2

o 0

D=

and matrix

u1,j+1

u2, j+

u3, JH

| Uneju

Where u(J[J' +k)

Now

1 2 )
5<kD)J—

0

| + (kD) +

0

0

0

1

0O 0 0 O

1

Letbe I = 2 then



1+(kD)+

S O O O O O O =
S O O O O O = O
S O O O o - O O

N | —

S O O O O

(1+(kD)+

(kDY

S O O O = O O O
_ o O O O

o O

S O O O

(kD)*

N——

S O O O O

j:

S O O O O
_0 O O O O O O

67

S O O =

oS O

Ir?

0O 00 O
0O 00 O
0O 00 O
r - oo O
=2r r 0 O
. 0
0o . r
0 0 r 2r
0 0 |
0 0
0 0
0 0
0
1r?
. —4r?
—4r*  5r?




2 2
o2 g r
2 2

r-2r>  1-2r+3r* r-2r’

r2
— r—2r>  1-2r+3r’
2
2
0 r r-2r’
2
0 0
0 0
0 0
0 0 0

0 0 0 0
2
r 0 0 0
2
2
O, Y L 0
2
r.2
1-2r+3r* r=2r* — 0
2
0 . . 1-2r+3r?
2
0 o = oo
2

—-2r?

1-2r +—

5r?

Finally, after substituting all the previous matrices in (5.7.7), we produce

the system:
i 1—2412 r-or r
2 2
O ey L o
W P
U — r-ox  1-2r+3%°
4 2
= 0 r r-
2
0 0
0 0 0
0 0 0
0 0 0
| Y| L

Or can write as

1

0 0 0 0 0
r 0 0 0 0
2
r-or r 0 0 0
2
r2
-2r+3% r-2r 3 0 0
0
r
2
0 B iy OV R o
0 0 f r-x 1—2%2

U;
Uy
W

Y]

j=qL2.

2 2 2



for 1=234,........ N -1, J=1L23,....... ,N—1

The previous linear system equation can be solved using LU-

Decomposition to get the approximated solution.

5.8 Padé Approximation (2,1) For Solving Parabolic Partial

Differential Equations

For Padé approximation (1,2) where k =2 and H =1,using

equation (5.3.2) and (5.3.3) we get that

2 — " . Ik 2! 2! Ix 21
PO)=3 (3_ j).2: g :[ 32y, 22 I Hz:|:1+29+1€2
SOONJI2-) 3x0K2! 3kl 320! 376
‘ 3—- ! i 31! 211! 1
QI(Q)ZZ %(—49)J Z[—(—9)0+ (—49)1}:1——9
= 3a-j 301! 310! 3
So
1+20+ 19
el — 3 6
a 1
1--6
3

Using Taylor series,

u(t+k)=u(t)+(K) u/(t)Jr(k;2 u//(t)+(1§)'3 u”’l) «cleftet+k] (5.8.1)

It is possible to write the previous equation (5.8.1) on the form
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u( +k);u(t)+kDu(t)+k7?D2u(t)

So
k2
u( +k);u(t){1+kD +2'D2}

And
ut+k) = uc) e (5.82)

Where D is the differential operator and a step size distance between
any sub interval. Now using the relation in (5.8.2), can be replaced by Padé

approximation with operator D, get that
2
1+ 2(kD) N (kD)

ut+k) = 3 6 u(t)

But when u(t) is a vector, it becomes

[I —@} uct +k) {l +2(k3D)+(k[6))2} u() (5.8.3)

Now consider the following given PDE with the conditions

2
8_u:f(xi,t)+6u 0<x<L,t>0
ot ox
(5.8.4)

u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition

g(x) , and L are given
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After converting (5.8.4) to be system ;ui =Au—f (t ),for t <0, and by

(5.8.4) the (1,2) Padé approximant approximates
ut+k) = u@) e (5.8.5)

And substituting value of e'Cthen

1+@ + (kD)2

ut+k) = ug) 3 ©) 6 (5.86)

3

In vector-matrix form (5.8.6) becomes

2
(I -(kD)j U(t+k)=(l L0, DY j u(t) (>83)
3 3 6
Then
2
(| _(kD)j ug, +k)=(| +@+(kD) j u;) j=012,.. (5.89)
3 3 6
[ U | 21 000 0]
Uyin I 21000
Us iy 101 2.00
Where U +K)= | and matrix D:ﬁ 0 0 0
000 .. 1
| Unjor 00 001 2]

Applying them on the discrete point where t; =t,+ jk = jk
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o —~ 9 o o
141000
Y~ o o o o
L |
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Xy |
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o o o o P
g
o o o O en
)
o R - o o |
SO~ O O O o
=
—_ O ©O © © © 5}
| _m
I .
- N X | —
S| en -
p— )
_ et
~—
— O
N —

Now
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1

0

0
0

2k

3h?

0

0

And then

)
1 0000O0OO
01 00O0O0O0O©O
001 0O0O0OO0O
00 01O0O0O0OPO
00 0O0T1O0O0DPO

0 00O

(kD)
6

+

2(kD)
3

| +

0 00 O
0 00 O
0 00 O
1

-2 1 0 O

0 0
0

—2

1

-2

1

-2

-2
1

0

00 O

0
0

1

0

0 0 01 2

0

2k | 0
3h?

0

0 00 0O

000 0O0O0T©O0!1
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5 -4 1 O O O O O
-4 6 -4 1 O 0 0 O
1 4 6 -4 1 0 0 O
k2] 0 1 4 6 4 1 0 O
6h*| 0 0 1 0
O O O 1
O 0 o0 O —4
0 0 0 0 1 -4 5|
2
Let be F=L2 then (I +2(kD)+(kD) J:
h 3 6
1—ﬁ 57r2 g—z—rz LZ 0 0 0 0 0
3 6 3 3 6
g—z—rz 1—£+ 2 g—z—rz L2 0 0 0 0
3 3 3 3 3 6
I’: g_irz 1_£+ 2 ﬁ_zirz Lz 0 0 0
6 3 3 3 3 3 6
0 LZ £_27r2 _£+ 2 £_27r2 Lz 0 0
6 3 3 3 3 3 6
0 0 .
0 0 0 r
6
0 0 0 0 g—z—rz
3 3
0 0 0 0 0 L2 g—z—rz —ﬁ S—rz
L 6 3 3 3 6

Finally, after substituting all the previous matrices in (5.8.9),

produce the system:



1+23r _; 0 0 o 0 0 0 Uy o
-r 2r -r u..
3 3oz 0 0 000

_ _ u, .

0 —r 1+27r i 0 0 0 0 3,j+1

3 u4,j+l
0 0 LI T A R R

3 3 3 -

0 0 0 L P e S

3 3 3
0 0 0 0 0
0 0 0 0 0 -r

3
0 0 0 0 o o " 142" !
I 3 3| L U]
2 2 2 n

prpr e r 0 0 0 0 0 [[u]

36 3 3 6 i
2 2 2 Dj
rro AT 0 0 0 0
33 33 6 L
2 2 2 2
r g_Zﬁr l—£+l’2 g_g r 0 0 0
3 3 0 3 33 6
r’ r 2 4 o, 2 27 :
0 roFax T rrro, 0 _
6 3 3 3 3 3 6 =012
0 0 0
2
0 0 0 r
6
2
0 0 0 0 r 2
33
2 2 2
0 0 0 0 o LA A
6 3 3 3 6]

Or can be written as
1 2
Er[ui—l,jﬂ +ui+1,j+1:|+1+§r|:ui,j+1:|:

%rz[ui_z’j +ui+2,j}+§l‘ —%rz[ui—l,j +ui+1,j:|+(1_gr + rz)[ui,j]



for 1 =2,3,4,............. N -1, J=12,3........... ,N—-1

The previous linear system equation can be solved using LU-

Decomposition to get the approximated solution.

5.9. Padé Approximation (1,2) For Solving Parabolic Partial

Differential Equations

For Padé approximation (2,1) where k =1 and M =2 using
equation (5.3.2) and (5.3.3) we get that

1 | . Ix 1! Ix 1!
P@O)=) G- 6”=[—3‘X1‘ g+ 2L el}zule

,:0 G)jla—=j)! 301! 310! 3
G-j2 ,[3&2 o 22 I 2} 2 1
=y = + =1--6+-&
0 = 0)Njl2- j)!(ﬂ 3b<0b<2'(_@ 3b<1b<1!(_® 3b<2b<0!(_@ 36
1+—9
So, &' = ———
1-Z6+-6°
3 6

Using Taylor series,

/ (k)2 1/ (k)3 11
ut+k)=u®)+k) u (t)+7 u (t)+? u”’cl) «cleftet+k] (5.9.1)
It is possible to write the previous equation (5.9.1) on the form
k2
u( +k);u(t)+kDu(t)+5 Du(t)
So
k2
u( +k);u(t){1+kD +2'D2}

And
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ut+k) = u@) e*® (592)

Where D is the differential operator and is a step size distance between any

sub interval. We get that
I+ (kD)

ut+k) = )

_2(kD) (kDY y
3 6

1

But when u(t) is a vector, this is becoming

P._%ﬁé)+(sz} uct +k) =[|+9%1q u(t) (5.9.3)

Now consider the following given PDE with the conditions

2

ST”:f(xi,t)Jr‘;”z 0<x<L,t>0
X

(5.9.4)

u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition

g(x) , and L are given

After converting (5.9.4) to be system gtui =Au—f (t ),for t <0, and by

(5.9.4) the (2,1) Padé approximant approximates

ut+k) = u) e (595)

And substituting value of e'Cthen
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1+@
ut+k) = u()

. (5.9.6)
|_2D) (D)

3 6
2
Multiplying both sides (5.9.7) In the amount (I - 2(k3D) + (k[6)) j, this is
becoming
2
I—@+(kD) u(t+k)=(|+(kD)J uc) (5.9.8)
3 6 3
Then
2
I —@+(kD) ut; +k):[l +(kD)J ut;) j=0,12,.. (5.9.9)
3 6 3
_ - 21 0 00 O]
ul,j+1
1 21 00 O
o 110 1 2.0 0
Where it +k)= Us;jo | and matrix D:F 0 0 0
0 0 0 . 1
Ui | |0 0 0 0 1 2]
Applying them on the discrete point where t; =t + jK = jK
2
|_2(kD)+(kD) _
3 6
1 0 0 0 0] -2 1 0 0 0 |
0 1 0 O 0 1 -2 1 0 O
o o0 1 . 0 O 2k | O 1 -2 0 0 N
o o0 . 0 3h?| 0 0 0
0o 0 0 . 0 0 0 0 : 1
00 0 0 0 1] 0 0 0 0 1 -2]
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And then

)

0 00 0O0O0OO

1

0
0 0 0 1

(kD)
6

+

2(kD)
3

0 00 O
0 00 O
0 00 O

0
0

-2

1

-2

0
0

0

2k | 0
3h*

1

0

0 000 O0O

1

0 00 0O

0 00O

1

0 00

0 00O
0 00O

0 00 0O

0 00 0 O0O0O0°1

)

(kD)
6

+

2(kD)
3

(._

Letbe r = 2 then



4 S 2 2r° r?
+—+— — —
3 3 3 6
2r 2r’ &4 , 2r 2r
—— =+ —
3 3 3 3 3
r’ 2r 2t &,
— ——— l4+—+r
6 3 3 3
2 2
0 rooz2r
6 3 3
0 0
0 0 0
0 0 0
0 0 0
Now
1 0 00
01 00
kD 0 0 1
[I +(—)j=
3 0 0 .
0O 0 0 .
00 00
k
Let be F=F then (| + (k?)

- QO
— O O O O O

S O o O

0 0
0 0
0 0
L
6
roor oo
6 3 3
1 0O O
-2 1 0
1 2
0
0O O
0




22T 0 0 00 0
33
rogrr 0 0O 00 0
3 3 3
o T 1T 9 00 o0
3 33
Y| o o L 12E T o0 o
| +—= |= 3 3 3
3 r 2r r
o o o T ATy
3 3 3
o o0 0 0 0
o o0 o0 0 0 r
3
o o o o o o
I 3 3

Finally, after substituting all the previous matrices in (5.9.9),

produce the system:
& 50 o a0 r - 7

+—+ = —_ 0 0 0 0 0 ul,j+1
376 3 36
y 2 p 2 2
e N S . S 0o 0 0 0 Uy,
3 3 3 3 3 6
2 K 2 K 2 2 U
L T ST . 0 3
6 33 3 3 3 6 .
N I S W .. V
0 r =1, Yp=rr 0
6 3 3 3 3 3 6
0 0 . 0
2
0 0 0 r
6
v 2
0 0 0 0 2
E
2 2 2
0 0 0 0 o DX A o,
I 6 3 3 3 6. :
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2T 0 0 o0 o |[u]
r3 32r r s
9 0 00 o0 ||u,
3 33 J
o " 2T 9 00 o
3 303
r 2r r
o o L =T 90 o .
3 3 3 1 j=012..
o o o T 12Ty o
3 3 3
O 0 0 0 0
o 0 0 0 0 r
3
r 2r
00 0 000 T T fuy,)

Or can write as

él‘z[ui_z’j+1 +ui+2,j+1]—§(r2 + r)|:ui—1,j+1 +ui+l,j+1:|+(r2 +gr +1)[ui,i+1} -

1

gr[ui_l,j Ui ]+(l_§r)[uiaj :|

for 1=234,... N -1, j=123,..... ,N—1
The previous linear system equation can be solved using LU-
Decomposition to get the approximated solution.

5.10. Padé Approximation (2,2) For Solving Parabolic Partial

Differential Equations

For Padé approximation (2,2) where k =2 and M =2 using

equation (5.3.2) and (5.3.3) we get that
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2 —\ . | 2! 2
(4-j)2! g :[ a2l gy, 32, 22 }

PZ(H):Z : : + + Hz :]+l@+i€2
o @@= 402! 411! 420! 2 12

Lo@-prr { 42 o 32 2K 2:| 1,1
_ 0T )s = + + =1—*9+*92
Q© j%: (4)!]!(2—])!(_@ 4!><Ob<2!(_6D 4b<1b<1!(_@ 4b<2!><0!(_@ 2 12
So
1+ 1—9 + 1—02
el — 2 12
RN NRLAVE
2 12

Using Taylor series,

ut+k)=u)+k) u/(t)+(k2?2 u”(t)+(l;)‘3 u”’cl) «cleftet+k] (5.10.1)

It is possible to write the previous equation on the form

u +k);u(t)+kDJ(t)+|§ Du(t)

So

2
u(t+k);u(t){1+kD +k2'D2}

And
ut+k) = ue) e (5.102)

Where D is the differential operator and a step size distance between

any sub interval, get that
2
1+ kb + (kD)

Ut +k) = k%) (klg)z u(t)
I——+
2 12
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But when u(t) is a vector, this is becoming

{I —k—D+M} ut+k) :{I +k—D+M} u() (5.10.3)

2 12 2 12
And
ko kD)] . . _[, kD (DY
{I + 5 + o } ut-k) _{I 5 + o } u() (5.10.4)

Now consider the following given PDE with the conditions

2

ST“:f(xi,t)+§”2 0<x<L,t>0
X

(5.10.5)

u(0,t)=u(L,t)=0 boundary conditions

u(x,0)=g(x) initial condition

g(x) , and L are given

After converting (5.10.5) to be system ;ui =Au—f (t ),for t <0, and by

(5.10.5) the (2,2) Padé approximant approximates
ut+k) = ue) e (5.106)

And substituting value of e'Cthen

1+ kD +l(kD)2
12

1

ut+k) = u() ;
1-—kD +— (kD)
2 12

(5.10.7)

Equation (5.10.7) in vector — matrix form becomes



86

1 1 1 1
| —kD+— (kD) | ut +k)={ | +-kD+—(kD) | utt 5108
(2 12())()(2 12()j() (5103)
Then on discrete point t;
(I JkDQ(kD)Z] ut, +k):(l JkD#(kD)ZJ ut,) j=012.. (5109)
2 12 2 12
_uLj+l ] 21 000 0
U, 1 21000
Uy D 110 1 2 .00
Where ut; +k)= and matrix — Rl 0 0 0
0O 0 0 . .1
Un | 00 001 2]

Applying them on the discrete point where t. =t,+jk =]k

ko +1(kD)2):

212

100000 [21 000 0] 21 000 O])
010000 1 2100 0 1 2100 0
001 .00 k[0 1 =2.00]|«k}1/l0 1 2.0 0
00 .. .0/ 200 0 . 0| 12|20 0 0
000 . .0 000 .. 1 000 .. 1
000001, |0 0 001 -2 0 0 001 =2

And then



11
| — KD+ =
: u(lofj
10000000
01000000

00100000
00010000

00001000
0000...0
00000. .0

0000000 1]

k 1 1
Letbe ' =— then - _ 2
h2 (I 2kD +12(kD)j

Now
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e drtle 1p 0
2 2 3 12
Ao e pede Al dp
2 3 2 2 3 2
1 Ldp pede e
2 2 3 2 2 3
o e dele e
2 2 3 2
0 0
0 0 0
0 0 0 0
0 0 0 0

0
0
0
0] K
0
0
1

0

1p
12

1 1
2 3

5410000

46 41000

1464100
01 46410

oS O o O
S
S
(e

0 0 0

—1r2 0 0
12
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(kD)2j=

1
12

kD +
O 0 0 0 O

1
I +—

2

1

1

0

0O 0 0 O

0
0 0 0 0 O

1

And then
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(kD)2)=
0000000

1

0
0001 0O0O00O0

0000T1TO0TO0ODPO

0 00O

1
12

| +lkD+
2

0 00 O]

0
0

1

-2

=)

0 00 O

1

-2

0 00 O

0 0 O
-2 1 0 0

1

1

0 0 0 1 -2

0

0

| 0

1

0

0 000 OGO

1

0 00 00O

0 00O0O

0

0 0 O
0

1

4 1 0
4 6 -4
4 6
4

1

0

4

4 6

1

1

0

1

0

000 0O0O0O0O°1

12h*

1 2
E(ko)j—

kD +

1
2

hen(| +

K
:th

Letbe r



reor e e 0 o0 0 0
2 2 3 12
7r_1r2 1—r-|*1r2 ,lr_lrz irz 0 0 0 0
E 2 23 D
lrz fr-lrz 1—r4ﬁ1r2 Jr-lrz lrz 0 0 0
D 3 2 23 D
0 le L e e L lp 1y 0
0 0 0
0 0 0 5"
12
0 0 0 0 *lr*lrz
2 3
0 0 0 0 0 1p L dp 30

Finally, after substituting all the previous matrices in (5.10.10),

produce the system:

o e
2 3
RN AT
2 3 2
1o 1 1o
12 2 3
o lr
12
0 0
0 0
0 0
0 0

—lrz 0 0 0 0 0
12
Jdedp dp 0 0 0 0
2 3 12
1+r4ﬁlr2 _1r_1r2 —1r2 0 0 0
2 2 3 12
dedpe e e 1o 0
3 2 3 12
0
0 —lrz
12
0 0 *lr;lrz
2 3
0 0 0 —lrz ;lr*lrz l+H£I’2
12 3

JL uNA,jH_

ul,j+1
W
Usj

4jH
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l—r+=r —r*lrz 112r2 0 0 0 0 0 |
11 1, 11 1 R
r—r 1-r+r -r—r —-r 0 0 0 0 U,
2 3 2 23 12 !
N I L S 0
12 3 2 12
0 —lrz r—r 1—r+1r2 —lr—lrz —lrz 0 0
12 2 2 3 12
0 0 0
0 0 0 —1r2
12
0 0 0 0 —lr—lrz
2 3
1 1 1 5
0 0 0 0 —r -r—r l-r+-r .
i 2 3 p |
1rz[u SRV e ton s el eranf -
E i—2,j+ i+2,j+ (? 5 )[ i—1,j+ i+1,j+1:| (5 )|: i,j+1:|_
lrz[u +U ]+(_—1r2+lr)[u +U ]+(lr2—r+1)[u ]
12 i-2,j+1 i+2,j+1 3 2 i—1,j i+l,] 2 i,j

for 1 =23,4,..... N -1 , J=L23,...... ,N—1

The previous linear system equation can be solved using LU-

Decomposition to get the approximated solution.

5.11. Padé Approximation Stencils and Type of Solution, and Order of

Error Term

In mathematics, especially the areas of numerical analysis
concentrating on the numerical solution of partial differential equations, a
stencil is a geometric arrangement of a nodal group that relate to the point
of interest by using a numerical approximation routine. Stencils are the
basis for many algorithms to numerically solve partial differential

equations (PDE).
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Stencils are classified into two categories: Explicit and Implicit, the
difference being the layers from the point of interest that are also used for

calculation.

In the notation used for one-dimensional stencils n-1, n, nt+1......
indicate the time steps where time step n and n-1 have known solutions and
time step n+1 is to be calculated. The spatial location of finite volumes

used in the calculation are indicated by j-1, j and j+1......

Graphical representations of node arrangements and their
coefficients arose early in the study of PDEs. Authors continue to use
varying terms for these such as '"relaxation patterns", "operating
instructions", "logenzes", or "point patterns”. [1][2] The term "stencil" was
coined for such patterns to reflect the concept of laying out a stencil in the
usual sense over a computational grid to reveal just the numbers needed at

a particular step. [19]

See the following table for Padé Approximation stencils
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Table 5.2: The Pade’ approximation stencils and type of solution, and

order of error term

Type of Padé | Stencils Type of solution | Order of error
So—C——0
(1,1) Implicit method | O (6°)
[ _Sem. e J
o016 o ..
(0,2) . Implicit method | O (%)
(2,0) Explicit 0 (6%
®—©® ® ® ® | mcthod
o—o—o5
2,1) Explicit 0 (6%
oo o o0
method
o—6O0——6O
(1,2) Explicit 0 (6%
o —eo —©
method

(2,2) Implicit method | O (9°)
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Chapter Six

Numerical Comparison and Examples
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6.1 Forward-difference (Explicit) Method Algorithm

The following algorithm implements the forward-difference
(Explicit) Method for solving parabolic partial differential equation using

the Matlab software.

Algorithm 6.1

To approximate the solution to the parabolic partial differential

equation
2)

aa_Lt’+f(x,t): U 0<x<L ,0<t<T
X

Subject to the boundary conditions
u@Ot)=ulL,t)=0 o<t<T

And the initial conditions
ux,0)=g(x) 0<x <L
Input:

Endpoints a and b, boundary and initial conditions, number of

subintervals N, maximum time T, constant a and integers M.

Output:
Approximations W, N to u(x;,t;) for each
1 =01, ,M—1 and j=0,1,...ccc....... ,N
Step 1
- T - k
Set h:b—a , k:—a , r=a—
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Step 2

=1, N +1 setW i g (i h) (initial conditions).
Step 3

=1 ,M set boundary conditions.

Step 4:

Set and solve a tridiagonal linear system.
Step 5:

Fori=0,1,...,N

Set

xi=a+i*h

erri = abs(Exact — Wj)

Output (xj, approximate; Exacti, error ;)

Plot and Stop (The process is complete)
6.2 Backward-Difference (implicit) Method Algorithm

The following algorithm implements the backward-difference
(implicit) Method for solving parabolic partial differential equation using

the Matlab software.
Algorithm 6.2

To approximate the solution to the parabolic partial differential equation

ou ou

+f (x,t)= 0<x<L ,0<t<T
ox

Subject to the boundary conditions
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u@Ot)=ulL,t)=0 ,0<t<T

And the 1nitial conditions
ux,0)=g(x) 0<x <L
Input:

Endpoints a and b, boundary and initial conditions, number of

subintervals N, maximum time T, constant a and integers M.

Output:

Approximations W, j to u(x;,t;) for each

1 =0,1,..cccconne.. ,M-1 and j=0,1,.............. ,N
Step 1

b — _
Set hz—a , kzu , Fr=a—
N M h

Step 2

i =l N +1 setW; ; =09 (I h) (initial conditions).
Step 3:

=1 ,M set boundary conditions.
Step 4:

Define the third diagonals -4, 1+ 24 ,—1 for the matrix A.

2
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Step 5:

Solve the system are generated by input A,B and u; vector
u=u (2: n,1);

u=u (2: n,1);

z (:1) =B*u;

for i=1:m

Q (2: n, 1) =1nv (A)*z(:,1);

z (:1+1) =B*Q (2: n,1);

end

Step 6:
Fori=0,1,...,N
Set
xi=a+i*xh
erri = abs(Exact — Wj)
Output (xj, approximate; Exactj, error ;)
Plot and Stop (The process is complete)

6.3 Crank-Nicolson Method Algorithm

The following algorithm implements the Crank-Nicolson Method for

solving parabolic partial differential equation using the Matlab software.
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Algorithm 6.3

To approximate the solution to the parabolic partial differential equation

ou o°U
2

+f (x,t)= 0<x<L ,0<t<T

Subject to the boundary conditions

uOt)=ulL,t)=0 ,0<t<T

And the initial conditions
ux,0)=g(x) 0<x <L
Input:

Endpoints a and b, boundary and initial conditions, number of

subintervals N, maximum time T, constant a and integers M.

Output:
Approximations W N to u(x;,t;) for each
i =0,1,..cccon..... ,M-1 and j=0,1,.............. ,N .
Step 1:
Set h:b;a , k:T —a , r:aLz.
N M h
Step 2:
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=1 ,M set boundary conditions.
Step 4:

Define the third diagonals for the matrix A.

Define the third diagonals for the matrix B.
Step S:

Solve the system are generated by input A,B and u; vector
u=u (2: n,1);
u=u (2: n,1);
z (:1) =B*u;
for i=1:m
Q (2: n, 1) =1nv (A)*z(:,1);
z (:1+1) =B*Q (2: n,i);
end
Step 6:
Fori=0,1,...,N
Set
xi=a+i*h
erri = abs(Exact — Wj)
Output (xj, approximate; Exacti, error ;)

Plot and Stop (The process is complete)
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6.4 Method of Line Algorithm

The following algorithm implements the MOL for solving parabolic

partial differential equation using the Matlab software.

Algorithm 6.4

To approximate the solution to the parabolic partial differential

equation

2
oU ¢ty - au2
X

0<x<L ,0<t<T

Subject to the boundary conditions
u@n=ul,t)=0 ,0<t<T

And the initial conditions
ux,0)=g(x) 0<x <L

Input:

Endpoints a and b, boundary and initial conditions, number of

subintervals N and n, maximum time T, constant a and integers M.

Output:
Approximations W, j to u(x;,t;) for each
1 =01, ,M—1 and j=0,1,...cccc...... ,N
Step 1
Set h:b;a , k:-Ij , r:05L2
N M h
Step 2:



102

=1, ,M set boundary conditions.

Step 4:

Define the matrix A=ut, and define the system of ODE’s by use new m-file.

Step 5:

Use Runge—Kutta methods to solve new system of ODE’s

k, =k xpde _I(t,y (1))

k . k
k, =k de 1(t +—,y (:,i)+—
2 xPp _I( 5 y (1) 2)

K : K
k, =k de 1(t +—,y (i —2
3 x p _(+2 y ( )+2)
k,=k xpde I(t+k,y(G,i)+k;,)

N (k, +2k, + 2k, +k,)
6

y(,i+1)=y(,1)

Step 6:

Compute exact solution and plot the solution
Fori=0,1,...,N
Set
xj=a+tixh

erri = abs(Exact — Wj)
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Output (x;j, approximate; Exact, error ;)
Plot and Stop (The process is complete)
6.5 Padé Approximation (2,2), (1,1), (0,2), (2,0), (1,2), (2,1)

The following algorithm implements the Padé approximation (2,2),
(1,1), (0,2), (2,0), (1,2), (2,1) for solving parabolic partial differential

equation using the Matlab software.

Algorithm 6.5

To approximate the solution to the parabolic partial differential

equation

o U oV
+f (x,t) =
(*.t) ox ?

O0<x<L ,0<t<T

Subject to the boundary conditions
u(O,t)=u(L,t)=0 ,0<t<T

And the initial conditions
ux,0)=g(x) 0<x <L

Input:

Endpoints a and b, boundary and initial conditions, number of
subintervals N and n, maximum time T, constant a and integers M,

and r =—.

h 2
QOutput:
Approximations W j to u(x;,t;) for each

1 =0,1,..ccccconne.. ,M-1 and j=0,1,.............. ,N .
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Step 1:
T —-a

Set h:b;a , K=—+, rzaLZ.
N M h

=1 N +1 setW; 3 =0 (i h) (initial conditions).

=1 ,M set boundary conditions.

Step 4:

Define the matrix A is a diagonal matrix Define the matrix B is a
diagonal matrix
Define first and last element in matrix A and B
Step 5:
Solve the system are generated by input A,B and u; vector
u=u (2: n,1);
u=u (2: n,1);
z (:1) =B*u;
for i=1'm
Q (2: n, 1) =1nv (A)*z(:,1);
z (: 1+1) =B*Q (2: n,1);
end

Step 6:

Compute exact solution and plot the solution
Fori=0,1,...,N
Set

xji=atixh
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erri = abs(Exact — Wj)

Output (xj, approximatej Exactj, error ;)
Plot and Stop (The process is complete)
6.5 Numerical Examples and Results

To test the efficiency and effectiveness of the numerical methods
that have been developed and studied in previous chapters, we will test the

following examples:
6.6.1. Example 1

Consider the following Parabolic partial differential equation:

2
0oy _ 6U2=0 0<x =<1 0<t
ot OX

With the following boundary conditions: u(0,t)=u(l,t)=0 0<t,

and initial conditions U (X ,0) =sin(zx) 0<Xx <1.

—7%x0.5

The exact solution is E(x) =u(x.t)=e xsin(zx) , the
following tables represent the results that have been obtained after solving

example 1 using the previous methods. . (When h=0.1, k=0,0005 and t=0.5)
Forward-Difference (Explicit) Method Algorithm Example 1

Using forward-difference method algorithm 6.1 for solving example
1, the following table represents the numerical and the exact results for

N=10:



Table 6. 1: the exact and the approximated solutions for xj where i
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=0...10
X; App. Atj=1 App. Atj=2
0.0 10.000000000000000 0.000000000000000
0.1 0.309016994374947 0.307504557552076
0.2 ]0.587785252292473 0.584908426500721
0.3 0.809016994374947 0.805057383366834
0.4 ]0.951056516295154 0.946401714384385
0.5 1.000000000000000 0.995105651629515
0.6 |0.951056516295154 0.946401714384386
0.7 |0.809016994374947 0.805057383366834
0.8 |0.587785252292473 0.584908426500721
0.9 ]0.309016994374948 0.307504557552076
1.0 |0.000000000000000 0.000000000000000

And when last level:
X; App. Atlastlevel |Exact; Err;
0.0 10.000000000000000 |0.000000000000000 | 0.0
0.1 [0.002320425211800|0.002222414178513 | 9.8 * 105
0.2 10.004413711036516|0.004227282972762 | 1.8+ 10—*
0.3 [0.006074952072844 | 0.005818355856426 | 2.5 10—+
0.4 [0.007141534473603|0.006839887529993 | 3.0 « 10—+
0.5 [0.007509053722089 | 0.007191883355826 | 3.1 « 10—+
0.6 [0.007141534473603|0.006839887529993 | 3.0 « 10—
0.7 10.006074952072844 | 0.005818355856426 | 2.5 10—+
0.8 ]0.004413711036516|0.004227282972762 | 1.8 %10~
0.9 ]0.002320425211800|0.002222414178513 | 9.8 % 105
1.0 10.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error=3.171 * 104
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Figure 6. 1: The exact and the approximated solutions for example 1 using
forward-difference (Explicit) Method
Backward-Difference (implicit) Method Algorithm Example 1

Using backward-difference method algorithm 6.2 for solving
example 1, the following table represents the numerical and the exact

results for N = 10:

Table 6. 2: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.000000000000000
0.1 0.309016994374947 0.304523738605363
0.2 ]0.587785252292473 0.579238571934385
0.3 ]0.809016994374947 0.797253498050028
0.4 ]0.951056516295154 0.937227696984785
0.5 1.000000000000000 0.985459518889331
0.6 ]0.951056516295154 0.937227696984785
0.7 10.809016994374947 0.797253498050028
0.8 |0.587785252292473 0.579238571934385
0.9 10.309016994374948 0.304523738605363
1.0 10.000000000000000 0.000000000000000




And when last level:
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X; Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002134474537761 | 8.7 « 105
0.2 ]0.004227282972762 | 0.004060011836007 | 1.6+ 10—*
0.3 ]0.005818355856426 | 0.005588126887980 | 2.3 %10+
0.4 ]0.006839887529993 | 0.006569237145387 | 2.7 » 10—+
0.5 10.007191883355826 | 0.006907304700437 | 2.8 %10+
0.6 ]0.006839887529993 | 0.006569237145387 | 2.7 « 10—+
0.7 10.005818355856426 | 0.005588126887980 | 2.3 %10+
0.8 10.004227282972762 | 0.004060011836008 | 1.6 * 10—+
0.9 10.002222414178513 | 0.002134474537761 | 8.7 * 105
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.845 % 104

Figure 6. 2: The exact and the approximated solutions for example 1 using

x 10

+ Approximaed solution by Backward difference method

I I I I
[0} 0.1 0.2 0.3 0.4

I I I I
0.5 0.6 0.7 0.8

backward-difference (Implicit) Method

Crank-Nicolson Method Algorithm Example 1

Using Crank-Nicolson method algorithm 6.3 for solving example 1,

the following table represents the numerical and the exact results for N =

I
0.9 1
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10:
Table 6. 3: the exact and the approximated solutions for xj where i
=0...10
X; App. Atj=1 App. Atj=2
0.0 10.000000000000000 0.000000000000000
0.1 0.280179657638192 0.254033409110845
0.2 ]0.532933378260296 0.483200258183083
0.3 ]0.733519866653096 0. 665068099330199
0.4 ]0.862304319764463 0.781834441112953
0.5 ]0.906680418029808 0.822069380438708
0.6 |0.862304319764463 0.781834441112953
0.7 ]0.733519866653096 0.665068099330199
0.8 ]0.532933378260296 0.483200258183083
0.9 ]0.280179657638192 0.254033409110845
1.0 10.000000000000000 0.000000000000000
And when last level:
X; Exact; App. At last level Err;
0.0 10.000000000000000 | 0.000000000000000 | 0.0
0.1 0.002222414178513 | 0.002305123367789 | 8.2 x 105
0.2 10.004227282972762 | 0.004384605199600 | 1.5 x 10—+
0.3 ]0.005818355856426 | 0.006034891325133 | 2.1« 10—*
0.4 ]0.006839887529993 | 0.007094440240202 | 2.5+ 10—+
0.5 ]0.007191883355826 | 0.007459535914688 | 2.6 * 10—+
0.6 |0.006839887529993 | 0.007094440240202 | 2.5+ 10—+
0.7 ]10.005818355856426 | 0.006034891325133 | 2.1 10~*
0.8 10.004227282972762 | 0.004384605199600 | 1.5 10—+
0.9 10.002222414178513 |0.002305123367789 | 8.2 x 10—5
1.0 10.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.6 * 104
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x 107

Exact solution
e Approximated solution by Crank-Nicolson

Figure 6. 3: The exact and the approximated solutions for example 1 using Crank-

Nicolson Method

MOL Algorithm Example 1

Using MOL 6.4 for solving example 1, the following table represents

the numerical and the exact results for N = 10:

Table 6.4: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.309016994374947 0.307508252717500
0.2 |0.587785252292473 0.584915455123030
0.3 ]0.809016994374947 0.805067057435506
04 ]0.951056516295154 0.946413086934176
0.5 1.000000000000000 0.995117609436013
0.6 ]0.951056516295154 0.946413086934176
0.7 10.809016994374947 0.805067057435506
0.8 |0.587785252292473 0.584915455123030
0.9 10.309016994374948 0.307508252717500
1.0 10.0000000000000000 0.0000000000000000

And when last level:
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X; Exact; App. At last level Err;

0.0 |10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002314162620051 | 9.1 «10-5
0.2 10.004227282972762 | 0.004401798879132 | 1.7 « 10—+
0.3 |0.005818355856426 | 0.006058556394787 | 2.4 104
0.4 ]0.006839887529993 | 0.007122260198076 | 2.8 x 10—+
0.5 10.007191883355826 | 0.007488787549473 | 2.9« 10—+
0.6 |0.006839887529993 | 0.007122260198076 | 2.8 x 10—+
0.7 10.005818355856426 | 0.006058556394787 | 2.4% 10~*
0.8 10.004227282972762 | 0.004401798879132 | 1.7 x 10—
0.9 10.002222414178513 |0.002314162620051 | 9.1 *10-5
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.969 * 104

x 107°

Figure 6. 4: The exact and the approximated solutions for example 1 using MOL

8

7L

6

data1

+  Approximated solution by MOL

L L L L
0.1 0.2 0.3 0.4

L L L
0.5 0.6 0.7

Padé Approximation (1,1) Algorithm Example 1

Using (1,1) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:

L
0.8

L
0.9 1




Table 6.5: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.307508249713065 0.306006871346552
0.2 ]0.584915449408255 0.582059658050462
0.3 |0.805067049569794 0.801136389976289
0.4 [0.946413077687477 0.941792310205789
0.5 ]0.995117599713458 0.990259037259475
0.6 [0.946413077687477 0.941792310205789
0.7 ]0.805067049569794 0.801136389976290
0.8 |0.584915449408256 0.582059658050462
0.9 ]0.307508249713065 0.306006871346552
1.0 10.0000000000000000 0.0000000000000000

And when last level:

X; Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002314140010197 | 9.1 %« 10-5
0.2 ]0.004227282972762 | 0.004401755872634 | 1.7 x 10—+
0.3 ]0.005818355856426 | 0.006058497201422 | 2.4 %10+
0.4 ]0.006839887529993 | 0.007122190612102 | 2.8 *x 10—+
0.5 10.007191883355826 | 0.007488714382449 | 2.9 %10+
0.6 ]0.006839887529993 | 0.007122190612102 | 2.8« 10+
0.7 10.005818355856426 | 0.006058497201422 | 2.4%10-*
0.8 10.004227282972762 | 0.004401755872634 | 1.7 « 10—+
0.9 10.002222414178513 |0.002314140010197 | 9.1 *10-5
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.9683 * 104
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x 107

data1
+ Approximation by (1,1) pade' approximation

Figure 6. 5: The exact and the approximated solutions for example 1 using Pade’

approximation (1,1)
Padé Approximation (0,2) Algorithm Example 1

Using (0,2) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:

Table 6.6: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.307508258704312 0.306006889241249
0.2 ]0.584915466510624 0.582059692088198
0.3 ]0.805067073109185 0.801136436825214
0.4 ]0.946413105359690 0.941792365280002
0.5 ]0.995117628809745 0.990259095167930
0.6 |0.946413105359690 0.941792365280002
0.7 ]0.805067073109185 0.801136436825214
0.8 ]0.584915466510624 0.582059692088198
0.9 ]0.307508258704312 0.306006889241249
1.0 10.0000000000000000 0.0000000000000000




And when last level:
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X; Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002314207674425 | 9.1 %« 10-5
0.2 ]0.004227282972762 | 0.004401884577645 | 1.7 » 10—+
0.3 ]0.005818355856426 | 0.006058674348671 2.4 %104
0.4 ]0.006839887529993 | 0.007122398861183 | 2.8« 10—+
0.5 10.007191883355826 | 0.007488933348492 | 2.9 %10+
0.6 ]0.006839887529993 | 0.007122398861183 | 2.8 10+
0.7 10.005818355856426 | 0.006058674348671 2.4% 10~
0.8 10.004227282972762 | 0.004401884577645 | 1.7 « 10—+
0.9 10.002222414178513 |0.002314207674425 | 9.1 *10-5
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.9704 * 104

8

7L

6

x 10

Exac solution

* Approximation solution by (0,2) pade' approximation

Figure 6.6: The exact and the approximated solutions for example 1 using Pade’

I
0.4

approximation (0,2)

Padé Approximation (2,0) Algorithm Example 1

Using (2,0) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:




Table 6.7: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.307508258748426 0.306006889329046
0.2 ]0.584915466594534 0.582059692255198
0.3 |0.805067073224677 0.801136437055070
0.4 [0.946413105495459 0.941792365550215
0.5 ]0.995117628952501 0.990259095452048
0.6 |0.946413105495459 0.941792365550215
0.7 ]0.805067073224677 0.801136437055070
0.8 |0.584915466594534 0.582059692255198
0.9 ]0.307508258748426 0.306006889329046
1.0 10.0000000000000000 0.0000000000000000

And when last level:

X; Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002314208006413 | 9.1 «10-5
0.2 ]0.004227282972762 | 0.004401885209124 | 1.7+« 10~*
0.3 ]0.005818355856426 | 0.006058675217827 | 2.4 %10+
0.4 ]0.006839887529993 | 0.007122399882937 | 2.8« 10—+
0.5 10.007191883355826 | 0.007488934422828 | 2.9« 10—+
0.6 ]0.006839887529993 | 0.007122399882937 | 2.8 %10+
0.7 10.005818355856426 | 0.006058675217827 | 2.4% 10-*
0.8 10.004227282972762 | 0.004401885209124 | 1.7 « 10—+
0.9 10.002222414178513 | 0.002314208006413 | 9.1 * 105
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.9705 * 104




Figure 6. 7: The exact and the approximated solutions for example 1 using Pade’

x 107°

116

Exact solution

* Approximation solution by (2,0) pade' approximation

approximation (2,0)

Padé Approximation (2,1) Algorithm Example 1

Using (2,1) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:

Table 6.8: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.307508252719946 0.306006877330953
0.2 ]0.584915455127684 0.582059669433470
0.3 ]0.805067057441912 0.801136405643656
0.4 ]0.946413086941707 0.941792328623883
0.5 ]0.995117609443932 0.990259056625405
0.6 |0.946413086941707 0.941792328623883
0.7 10.805067057441912 0.801136405643656
0.8 ]0.584915455127684 0.582059669433470
0.9 ]0.307508252719947 0.306006877330954
1.0 10.0000000000000000 0.0000000000000000




And when last level:
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X; Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002314162638464 | 9.1 105
0.2 10.004227282972762 | 0.004401798914156 | 1.7 « 10—+
0.3 ]10.005818355856426 | 0.006058556442994 | 2.4 %10+
0.4 ]0.006839887529993 | 0.007122260254747 | 2.8 10+
0.5 10.007191883355826 | 0.007488787609060 | 2.9 = 10—+
0.6 ]0.006839887529993 | 0.007122260254747 | 2.8 %10+
0.7 10.005818355856426 | 0.006058556442994 | 2.4+ 10-*
0.8 10.004227282972762 | 0.004401798914156 | 1.7 x 10—+
0.9 ]0.002222414178513 | 0.002314162638464 | 9.1 x 105
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 2.9690 * 10-5

x 107°

Figure6. 8: The exact and the approximated solutions for example 1 using Pade’
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Exact solution

“+ Approximation solution by (1,2) pade' approximation

approximation (2,1)

Padé Approximation (1,2) Algorithm Example 1

Using (1,2) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:




Table 6.9: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.298462966883305 0.289062374610289
0.2 10.584619148476617 0.581094827031851
0.3 |0.805060879814834 0.801101187367423
0.4 ]0.946413000177270 0.941791376075799
0.5 ]0.995117608563431 0.990259018194599
0.6 |0.946413000177270 0.941791376075798
0.7 ]0.805060879814833 0.801101187367423
0.8 |0.584619148476617 0.581094827031851
0.9 ]0.298462966883305 0.289062374610289
1.0 10.0000000000000000 0.0000000000000000

And when last level:

Xi Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 | 0.0

0.1 ]0.002222414178513 | 0.00069850781858 1.5%10-3
0.2 10.004227282972762 | 0.00174755626737 2.4 %1073
0.3 10.005818355856426 | 0.00259959775947 3.2%10-3
0.4 ]0.006839887529993 | 0.00315337099172 3.6 x 103
0.5 10.007191883355826 | 0.00334530339313 3.8%10-3
0.6 |0.006839887529993 | 0.00315337099172 3.6 x 103
0.7 10.005818355856426 | 0.00259959775947 3.2x 103
0.8 10.004227282972762 | 0.00174755626737 2.4 %1073
0.9 10.002222414178513 | 0.00069850781858 1.5%103
1.0 10.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 3.8465 * 103
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Exact solution

+ Approximation solution by (2,1) pade' approximation

Figure6.9: The exact and the approximated solutions for example 1 using Pade’

approximation (1,2)

Padé Approximation (2,2) Algorithm Example 1

Using (2,2) Padé approximation 6.5 for solving example 1, the

following table represents the numerical and the exact results for N = 10:

Table 6.10: the exact and the approximated solutions for xi where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 0.278135629280731 0.250340120580335
0.2 ]0.529148977817020 0.476362263415966
0.3 ]0.728312930486849 0.655659562923915
04 |0.856183225239916 0.770774084133244
0.5 ]0.900244318657566 0.810439833280047
0.6 |0.856183225239916 0.770774084133244
0.7 ]0.728312930486849 0.655659562923915
0.8 ]0.529148977817020 0.476362263415966
0.9 ]0.278135629280731 0.250340120580335
1.0 10.0000000000000000 0.0000000000000000

And when last level:
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X; Exact; App. At last level Err;

0.0 |10.000000000000000 | 0.000000000000000 | 0.0

0.1 0.002222414178513 | 0.002189564355091 3.2 x10-5
0.2 10.004227282972762 | 0.004209651554766 | 1.7 * 105
0.3 0.005818355856426 | 0.005792891565915 | 2.5 105
0.4 ]0.006839887529993 | 0.006809960653377 | 2.9 x 105
0.5 10.007191883355826 |0.007160416686187 | 3.1 *10-5
0.6 |0.006839887529993 | 0.006809960653378 | 2.9 * 105
0.7 10.005818355856426 | 0.005792891565915 | 2.5 10-5
0.8 10.004227282972762 | 0.004209651554766 | 1.7 « 105
0.9 10.002222414178513 | 0.002189564355091 3.2 %105
1.0 |0.000000000000000 | 0.000000000000000 | 0.0000000

Maximum Error = 3.2 * 10-5

Figure7. 10: The exact and the approximated solutions for example 1 using Pade’

x 10

Exac solution
>* Approximation solution by (2,2) pade' approximation

approximation (2,2)

6.6.2. Example 2

L L L L
(o} 0.1 0.2 0.3 0.4

L L L
0.5 0.6 0.7

L
0.8

L
0.9

Consider the following Parabolic partial differential equation:

o U 1 o

ot 6 ox°?

=0 0<x<1,0<t




121
With the following boundary conditions: U (O,t) =u (lat) =0

,0 < t, and initial conditions U (X ,0) =2sin(2zXx) 0<x <1.

The exact solution is E(x) =u(x,t)=2e *

x0.5 .
xsin(2zx) , the

following tables represent the results that have been obtained after solving
example 2 using the previous methods.(When h=0.1 , k=0,0005 and
t=0.5)

Forward-Difference (Explicit) Method Algorithm Example 2

Using forward-difference method algorithm 6.1 for solving example
2, the following table represents the numerical and the exact results for N =

10:

Table 6. 15: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.175570504584946 1.1174167292158135
0.2 1.902113032590307 1.899842587190290
0.3 1.902113032590307 1.899842587190290
0.4 1.175570504584947 1.174167292158135
0.5 |0.000000000000000 0.000000000000000
0.6 |-1.175570504584946 -1.174167292158135
0.7 {-1.902113032590307 -1.899842587190290
0.8 |-1.902113032590307 -1.899842587190291
0.9 |-1.175570504584947 -1.174167292158136
1.0 10.0000000000000000 0.0000000000000000




And when last level:
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X Exact; App. At last level Err;

0.0 |0.000000000000000 |0.000000000000000 0.0000000

0.1 0.342341334840069 |0.358639691527622 1.6298 * 10-2
0.2 10.553919915525240 |0.580291210606469 [2.6371 * 10-2
0.3 10.553919915525240 |0.580291210606469 [2.6371 * 10-2
0.4 |0.342341334840069 |0.358639691527622 1.6298 * 10-2
0.5 |0.000000000000000 |0.000000000000000 [0.0000000

0.6 |0.342341334840069 |-0.358639691527622 [1.6298 * 10-2
0.7 1-0.553919915525240 |-0.580291210606469 [2.6371 * 102
0.8 |-0.553919915525240 |-0.580291210606469 [2.6371 * 10-2
0.9 |-0.342341334840069 |-0.358639691527622 [1.6298 * 10-2
1.0 10.000000000000000 |0.000000000000000 (0.0000000

Maximum Error = 2.5070 * 102

0.6 * * R

Exact solution
-+ Approximation solution by forward-difference method

-0.8

I | | | | | | I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. 15: The exact and the approximated solutions for example 1 using

forward-difference (Explicit) Method
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Backward-Difference (implicit) Method Algorithm Example 2

Using backward-difference method algorithm 6.2 for solving
example 2, the following table represents the numerical and the exact

results for N = 10:

Table 6. 16: the exact and the approximated solutions for xi where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.174168965097034 1.171370896962237

0.2 1.899845294062291 1.895317924717350

0.3 1.899845294062291 1.895317924717351

0.4 1.174168965097035 1.171370896962238

0.5 0.000000000000000 0.000000000000000

0.6 |-1.174168965097034 -1.171370896962237
0.7 |-1.899845294062291 -1.895317924717351
0.8 -1.899845294062291 -1.895317924717351
0.9 |-1.174168965097035 -1.171370896962238
1.0 [0.0000000000000000 0.0000000000000000

And when last level:

X; Exact; App. At last level Err;

0.0 {0.000000000000000 |0.000000000000000 (0.0000000

0.1 ]0.342341334840069 |0.326847222671705 [1.5494 * 102
0.2 [0.553919915525240 |0.528849915411329 [2.5070 % 102
0.3 [0.553919915525240 |0.528849915411337 [2.5070 % 102
0.4 10.342341334840069 |0.326847222671717 [(1.5494 % 102
0.5 |0.000000000000000 |0.000000000000008 (8.0000* 10-15
0.6 [-0.342341334840069 |-0.326847222671734 (1.5494 % 102
0.7 -0.553919915525240 |-0.528849915411367 {2.5070 * 102
0.8 [-0.553919915525240 |-0.528849915411368 [2.5070 * 102
0.9 [-0.342341334840069 |-0.326847222671733 (1.5494 % 102
1.0 {0.000000000000000 | 0.000000000000000 (0.0000000




Maximum Error = 2.5070 % 102

0.6

0.4
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Exact solution

-+ Approximation solution by backward-difference method
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Figure 6. 16: The exact and the approximated solutions for example 2 using

backward-difference (Implicit) Method

Crank-Nicolson Method Algorithm Example 2

Using Crank-Nicolson method algorithm 6.3 for solving example 2,
the following table represents the numerical and the exact results for

N=10:

Table 6. 17: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.172767426606379 1.174168129126511

0.2 1.897577557147868 1.899843941433569

0.3 1.897577557147868 1.899843941433569

0.4 1.172767426606379 1.174168129126511

0.5 0.000000000000000 0.000000000000000

0.6 |[-1.172767426606378 -1.174168129126510
0.7 |-1.897577557147868 -1.899843941433569
0.8 -1.897577557147868 -1.899843941433569
0.9 |-1.172767426606379 -1.174168129126511
1.0 10.0000000000000000 0.0000000000000000




And when last level:
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x; | Exact; App. At last level Err;

0.0 | 0.000000000000000 | 0.000000000000000 0.0000000

0.1 {0.342341334840069 |0.356332725900775 1.3991 * 102
0.2 10.553919915525240 |0.576558461811351 2.2638* 102
0.3 {0.553919915525240 |0.576558461811354 2.2638 * 102
0.4 |0.342341334840069 |0.356332725900774 1.3991 % 102
0.5 {0.000000000000000 | 0.000000000000002 2.0000* 1015
0.6 |-0.342341334840069 |-0.356332725900770 1.3991 % 102
0.7 |-0.553919915525240 |-0.576558461811347 2.2638 * 102
0.8 |-0.553919915525240 |-0.576558461811344 2.2638 * 102
0.9 |-0.342341334840069 |-0.356332725900769 1.3991 % 102
1.0 {0.000000000000000 | 0.000000000000000 0.0000000

Maximum Error = 2.2638 * 102

Exact solution

+  Approximation solution by Crank-Nicolson

L L L L L L L L L
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. 17: The exact and the approximated solutions for example 2 using Crank-

Nicolson Method
MOL Algorithm Example 2

Using MOL 7.4 for solving example 2, the following table represents

the numerical and the exact results for N = 10:



Table 6.18: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.175570504584946 1.153332139214378
0.2 1.902113032590307 1.866130601566489
0.3 1.902113032590307 1.866130601566490
0.4 1. 175570504584947 1.153332139214379
0.5 |0.000000000000000 0. 000000000000000
0.6 |-1.175570504584946 -1.153332139214378
0.7 |-1.902113032590307 -1.866130601566489
0.8 |-1.902113032590307 -1.866130601566490
0.9 |-1.175570504584947 -1.153332139214379
1.0 10.0000000000000000 0.0000000000000000

And when last level:

X Exact; App. At last level Err;

0.0 |0.000000000000000 | 0.000000000000000 0.0000000

0.1 10.342341334840069 |0.346269581834599 3.2183 *
10-3

0.2 ]0.553919915525240 |0.560275952678594 6.2074* 103

0.3 10.553919915525240 |0.560275952678594 6.2638 *
10-3

0.4 ]0.342341334840069 | 0.346269581834599 3.3991 *
10-3

0.5 |0.000000000000000 | 0.000000000000000 0.0000% 103

0.6 |-0.342341334840069 |-0.346269581834599 3.3991 *
10-3

0.7 1-0.553919915525240 |-0.560275952678594 6.2638 *
10-3

0.8 |-0.553919915525240 |-0.560275952678594 6.2638 *
10-3

0.9 |-0.342341334840069 |-0.346269581834599 3.3991 *
10-3

1.0 10.000000000000000 |0.000000000000000 0.0000000

Maximum Error = 6.2638 * 103
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0.6 Exact solution |
ks Approximation solution by MOL

Figure 6. 18: The exact and the approximated solutions for example 2 using MOL

Padé approximation (1,1) Algorithm Example 2

Using (1,1) Padé approximation 6.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:

Table 6.19: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.174168129126511 1.172767426606379
0.2 1.899843941433569 1.897577557147868
0.3 1.899843941433569 1.897577557147868
0.4 1.174168129126511 1.172767426606379
0.5 |0.000000000000000 0. 000000000000000
0.6 |[-1.174168129126510 -1.172767426606378
0.7 |-1.899843941433569 -1.897577557147868
0.8 |-1.899843941433569 -1.897577557147868
0.9 |-1.174168129126511 -1.172767426606379
1.0 10.0000000000000000 0.0000000000000000




And when last level:

128

X Exact; App. At last level Err;

0.0 {0.000000000000000 | 0.000000000000000 0.0000000

0.1 ]0.342341334840069 |0.356332725900775 1.3991 * 102
0.2 ]0.553919915525240 |0.576558461811351 2.2638% 102
0.3 10.553919915525240 |0.576558461811354 2.2638 * 102
0.4 10.342341334840069 |0.356332725900774 1.3991 % 102
0.5 |0.000000000000000 | 0.000000000000002 2.0000* 1015
0.6 [-0.342341334840069 |-0.356332725900770 1.3991 % 102
0.7 1-0.553919915525240 |-0.576558461811347 2.2638 * 102
0.8 |-0.553919915525240 |-0.576558461811344 2.2638 * 102
0.9 [-0.342341334840069 |-0.356332725900769 1.3991 % 102
1.0 |{0.000000000000000 |0.000000000000000 0.0000000

Maximum Error = 2.2638 * 102

Figure 6.19: The exact and the approximated solutions for example 2 using Pade’
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Padé Approximation (0,2) Algorithm Example 2

Using (0,2) Padé approximation 7.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:




Table 6.20: the exact and the approximated solutions for xj where i
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=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.174168129625435 1.172767427603038
0.2 1.899843942240846 1.897577558760497
0.3 1.899843942240847 1.897577558760498
0.4 1.174168129625436 1.172767427603038
0.5 |0.000000000000000 0.000000000000000
0.6 |-1.174168129625435 -1.172767427603038
0.7 |-1.899843942240847 -1.897577558760498
0.8 |-1.899843942240847 -1.897577558760498
0.9 |-1.174168129625436 -1. 172767427603038
1.0 10.0000000000000000 0.0000000000000000

And when last level:

X Exact; App. At last level Err;

0.0 10.000000000000000 |0.000000000000000 |0.0000000

0.1 10.342341334840069 |0.356332877312932 [1.3991 =« 102
0.2  10.553919915525240 |0.576558706801392 [2.2638x* 102
0.3 10.553919915525240 |0.576558706801406 |2.2638 * 102
0.4 10.342341334840069 |0.356332877312956 [1.3991 * 102
0.5 10.000000000000000 |0.000000000000004 |4.0000% 10-15
0.6 ]-0.342341334840069 |-0.356332877312948 1.3991 * 102
0.7 |-0.553919915525240 |-0.576558706801400 |2.2638 * 102
0.8 | -0.553919915525240 |-0.576558706801402 |2.2638 * 102
0.9 1-0.342341334840069 |-0.356332877312947 1.3991 * 102
1.0 {0.000000000000000 | 0.000000000000000 (0.0000000

Maximum Error = 2.26387 * 10-2
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0.6 * ES

Exact solution
“  Approximation solution by (0,2) pade' approximation
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Figure6.20: The exact and the approximated solutions for example 2 using Pade’

approximation (0,2)

Padé Approximation (2,0) Algorithm Example 2

Using (2,0) Padé approximation 6.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:

Table 6.21: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.174168129626031 1.172767427604229
0.2 1.899843942241811 1.897577558762424
0.3 1.899843942241811 1.897577558762424
0.4 1.174168129626032 1.172767427604229
0.5 0.000000000000000 0.000000000000000
0.6 |-1.174168129626031 -1.172767427604228
0.7 |-1.899843942241811 -1.897577558762424
0.8 -1.899843942241811 -1.897577558762424
0.9 |[-1.174168129626032 -1.172767427604229
1.0 [0.0000000000000000 0.0000000000000000




And when last level:
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X Exact; App. At last level Err;

0.0 10.000000000000000 | 0.000000000000000 0.0000000

0.1 0.342341334840069 |0.356332877493831 1.3991 * 102
0.2 10.553919915525240 |0.576558707094071 2.2638x 102
0.3 10.553919915525240 |0.576558707094070 2.2638 x 102
0.4 10.342341334840069 |0.356332877493830 1.3991 % 102
0.5 |0.000000000000000 | 0.000000000000004 0.0000* 1015
0.6 [-0.342341334840069 |-0.356332877493830 1.3991 % 102
0.7 |1-0.553919915525240 |-0.576558707094071 2.2638 * 102
0.8 |-0.553919915525240 |-0.576558707094070 2.2638 * 102
0.9 1-0.342341334840069 |-0.356332877493831 1.3991 % 102
1.0 |0.000000000000000 |0.000000000000000 0.0000000

Maximum Error = 2.26387 * 102

Figure6. 21: The exact and the approximated solutions for example 2 using Pade’
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Using (2,1) Padé approximation 7.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:
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Table 6.22: the exact and the approximated solutions for xj where i
=0...10

Xi

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

App. Atj=1
0.000000000000000
1.174168129292951
1.899843941702875
1.899843941702876
1.174168129292952
0. 000000000000000
-1.174168129292951
-1.899843941702876
-1.899843941702876
0.9 -1.174168129292952
1.0 0.0000000000000000
And when last level:

App. Atj=2

0.0000000000000000
1.172767426938864
1.897577557685839
1.897577557685839
1.172767426938863
0.000000000000000
-1.172767426938863
-1.897577557685839
-1.897577557685839
-1. 172767426938864
0.0000000000000000

Xi

Exact;

App. At last level

Err;

0.0

0.000000000000000

0.000000000000000

0.0000000

0.1

0.342341334840069

0.356332776411663

1.3991 x 102

0.2

0.553919915525240

0.576558543539681

2.2638% 102

0.3

0.553919915525240

0.576558543539691

2.2638 * 102

0.4

0.342341334840069

0.356332776411667

1.3991 x 102

0.5

0.000000000000000

-0. 000000000000005

5.0000% 10-15

0.6

-0.342341334840069

-0.356332776411679

1.3991 x 102

0.7

-0.553919915525240

-0.576558543539710

2.2638 x 102

0.8

-0.553919915525240

-0.576558543539711

2.2638 * 102

0.9

-0.342341334840069

-0.356332776411678

1.3991 x 102

1.0

0.000000000000000

0.000000000000000

0.0000000

Maximum Error = 2.26386 * 102
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Figure6.22: The exact and the approximated solutions for example 2 using Pade’

approximation (2,1)
Padé Approximation (1,2) Algorithm Example 2

Using (1,2) Padé approximation 7.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:

Table 6.23: the exact and the approximated solutions for xj where i

=0...

10

Xi

App. Atj=1

App. Atj=2

0.0

0.000000000000000

0.0000000000000000

0.1

1.171738722624411

1.167931641224419

0.2

1.899838885724617

1.897559949021956

0.3

1.899843935118166

1.897577517088887

0.4

1.174168129287377

1.172767426870479

0.5

0.000000000000000

0.000000000000000

0.6

-1.174168129287376

-1.172767426870479

0.7

-1.899843935118166

-1.897577517088887

0.8

-1.899838885724617

-1.897559949021956

0.9

-1.171738722624411

-1.167931641224419

1.0

0.0000000000000000

0.0000000000000000

And when last level:

Xi

Exact;

App. At last level

ET‘i

0.0

0.000000000000000

0.000000000000000

0.0000000

0.1

0.342341334840069

0.242553599432976

9.9787 * 10-2

0.2

0.553919915525240

0.535197204021888

1.8722+ 102

0.3

0.553919915525240

0.585936075298137

3.2016 * 102

0.4

0.342341334840069

0.375645096825699

3.3303 x 102

0.5

0.000000000000000

0.000000000000004

4.0000% 10-15

0.6

-0.342341334840069

-0.375645096825690

1.3303 * 102

0.7

-0.553919915525240

-0. 585936075298124

3.2016 * 102

0.8

-0.553919915525240

-0.535197204021870

3.8722 x 102

0.9

-0.342341334840069

-0.242553599432973

1.9787 x 102

1.0

0.000000000000000

0.000000000000000

0.0000000




Maximum Error =9.9787 % 102
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Exact solution

‘ +  Approximation solution by (2,1) pade' approximation
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Figure 6. 23: The exact and the approximated solutions for example 2 using Pade’

approximation (1,2)

Padé Approximation (2,2) Algorithm Example 2

Using (2,2) Padé approximation 7.5 for solving example 2, the

following table represents the numerical and the exact results for N = 10:

Table 6.24: the exact and the approximated solutions for xj where i

=0...10

X; App. Atj=1 App. Atj=2

0.0 10.000000000000000 0.0000000000000000
0.1 1.168226624483893 1.160928622156394

0.2 1.890231916977007 1.878425014054166

0.3 1.890231918454771 1.878425016982061

0.4 1.168227572225919 1.878425016982061

0.5 |0.000000000000000 0.000000000000000

0.6 |-1.168227572225918 -1.160930505814887
0.7 |-1.890231918454771 -1.878425016982061
0.8 |-1.890231916977007 -1.878425014054165
0.9 |-1.168226624483893 -1.160928622156394
1.0 10.0000000000000000 0.0000000000000000
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X Exact; App. At last level Err;

0.0 {0.000000000000000 | 0.000000000000000 0.0000000

0.1 ]0.342341334840069 |0.342055900787213 2.9787 » 104
0.2 10.553919915525240 |0.553546638417656 3.8722x 104
0.3 10.553919915525240 |0.553546671357841 3.2016 =« 104
0.4 10.342341334840069 |0.342110657249714 2.3303 «10—*
0.5 10.000000000000000 |0.000000000000000 0.0000* 10-15
0.6 [-0.342341334840069 |-0.342110657249713 2.3303 « 10—*
0.7 1-0.553919915525240 |-0.553546671357842 3.2016 = 10—+
0.8 [-0.553919915525240 |-0.553546638417643 3.8722 % 104
0.9 [-0.342341334840069 |-0.342055900787212 2.9787 = 104
1.0 |0.000000000000000 |0.000000000000000 0.0000000

Maximum Error = 3.8722 * 104

Figure6.24: The exact and the approximated solutions for example 2 using Pade’
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Chapter Seven

Application Diffusion In Ceramic
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7.1. Introduction

The required steps to assemble ceramic or metal particles into
sophisticated form at a rapid rate with high-dimensional accuracy and low
scrap rates has been a distinguished feature of materials processing

research during the last decade. [23]

Here, we want to model the diffusion of organic vehicle of a ceramic
body within reach of a high heating temperature. The model should predict
the critical heating rate and reach to the boiling state of the actual
body. [22]

In a technical matter, we would like to prevent the boiling state,

because this will lead to defects (bubbles) in the material. [25]
Production of clay would be a relevant example, it involves oven heating of
row products, namely mud and water. This leads to expulsion of water
leaving the hard clay substance. A similar principle is employed for the
production of ceramic item. The raw material, a mixture of ceramics and
polymers, is heated to be left with just the ceramic as a result. The problem
however is the occurrence of porosity that can occur in the end product due
to the dissipation of monomer inside the ceramic body. [23]

The organic vehicles is acting similar of the polymers role in our
previous example, which are decomposed by heating in low molecular
called monomers. This monomer diffuses to the surface and evaporate. [22]

Ceramics 1s the most cost effective and widely used material. With
an excellent combination of properties and attractive price has a wide range

of application. It is available in purity ranges of 94-99.8 % and usable for
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critical high temperature application. it exhibits strong ionic interatomic
bonding giving rise for its excellent properties such as solidity, ebullition
and its wear resistance. The chemical inertness is of particular interest at

high temperature. [22]
7.2. Diffusion Theory

Diffusion is the process by which matter is transported from one part

of a system to another as a result of a random molecular montions. [23]

Diffusion and also heat execution are described with parabolic partial
differential equations. In the simplest case without any heat loss or heat
source, we get for the heat transport problem, which is similar to diffusion

problem without any sink or source. [25]
Uy =2 Uy, =0
Where «? is a material constant.
Such equations could be solved analytically with the Fourier method.

Four our problem, take an infinite cylinder of radius containing a
ceramic polymer mixture, as the ceramic polymer mixture is heated up
thermal degradation of the polymer produces monomers uniformly

throughout the organic phase. [23]

Some monomer molecules stay inside the body while others
evaporate from the surface and the resulting concentration of monomers

stimulates the outward diffusion. Excessive heat will cause some monomer
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molecules to evaporate inside the ceramic body leaving minor holes inside

the ceramic material, giving rise to internal defects. [22]
7.3. Diffusion Equation

The general diffusion equations for finite geometrical shape are

following: [25]

I) In a rectangular parallelepiped the homogeneous diffusion equation is:
9d _ 9 ad ] ad ] ad

= (Mx )+ (M) + (M xT) (7.3.1)
Where M may be a function of x, y, z and d

d is concentration of monomer a solution within the polymer phase based

and unit is identified (kilogram™3)

IT) In a finite cylinder the diffusion equation is

dd _1(0 ad a (M _ ad ] ad

5 =l (M x5) + 55 (7 5g) + 5 (M < )} (7.3.2)

In terms of the cylindrical co-ordinates r ,@ , z using the transformation

x =1 cos(@)
y = rsin(@)
zZ=7z

And
du OJdu Ox
99 ox 20

In the equation (7.3.1) we obtain the formula (7.3.2)
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IIT) In a sphere the diffusion equation is

Z_f - riz {aa_r (TZM 3_:‘1)} + sinl(B) % (M sin(0) Z_Z) + aa_Q) (sinﬂz/l(e) Z_Z)) (7.3.3)

In terms of spherical polar coordinatesr, @, 6
Using again the transformation

x = r sin (cos(®))
y = rsin (sin(®))
z =rcos(0)
In the equation (7.3.1) we obtain the formula (7.3.3).
Where M may be a function of x, y, z and d
d is concentration of monomer in solution in the polymer phase based and

unit is (kilogram™3), and r radius (meter).
7.4. The Existing Model

In moulded ceramic bodies, the diffusion equation in an infinite
plate, an infinite cylinder and a sphere is: [25]
== (M=) +w (7.4.1)
Where b = 0 in the plate , 2r is the thickness of the plate.
Where b = 1 in the cylinder , r is the radius of the cylinder.
Where b = 2 in the sphere , r is the radius of the sphere.

And W is the rate of production of monomer based on total volume of

suspension (kilogram™3 /second ™) and given by :
—KoRT?exp(—=) 2RT  6(RT)?
x|t -+ 2

+
ZE

E
W = BV,K, exp (— E) exp { - o7

(7.4.2)
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Where V,,:is volume fraction of polymer in ceramic polymer body with
condition (0 <V, < 1).[25]

K, : specific rate constant for thermal degradation with unit (second™1).

E: activation energy for thermal degradation with unit (Jmol™1).

T: temperature

R: gas constant

Z: heating rate

The boundary conditions are

g—f =0atr=0andd=d; =0 atr=r, (7.4.3)

Where d; is the surface concentration of monomer.

When the ceramic polymer suspension is heated, the polymer will
produce monomers. These monomers are generated evenly throughout the
organic phase. Some evaporate from the surface and resulting
concentration of monomers stimulates the outward diffusion. [22]

A rapid gas flow posts the cylinder, sphere and plate ensures
evaporation at the surface.

So we get a concentration difference between the surface and the
interior of the body. This stimulates to the surface. [23]

This gas flow takes the monomers on the surface and remove these monomers
from the cylinder. So we get a concentration difference between the surface
and the interior of the body. This stimulates to the surface. [25] [24]

In the center of the infinite cylinder, the concentration of monomer is

used to determine the variation of center vapour pressure of monomer with

temperature. Once the concentration of monomer reaches its maximum
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value in the center, the vapour pressure in the center will cause an ambient

pressure a bubble forms. [23]

Assuming that an infinite cylinder of radius injection moulded using
the ceramic polymer suspension, is heated at a consistent rate z (k/s) and
analysis of the kinetics of thermal degradation allows calculation of the
mass fraction of polymer remaining (h) at given absolute temperature (T)

using [25].

2 =
h = exp {K°RT KRR ) _ 28 “RT)Z]} (74.4)

At the time t the concentration profile of the monomer, d = d (r, t),
throughout the infinite cylinder, which has radius r, is determined by its
rate of production, diffusion through the bulk and evaporation at the

surface. Thus d satisfies the partial differential equation [25]

od _ 1{(r2M3—f)} FW;0<r<715t>0 (7.4.5)

ot r

Subject to the initial distribution
D(r,0)=0 ;0<r<m

And the boundary conditions

24008 _ .t >0
or i
D(ro,t) = D, =0

Where Dg: is concentration of monomer at the surface of the cylinder
based on the total volume of suspension (kilogram™3), ry: is radius of

cylinder (meter) and t : is time .
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7.5. Diffusion Coefficient
The method of solution requires a knowledge of diffusion coefficient

as a function of temperature and monomer construction

C=C(tc)

Where T=zt, T is temperature, z is the heating rate and t is the time.

From the free volume theory of Vrentas and Duda (1982) we get for

continuous phase [24]

Cg = Co1(1 — 0)?(1 — 2e0@)exp {—WlVl((‘)/)er/i/ﬂsz(O)} (7.5.1)

Where Cg: diffusion coefficient of dispersed phase (meter?/second ~1).
Co1: pre-exponential factor for diffusion.

W, ,W,: the weight fraction of monomer in polymer monomer solution
between 0 and 1.
V¢: average hole free volume per unit mass.

Cg denotes the diffusion coefficient and

E

Cop = Cexp( R’;) and @ = AAC)

Subscripts 1 and 2 represent monomers and polymers respectively.

14 :
Zf: related to free volume parameters K;,; and K;, which can be calculated

using the Williams-Landel-Ferry constants ¢; and c, this gives :

V, K K
Lo () Wil + T = Tl +(-2) Wal(er), + 7 = (T,

(7.5.3)

And ¢ is an interaction parameter.
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7.6. Shrinking Undegrated Core Model

If a polymer layer of thickness 1, — r; has been removed from the
infinite cylinder after time t, the volume fraction of polymer lost based on
the volume of the body is :

2
1- (:—0) (7.6.1)

Where r; is the radius of the cylinder containing polymer at time t.
This volume fraction is equal to the weight fraction of polymer based on
the total weight of polymer 1-h, from which we get [25]
rn =rvh (7.6.2)

Where h is given above.
7.7. Distributed Porosity Model

For the distributed porosity model, Maxwell’s equation gives

c _ Cat2Cp -1
=3V, ( — VA) +1 (7.7.1)

Where C is the diffusion coefficient, V is the volume fraction and
subscripts A, B refer to the dispersed and continuous phases respectively.

If C, = 0 then the equation becomes [25]
£ _1- ( Ve _ VA) (7.7.2)

Cp Vet+2

If one of the dispersed phases has a zero transport coefficient, both

expression reduce to [25]
2Cp+C

CpVp+
(7.7.3)

Where C, is the diffusion coefficient in the pore. V;, is the volume
fraction of porosity and it is obtained from

V=00 -=1)A-h) (7.7.4)
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Where V. is the ceramic volume fraction
7.8. Vapour pressure

The calculation of vapour pressure of monomer in ceramic body is
necessary because at the end, we have to check whether vapour pressure is
greater than ambient pressure for boiling. [22]

The activity of the monomer in polymer a is given by the Flory-
Higgins equation.

a = 0,exp(0, + € 63) (7.8.1)

In which 6; and 6, are volume fraction of monomer and polymer
respectively based on the total polymer. ¢ is the interaction parameter.

The vapour pressure of monomer over the polymer monomer
solution at each time step is a P, where PQ is the vapour pressure of
monomer over pure polymer. We can estimate P using the Clausius-
Clapeyron equation [25]

0_  MHugp .
InP; = —r T (7.8.2)

When the vapour pressure of monomer in the polymer exceeds
ambient pressure, the nucleation of a bubble in the ceramic suspension, is

possible.

7.9. Numerical Solution

We need to keep in mind, to solve our problem with the Crank-
Nicolson method. Consider the equation [11]

) A A
7Ui—1,j+1 + A+ DU jyq — EUi+1'f+1 =3
A

S Uit

Ui—l,j + (1 - A)Ul’] +
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For the unsteady state situation, the appropriate finite difference

form is obtained as shown below (Crank and Henry 1949)
ady’ dpsr — d
[rM—]_ z(r, 1 M, lx—mﬂ m)

aT' l+1 l+7 L+2 h
ody’ A — Ay
[rM—] z(T‘.1M 1 X — ml)
aT' i—= l—7 L_E h
And
(li(TM a_d))l N 1 1’i+17 Mi+%(di+1_di)_ri_17Mi_%(di_di—ﬂ
ror ar’J; Ti 2

Now adopting the Crank-Nicolson method, we get
(dij+1—dij) _
k

1
p— {TH% + di+%[(di+1,j+1 +dirr;) = (dijer + di,j)]}
(7.9.1)

1
L Mi_%[(di,j+1 +dy;) = (dimqjer +diog )] + 3 [f(n+ 1)+ f(n)]

Where d, .1 and d;_1 are approximated by the mean values of d at
2 2

time level j and are taken to be the values of d for the concentrations given

by

1

E(di+1,j +d; ;)
And

1

5 (dij+dioy)
Respectively.

Rearranging equation (7.9.1) to give d,,, 1 terms in ascending order of m on

the left hand side and letting [25]

k
A=ﬁ

Ti—1/2 = Ti1
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Tiv172 = Ti2
di—1/2 =d(i-1)
di+1/2 = d(i)
_A(i—o.zsi)d(i—l) Mi—l,j+1 n (1 n A(i+02.§)d(i) n A(i—o.SZ)id(i—l)) Mi,j+1 _

A(i+0.5)d (i) _ (A(i-0.5)d(i—1)
(—Zi )Mi+1,j+1 = (—Zi )Mi_l’j +

A(i+0.5)d(i)  A>i—0.5)d(i-1) AGi+0.5)d (D) K
(1 -= 2i - 20 )Ml’,j + 2 Mi+1,j+5 [f(n+1) +

fm)]
The finite difference representation of this equation at r = 0 has to be

dealt with separately since [25]

ad
5—0 atr=20

. : L 19d o
A Maclaurin series expansion is performed on ~5- to obtain its

9 2d
e [11]. Therefore

1 6<M6d L0 2
(?)5 r E)N or2

limiting value , as v — 0 which is equal to

And then
ad d 2d
Fr 2M 5,2 + error
Using finite differences
a Zd (dl,j - Zdo‘j + d—l,j)
ZM —67‘2 = 2 0,j hZ
From symmetry (cylinder), since (d_q; = d4 ;)
a 2d (dl,j - Zdo‘])
2M 57 = 4M, ; 3

And then using the Crank-Nicolson and using M at time level n, we
obtain

dd diioq —dgi d; —dj;
- ( 1J+1h2 0']+1)+2M0,n—( 1’1h2 O’])+error

Rearranging to give n+1 terms in ascending the (L.H.S) gives
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(1+2AMo,)dg j+1 — 2AMdy j1q = (1 + 2AMg 5 )do j + 2AMq dy
Thus we end up with n simultaneous equations in n unknowns,
where n is the number of nodes. The coefficients can be arranged in a

tridiagonal matrix as follows [25] [11]

u0,j+1 bO
u1,j+1 bl
e, f, ... 0 0 O 0 0 |lu,,, b,
e f 0 0 0
0O 0 0
0 . . 0 0 =
0o 0 . . 0
0 0 0 dn—z en—z fn—z
0 0 0 0 e
[Unri | [Bxo

When the coefficients are given by
eo =1+ 21M,
fo = —2AM,
by = (1 — 2AMy)dy j + 2AMy dy

jH405  AG—05)M( - 1)
=1 M
ej + % ) + 2]
—A(j +0.5)
= T (i
_AG=05) o N _AGHOSM() _ AG-05)MU-1))

by = * 22 M — iy + (1 > D) dy
AGHOSIMG) 4

2 i+1,j

And the matrix can be solving by any numerical methods.
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Conclusion

The numerical results that have been obtained from testing the
numerical methods that have been studied and developed through this work
show the following conclusions:

For example 1, we have following results

Numerical Methods Maximum Error
Forward Difference Method 3.171 % 104
Backward Difference Method 2.845 x 104
Crank-Nicolson Method 2.676 x 104
Method of Line 2.969 x 10—+
Pade’ Approximation (1,1) 2.9683 * 10—
Pade’ Approximation (0,2) 2.9704 = 104
Pade’ Approximation (2,0) 2.9705 * 10—*
Pade’ Approximation (1,2) 2.9690 * 10—
Pade’ Approximation (2,1) 3.8465 x 103
Pade’ Approximation (2,2) 3.2 %105

From the above table we can see that Pade Approximation (2,2)

Method is the most efficient method for solving example 1.

We have used the numerical methods that have been developed in our

work for solving example 2 and get the following results:

Numerical Methods Maximum Error
Forward Difference Method 2.5070 x 102
Backward Difference Method 2.5070% 102
Crank-Nicolson Method 2.2638 x 102
Method of Line 2.2638 x 103
Pade’ Approximation (1,1) 2.2638 * 102
Pade’ Approximation (0,2) 2.2638 * 102
Pade’ Approximation (2,0) 2.2638 * 102
Pade’ Approximation (1,2) 2.2638* 102
Pade’ Approximation (2,1) 9.9787 * 102
Pade’ Approximation (2,2) 3.8722% 10—+
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From the above table we can see that Pade Approximation (2,2)

Method is the most efficient method for solving example 2.
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