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Numerical Methods for Solving Volterra Fractional Integral Equations
with Applications
By
Safa’ Abdel Hakeem Mohammed Hamdan
Supervisor
Prof. Naji Qatanani

Abstract
In this thesis we focus on the analytical and numerical solutions of the

Volterra fractional integral equation of the first and the second kind. This
equation has wide range of applications in mathematical physics and
chemical reactions including stereology, the heat conduction, crystal growth
and electro-chemistry.

After introducing some definitions in fractional integrals and fractional
derivatives, we focus our attention mainly on the analytical and numerical
methods for solving the linear Volterra fractional integral equation of the
first and the second kind. These methods are: The Adomian decomposition
method, the Haar wavelet method, the product integration method and
fractional multistep method.

The mathematical framework of these numerical methods together with their
convergence properties will be presented. These numerical methods will be
illustrated by some numerical examples. Comparisons between these
methods will be drawn. Numerical results show clearly that the product
integration method is one of the most powerful numerical techniques for
solving the linear Volterra fractional integral equation of the second kind in

comparison with other numerical techniques used in this thesis.



Introduction

The subject of fractional calculus deals with the investigation of integrals
and derivatives of any real or complex order, which unifies and extends
the notations of fractional order derivatives and n-fold integrals.

Most of the mathematical theories applicable to the study of fractional
calculus were developed prior to the turn of the 20th century. Caputo
reformulated the more ’classic’ definition of the Riemann-Liouville
fractional derivative in order to use integer order initial conditions to solve
his fractional order differential equations [33]. As recently as 1996,
Kolowankar reformul- ated, the Riemann-Liouville fractional derivative in
order to differentiate no-where differentiable fractal functions [20]. After
that, the number of researches and studies about the fractional calculus has
rapidly increased. This is due to the fact that some physical processes such
as anomalous diffusion [8], complex viscoelasticity [27], behavior of
mechatronic and biological systems [25], rheology [28] etc, cannot be
described by classical models.

There are many contributions from famous mathematicians involved in the
theory of the fractional calculus up to the middle of the 20th century, among
which; Laplace (1812), Fourier (1822), Abel (1823-1826), Liouville (1832-
1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872),
Heaviside (1892-1912), Weyl (1917), Erdélyi (1939-1965) and several
others ( Gorenflo and Mainardi [12] ). The first specialized conference on
fractional calculus and its applications was held in 1974 at the University of
New Haven, USA.

Integral equations have been a subject of interest for mathematicians as well
as physicists and engineers. The development of integral equation has led to

the formation of many models of problems in engineering and mathematical
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physics such as scattering in quantum mechanics, diffraction problems,

conformal mapping, and water waves. Various initial and boundary value
problems in physics and engineering can be solved by converting them
to an integral equation. These problems include population growth model,
biological species living together, heat transformation and heat radiation,
electromagnetic and electrostatic problems and many more [39].

The fractional order integral equations have numerous applications in
porous media, control, electro-chemistry, electromagnetism fluid structure,

coupling and particle mechanics (see e.g. [29, 12,38] ).

The most standard form of the fractional integral equation is the

linear Volterra integral equation of the second kind [17]:

96) = F0) + 7 )f (= D k(0 g(Ddt, 0<x<1, (1)

where the kernel k(x,t) and the right hand side function f(x) are given
functions, a > 0 is a real number, I'(a) is the gamma function and g(x)

is the unknown function that appears under the integral sign.

One common form of the linear Volterra fractional integral equation of
the second kind is the Abel’s integral equation of the second kind. This

equation has the form [39]:
g(x)—f(x)+/1j (9() dt, 0<B<1, (2

where A=—, B=1- a.
I'a)

Many numerical methods for solving equations (1) and (2) have been
developed over the past few years, for instance the Haar wavelet method

[21], product integration method [4], collocation method [5], fractional
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multistep method [24] and backward Euler methods [4]. Some analytical

methods, like the Adomian decomposition method, are also available,
which produce a series solution, for example; Gorenflo [11] presented some
numerical methods based on fractional calculus, e.g., using the Grunwald-

Letnikov difference approximation,

prg ~h~e Y (=1 () gl —rh). 3)

If g is sufficiently smooth and vanishes for x < 0, then formula (3) has

accuracy of order 0(h?), otherwise, it has accuracy of order O(h).

This thesis is organized as follows: In chapter one, we introduce some basic

definitions and properties of fractional integrals and fractional derivatives.

In chapter two, we present some analytical and numerical methods for
solving linear Volterra fractional integral equation of the first and the second
kind, namely; the Adomian decomposition method, the Haar wavelet

method, the product integration method and fractional multistep method.

In chapter three, we solve linear VVolterra fractional integral equation of the
second kind using the aforementioned methods. Finally, chapter four offers
numerical solutions and results for Volterra fractional integral equation of

the first and the second kind appearing frequently in physics and engineering.
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Chapter One
Fractional Integrals and Derivatives

1.1 Special Functions

Definition (1.1) [33]: Gamma function: The gamma function denoted by
I'(p) is given by the integral:

(00]

I'(p) = f xP e dx, Re(p) > 0. (1.1
0

The above integral converges only for Re(p) > 0. For Re(p) < 0 we need

to consider the analytical continuation of I'(p), thatis

1
I'(p) = = F'p+1).

Gamma function is defined for all real numbers exceptatx=0,-1,-2, ....

i)
Pl

a1
31

.

t t t
F] 3 2 i
—4
a1
g4
/rﬂFE_—

Figure 1.1: The gamma function.

—

Definition (1.2) [33]: Beta function: The beta function denoted by B (u, v)

IS given by the integral:
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1

B(u,v) = J x¥ 1 (1 —x) dx. (1.2)
0

This integral converges for Re(u), Re(v) > 0.

A key property of the beta function is its relationship to the gamma function;

AONG)

B(wv) = Fu+v)

1.1  Fractional Integrals

Definition (1.3) [31,33]: The Riemann-Liouville fractional integral
operator of order a € R, n—1<a <n, n€N, of the function g(x)

IS defined by the formula:

J%g(x) = ij(x —t)* 1g(t)dt a,x >0 (1.3)
g - F(af) 0 g ) ) ' '

Theorem (1.1) [33, 36]: The identity operator: If we set « = 0 in the
Riemann-Liouville fractional integral operator of order a (J%) of the

function g(x), then the equation becomes:
J°g(x) = g(x), (1.4)

where J% =1 (the identity operator ).
Theorem (1.2) [31, 33]: The semi-group property: Suppose that a, f =
0, the semi-group property of the two operators J%, J# is defined by:

JJP =P, (1.5)

Theorem (1.3) [33, 36]: The commutative property: Suppose that a, f =

0, the commutative property of the two operators J%, J# is defined by:



JoJB = JBj. (1.6)

From (1.5) and (1.6), we conclude that J%JF = ja+B = jB+a = jBja,

Theorem (14)[33]: Let n—1<a<n neN, a, 1€ Cand the
functions g(x) and h(x) be such that both /*g(x) and J*h(x) exists.

The fractional integral is a linear operator, i. e.,

J*(Ag(x) + h(x)) = 1]%g(x) + J*h(x). (1.7)

Theorem (1.5)[30]: Let a, x>0, a € R. The Riemann-Liouville

fractional integral of the power function satisfies:

B r'v+1)
_F(a+v+1)x

J%x” v v>-1. (1.8)
Proof: The proof follows directly from the definition of the fractional
integral equation (1.3), the definition, and the properties of the beta

function.

av_ix_a—lv
J%x _F(a)Jo(x ) eV dt

1 X t a—1 .
o = —— | (1-=) x*'evde
S F(a)jo (1-5) =

Letu = 5, then:
X

1

)

1
f (1 —w)* 1x% 1 (ux)? x du
0



1 1 .
J%x =mx jo(l—u) (w)¥ du

a+v

X
J%xV = r @) Bv+1,a)

x%t T(v + DI'(a)
I'a) T(a+v+1)

]axv —

r'v+1)
F(a+v+1)x

](Zx'l) — a+v

1.3 Fractional Derivatives

Definition (1.4) [12,15,33]: The Riemann-Liouville fractional derivative
or the Riemann-Liouville fractional differential operator of order a >

0, x>0, a x€R, neN, of the function g(x) is defined by the

formula:
D%g(x)
1 dn Jx L
(x —t)"*1g(t)dt, n—1<a<n,
dTl
Wg(x)' @ =n.

Theorem (1.6) [12]: The identity operator: If we set a =0in the
Riemann-
Liouville fractional differential operator of order a ( D% ) of the function

g(x), then the equation becomes:



D%g(x) = g(x), (1.10)
where D° =1 (the identity operator).

Comment (1.1) [12]: It must be mentioned that the operator (1.9) is the
left inverse of the fractional integral operator (1.3), i. e.,

De* =1, (1.11)
where D% = ]7¢%,
Lemma (1.1) [15]: If n—1< a<n, ne€eN, ge€ ¢, and u = —1,

then:

n-1 k
J*D"g(x) = g(x) — kzzogk(m)%, here x > 0. (1.12)

In fact D% is left inverse to the corresponding inverse operator /¢ and

not right inverse to the operator J¢.

Lemma (1.2) [12]: Let « € R and n € N, where n is the integer

satisfying a <n < a + 1, then:

D%g(x) = D"J""*g(x). (1.13)

The Riemann-Liouville fractional derivative is equivalent to n-th

order differentiation after (n — «)-fold integration.

Proof: The assumption on n implies that n > [a], where [a] denotes the

smallest integer greater than or equal to number. Thus,



DM g(x) = plelpr-laln-lalflal-a g(y) = plaljlal=ag(y) =

D%g(x).

In view of the semi-group property of fractional integration and the fact that

ordinary differentiation is left inverse to integer integration.

Theorem (1.7) [4, 12]: Let n—1<a<n neN, aq, A€C and
the functions g(x) and h(x) be such that both D*g(x) and D%*h(x)

exists. The fractional derivative is a linear operator, i. e.,

D%(2 g(x) + h(x)) = AD%g(x) + D%h(x). (1.14)

Theorem (1.8) [15]: Let a, x >0, «a € R. The Riemann-Liouville

fractional derivative of the power function satisfies :

(1) va v>—1.  (115)
Tv+1—a)

Proof: The proof follows straightforwardly from the fact that the

D%V =

fractional differential operator (D) is the left inverse of the fractional
integral operator ( /%) and the power function of the Riemann-Liouville

fractional integral.

D%V = pn [D—(n—a) xv]

D%V = pn [](n—a) xv]

D%V = pn rv+1) xvtn-a
Tw+n—a+1)
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D%V = v+ 1) DN xVin—a
Tw+n—a+1)

Dy — 'v+1) o Tw+n—a+1) T
Tlv+n—a+1) Tw+n—a+1-—n)

Dyy Fv+1) Lr-a
rv+1—a)

Lemma (1.3) [33]: The constant function: Let g(x) =k, k is constant.
In addition, let the fractional derivative D%g # 0 for the constant

function g. We have [33]

k
aj, — -
DU =¥« *O (1.16)

This is of course = 0 for a € N, where the gamma function is defined for
all real numbers except at x=0,-1,-2, ....

Definition (1.5) [7, 26]: The Caputo fractional derivative or the Caputo
frac- tional differential operator of order « >0, x >0, a, x € R, n €N,

of the function g(x) is defined by the formula:

Df‘g(x)1
[ x(x —)v e lgM()dt, n—-1<a<n
_ F(;ln— OI)J;) (117)
Wg(x), a =n.

Theorem (1.9) [7, 26]: The identity operator: If we set @ =0 in the
Caputo fractional differential operator of order « (D) of the function g(x),

then the equation becomes:

D?g(x) = g(x), (1.18)
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where D? =1 (the identity operator).

Lemma (1.4)[14]: Let n€N, a € R, n—1<a <n, and g(x) be a

fun- ction such that D& g(x) exist. Then:

DZg(x) = J"%D"g(x). (1.19)

This means that the Caputo fractional operator is equivalent to (n — a)-

fold integration after n-th order differentiation.

The Riemann-Liouville fractional derivative is equivalent to n-th order

differentiation after (n — a)-fold integration, i. e.,

D%g(x) =D"J* " g(x). (1.20)

From (1.19) and (1.20), we conclude the following lemma.

Lemma (1.5) [12, 33]: Let g(x) be a function for which both D%*g(x)

and DZg(x)exists and n —1 < a <n, n € N. Then in general it holds:

D&g(x) = D%g(x). (1.21)

The Caputo fractional derivative and the Riemann-Liouville fractional

derivative are not equal.

Lemma (1.6)[33]: Non-commutation: Suppose that n —1 < a <n, a €
R, and n, u € N, and the function g(x) is such that D¥ g(x) exist. Then in

general:
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DID"g(x) = DI¥**g(x) # D*Di g (x). (1.22)

Corollary (1.1)[33]: Suppose that n—1<a<n, n€N, b=a—(n—

1),
(0<b<1), a, b€eR, and the function g(x) is such that D*g(x) exist.
Then

Dfg(x) = D?D" " g(x). (1.23)

Proof: Substitute b for @« and n—1 for u in (1.22), then:

DPD"1g(x) = DP*11g(x) = DX VT g (x) = DEg ().

In general, the Riemann-Liouville operator is also non-commutative and

satisfies:

D"D%g(x) = D**"g(x) #+ D*D"g(x). (1.24)

Theorem (1.10) [4, 33]: Let n—1<a<n, n€eN, aq, 1€C and
the functions g(x) and h(x) be such that both D%g(x) and D&h(x)

exists. The Caputo fractional derivative is a linear operator, i. e.,
Df‘(l glx) + h(x)) =AD%g(x) + D¥h(x). (1.25)

Theorem (1.11) [7,10]: Letn — 1 < @ < n, n € N. The Caputo fractional

derivative of the power function satisfies:
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re+1) . R
pix’={ Tw-a+n> * 70T VVER T (126)
0, v<n—1veN.
Proof: For the proof, see [10].
Lemma (1.7) [33]: For the Caputo fractional derivative
D¢k =0, (1.27)

where k = constant.

Proof: As usual 0<n—1< a<n, n€ N, which means n > 1.
Applying the definition of the Caputo derivative and since the n-th

derivative k™, (n>1, n € N) of aconstant equals 0. It follows:
1 X
D¢k =—— | EM(x -t)"*1dt = 0.
'n—a) fo (x=1)

Lemma (1.8) [33]: The interpolation property: Let n € N, a € R, and
g(x) be a function such that DZ g (x) exist. Then the following property for
the Caputo operator hold:

lim D&g(x) = g™ (x), (1.28)
a-n

lim D&g(x) = g™V (x) — g™ D(0).
a-n—1

Proof: The proof can be found in [33].

For the Riemann-Liouville fractional differential operator the

corresponding interpolation property reads:
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lim D%g(x) = g™ (x), (1.29)
a-n

lim D% g(x) = g™ V(x).
a-n—1

The following theorem shows the relation between the Caputo fractional
derivative and the Riemann-Liouville fractional derivative.

Theorem (1.12) [12]: Let x >0, n—1<a <n, n€N, a € R. Then

n-1 k—a

DEglx) = Dg(x) = ) Temm s g, (130)
k=0

Proof : For the proof, see [12].
Corollary (1.2) [12]: The following relation between the Riemann-Liouville

(1.9) and Caputo fractional derivative holds:

n-—1 k
D%g(x) = D% <g(x) — Z %g(")(o)) (1.31)
k=0

Proof: For the proof, see [12].
1.4 Linear Volterra Fractional Integral Equation

The most standard form of a linear Volterra fractional integral equation of

the first kind is given as [32]

flx) = ﬁjgx(x — )% 1 k(x,t) g(t)dt, 0<x<1, (1.32)

where k(x,t) is the kernel function, « > 0 is areal number and g(x)

is the unknown function that appears under the integral sign.

Moreover, the linear VVolterra fractional integral equation of the second kind

is given as [17]
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gx) =f(x)+ L x(x —t)* Tk(x,t) g(t)dt, 0<x
0
<1, (1.33)

where the kernel k(x,t) and the right hand side function f(x) are given
function, « > 0 is a real number and g(x) is the unknown function that

appears under the integral sign.
This equationis also called the weakly-singular linear Volterra integral

equation.

The value @ = 1 corresponds to the (non fractional ) linear Volterra integral

equation in the first and the second kind.
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Chapter Two

Analytical and Numerical Methods for Solving Linear
Volterra Fractional Integral Equation

In this chapter we introduce some important analytical and numerical
methods for solving the linear Volterra fractional integral equation of the
first and the second kind, namely; the Adomian decomposition method, the
Haar wavelet method, the product integration method and fractional

multistep method.

2.1 Theoretical Framework

In this chapter, we will use the Lagrange interpolation polynomial and the
composite trapezoidal rule in the product integration method. On the other

hand, the convolution will be used in the fractional multistep method.

2.1.1 Lagrange Interpolation Polynomial 2, 3]

Given aset of kK + 1 data points

(x0, Yo), ---»(xj; )’j)' wor (Xir Vi), (2.1)
where no two x; are the same.
The interpolation polynomial in the Lagrange form is a linear combination

[14]:

k
L(x) := z yj i (x), (2.2)
j=0
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of Lagrange basis polynomials

X —X
osms<k "/ m

m#j

_(xmxo)  (xmxoa) (B Xea)  (x—x)
(; —x0) (x5 —x_1) (5 — xj41) (x5 — xg)

where 0 < j < k. Note how, given the initial assumption that no two x; are
the same, x; —x,, # 0, so this expression is always well-defined. The
reason pairs x; = x; with y; # y; are not allowed is that no interpolation

function L such that y; = L(x;) would exist; a function can only get one
value for each argument x;. On the other hand, if also y; = y;, then those
two points would actually be one single point.

For all i #j, [;(x) includes the term (x —x;) in the numerator, so the

whole product will be zero at x = x;:

X —X (i —x0) (i —x) (% —xx)
A N S RCEE M s I
On the other hand,
L (x;) i= 1_[ LT m g (2.3)
L X — Xm
m=#+i

In other words, all basis polynomials are zero at x = x;, expect [;(x), for

which it holds that [;(x;) = 1, because it lacks that (x — x;) term.

2.1.2 Composite Trapezoidal Rule [6]

The trapezoidal rule works by approximating the area under the graph

of the function g(x) as a trapezoidal and calculating its area.
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Suppose that the interval [a, b] is subdivided into N subintervals [xj, Xj+1]

of width h = (b — a)/N by using the equally spaced nodes x, = a + kh,
fork =0,1,...,N.
The composite trapezoidal rule for N subintervals can be expressed in any of

three equivalent ways:

b h N
[ gtdr =3 Y (gt + g, 2o
k=1

a 2
or
b
j g(x)dx
a
h
b (go +291+2g, + -+ 2gy-—2+2gy-1+9gn), (2.5)
or
b h N-1
[ =3 | g@+gmr+2) geuw| (26)
a k=1

The error of the composite trapezoidal rule is the difference between the

value of the integral and the numerical result:

b h
error = f gx)dx — =

N-1
S|lg@+ gy +2 ) g(x,a].
a k=1

There exists a number ¢ between a and b, such that

(b —a)®

error = — W’g

"(§)

2.1.3 Convolution

Definition (2.1) [33]: The convolution of two arbitrary continuous

functions h, g:[0,d] — R is given by:
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(h*xg)(x) = th(x —t)g(t)dt, 0<x<d, (2.7)
0

where h (x —t) is a difference kernel, h* g:[0,d] - R,and d > 0 is

a real number.

The convolution of two arbitrary continuous functions is commutative. That

IS:

hxg= jxh(x —t)g(t)dt = ng(x —t)h(t)dt =g * h. (2.8)
0 0

2.2 The Adomian Decomposition Method (ADM)

The Adomian decomposition method (ADM) was developed from the
1970s to the 1990s by George Adomian [1]. This method can be use to
solve the linear and the non-linear Volterra fractional integral equation. In
this section we will use the ADM to solve the linear Volterra fractional

integral equation in the second kind which has the general form:

1

gx) = f(x) +m

Jx(x — )% 1k(x,t) g(t)dt, (2.9)
0

This method involves decomposing the unknown function g(x) of any
equation into a sum of an infinite number of components defined by the

decomposition series:
96 =) g (0, (2.10)
n=0

or equivalently

gx) = go(x) + g1(x) + g (x) + -+, (2.11)
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we substitute (2.10) into the linear Volterra fractional integral equation of
the second kind (2.9), to obtain

i In (%)
n=0

= f(x)

1
r() (x‘t) T k(x, 1) Zgn(t) dt, (2.12)

or equivalently
go(x) + g1(x) + g, (x) + -
~ £ + a5 [ G O k0L 00 +

91() + g (&) + -+ ]dt. (2.13)

Usually the zeroth component g,(x) is identified by all terms that are
not included under the integral sign. The other components g, (x),
vk = 0 of the unknown function g(x) are determined by the recurrence

relation:

go(x) = f(x), (2.14)

1 X
911 (0 = s jO (x = D k(x, Dge(®)dt, k>0,

or equivalently

go(x) = f(x),
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—_— 1 *
9:00 = 7o jo x
— ) T k(x,t)go(t)dt,

1 X
9200 = 7> j (x — %1 k(x, Dy (O,

and so on for other components. The components g,(x), g.(x), g,(x), ...
are completely obtained. As a result, the solution g(x) of the linear
Volterra fractional integral equation of the second kind (2.9) is easily

determined by a series form by using the series (2.11).

2.3 The Haar Wavelet Method

In this section, we will clarify some basic definitions for the Haar wavelet
method [21], then we will solve linear Volterra fractional integral equations

of the second kind by using Haar wavelet method with collocation method.

The Haar wavelets are usually defined for the interval x € [0,1]. In
this section we want to define the method mentioned above in more general
case x € [A4, B].

First, we want to define the quantity M = 2, (I is the maximal level of
resolution). Then we will divide the interval [A, B] into 2M subintervals
of equal length; each subinterval has the length Az = (B — A)/(2M). After
that, two parameters are introduced: the dilation parameter i for which i =
0,1,..,1 and the translation parameter ¢ =0,1,..., m —1 (here the
notation m = 2! is introduced). The wavelet number j is identified as j =

m+c+1,(m>c and m # c).
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15 i i i i | i i i i 4 !
0 1

The Haar wavelet =N

Figure 2.1: The Haar wavelet.

Figure 2.1 indicates that the Haar wavelet has good time localization but poor
frequency localization. Most of applications of wavelet exploit their ability
to approximate functions as efficiently as possible, which means as few

coefficients as possible.

The j-th Haar wavelet is defined as:

1 for x € [14,72),
hi(x) =4 -1 for x € [t1,,13), (2.15)
0 otherwise,

where
T1=A+2culz,
T, =A+ Q2c+1)ulz
T3 =A+2(c+1)ulz
u=M/m.
For j =1and x € [0,1], the function h, (x) is the scaling function or the

father wavelet for the family of the Haar wavelets which is defined as

x €[0,1)

(1
hy (x) = { 0 otherwise (2.16)
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For j =2 and x € [0, 1], the function h,(x) is the mother wavelet for the

family of the Haar wavelet which is defined as

1 0<x< %
ho(¥) =4 -1 %Sx<1
0 otherwise

For j =3 and x € [0, 1], the function h;(x) is defined as

1

1 0<x< n
hs(x) =9 -1 c<x<?
0 otherwise

For j =4 and x € [0, 1], the function h,(x) is defined as

1 2 <x< 3

4 4

h4(x) =3 -1 3 <x< 4
4 4

0 otherwise

(2.17)

(2.18)

(2.19)

j=2'4c+1|2 |3 4|5 6 7 8




. Father
0
e i FsS s A aeassss S aeaassss s anan i

f‘ Mother

i - Grand
PR | Daughters

Figure 2.2: The first eight Haar functions

The orthogonal set of Haar wavelets from h;(x) to hg(x) is shown in
figure 2.2, which contains a family of single square wavelets. The first basis
h,(x) is called scaling function, which is equal to one for whole unit time
interval. The second basis h,(x) is the fundamental square wave is called
mother wavelet. The others, h;(x) to hg(x) are generated from h,(x) via

two operations: dilation and translation.

The expansion of a given function g(x) into the Haar wavelet series is

2M
glx) = Z b; hj(x), x € [A,B], (2.20)
j=1

here b; are the wavelet coefficients.
There are many methods for calculating b;. In this section we apply

the collocation method to calculate it.

The collocation points are defining as
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x, = A+ (k —0.5) Az, k=12..,2M. (2.21)

Set (2.21) into (2.20) gives the discrete version, i. e.,

2M
9Ga) = ) by by, (2.22)
j=1

It is convenient to put this result into the matrix form
g = bH, (2.23)

where g and b are 2M-dimensional row vector and the Haar coefficients
H(j, k) = hj(x,) is the element of a 2M x 2M matrix.

Now we want to apply the Haar wavelet method into linear Volterra
fractional integral equation of the second kind which has the general form
[17]:

glx) = f(x) + Ma )J (x—t)* Tk(x,t) g(t)dt, 0<x

< 1. (2.24)

Replacing (2.22) into (2.24) and satisfying this equation in the

collocation points, we obtain

1 [
90x0) = £ + 7 jo (te — DT k(uw £) g(D)de, (2.25)

Z by hyi) = f (i) +

X 2M
r( ) o= 0" t);bj hi(t)dt,
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2M 2M
1 [

Z bj hj(x)) — mjo (e — O T k(x, 1) Z bj hi(t) dt = f(xy),

j=1 j=1

2M
1 [

z b; [hj(xk) - mfo (x — * F k(xp, t) by (8) dt] = f(xx),

=1

assume that

u;(xy) = %f:k(xk — )%V k(xy, t) hi(H) dt,  (2.26)
we obtain
oM
ij[hj(xk) — )] = f),  k=1,2..,2M. (227)
=
The matrix form of (2.27) is
b[H-U]=F, (2.28)
where UG, k) = u; (), F(k) = f(xp).

The solution of (2.28) is

b=F(H-UD"L (2.29)
The function g(x) can be calculated by (2.22). Considered as (2.15)

the equation (2.26) can be rewritten in the following form

G U(,k)=0 for x, < 15.

(i) UG, k) = ﬁ Ti"" (x, — ) T k(x, t) dt, for x, € [t4,7,].
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(i) UG, k) = m= [ 7 G = % et e — [ -

) L k(xy, t)dt] for x, € [1,,13]. (2.30)

(iv) UG, K) = mos | [ G = D97 koo ) d = [ =
£)* L k(xy, t)dt], for x;, = 5.

The integral in (2.30) can be calculated by some numerical techniques;

but for simpler forms of k(x,t) analytical integration is possible.

2.4 The Product Integration Method

In this section, we will introduce the product integration method that can be

used to solve linear Volterra fractional integral equation of the second kind.

To use the product integration method as a numerical technique [9], we
consider the linear Volterra integral equation of the second kind which has

the general form:

gx)=f(x)+ AJxk(x, t) g(t)dt, a<x<b, (231

where k(x,t) is the kernel (and is known), A is a constant parameter
and

g(x) is unknown function to be determined.

We often factor out the singularity k(x,t) in by writing:
k(x,t) = p(x,t) G(x,t), (2.32)

where G(x,t) is well-behaved function and p(x,t) is badly-behaved

function.
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The product integration method may be used to solve linear Volterra

fractional integral equation of the second kind of the form:

gx)=f(x)+ ijp(x, t)G(x,t) g(t)dt, a<x<b. (233

First, we decompose the interval [a, b] into N subintervals {h;} where:

hi=xi+1—xi, i=0,1,2,...,N—1,
and
(2.34)

a=xy<x; < <xy=bh.

If we use the N-point quadrature rule and collocate (2.33) at the nodes

{x;}iL, U {0}, we get

glx) =f(x) + Afxip(xi, t)G(x;,t)g(t)dt, i=0,1,..,N. (2.35)

a

By a suited Lagrange interpolation polynomial. Equation (2.35) can

be written as:

g0 = FO) +2 ) wiy 6(x.6) g (1), (2:36)
j=0

where t; =x; =a+ih for i=0,1, ..,N, with h = (b —a)/N and w;;

are the weights which can be determined directly.

We approximate the integral terms by a product integration using composite

trapezoidal rule, where x = x;
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i
X
j p(x;, )G(x;, t) g(t)dt = Zwij G(xl-, tj) g(tj), for i

It follows that
X
j p (s G (x, ) g(O)dt
a

L tj+1
_ z f p(x;, )G (x;,£) g(D)dt
tj

j=0

~ lzl:jtjﬂ ( (]+1 )
~ p(x;, t) |————=G(x;, 1) g(¢))

j=0

(t—t;)
L— G (%1, t41) 9 (t41)
]

i
= Z wij G(xi 1) 9(57),
=0

where

! t; —t
WiO = f p(xi, t)( 1h )dt; for J = 0;
t

0 0

ti: t —t t: t_t_
Wi =j]+1p(xi,t)Mdt+’[ : p(xi't)w
t t

h.
j J j-1

for j=1,..,i—1,

(2.37)

(2.38)

(2.39)

(2.40)
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Li t—t;_
w;; = j p(x;, t)%dt, for i =j. (2.42)
t i—-1

i-1

The approximation solution to equation (2.35) is determined recursively

using:
i
gn(x;) = f(x) + AZ Wi G(xi; tj) gn(tj); (2.43)
j=0
fori=1, 2,..., N, with
Gn(x0) = f(a). (2.44)
The resulting estimate of g(x) = g, (x,,).

Hence, the equation (2.35) yields asystem of linear algebraic equations:

BG, =F, (2.45) G, =
B~'F, (2.46)

where the matrix B = (b;;), 0<i <N, 0<j<i-—1 with:

(boo =1,
bij=0' V]Sl‘i‘l
{ bij =0, Vi>i (2.47)

biO = _)]'WiOG(xier)l ] =0
by =1— Aw;G(x;,x), L=
kbl] = —AWijG(xi,Xj), ] = 0, ,l -1




1 0 0 0
bip b1 0 0
B=| by by by 0
byo byy e bN,;V
F
= [f(xo) = f(a);f(xl): lf(xN) = f(b) ]T' (248)

~

Gp = [gn(xo) = gn(a): gn(xl): ---Jgn(xN) ]T: (2.49)

where B is lower triangle matrix (N + 1)« (N + 1) square matrix
and (1 — Aw;;G(x;,x;)) = 0 for any i, we can clearly solve this set of

equations, by direct forward substitution.

2.5 Fractional Multistep Method

In this section, we will introduce the fractional multistep method that
can be used to solve linear Volterra fractional integral equation of the first
kind.

2.5.1 Review of a Class of Convolution Quadrature Methods and the

Basic Notations

2.5.1.1 Quadrature Methods of Convolution Form

Consider the linear Volterra fractional integral equation of the first
kind having the general form [32]:

f)=v,9(x) = fx(x —t) =D k(x,t) g(t)dt, 0<x <d (2.50)
0

1
I(a)
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with 0 < a < 1, some real number d >0 and with smooth kernel
function k:[0,d] x [0,d] — R.

First, we consider in (2.50) the special case k = 1, this case called the

Abel integral equation of the first kind:

1 X
fx)=W,9)(x) = mfo (x —t) =D g(t)dt, 0 <x <d, (2.51)

where g : [0,d] = R isa continuous function.

The convolution quadrature method of equation (2.51) at apoint 0 < x <

d is then given by:

2,9)(x) = h“ZWm_jg(jh), for h=x/m, m=1,2,... (2.52)
j=0

Here wy, wy, ... denotes an infinite sequence of real coefficients which

Is assumed to be independent of the considered point x and the step size h.

The error of the convolution quadrature method (2.52) atapoint 0 < x <

d isthen given by:

(Eng)(x) = 2hg)(x) = Veg)(x)  for h=x/m, m=1,2,... (2.53)

Definition (2.1) [32]: The convolution quadrature method (2.52) for

the numerical integration of (2.51) is called convergentof g > 1, if

(EntPY(1) = 0(hP*) as h=1/m -0 (p=0,1,..,q—1). (2.54)
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Note the error for equation (2.54) is satisfied only at the point x = 1.

For a given smooth function g :[0,d] - R we consider the error
(Eng)(x) of the convolution quadrature method (2.52). We can write

the error as the following form:

™ (o
T2 B + BRI for h=x/m, (255

q-1
ED) =)
r=0

. . 1 t
for m=1,2, .., with the remainder R,(t) = (q_l)!fo (t —

2)471g(@ (z) dz. Now we take arbitrary step sizes h and points x to extent

the definition of the convolution quadrature method (2.52) as follows,

/]
(2,9)(x) = he Z wig(x—jh)  for h>0, (2.56)
7=0

where |z] denotes the largest integral < z. The error (E;,g)(x) in (2.53)
for arbitrary step sizes h and points x can be extended definition by

using the definition (2.56) of the considered quadrature method there holds,
(En(g *v))(x) = ((Epg) *v)(x) for h >0, 0<x<d, (2.57)

for continuous functions g,v:[0,d] — R. Additionally for integers p =
0,1, ... we have

(EntP)(x) = x“*P(Ey/,t?)(1) for h >0, x> 0. (2.58)

Both equations (2.57) and (2.58) are similar properties for the Abel

integral equation and the quadrature method, respectively.
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We need some properties of the weights w,, w;, w,, ... considered in

the convolution quadrature method (2.52), these weights are considered

as the coefficients of a power series,

W) = ) W ™, (2:59)
m=0

which is called the generating function of the quadrature method (2.52).
We suppose that this power series converges for |&] <1, and we
restrict the considerations to those generating functions w(¢&) which can be

represented as follows,

w(§) =1 -8 "w(S), (2.60)
w (&) holomorphicon B, ={{ € C:[é] <1+ &},

w()+0 for &€ By, (2.61)

with some real number € > 0. The representation (2.60 —2.61) has

impl- ications on the decay of the coefficients w,,,
Wy, = bm~ (=% + O(m‘(z‘“)), as m — o, (2.62)

with some real constant b # 0. In fact, (2.62) is a stability property.

2.5.1.2 Starting Weights

Now the convolution quadrature method (2,g9)(x) given by (2.52)
is considered as uniformly distributed grid points x = mh for m =

1,2, ..., N, the integer N and the step size h are related as follows,

h=d/N. (2.63)
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We assume that the convolution quadrature method (£2;,g)(x) has conve-

rgence order g, the modification convolution quadrature method is then

given by [32]:

=(2r9)(x)

m q-1
(809) () = h ) Wi gGR) + R Y wi gGR),  (268)
j=0 j=0

as approximations to fractional integral (V,g)(x) for x =mh, m =
1,..., N, respectively. wy, ; are correction weights for the starting values to
be specified for j =0,1,..,q — 1.

In the modified quadrature method (2.64), a reasonable approach is to
select starting weights such that (2.64) is exact at x = mh, for eachm =

1,2, ..., N for all polynomials of degree < q—1, i.e,
(2,tP)(x) = (V,tP)(x) for p=0,1,..,q—1. (2.65)

This means

F'p+1)

£ T Tt p+ D
]:

m
metr — Z Win—j j?, (2.66)
j=0

which is a linear system of g equations for the unknowns w,, ;, with a

Vandermonde matrix which does not depend on m. The right-hand side of
the identity in (2.66) is holds the estimate

Wy j = O(m_(l_“)) as m—-o for j=0,1,..,q—1. (2.67)



36
Note the considered approach for choose the starting weights in (2.65)
cannot be applied in the point x=0. In that case one obtains

(2, tP)(0) = 0 for

p=20,.., g—1 which cannot be used in the numerical solution of the

integral equations of the first kind.

The error of the modified quadrature method at a point 0 < x <d is

then given by:
(Erng)(x) = (2,9)(x) = Weg)(x) for h=x/m, m=1,2,(2.68)

For fixed step size h this error can be written as
q—-1

(Bag)() = (BaR)G) +h ) win Ry().  (2.69)
j=0

The error of the modified quadrature method can be written in another

form, i.e.,

m
(Eng)(x) = cqh‘““z Wm_jg(‘”(jh) + O(h?*%), for x = mh, (2.70)
7=0

and m=0,1,2,...,N, for h — 0 uniformly with respect to x, with some

real constant Cq-
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2.5.2 Numerical Solution of Linear Volterra Fractional Integral

Equation of the First Kind
2.5.2.1 Introductory Remarks and the Basic Algorithm

First, we suppose that the values of the right-hand side of equation (2.50)

are given at uniformly distributed grid points
Xy, = mh, for m=1,2,..,N, (2.71)

respectively. The modified stating weights as in (2.64) are used to
approximations g,, = g(x,,) for m=1,...,N. This implies that the
starting value g, = g(0), approximations g,,..., gy have be determined

such that the identities

m q-1
R Wi i 573G + B ) w1 (s )9 = fCm), (272
j=0 Jj=0

are satisfied for m = 1,...,N. Note that the assumption k =1 is now
omitted. The procedure for determining these approximations is as follows:

(a) First determine a starting value g, = g(0).

(b) Then solve (2.72) for m=1,2,...,q — 1. This leads to a linear
system of g—1 equations for the g—1 unknowns g,,
91 9q-1-

(c) The identities (2.72) then are used successively for m = q,q +

1,.., N to determine the approximations g,, gg+1,---» gn-
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Assumption (2.1) [32]:

a) The convolution quadrature method (2.52) is convergent of
orderq = 1,

b) the corresponding generating function w(¢) considered in (2.59)
can be represented as in (2.60 — 2.61),

c) the starting weights are determined according to the conditions
in (2.65),

d) the kernel function k in the integral operator (2.50) has
continuous partial derivatives g, to the order g +1 on [0,d] X
[0,d], and the solution g of the integral (2.50) is (g + 1)-times
continuously differ- entiable on the interval [0, d],

e) k(x,x) =1 holds foreach 0 < x < d.
We introduce notations for the error of the scheme (2.72)
em =90 — gm forr m=0,1,...,N. (2.73)

If the conditions in Assumption (2.1) are satisfied, then there holds

m q-1
h% z Win—j k(Xm, x;)e; + hY Z Wi, j k(xm, x]-)ej

m
- cqhq+az Wi j@(x) + O(hT*9),  for m =1,..,N,(2.74)
j=0

uniformly with respect to m, with the function ¢@(x) =

Lk (x, 09 (D} =

for 0 < x <d.
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2.5.2.2 Uniqueness, Existence and Approximation Properties of the

Starting Value

We now consider uniqueness, existence and approximation properties of

the starting value gy, ...,gq—1. First, we consider the linear system of

equations
q-1
h® z (Wi—jtwp ;) k(xm, xj)gj =f(x,), m=1,..,q—1, (2.75)
j=0 =:Wm,j

with the notation w,, = 0 for m < 0. The linear system of equation

(2.75) can be written in the form:

[ V_Vl,lkl,l 0 e 0
V_V2,1k2,1 Wz,zkz,z 0 91
pe| | | ) @276
9q-1
B V_Vq—l,lkq—l,l M_/q—l,qu—l,z V'_/q—l,q—lkq—l,q—l_
f(xq) W1,0k1,0
f(x;) Wz,okz,o
=\ : 9o
f(xq—l) Wq—1,okq—1,0
with the notation:
kmj = k(xXm, %)), for 0<m<gq-—1.

Now we offer the approximation properties of the considered starting

values g1, g2, -» Gq-1-
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Proposition (2.1) [32]: Assume that Assumption (2.1) be satisfied, let g,

be a starting value with g, —g(x,) = 0(h%) as h — 0, and let the
other starting values g;, ...,gq—1 be determined by (2.72) for m =

1, ...,q — 1. Then there holds

max |gm— 9| =0(h?), as h-N0. (2.77)

m=1,2,..,q—1

Proof: The proof can be found in [24].
2.5.2.3 The Approximation Properties of the Values g, ..., gy

Now we offer the main result on the convergence order of the

approximations obtained by the scheme (2.72). We consider the reciprocal

1 (0]
- _ (1) gm
"6) mZOW’” &

of the generating function w(¢) = Y- W, €™, and the coefficients of the

reciprocal function 1/w(§) satisfy
w,, "D = 0(m=*1), as m— oo, (2.78)

Theorem(2.1) [24]: Let the conditions of Proposition (2.1) be satisfied.
Then the approximations g,, gq+1,---,gn (determined by (2.72) for m =

q, ..., N, respectively) can be estimated as follows,

max |gm — g(xm)| = O(h1), as h- 0.

Proof: The proof can be found in [24].
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Chapter Three

Numerical Examples and Results

In this chapter we try to implement the aforementioned numerical methods
in chapter two to solve some numerical examples. This will be carried out
using proper algorithms and Matlab software. Comparison between the exact

and the approximate solutions will be tabulated and graphically illustrated.

Example 3.1

Consider the linear Volterra fractional integral equation of the second kind:

13 8 3
g(x)zxz—Z\/Ex2+3\/Exz—1

+ijx( —t)_12t (t)dt 3.1

7=, X g : (3.1

The exact solution of equation (3.1) [21] is:

glx) = xz —1.

3.1 The Numerical Realization of Equation (3.1)Using Adomian

Decomposition Method.

i — .53 2, 8 3_ _ 1 _
We notice that f(x) = x2 4\/Ex tizxe—lL =% and k(x,t) =

2t. The solution g(x) is supposed to have a series form given in (2.10).
Substit- uting the decomposition series (2.10) into both sides of equation
(3.1) gives
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S g0 = - Sy a1
X) = X2 ——\TTX X2 —
n=0gn 4 3\/’7?

+ \/%fox(x — t)‘% ZthOgn (t)dt,

or equivalently

go(x) + g1 (x) + -~

3
3 8 x2 1 1
—_‘/”x2+—_1+_f X — )7z 2t[ go(t
7 = \/Eo( ) [ 90(®)

N| R

=X

+g,(t) + -] dt.

We identify the zeroth component g,(x) by all terms that are not
included under the integral sign. There for, we obtain the following

recurrence relation:

8
3Vm

1 (* 1
Jr+1(x) = —j (x —t)72 2t g, (t)dt, Vk >0,
Vi Jo

3
xz —1,

3
go(x) = x3 —Z\/Exz +

thus, we obtain

1 3 8 3
x) =xz2 ——mwx?+—xz—1,
go(x) 1 3

1 * 1
mm=ﬁﬁa—wmmmm,

8
3V

3
tz — 1|dt,

1 * 1 1 3
x)=—| (x—t)z22¢t |tz — = t? +
1=z @9 "z
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3 48 7 5 8
9:1(x) = Z\/Exz - gﬁ + §X3 - ﬁx;'

g2 (x)

1 (* _1
=\/_Ej0 (x — )73 2t g, ()dt,

gz(x)
1 (* 1 3 48 7 § 8 3
=— | (x=1t)2 Zt[—\/EtZ——t5+—t3——tf dt,
\/;fo( ) 4 35 3 3w
48 7 27 512 9 5
Y- 5 = _ - .3

and so on. Using (2.11) gives the series solution:

g(x) = go(x) + g1(x) + g (x) + -+,

1 3 8 3 3 48 7 5 8 3
X =x5——\/7'[x2+—x5—1—|——\/7'[x2——x5-|-—x3__x§
g( ) 4 3\/77.' 4 35 3 3V
48 7 27 512 o+ 5
+—xz——+mx® + z——x3 4.
35 T 40V Tigoun” 3%

We can easily notice the appearance of identical terms with opposite
signs. This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution:

glx) = xz —1.
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3.2 The Numerical Realization of Equation (3.1) Using the Haar
Wavelet Method

Algorithm (3.1)
This algorithm can be illustrated as follows:

1. Input: 1) A4, B: [A, B] is the interval for the solution function.
2) I: The maximal level of resolution.
3) i: The dilation parameter.
4) c: The translation parameter.
5) f(x): The function of the integral equation.
6) k(x, t): The kernel function.
7) hy(x): The scaling function.
8) A: Is a constant parameter.
2. Calculate: 1) The quantity M = 27,
2) N = 2M.
3) The length of each subintervals Az = 222,
4) m = 2.,

5) The wavelet number j = m + ¢ + 1.

3. Calculate: The collocation points x; = A + (k — 0.5) Az.



45
4. Calculate: h;(xy), u;(x,) and f(xy).

5. Calculate: 1) The matrix [H — U].

2) Calculate b = F ([H - U]™).
6. The solution of the linear system

g=>bH.

For more details see [17, 21].
This linear system has a dimension N x1. For equation (3.1) the dimension
of the systemis 64x1.
We use algorithm (3.1) to solve equation (3.1). Table (3.1) displays the

exact and the numerical results using the Haar wavelet method for equation

(3.1) with Az = 0.0156.

Table (3.1): The exactand numerical solutions using the Haar wavelet
methodwith N = 64.

X Exact solution | Numerical solution | Error =|g — g3,
glx) = xz—1 In (%)
0.0078 | -0.9116116523 -0.9116009499 1.0702e-05
0.1172 | -0.6576734015 -0.6576324164 4.0985e-05
0.2266 | -0.5240141808 -0.5239489931 6.5188e-05
0.3359 | -0.4203988440 -0.4203067536 9.2090e-05
0.4453 | -0.3326826092 -0.3325562333 1.2638e-04
0.5547 | -0.2552265445 -0.2550525941 1.7395e-04
0.6641 | -0.1850996993 -0.1848551078 2.4459e-04
0.7734 | -0.1205470450 -0.1201906958 3.5635e-04
0.8828 | -0.0604189763 -0.0598738640 5.4511e-04
0.9922 | -0.0039139093 -0.0030264584 8.8745e-04
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The maximum error with N = 32 is 2.36779e-03, the maximum error with

N = 64 is 8.8745e-04, the maximum error with N = 128 is 3.2582e-04
and the maximum error with N = 256 is 1.1804e-04.

The exact and numerical results of g(x) with N =32, N =
64,

N =128, and N = 256, are shown in Fig. 3.1 (a), Fig. 3.1 (b), Fig. 3.1
(c), and Fig. 3.1 (d), respectively, and the resulted error with N = 64 is
shown in Fig. 3.1 (e).

The Solution of Volterra Fractional Integral Equation by Haar Wavelet Method

#  Approximation solutions
exact solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.1 (a) A comparison between the exact and numerical solutions in example 3.1
with N = 32.
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The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Method

# Approximation solutions
exact solutions

4 . . . . . . . . .
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

X-axis
Fig. 3.1 (b) A comparison between the exact and numerical solutions in example 3.1
with N = 64.

The Solution of Volterra Fractional Integral Equation by Haar Wavelet Me thod )

#  Approximation solutions
01k exact solutions e ol .

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.1 (c) A comparison between the exact and numerical solutions in example 3.1
with N = 128.
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The Solution of Volterra Fractional Integral Equation by Haar Wavelet Method

#  Approximation solutions
01 F exact solutions _

i . . . . . . . . .
0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
Fig. 3.1 (d) A comparison between the exact and numerical solutions in example 3.1
with N = 256.

« 1072

Errar

Absolute Error

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.1 (e) Absolute error between exact and numerical solutions in example 3.1 with
N = 64.
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3.3 The Numerical Realization of Equation (3.1) Using the Product
Integration Method

The following algorithm is apply to find an approximation solution of

equation (3.1) by using the product integration method.
Algorithm (3.2)

1. Input: 1) a, b: [a, b] is the interval for the solution function.
2) N: The number of subdivisions of [a, b].
3) f(x): The function of the integral equation.
4) G(x,t), p(x,t): The kernel functions.
5) A: Is a constant parameter.
6) Set x, = a and xy = b.
2. Calculate: 1) h = ==
2) t; = x; = a + ih.
3) hi = xi41 — x;.

3. Calculate wy, w;; and wy;

(t; — 1)
hy

ty
Wip = f p(xi) t) dt: for ] = 0;
t

0

tj+1 tiva —t tj t—t:
wij =J P, )+ dt+f p(x t) —22dt,j=1,..,i— 1,
tj ] t

hi_s

j—1
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Li t—t;_
w;; = j p(x;, t)%dt, for i =j.
t i—-1

i-1

4. Solve the recurrence relation:

In(x0) = f(x0) = f(@),

[
Gn ) = FC) + 24 ) wiy 6(xi,ty) Gulty),  for
j=0
=12,..,N,

or we can also solve the linear system of algebraic equations:

G, = B7'F.
For more details see [9].

We use algorithm (3.2) to solve equation (3.1). According to that, we

get the following results:

W Function

If p(x;,t) = (x; — t)‘%, then the equations becomes:

1 (&
Wip = h—of p(x;, t)(t; — t) dt, for j =0,

to

1k 1
Wi = Ej (x; —t)"z (h—t)dt,
0

1 h
Wiy = ﬁj (th— )72 (h — t) dt,
0



o1

Wi = gh% [3i% +2|@-1)- (z)%]].

Ui+ tiis —t tj t—t.
Wij =f p(x;t) ”;l dt+f p(x;, t) - e j=1,..,i—1
t t

j ] j-1 Jj—1
U+Dh i+ 1Dh—t
jh

N[

Jh t—(G—1h
+j (x; —t)~ (]h ) dt
(J-Dh

(ih—t)2 dt

j(f“)h s G+ 1Dh—t
W;: =

Jjh 1t—(j—1)h
+j (ih—1t)2 U ) dt
(-Dh h

d oap oo 33 RN
Wl-j=§h2[(l—]—1)2+(l—]+1)2—2(l—])2].

ti

Wi = p(xl-, t)(t - ti—l) dt, for i = j,
hi_l ti—1
1 (ih 1

Wy =1 j (r — )73t — (i = DR dt,
h (i-1h
1 ih

wy = — (ih — t)"2(t — (i — 1)h) dt,
h (i-Dh
4 1

Wi = §h2

From above equations we obtain the linear system of algebraic equations:
G, = B~'F.
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This linear system has a dimension (N + 1) x 1. For equation (3.1) the

dimension of the systemis 65 x 1.
Table (3.2) displays the exact and the numerical results using the product
integration method for equation (3.1) with A = 0.0156.

Table (3.2): The exact and numerical solutions using the product

integration method with N = 64.

X Exact solution Numerical solution | Error=|g — gy
g(x) = x% -1 gh(x)

0 -1 -1 0
0.125 | -0.6464466094 -0.6463939905 5.2619e-05
0.250 | -0.5000000000 -0.4999385093 6.1491e-05
0.375 | -0.3876275643 -0.3875532017 7.4363e-05
0.500 | -0.2928932188 -0.2927990146 9.4204e-05
0.625 | -0.2094305849 -0.2093044528 1.2613e-04
0.750 | -0.1339745962 -0.1337942129 1.8038e-04
0.875 | -0.0645856533 -0.0643065527 2.7910e-04

1 0 4.7435e-04 4.7435e-04

The maximum error with N = 32 is1.871827e-03, the maximum error with
N = 64 1s 4.7435e-04, the maximum error with N = 128is1.1997e-04 and
the maximum error with N = 256 is 3.0256e-05.

The exact and numerical results of g(x) with N =32, N =64,
N =128, and N = 256, are shown in Fig. 3.2 (a), Fig. 3.2 (b), Fig. 3.2
(c), and Fig. 3.2 (d), respectively, and the resulted error with N = 64 is
shown in Fig. 3.2 (e).
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> The Solution of Volterra Fractional Integral Equation by Product Integration Method

#  Approximation solutions
exact solutions

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.2 (a) A comparison between the exact and numerical solutions in example 3.1
with N = 32.

2 The Solution of Volterra Fractional Integral Equation by Product Integration Method

# Approximation solutions

exact solutions

1 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Fig. 3.2 (b) A comparison between the exact and numerical solutions in example 3.1
with N = 64.
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2 The Solution of Volterra Fractional Integral Equation by Product Integration Method

# Approximation solutions
exact solutions

1 . . . . . . . . .
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

X-axis
Fig. 3.2 (c) A comparison between the exact and numerical solutions in example 3.1
with N = 128.

2 The Solution of Volterra Fractional Integral Equation by Product Integration Method

#  Approximation solutions
exact solutions

4 . . . . . . . . .
1] 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Fig. 3.2 (d) A comparison between the exact and numerical solutions in example 3.1
with N = 256.
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« 104

Absolute Error

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Modes

Fig. 3.2 (¢) Absolute error between exact and numerical solutions in example 3.1 with
N = 64.

Example 3.2

Consider the linear Volterra fractional integral equation of the second kind:

3 X 5\/E 7 8
xX)=2x2—————x2 + x3
9() 2~ 8 15v7

1 (* 11
+ﬁjo (x—t)z xz2t g(t)dt. (3.2)

The exact solution of equation (3.2) [9] is:

X

gx) = 2x2 -3

Now, we apply all numerical methods mentioned in chapter two to solve

(3.2).
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3.4 The Numerical Realization of Equation (3.2)Using Adomian

Decomposition Method

_E_i 748 3321 _
We notice that f(x)—sz . +15\F A—\/Eand k(x,t) =

Xz t.

The solution g(x) is supposed to have a series form given in (2.10).
Substit- uting the decomposition series (2.10) into both sides of equation
(3.2) gives

8 157

1 (% L
+—f (x—t)_ExEtZg (t)dt
v Jg 4"

or equivalently

go(x) + g1 (x) + -

[e'e) 7

x SvVmxz 8x3
Zgn(x)=2x%—§— +
n=0

- X 5\/7‘[9(% 8 x3 j ( -
= 2 ——— —_— 2
Xz — > 3 15\/_ N X X

NlH

t[
go(t) + g,(t) +---] dt.

We identify the zeroth component g,(x) by all terms that are not included

under the integral sign. There for, we obtain the following recurrence

relation:
X 5\/— 7 8
X) =203 — = — 2 3 4 x3
go(x) 2 3 15V
1 x 1 1
Jr+1(x) = —j (x —t)7z xzt g,(t)dt, Vk =0,
Vo Jo

thus, we obtain



S7

() 2 3 X 5\/E Z+ 8
X) = 4LX2 — — — X2
Jo 278 15V

x3,
1 X 1 1
xX) = — x—t)"z xzt t)dt,
91 (0) ﬁfo< )F xbe go(®)

1 r* t 5vm
gl(x)z—j (x—t)_%x%tIZt%——— \/_t%+
Vi Jo

8
2 8 15y

5Vt ;8 , 315w 1. 2048
2

—_ + ,
8 ©  1svm. 2048 47257

g1(x) =

1 X 1 1
9200 = = fo (=07 xte g, (@)dt,

t3| dt,

symtz 8t3 315wtz

1 !
QZ(X)=\/—EL(x—t) 2x2t[ 3 _15\/E_ 5048

+2048t5 .

47251 ’
(35T n 2048 13513572 15
92 %) = 5048 ** T 47257 T 1048576

20971520

x7,

70945875 13

and so on. Using (2.11) gives the series solution:

g(x) = go(x) + g1(x) + g.(x) + -+,

( ) 7 3 X 5\/E 7 n 8 3 n 5\/% 7 8

X) = 4X2 —— — X2 X X2 — X

g 2”8 15v7 8 15v7
3157 11 2048 3157 1 2048

5

2048 " Ta725 7% T 2048 X7 " a7251°

3



We can easily notice the appearance of identical terms with opposite signs.

13513572 15
1048576

+ 3
70945875 nz
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20971520

x’ +

This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution:

3.5 The Numerical Realization of Equation (3.2) Using the Haar

3
g(x) = 2xz >

Wavelet Method

Using algorithm (3.1) for equation (3.2). Table (3.3) displays the exact

and the numerical results using the Haar wavelet method for equation (3.2)

with Az = 0.0156.

Table (3.3): The exact and numerical solutions using the Haar wavelet

method with N = 64.

X

X Exact solution Numerical solution | Error = |g — g;|
glx) = 2x7 — %x 9n(¥)
0.0078 | -0.0025251820 -0.0025252012 1.9151e-08
0.1172 | 0.02163904650 0.02164230903 3.2625e-06
0.2266 | 0.10239982428 0.10241481435 1.4990e-05
0.3359 | 0.22145077666 0.22148741651 3.6640e-05
0.4453 | 0.37167330113 0.37174356233 7.0261e-05
0.5547 | 0.54888930218 0.54900834042 1.1904e-04
0.6641 | 0.75025821180 0.75044613143 1.8792e-04
0.7734 | 0.97368503971 0.97396969675 2.8466e-04
0.8828 | 1.21754149948 1.21796312374 4.2163e-04
0.9922 | 1.48051458614 1.48113375569 6.1917e-04




59
The maximum error with N = 32 is1.728318e-03, the maximum error with

N = 64 15 6.1917e-04, the maximum error with N = 128 is 2.1962e-04

and the maximum error with N = 256 is 7.7580e-05.

The exact and numerical results of g(x) with N=32, N=
64,

N =128, and N = 256, are shown in Fig. 3.3 (a), Fig. 3.3 (b), Fig. 3.3 (¢),
and Fig. 3.3 (d), respectively, and the resulted error with N = 64 is shown

in Fig. 3.3 (e).

16 The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Method

#*  Approximation solutions

exact solutions

1.4 1

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.3 (a) A comparison between the exact and numerical solutions in example 3.2
with N = 32.
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The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Method

exact solutions

#  Approximation salutions |

0.4

0.5

The Solution of Volterra Fractional Integral Equation by Haar Wavelet Method

0.6
W=-axis

with N = 64.

0.7 0.8

0.9

0.1

0.2 0.3

#  Approximation solutions

exact solutions

0.4

0.5

Fig. 3.3 (c) A comparison between the exact and numerical solutions in example 3.2

0.6
X-axis

with N = 128.

0.7

0.8

0.9

Fig. 3.3 (b) A comparison between the exact and numerical solutions in example 3.2
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1.6 The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Me thod
# Approximation solutions

1.4 F exact solutions g

a2 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
Fig. 3.3 (d) A comparison between the exact and numerical solutions in example 3.2
with N = 256.

= 1074

Absolute Error

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.3 (e) Absolute error between exact and numerical solutions in example 3.2 with
N = 64.
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3.6 The Numerical Realization of Equation (3.2) Using the Product

Integration Method

Using algorithm (3.2) for equation (3.2). Table (3.4) displays the exact
and the numerical results using the product integration method for equation
(3.2) with h = 0.0156.

Table (3.4): The exact and numerical solutions using the product

integration method with N = 64.

X Exact solution Numerical solution | Error=|g — gl
g(x) = 2x2 — %x 9n(x)

0 0 0 0
0.125| 0.02588834764 0.02589112774 2.7801e-06
0.250 | 0.12500000000 0.12501070272 1.0703e-05
0.375| 0.27177932677 0.27180216287 2.2836e-05
0.500 | 0.45710678118 0.45714650388 3.9723e-05
0.625| 0.67571176880 0.67577456999 6.2801e-05
0.750 | 0.92403810567 0.92413277868 9.4673e-05
0.875| 1.19947510671 1.19961494314 1.3984e-04

1 1.50000000000 1.50020621277 2.0621e-04

The maximum error with N = 32 is 8.1266e-04, the maximum error with
N = 64 is 2.0621e-04, the maximum error with N = 128 is 5.2106e-05
and the maximum error with N = 256 is 1.3125e-05.

The exact and numerical results of g(x) with N =32, N =64,
N = 128,and N = 256, are shown in Fig. 3.4 (a), Fig. 3.4 (b), Fig. 3.4 (c),
and Fig. 3.4 (d), respectively, and the resulted error with N = 64 is shown

in Fig. 3.4 (e).
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1.6 The Solution of Volterra Fractional Integral Equation by Proeduct Integration Method

#  Approximation solutions F 3
1.4 exact solutions i

032 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H-AXiS Fig.
3.4 (a) A comparison between the exact and numerical solutions in example 3.2 with
N = 32.

16 The Solution of Veolterra Fractional Integral Equation by Product Integration Method

¥ Approximation solutions

3
exact solutions

0 01 02 03 04 05 06 07 08 09 1
X-axis
Fig. 3.4 (b) A comparison between the exact and numerical solutions in

example 3.2 with N = 64.
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1.4

The Solution of Velterra Fractional Integral Equation by Product Integration Method

¥ Approximation solutions
exact solutions

a2 . . .
0 0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 3.4 (c) A comparison between the exact and numerical solutions in example 3.2

X-axis

with N = 128.

1.6

The Solution of Velterra Fractional Integral Equation by Product Integration Method

¥ Approximation solutions

exact solutions

0.1 02 0.3 0.4 0.5

0.6 0.7 0.8 0.9
X-axis

Fig.

3.4 (d) A comparison between the exact and numerical solutions in example 3.2 with
N = 256.
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Nodes
Fig. 3.4 (e) Absolute error between exact and numerical solutions in example 3.2 with
N = 64.

Example 3.3

Consider the linear Volterra fractional integral equation of the second kind:

1 9 5
gx) =x— 3~ 0.2615x% + 0.0981x=
1

r(3)

The exact solution of equation (3.3) [17] is:

g(x)=x—%.

+ JO (x — t)‘% gg(t)dt (3.3)

Now, we apply all numerical methods mentioned in chapter two to solve

(3.3).
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3.7 The Numerical Realization of Equation (3.3)Using Adomian

Decomposition Method

We notice that f(x)=x—>—02615x%+0.0981x%, k(x,t) ==

and 2 = —=. The solution g(x) is supposed to have a series form given in

@)
(2.10). Substituting the decomposition series (2.10) into both sides of
equation (3.3)

gives

(0.0]

1
gn (X) =x =3 - 0.2615x7 + 0.0981x%

n=0

(e0)

X
t
ra j =072 gt
0 0

n=

or equivalently

go(x) + g1(x) + -
1 9 5 x _3 t
- x—§—0.2615x1+0.0981x1+1f =07
0
go()+g:(t) + -] dt.

We identify the zeroth component g,(x) by all terms that are not included
under the integral sign. There for, we obtain the following recurrence

relation:

1 . .
go(x) = x = — 0.2615x7 + 0.0981x%,

X
t
gen@ =1 [ c-07 5 g@dr, k=0,
0
thus, we obtain

1 o ;
go(x) = x — 3 — 0.2615x7 +0.0981x,



67
x 3 t
9100 =1 f (=07 < go(odt,
0

x t 1
9:(x) = Af (x—1)7s 3 [t -3 0.2615¢% + 0.0981t4| dt,
0

g.(x) = 0.2615x7 — 0.0981x3 — 0.0621x7 + 0.0251x7,
X st

g2(x) = /'lf (x—t) 3 g, (®)dt,
0

x 3t 9 5 7
g, (x) = Af (=07 3 [0.2615tz — 0.0981t7 — 0.0621¢z
0
5
+ o.ozsm] dt
g,(x) = 0.0621x7 — 0.0251x7 — 0.0138x % + 0.00586x %,

and so on. Using (2.11) gives the series solution:

gx) = go(x) + g1(x) + go(x) + -,

1
9@ =x—3- 0.2615x7 + 0.0981x% + 0.2615x% — 0.0981x%

— 0.0621x7 + 0.0251x2 + 0.0621x7 — 0.0251x2

19 15
— 0.0138x% + 0.00586x% + ---

We can easily notice the appearance of identical terms with opposite signs.

This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution:
1

glx) = Xx—z



3.8 The Numerical

Wavelet Method

Using algorithm (3.1) for equation (3.3). Table (3.5) displays the exact

and the numerical results using the Haar wavelet method for equation (3.3)

with Az = 0.0156.

Table (3.5): The exact and numerical solutions using the Haar wavelet

method with N = 64.
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Realization of Equation (3.3) Using the Haar

Xy Exact solution Numerical solution | Error=|g — gy|
g(X) :x_% gh(x)
0.0078 | -0.3255208333 -0.3255201452 6.8810e-07
0.1172 | -0.2161458333 -0.2161308905 1.4943e-05
0.2266 | -0.1067708333 -0.1067403308 3.0502e-05
0.3359 | 0.00260416666 0.00265124972 4.7083e-05
0.4453 | 0.11197916666 0.11204451523 6.5349¢e-05
0.5547 | 0.22135416666 0.22143832174 8.4155e-05
0.6641 | 0.33072916666 0.33083364476 1.0448e-04
0.7734 | 0.44010416666 0.44023172549 1.2756e-04
0.8828 | 0.54947916666 0.54963034573 1.5118e-04
0.9922 | 0.65885416666 0.65903078260 1.7662e-04

The maximum error with N = 32 is 3.6119e-04, the maximum error with
N = 64 is 1.7662e-04, the maximum error with N = 128 is 9.8105e-05
and the maximum error with N = 256 is 6.4861e-05.

The exact and numerical results of g(x) with N =32, N =64,
N =128 and N = 256 are shown in Fig. 3.5 (a), Fig. 3.5 (b), Fig. 3.5 (c),
and Fig. 3.5 (d), respectively, and the resulted error with N = 64 is shown

in Fig. 3.5 (e).
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The Solution of Volterra Fractional Integral Equation by Haar Wavelet Method

#  Approximation solutions
exact solutions

—D 4 1 1 1 1 1 1 1 1 1
1] 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
Fig. 3.5 (a) A comparison between the exact and numerical solutions in example 3.3
with N = 32.

0.8 The Solution of Volterra Fractional Integral Equation by Haar Wavelet Method

#  Approximation solutions
exact solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
X-axis
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Fig. 3.5 (b) A comparison between the exact and numerical solutions in example 3.3

with N = 64.

The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Method

0.8

#*  Approximation solutions
exact solutions

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.5 (c) A comparison between the exact and numerical solutions in example 3.3
with N = 128.

The Solution of Volterra Fractional Integral Equation by Haar Wawvelet Method

0.8

¥ Approximation solutions
exact solutions

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
X-aAxis
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Fig. 3.5 (d) A comparison between the exact and numerical solutions in example 3.3

with N = 256.

1.8 I I I I Errar I

167

147

1271

0.ar

Absolute Error

0.6r

047

0.2r

0 01 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 3.5 () Absolute error between exact and numerical solutions in example 3.3 with
N = 64.

3.9 The Numerical Realization of Equation (3.3) Using the Product
Integration Method
We use algorithm (3.2) to solve equation (3.3). According to that, we get

the following results:

W Function

If p(x;,t) = (x; — t)‘%, then the equations becomes:
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1 (&
Wiy = —j p(x;, t)(t, — t) dt, for j =0,
1k 3
wo =3 | =07 (h-0d,
0
1t 3
Wi = Ej (th—t) 2 (h—t)dt,
0

Wip = ghi [Si% +4|@-1i- (i)%]].

ti_
] 1dt,forj

tjv1 tis tj t —
Wi = f p(x;, t) h dt +f p(x;, t)
t t

j ] j-1 j—1
=1,..,i—1,
(+Dh s J+1h—t
Wij :f (x; — )7 n dt
jh
Jh t—(G—1h
+j (x; — t)74 (’h M e
(U-Dh
G+Dh 3 (] + 1)h—t
Wij =f (h— )__ h dt
jh
Jh t—(G—1h
+f (lh—t)_3 G- D dt
G-Dh h

w=—Mh_rnwoﬂ+m—m—n]

1
hi—q

ti
f p(x;, t)(t — t;_1)dt, for i =j
t

i-1

Wi =



Wii =

Wii =

1 ih
h (i—-1Dh

ih

73

(x; — £)7a(t — (i — Dh) dt,

k (ih — t)7(t — (i — 1)h) dt,

hJi-1yn

Wi
B 16 1

= — hzs,

5

Table (3.6) displays the exact and the numerical results using the product
integration method for equation (3.3) with h = 0.0156.

Table (3.6): The exact and numerical solutions using the product

integration method with N = 64.

X; Exact solution Numerical solution Error =|g — gl
1 X
g(X) = x — § gh( )

0 -0.3333333333 -0.3333333333 0
0.125| -0.2083333333 -0.2083242103 9.1230e-06
0.250 | -0.0833333333 -0.0833182033 1.5130e-05
0.375| 0.0416666666 0.04168859603 2.1929e-05
0.500 | 0.1666666666 0.16669655236 2.9886e-05
0.625| 0.2916666666 0.29170591624 3.9250e-05
0.750 | 0.4166666666 0.41671693916 5.0273e-05
0.875| 0.5416666666 0.54172990470 6.3238e-05

1 0.6666666666 0.6667451466 7.8480e-05

The maximum error with N = 32 is 1.2728e-04, the maximum error with
N = 64 is 7.8480e-05, the maximum error with N = 128 is 6.5735e-05,

and the maximum error with N = 256 is 6.2477e-05.
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The exact and numerical results of g(x) with N =32, N =

64,
N =128 and N = 256 are shown in Fig. 3.6 (a), Fig. 3.6 (b), Fig. 3.6 (¢),
and Fig. 3.6 (d), respectively, and the resulted error with N = 64 is shown

in Fig. 3.6 (e).

8 The Solution of Volterra Fractional Integral Equation by Product Integration Method

#  Approximation solutions
exact solutions

0 01 02 0.3 0.4 0.5 0.6 0.7 08 09 1
X=-axis

Fig. 3.6 (a) A comparison between the exact and numerical solutions in example 3.3
with N = 32.
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8 The Solution of Valterra Fractional Integral Equation by Product Integration Method

#  Approximation solutions
exact solutions

04 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
Fig. 3.6 (b) A comparison between the exact and numerical solutions in example 3.3
with N = 64.

8 The Solution of Volterra Fractional Integral Equation by Product Integration Method

¥ Approximation solutions
exact solutions

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
X-axis

Fig. 3.6 (c) A comparison between the exact and numerical solutions in example 3.3
with N = 128.
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0.6 The Solution of Volterra Fractional Integral Equation by Preduct Integration Method

# Approximation solutions
exact solutions

0.4 :
0 01 02 03 04 05 06 07 08 09 1
X-axis
Fig. 3.6 (d) A comparison between the exact and numerical solutions in example 3.3
with N = 256.

%1072

Absolute Error
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MNodes

Fig. 3.6 (e) Absolute error between exact and numerical solutions in example 3.3 with
N = 64.
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Chapter Four

Applications and Results

Volterra fractional integral equation appears in many applications, for
example, mathematical physics and chemical reactions including stereology
[23], the radiation of heat from a semi-infinite solid [16], the heat

conduction, crystal growth, electro-chemistry and superfluidity [22].

In this chapter we present numerical solutions to linear Volterra fractional
integral equation of the first and the second kind appearing frequently in

physics and engineering.

4.1 The Abel’s Integral Equation

The linear Volterra fractional integral equation of the first kind has the
form [32]:
JONN
= WJO (x —t)* 1k(x,t) g(t)dt. (4.1)

Moreover, the linear Volterra fractional integral equation of the second
kind has the form [17]:

X
9O =f) + s | k=0 k() g(Odt. (4.2)
0
If k(x,t) =1and 0 < a < 1, then equations (4.1) and (4.2) become the

so-called Abel’s integral equation of the first and the second kind

respectively,
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L 9@
f(X) =1 . mdt, (4-3)

g(x) = f(x)+/1j (g() dt, (4.4)

where 0 < B < 1, I'(a) is the gamma function, B=1— a and A = ﬁ

One of the most common examples of singular integral equation is the
Abel’s integral equation because the kernel in this equation becomes

unbounded at the upper limit t = x.

Abel integral equation is one of the most famous equation that frequently
appears in many physical and engineering problems, like semi-
conductors, heat conduction, metallurgy and chemical reaction [11,13]. In
experimental physics, Abel’s equation in the first finds applications in
plasma diagnostics, physical electronics, nuclear physical, optics and

astrophysics [18, 19].
Example 4.1

Consider the Abel integral equation of the second kind:

2
X
9() =5 —x~ 0.2399x3 + 0.8399x

Wl

+0.3733 Jx(x — )5 g(t)dt (4.5)
0

The exact solution of equation (4.5) [11] is:

2

X
g(x) =?—x.
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Now, we apply all numerical methods mentioned in chapter two to solve

(4.5).

4.2 The Numerical Realization of Equation (4.5)Using Adomian

Decomposition Method

2
We notice that f(x) = < — x — 0.2399x5 + 0.8399x5, and 1 = 03733,

The solution g(x) is supposed to have a series form given in (2.10).
Substituting the decomposition series (2.10) into both sides of equation
(4.5) gives

© 2

X
gn (1) =5 —x - 0.2399x7 + 0.8399x3
=0

n

+2 fo o t)‘iz)gn (t)dt,

or equivalently

go(x) + g1(x) + -

x? 7 4 * _z
=?—x—0.2399x3+O.8399x3+/'lj (x—t)73 [
0

go() + g1(t) + -] dt.
We identify the zeroth component g,(x) by all terms that are not included
under the integral sign. There for, we obtain the following recurrence

relation:
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2
X
o) = — —x - 0.2399x3 + 0.8399x3,

X
Jr+1(x) = 4 J (x — )73 gp(D)dt, vk >0,
0
thus, we obtain
x? ; .
go(x) = 5 — x — 0.2399x= + 0.8399x%,
x 2
g1(x) =1 J (x — t)73 go(t)dt,
0

X t2
g1(x) = AJ (x—1)73 [? — t — 0.2399¢3 + 0.8399¢5 | dt,
0

g1(x) = 0.2399x5 — 0.8399x5 — 0.1662x3 + 0.6646x5,

9200 = 2 j -0 g (Odt,
0

X 2 7 4 8
g,(x) = Aj (x—1t)3 [0.2399t§ —0.8399t3 — 0.1662t3
0

+ 0.6646t3 ] dt,

g,(x) = 0.1662x5 — 0.6646x35 — 0.1111x3 + 0.4999x2,

and so on. Using (2.11) gives the series solution:

gx) = go(x) + g1(x) + g2 (x) + -+,

2
X
9() = F—x - 0.2399x7 + 0.8399x3 + 0.2399x7 — 0.8399x3

— 0.1662x3 + 0.6646x3 + 0.1662x3 — 0.6646x3

—0.1111x3 + 0.4999x2 + ---
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We can easily notice the appearance of identical terms with opposite signs.

This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution:

xZ

g(x) =?—X-

4.3 The Numerical Realization of Equation (4.5) Using the Haar
Wavelet Method

Using algorithm (3.1) for equation (4.5). Table (4.1) displays the exact
and the numerical results using the Haar wavelet method for equation (4.5)
with Az = 0.0156.

Table (4.1): The exact and the numerical solutions using the Haar
wavelet method with N = 64.

X, Exact solution | Numerical solution | Error = |g — g;,|
X ? gn(x)
gx) = 3 X
0.0078 | -0.0077921549 -0.0083481389 5.5598e-04
0.1172 | -0.1126098632 -0.1131662257 5.5636e-04
0.2266 | -0.2094523111 -0.2100916889 6.3938e-04
0.3359 | -0.2983194986 -0.2990367942 7.1730e-04
0.4453 | -0.3792114257 -0.3800030241 7.9160e-04
0.5547 | -0.4521280924 -0.4529904969 8.6240e-04
0.6641 | -0.5170694986 -0.5179996508 9.3015e-04
0.7734 | -0.5740356445 -0.5750303556 9.9471e-04
0.8828 | -0.6230265299 -0.6240817729 1.0552e-03
0.9922 | -0.6640421549 -0.6651534675 1.1113e-03
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The maximum error with N = 32 is 3.15785e-03, the maximum error with

N = 64 is 1.1113e-03, and the maximum error with N = 128 is 3.4702e-
04.

The exact and numerical results of g(x) with N =32, N = 64,
and N = 128, are shown in Fig. 4.1 (a), Fig. 4.1 (b), and Fig. 4.1 (c),

respectively, and the resulted error with N = 64 is shown in Fig. 4.1 (d).

The Solution of The Abel Integral Equation by Haar Wav elet Method

#*  Approximation solutions
exact solutions

0.6

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 4.1 (a) A comparison between the exact and numerical solutions in example 4.1
with N = 32.
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The Solution of The Abel Integral Equation by Haar Wavelet Method

#  Approximation solutions

exact solutions

01 r

05

0.6

07 : : : : : : : : :
0 0.1 02 03 04 05 06 07 08 09 1

X-axis

Fig. 4.1 (b) A comparison between the exact and numerical solutions in example 4.1

with N = 64.
0 The Solution of The Abel Integral Equation by Haar Wavelet Method
¥ Approximation solutions
exact solutions
01 F
02
03r
=
=]
=04 r
05
06
0.7

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 4.1 (c) A comparison between the exact and numerical solutions in example 4.1
with N = 128.
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« 10"
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0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
X-8Xis

Fig. 4.1 (d) Absolute error between exact and numerical solutions in example 4.1 with
N = 64.

4.4 The Numerical Realization of Equation (4.5) Using the Product

Integration Method

We use algorithm (3.2) to solve equation (4.5). According to that, we get

the following results:

W Function

If p(x;,t) = (x; — t)‘é, then the equations becomes:

1 (h
Wi = h_o.f p(x;, t)(t; — t) dt, for j =0,

to
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1 (" 2
tw0=ﬁj‘ﬁq—tYEUr—0da
0
1k 2
m0=ﬁj(m—truﬁ—0da
0

wio = 305 [ + 3 - 18 - ]|

tj+1 ti —t tj t—t.
Wij =f p(x;, t) AL dt +f p(x;,t) S 1dt, for j
t t

j hy j-1 hj—1
=1,..,i—1,
U+Dh i+ 1Dh—t
jh
Jh t—(—1h
+f (x; — t)‘§ U ) dt,
(-Dh h
U+Dh i+ 1Dh—t
jn h

Jh t—(G—1Dh
+j ah—wé U )dt
G-Dh h

9 1 4 4 4
wy =2 h3 [ == 1% + =+ 1) - 26 - )3 |

1 [
Wii = f p(xi, t)(t - ti—l) dt, for i =]
hi—l t

i-1

1 2
Wi (x; —t)3(t— (i — Dh)dt,

h)i-1yn



Wi

9
Wii = Zh

Table (4.2) displays the exact and the numerical results using the product

hJi_1yn

ih

86

(ih — £)7% (t — (i — 1h) dt,

integration method for equation (4.5) with h = 0.0156.

Table (4.2): The exact and numerical solutions using the product

integration method with N = 64.

X; Exact solution Numerical solution | Error = |g — gyl
X 2 gn(x)
g(x) = 3 X

0 0 0 0
0.125| -0.1197916666 -0.1197818969 9.7697e-06
0.250 | -0.2291666666 -0.2291501145 1.6552e-05
0.375| -0.3281250000 -0.3280982056 2.6794e-05
0.500 | -0.4166666666 -0.4166237294 4.2937e-05
0.625| -0.4947916666 -0.4947244207 6.7246e-05
0.750 | -0.5625000000 -0.5623979179 1.0208e-04
0.875| -0.6197916666 -0.6196416593 1.5001e-04

1 -0.6666666666 -0.6664528164 2.1385e-04

The maximum error with N = 32 is 4.2922e-04, the maximum error with

N = 64 is 2.1385e-04, and the maximum error with N = 128 is 1.5790e-

04.

The exact and numerical results of g(x) with N = 32, N = 64, and

N = 128, are shown in Fig. 4.2 (a),Fig. 4.2 (b), and Fig. 4.2 (c), respectively,

and the resulted error with N = 64 is shown in Fig. 4.2 (d).
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The Solution of The Abel Integral Equation by Product Integration Method

#  Approximation solutions
exact solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Fig. 4.2 (a) A comparison between the exact and numerical solutions in example 4.1

with N = 32.
o The Solution of The Abel Integral Equation by Product Integration Method
#  Approximation solutions
exact solutions
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Fig. 4.2 (b) A comparison between the exact and numerical solutions in example 4.1
with N = 64.
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The Solution of The Abel Integral Equation by Product Integration Method

#*  Approximation solutions
exact solutions

07 : : : : : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

x-axis
Fig. 4.2 (c) A comparison between the exact and numerical solutions in example 4.1
with N = 128.
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Fig. 4.2 (d) Absolute error between exact and numerical solutions in example 4.1 with

N = 64.
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4.5 Linear Volterra Integral Equation

The linear Volterra fractional integral equation of the first kind has the
form [32]:

flx) = ﬁfox(x — )% 1 k(x,t) g(t)dt. (4.6)

Moreover, the linear Volterra fractional integral equation of the second
kind has the form [17]:

900 = F() + j (x — DT k(x, £) g(D)dt. 4.7)

I'(a)

If « =1, then equations (4.6) and (4.7) become the so-called linear

Volterra integral equation of the first and the second kind respectively,

£ = j k(x,©) g(6)dt, 4.8)
0

900 = F() + f k(x,©) g(D)d. (4.9)
0

Volterra integral equation of the second kind appears in many physical
applications as Dirichlet problem, reactor theory, electrostatics,
astrophysics, radiative heat transfer problems [34, 35,37] and in insurance

mathematics through the renewal equation.
Example 4.2

Consider the linear Volterra integral equation of the second kind:

x2

glx) = - = —xz + (x —t)” zg(t)dt (4.10)

The exact solution of equation (4.10) [15] is
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2

g(x) = x?

Now, we apply all numerical methods mentioned in chapter two to solve
(4.10).

4.6 The Numerical Realization of Equation (4.10) Using Adomian
Decomposition Method

2
We notice that f(x) =x7—1%x§, A=1 and the kernel k(x,t) =

(x — t)‘%. The solution g(x) is supposed to have a series form given in
(2.10). Substit-uting the decomposition series (2.10) into both sides of
equation (4.10) gives

Y@=t —roxi+ [ -0 g,

2 15 o

n= n=0
or equivalently

go(x) + g1(x) + -
Xz 8 x 1
Tt [ =07 (@ + g+t
0

We identify the zeroth component g,(x) by all terms that are not included
under the integral sign. There for, we obtain the following recurrence
relation:

8
157"

3
2)

0 =2
gox—z

X
Gear () = j (=D gu(Dd, vk > 0,

0
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thus, we obtain

x2 85

gox) = 7 —EX

g1(x) = J (x — )2 go(D)dt,
0

X 2 8
gl(x>=f0 (- 0) %—Et]dt

() = 8 s 1
— 2__
g1(x 15x 67Tx

9,(x) = j (x - 07 g1 (0)dt,

3

gz(x)—j (x—t)2 [Etz—%nﬁ]du

1 16
g,(x) = i x3 — Enx7

and so on. Using (2.11) gives the series solution:
g(x) = go(x) + g1(x) + g2(x) + -+,

()_2 8 s, 8 s 1 1, 16 .
G =5 T T s T Tt T 105

We can easily notice the appearance of identical terms with opposite signs.

This phenomenon of such terms is called noise terms phenomenon.

Canceling the identical terms with opposite terms gives the exact solution:

2
glx) = x?



4.7 The Numerical Realization of Equation (4.10) Using the Haar

Wavelet Method

Using algorithm (3.1) for equation (4.10). Table (4.3) displays the exact

and the numerical

(4.10) with Az = 0.0156.

Table (4.3): The exact and numerical solutions using the Haar wavelet

method with N = 64.
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results using the Haar wavelet method for equation

X Exact solution Numerical solution | Error = |g — gyl
2
90 == e
0.0078 | 3.0517578x 107> | 3.3575766% 10~° 3.0582e-06
0.1172 | 0.00686645507 0.00692649982 6.0045e-05
0.2266 | 0.02566528320 0.02581371854 1.4844e-04
0.3359 | 0.05642700195 0.05670677370 2.7977e-04
0.4453 | 0.09915161132 0.09962225863 4.7065e-04
0.5547 | 0.15383911132 0.15458396031 7.4485e-04
0.6641 | 0.22048950195 0.22162563521 1.1361e-03
0.7734 | 0.29910278320 0.30079502532 1.6922e-03
0.8828 | 0.38967895507 0.39215956311 2.4806e-03
0.9922 | 0.49221801757 0.49581443791 3.5964e-03

The maximum error with N = 32 is1.043472e-02, the maximum error with

N = 64 is 3.5964e-03, and the maximum error with N = 128 is 1.2437e-

03.

The exact and numerical

and

results of g(x) with N =32, N =64,
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N = 128, are shown in Fig. 4.3 (a), Fig. 4.3 (b), and Fig. 4.3 (c),

respectively, and the resulted error with N = 64 is shown in Fig. 4.3 (d).

The Solution of The Volterra Integral Equation by Haar Wavelet Method

0.5 -

#*  Approximation solutions
exact solutions

0.45

0.4

0.35 [

0 : : :
1) 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
X-axis
Fig. 4.3 (a) A comparison between the exact and numerical solutions in example 4.2
with N = 32.
0.5 The Solution of The Volterra Integral Equation by Haar Wavelet Method
' I I I #  Approximation solutions I I I
0.4s | exact solutions

041

0.35 T

0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 09 1

X-axis
Fig. 4.3 (b) A comparison between the exact and numerical solutions in example 4.2
with N = 64.
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The Solution of The Volterra Integral Equation by Haar Wavelet Method

0.5

#  Approximation solutions
0.45 exact solutions

0.4 r

0.35 [
> i
£ 025

0.2 [

015

0.05

e L il 1 . . . . L |
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis
Fig. 4.3 (c) A comparison between the exact and numerical solutions in example 4.2

with N = 128.

Absolute Error

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Fig. 4.3 (d) Absolute error between exact and numerical solutions in example 4.2 with
N = 64.
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4.8 The Numerical Realization of Equation (4.10) Using the Product

Integration Method

Using algorithm (3.2) for equation (4.10). Table (4.4) displays the exact
and the numerical results using the product integration method for equation

(4.10) with h = 0.0156.

Table (4.4): The exact and numerical solutions using the product

integration method with N = 64.

X; Exact solution Numerical solution | Error=|g — g|
2
90x) = xT In (%)

0 0 0 0
0.125| 0.00781250000 0.00783856885 2.6069e-05
0.250 | 0.03125000000 0.03130541526 5.5415e-05
0.375| 0.07031250000 0.07040972535 9.7225e-05
0.500 | 0.12500000000 0.12515830464 1.5830e-04
0.625| 0.19531250000 0.19556073450 2.4823e-04
0.750 | 0.28125000000 0.28163105523 3.8106e-04
0.875| 0.38281250000 0.38338999896 5.7750e-04

1 0.50000000000 0.50086824131 8.6824e-04

The maximum error with N = 32 is 3.403082e-03, the maximum error with
N = 64 is 8.6824e-04, and the maximum error with N = 128 is 2.2045e-04.
The exact and numerical results of g(x) with N =32, N = 64,
and N = 128, are shown in Fig. 4.4 (a), Fig. 4.4 (b), and Fig. 4.4 (c),

respectively, and the resulted error with N = 64 is shown in Fig. 4.4 (d).
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The Solution of The Volterra Integral Equation by Product Integration Method

0.6

#  Approximation solutions
exact solutions
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Fig. 4.4 (a) A comparison between the exact and numerical solutions in example 4.2

with N = 32

The Solution of The Valterra Integral Equation by Product Integration Method
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Fig. 4.4 (b) A comparison between the exact and numerical solutions in example 4.2
with N = 64
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The Solution of The Volterra Integral Equation by Product Integration Method
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Fig. 4.4 (c) A comparison between the exact and numerical solutions in example 4.2
with N = 128.
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Fig. 4.4 (d) Absolute error between exact and numerical solutions in example 4.2 with
N = 64.
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Conclusions

Linear Volterra fractional integral equation is used frequently in various
fields of physics and engineering.

In this thesis, we have solved the linear VVolterra fractional integral equation
of the second kind using various analytical and numerical techniques,
namely; the Adomian decomposition method, the Haar wavelet method and
the product integration method.

The numerical methods were implemented in a form of algorithms to solve
some numerical test cases using Matlab software.

Numerical results have shown to be in a close agreement with the analytical
ones. Moreover, the product integration method is one of the most
powerful numerical technique for solving linear VVolterra fractional integral
equation of the second kind in comparison with other numerical

techniques.
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Appendix

Matlab code for the Haar wavelet method for solving Volterra fractional

integral equation in the second kind

o©

The solution of the Volterra fractional integral
% equation by the Haar wavelet method

clc;

clear all;

Syms x

F=Q@ (x)x"0.5-

(3/4) *sqgrt (pi) *x"2+(8/ (3*sqgrt (pi))) *x" (3/2) -
ExactSolution=@ (x)x"0.5-1;

K=@Q (t,x)2*t;

lambda=1/sqgrt (pi) ;

A=0;

.
4

(B-A) / (2*M) ;
2*M;
=(k=-0.5)./(2*M) ;
for k=1:1length(x);

N

B=1
I=5;
M=2"T;
dz=
k=1:

=

for j=1;
if x(k)>=A && x(k)<=B;
H(j,k)=1;
(J,k)=lambda*integral (@ (t) (x(k)-t) ." (-
0.5).*K(t),A,x(k));
end
end
for j=2;
if (x(k)<0.5)
H(2,k)=1;
U(2,k)=(lambda) *integral (@ (t) (x(k)-t) ." (-
0.5) .*K(t),A,x(k));
elseif (x(k)>=0.5)
(2/ k)=-1;
(2,k)=(lambda* (integral (@ (t) (x (k) - ~ (=

a
0.5) .*K(t),A,

a t) .
.5))) - (lambda* (integral (@ (t) (x (k) -
t) .~ (-0.5) .% )

)
t),0.5,x(k))));
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integral (@ (t) (x(k)-t) . (-

u o~
~
oo
~
~
~
~

j=m+cl;
csjl=c/m;
csj2=(c+0.5) /m;
csj3=(c+l) /m;
if csj3==
h(j)=-1;
else
end;
for k=1:2*M
if x(k)<csjl
H(j,k)=0;
U(J,k)=0;
else if x(k)<csj2
H(j,k)=1;
U(j,k)=(lambda) *integral (@A (t) (x (k) -t)
0.5).*K(t),csjl,x(k));
else if x(k)<cs3j3
H(jrk):_l;
U(j,k)=(lambda) * (integral (@ (t) (x(k)-t)
0.5).*K(t),csjl,csj2)) -
(lambda) * (integral (Q(t) (x(k)-t) .~ (-
0.5) .*K(t),csj2,x(k)));
else if x(k)>=csj3
H(j,k)=0;
U(J,k)=(lambda) * (integral (@ (t) (x(k)-t) ." (-
0.5).*K(t),csjl,csj2)) -
(lambda) * (integral (@A (t) (x(k)-t) .~ (-
0.5).*K(t),csj2,cs3i3));
else;end;end;
end;end;
end;

(lambda* (integral (@ (t) (x (k) -

(-

(-
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end;
end;
f=eval (subs (F, x)) ;
b=f*inv ( (H-U)) ;
g=b*H
e=eval (subs (ExactSolution, x))
error =g-e;
y=abs (g-e) ;
% Plot
m=[g',e',y"'];
plot(x,qg, "*',x,e,'c")

Matlab code for the product integration method for solving Volterra

fractional integral equation in the second kind

o\°

The solution of the Volterra fractional integral
% equation by the product integration method

clc;

clear all;

syms x €

F=Q (x)x"0.5-

(3/4) *sgrt (pi) *x"2+(8/ (3*sqgrt (pi))) *x"(3/2)-1;

ExactSolution=@ (x)x"0.5-1;

G=@(t,x)2*t;

lamda=1/sqgrt (pi) ;

A=0;

b=1;

N=64;

h=(b-24) /N;

x=linspace (A,b,N+1) ;

t=linspace (A,b,N+1) ;

f=eval (subs (F,x))"';

for 1=1:N+1;

for j=1:N+1;
W(i,1)=(4/3)*h"(1/2);

it (J==1);
W(i,1)=(2/3)*h"(1/2)* ((3*(1-3)"(1/2))+2* ((i-

2)"(3/2)=-(1-3)"(3/2)));
elseif (31>=2 && j<i);
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W(i,3)=(4/3)*h"(1/2)*((i-3-1)"(3/2)+(i-
J+1) " (3/2)=-2*(1-3)"(3/2));
end
end
end
for 1i=1:N+1;
for j=1:N+1;
A(i,1)=1-(lamda*W(i,1)*G(t(1i)))
it (J==1);
A(i,1)=-(lamda*W(i,1)*G(t(1l)))
elseif (31>=2 && j<i);
A(i,j)=-(lamda*W(i,3J)*G(t(3)))’
elseif (i==1 && J==1);
A(i,])=1;
end
end
end
U=inv (A) *£;
E=eval (subs (ExactSolution, x))"'
error =E-U;
y=abs (E-U) ;
plot(x,U, 'r")
plot(x,E, 'r")
m=[0U',E',y'];
plot(x,U, "*'",x,E, "'r")

Matlab code for the Haar wavelet method for solving Abel integral

equation in the second kind

% The solution of the Abel integral equation by Haar
% wavelet method

clc;

clear all;

Syms x

F=@(x) ((x"2)/3)-x-

(0.2399) *x~ (7/3)+(0.8399) *x"(4/3) ;
ExactSolution=@Q (x) ((x"2)/3)-x;
lambda=0.3733;

A=0;

B=1;
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[\)()‘I

4

I;
B- )/(Z*M)
2%

N

(

I=
M
dz=
k=1:

x= (k- O.5)./(2*M);

for k=1l:length (x);
for j=1;

if x(k)>
H(3,k)=1;
la
A

=A && x(k)<=B;

U(3,k)=
(2/3)),
end
end
for

if

mbda*integral (@ (t) (x(k)-t) . (-
X (k) )

J=
(x
H(2
U(2
(2/3)
elsei
2,

2,

)

)

i

4

, bda) *integral (Q(t) (x(k)-t) ." (-
) ) ;
£ =
H (
U (
(2/3

(2/3
else

mbda*(integral(@(t)(x(k)—t).A(—

bda* (integral (Q(t) (x(k)-t) ." (-
- (lambda* (integral (@ (t) (x

—— 3

m=2"1;
for cl=1:m
c=cl-1;
j=m+cl;
csjl=c/m;
csj2=(c+0.5) /m;
csj3=(c+l) /m;
if csj3==
h(j)=-1;
else end;
for k=1:2*M

))) - (lambda* (integral (@ (t) (x(k)-t).

(k)-t).
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if x(k)<csjl
H(j,k)=0;
U(j,k)=0;
else if x(k)<csj2
H(jl]<)=l;
U(j,k)=(lambda) *integral (@ (t) (x(k)-t) ." (-
(2/3)),csjl,x(k));
else if x(k)<cs3j3

H(j,k)Z—l;

U(j,k)=(lambda) * (integral (@ (t) (x(k)-t) ." (-
(2/3)),csjl,csi2)) - (lambda) * (integral (@ (t) (x (k) -
t) .~ (=(2/3)),cs32,x(k)));

else if x(k)>=csj3

H(j,k)=0;

U(j,k)=(lambda) * (integral (@ (t) (x(k)-t) ." (-
(2/3)),csjl,csj2)) - (lambda) * (integral (@ (t) (x (k) -

t) .~ (=(2/3)),csj2,csi3));
else;end;end;

end; end;

end;

end;

end;

f=eval (subs (F, x)) ;
b=f*inv ( (H-U)) ;

g=b*H

e=eval (subs (ExactSolution, x))

error =e-g;
y=abs (e-qg) ;

% Plot

plot(x,g,'r")
plot(x,e,'r")
m=[g',e',y'];
plot(x,qg, "*',x,e,'")

Matlab code for the product integration method for solving Abel

integral equation in the second kind

% The solution of the Abel integral equation by
% product integration method
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clc;

clear all;

syms x €

F=@ (x) ((x"2)/3)-x-

(0.2399) *x”(7/3)+(0.8399) *x~(4/3);

ExactSolution=@Q (x) ((x"2)/3)-x;

G=Q(t,x)1;

lamda=0.3733;

A=0;

b=1;

N=64;

h=(b-3) /N;

x=linspace (A,b,N+1);

t=linspace (A,b,N+1) ;

f=eval (subs (F,x))"';

for 1i=1:N+1;

for j=1:N+1;
W(i,i)=(9/4)*h"(1/3);

if (3==1);
W(i,1)=(3/4)*h"(1/3)* ((4*(i-3)"(1/3))+2* ((i-

2)"N(4/3)=(1-3)"(4/3)));
elseif (31>=2 && j<i);
W(i,3)=(9/4)*h"(1/3)* ((1-3-1)"(4/3)+(i-

J+1) " (4/3)-2*(i-3)"(4/3));

end

end

end

for 1i=1:N+1;

for j=1:N+1;
A(i,1)=1-(lamda*W(i,1)*G(t(i)))

it (J==1);
A(i,1)=—-(lamda*W(i,1)*G(t(1l)))
elseif (§3>=2 && j<i);
A(i,j)=-(lamda*W(i,]J)*G(t(3)))

elseif (i==1 && J==1);
A(1,])=1;

end

end

end

U=inv (A) *f;
E=eval (subs (ExactSolution, x))"'
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error =E-U;
y abs(E U)
=[0", y]'
plot(x u,"*",x,E,'r")

Matlab code for the Haar wavelet method for solving the Volterra

integral equation in the second kind

% The solution of the Volterra integral equation by
% Haar wavelet method

clc;

clear all;

syms X

F=0@(x) (((x72)/2)-((8/15)*x*(5/2))):
ExactSolution=0@Q (x) ((x"2)/2);
K=@(t,x)1;

lambda=1;

A=0;

4

N

—A) / (2*M) ;
2*M;
k=0.5)./(2*M) ;
for k=1l:length (x);
for j=1;
if  x (k)
H(3,k)=1;
U(3, k) =1
K (

(B

B=1;
I=5;
M=2"T
dz=
k=1:
x= (

>=A && x(k)<=B;

ambda*integral (@ (t) (x(k)-t) ." (-
t),A,x(k));

*integral (@ (t) (x(k)-t)." (-
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U(2,k)=(lambda* (integral (@ (t) (x(k)-t) ." (-
0.5).*K(t),A,0.5)))-(lambda* (integral (@ (t) (x (k) -
t) .~ (-0.5).*K(t),0.5,x(k))));
elseif (x(k)>=1)

integral (@ (t) (x(k)-t) ." (-
(lambda* (integral (@ (t) (x (k) -

ol o~
~
vy,
~
~
~
~

j=m+cl;
csjl=c/m;
csj2=(c+0.5) /m;
csj3=(c+l) /m;
if csj3==1
h(j)=-1;
else end;
for k=1:2*M
if x(k)<csjl
H(j,k)=0;
U(j,k)=0;
else if x(k)<csj2
H(jlk):l;
U(j,k)=(lambda) *integral (@ (t) (x (k) -t) ." (-
0.5).*K(t),csjl,x(k));
else if x(k)<cs3ji3
H(j,k)Z—l;
U(j,k)=(lambda) * (integral (@ (t) (x(k)-t) ." (-
0.5).*K(t),csjl,csj2)) -
(lambda) * (integral (@ (t) (x(k)-t) .” (-
0.5).*K(t),csj2,x(k)));
else if x(k)>=csj3
H(j,k)=0;
U(j,k)=(lambda) * (integral (Q(t) (x(k)-t) ." (-
0.5).*K(t),csjl,csj2)) -
(lambda) * (integral (Q(t) (x(k)-t) .~ (-
0.5).*K(t),csj2,csj3));
else;end;end;
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end;end;
end;
end;
end;
f=eval (subs (F, x)) ;
b=f*inv ( (H-U)) ;
g=b*H
e=eval (subs (ExactSolution, x))
error =e-g;
y=abs (e-qg) ;
% Plot
plot(x,g,'r")
plot(x,e, 'r")
m=[g',e',y'];
plot(x,g9,"'*",x,e,"'r")

Matlab code for the product integration method for solving Volterra

integral equation in the second kind

% The solution of the Volterra integral equation by
% product integration method

clc;
clear all;
syms x €

F=Q@ (x) (((x72)/2)-((8/15)*x"(5/2)));
ExactSolution=Q (x) ((x"2)/2);
G=0@(t,x)1;
lamda=1;
A=0;
b=1;
N=64;
h=(b-A) /N;
x=linspace (A,b,N+1);
t=linspace (A,b,N+1) ;
f=eval (subs (F,x))';
for i=1:N+1;
for j=1:N+1;
W(i,i)=(4/3)*h"(1/2);
it (J==1);
W(i,1)=(2/3)*h"(1/2)* ((3*(i-3)"(1/2))+2* ((i-
2)"(3/2)-(1-3)"(3/2)));
elseif (§3>=2 && j<i);
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W(i,3)=(4/3)*h"(1/2)*((1i-3-1)"(3/2)+(i-
J+1)~(3/2)-2*(1-3) ~(3/2));
end
end
end
for 1i=1:N+1;
for j=1:N+1;
A(i,1)=1-(lamda*W(i,1)*G(t(1i)))
if (3==1);
A(i,1)=-(lamda*W(i,1)*G(t(1l)))
elseif (31>=2 && j<i);

A(i,3)=-(lamda*W(i,3) *G(t(3)));
elseif (i==1 && J==1);
A(i,])=1;
end
end
end

U=inv (A) *£;

E=eval (subs (ExactSolution, x))"'
error =E-U;
y=abs (E-U) ;
plot(x,U, 'r")
plot(x,E, 'r")
m=[0U',E',y'];
plot(x,U, "*'",x,E, "'r")
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