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Eigenvalues of the Matrix of the Distances Reciprocals for
the Complete Bipartite and Cycle Graphs
By
Riad Kamel Hasan Zaidan

Supervised by
Dr. Subhi Ruzieh

Abstract

This work deals with the spectra and eigenspaces of some matrices

related to the distance matrix of some connected graphs.

In particular, we investigate the (n x n) matrix B,whose nonzero
entries are the reciprocals of the corresponding nonzero entries in the
distance matrix. We derive formulas for the eigenvalues and eigenvectors
related to the complete bipartite graph K(r, n-r), and the cycte graphs C,

for any positive integer n.

In the beginning, we state some needed facts in graph and matrix

theory.

In chapter three, we present some known results about the distance

matrix and related topics.

In chapter four, the discussion was focused on the matrix B, related

to the graphs K(r, n-r), and K(2, n-2).

In chapter five we deal with the matrix B, related to the cycles C, for

any positive integer n.
New Accomplishments

In chapter two, we state and prove a theorem for computing the

eigenvalues and eigenvectors of circulant matrices, and relate them to the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



permutation matrices.

In chapter four: We state and prove a theorem for computing the

eigenvalues and eigenvectors of a matrix, that appears in our main study.

Also, we state for the first time, a theorem for computing the
eigenvalues and eigenvectors for the matrix B,,whose nonzero entries are
the reciprocals of the corresponding nonzero entries of the distance matrix

of the graph K(r, n-r), and as a special case the graph K(2. n-2).

We will construct a table, which contains numerical values of the
spectral radius (1, and those of  of some complete bipartite graphs,

obtained by direct calculation and by the resulting formulas.

Also, we will construct a table which contains numerical values of
for K(2,n-2), K(3,n-3), K{4,n-4) as n goes bigger and bigger, then we state

and prove a lemma for calculating the limit ot as n approaches

In chapter five, we will find the eigenvalues and eigenvectors for B,
related to the cycle graphs C,,, and we state and prove a theorem which

shows that the eigenvalues of B, are real for any positive integer n

We will also calculate the eigenvalues and eigenvectors of B, related

to the cycle graph C,, and those of C,,,

We will present some graphs, then we will compute the eigenvector
that corresponds to the spectral radius, and will note that vertices with
greater eigenvector entries are with smaller eccentricities, and tend to be in

the center of the graph.
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Chapter One
General Background in Graph Theory
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[1 - 0] Introduction:

Graph theory is a new area of applied mathematics which is being
widely used in formulating models in many problems in business, the social
sciences. and the physical sciences. These applications include comm-

unications problems and the study of organizations and social structures.

Graph theory was discovered from several situations by Leonfard

Euler (1707-1783), Kirchoff (1824-1887). and Arthur Cayley (1821-1895).

The first paper devoted exclusively to a problem in graph theory was

published in 1736 by Euler which was about a puzzle concerning Koing-
sberg city. He presented the solution of the probiem of the Koingsberg

bridges.

Kirchoff discovered graphs while solving problems involving

electrical networks and the calculations of currents.

Cayley studied a special class of graphs related to certain chemical
compounds, especially the hydrocarbons. He was interested in enumeration

of such graphs.

In this chapter we present a very brief introduction to the subject that
includes some basic concepts and definitions which will be needed in our

investigation of such situations.
[1-1]: The Definition of a Graph

First of all, we may consider a system of "objects” which are interr-

elated in some way. For example, the objects may be:

a) Countries connected by diplomatic relations

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



~
J

b) Atoms connected by chemical bonds
c) Stations interconnected by rails.

In each of the previous and similar cases we can draw a diagram
representing each of these cases where in each case the objects are

represented by points, and the interconnections are represented by lines.

Such a diagram is called a graph. The points representing the objects

are called vertices, and the lines representing the interconnections are called

edges.

Next, we state the formal definition of a graph.

Definition [1-1-1]: A graph G is an ordered pair (V. E} in which the first
component is a non-empty set of vertices denoted by V, and the second is a

set of unordered pairs of vertices called edges and is denoted by E.

The number of vertices is called the order of the graph and the

number of edges is the size of the graph.

Example I: In Figl the graph G is displayed in which

For simplicity, an edge will be denoted as v,v. instead of |v, , v, .
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Definition [[-1-2]: A directed graph abbreviated digraph D consists of a
set of elements, called vertices, and a list of ordered pairs of these elements,
called arcs. The set of vertices is called the vertex-set of D, denoted by

V(D), and the list of arcs is called the arc list of' D, denoted by A(D). If

v, and v,are vertices of D, then an arc of the form v,v,is said to be

directed from v, tov,.

Example 2: In Fig2 the digraph D is displayed

v, A{v;

Fig2 D
where V(D)= {v,,v,,v.},and A(D)={v,v..v.v,.v.v,}.
Definitions [1-1-3]: Let G = (V, E) be a graph:
A loop is an edge of the form e = vv joining a vertex to itself.
Multiple edges are two or more edges joining any two vertices.

A simple graph is a graph which has neither loops nor multiple edges.

A walk of length k in a graph G is a succession of k edges of G of the

form wuv, vw, wx, ..., yz and this walk is said to be a walk between u and z

and is denoted by uvwx...yz
A trail is a walk in which no edge is repeated.
A path is a walk in which no vertex is repeated.

The length of a path is the number of edges included in it.

All Rights Resarved - Library of University of Jordan - Center of Thesis Deposit
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A closed walk is a walk ot the form uv, vw, wyx, ..., vz, zu

A cycle is a closed path.

Here are some examples of these concepts.

Example 3: Consider the graph G displayed in Fig 3

V.V, Vy V.V, v, v, isawalk

v
V, V. V.V, Vg, is a trail

Vs
V,V, V.V, V is a path

Vl ;
V,V, V.V, V.V, is acycle Fig3 G
V.V, is a loop.

Definition [1-1-4]: Let G be a graph with no loops, and v be a vertex of G.
The degree of the vertex v, denoted by deg (v). is the number of edges
meeting at v. The degree in a simple graph is simply the number of vertices

connected to vertex v by edges.
Note: A loop at a vertex v contributes 2 to the degree of v, while an

edge e = uv contributes to one in the degree of vertex u and to one in the

degree of vertex v.
Definitions [1-1-5]:
An isolated vertex is a vertex with degree zero.

An end vertex or a pendant vertex is a vertex with degree one.

Example 4: In the following graph, we note that

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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deg(v,)=3

v, is an end vertex sincedeg (v,) = 1.
v, isan isolated vertex since deg ( v,) = 0.

Definition [1-1-6]: Two vertices v, , v, of a graph G are adjacent if there is
an edge joining them, and we say that v, ,v, are incident with that edge.
Two distinct edges are said to be adjacent if they are incident with the same

vertex.

Example 5: Consider the following graph

! €, Va
Fig5G
v,,v,are adjacent vertices and e,, e, are adjacent edges

v

while edge e is incident with both v, and v..

Definition [1-1-7]: Let G be a graph with vertex set V(G), and edge set
E(G), similarly let H be a graph with vertex set V(H) and edge set E(H). We
say that H is a subgraph of G if the following are satisfied:

V(H) is a subset of V(QG), and E(H) is a subset of E(G).
Moreover, if V(H) = V(G), then H is called a spanning subgraph of G.

Also, if V(H) is a subset of V(G), then H = (V(H), E(H)) is the
subgraph of G induced by V(H) provided that every edge in E(G) having
end vertices in V(H) also belongs to E(H).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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For example, in Fig 6 the graph G, is a subgraph of G while G, is a

spanning subgraph of G, and G, is the subgraph induced by {v, ,v,,v, }.

[\ V]NV_: v,ﬂvj V,Klv4
2 i V3 V: Vv,
G, G

Fig 6

Definition [1-1-8]: Let G, and G, be two graphs and let £ be a function

from the vertex set of G, to the vertex set of G,. The two graphs are said to

be isomorphic and the map f is in isomorphism if it satisfies the following

two conditions:

first: the map f is one-to-one and onto and

second: the map f preserves adjacency.

i.e f(v,) is adjacent to f(v,) in G,if and only if v,is adjacent to v, i5 G,
Then we say that the function f is an isomorphism and that the two graphs
are isomorphic. In short terms, one says that two graphs G, and G,are

isomorphic if there is a one-to-one correspondence between the vertices of

G, and those of G, that preserves adjacency.

Example 6: Consider the following two graphs G, and G,
VI v 4 v ? V(y

VJ E VR :'\

G, G,
Fig 7

Note that f = {(v,, v, ), (v,, Vi), (V.. V. ). (v,,V,)} is a one-to-one
correspondence between the set of vertices of G, and the set of those of

G, which shows that these two graphs are isomorphic.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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If two graphs are isomorphic, then they can be considered as two
copies of the same graph although the locations of the vertices may be
different, or the shapes of these two graphs may be different. From a

topological view two isomorphic graphs are just the same object.

For example, the following two graphs G, and G, are isomorphic

/Iv: )
v.’- V|

where f ={(v,,v,), (v,,v,), (v.,v,), (v,.v.)] is a one-to-one
correspondence between the vertices of G, and those of G. although the

two graphs have different representations.
{1 - 2] Special Graphs:

We now introduce several classes of simple graphs. These graphs are

often used as examples and arise in many applications.
Null Graphs:

A null graph is a graph in which every vertex is isolated and with

degree equals to zero.

Notes: 1) The null graph on n vertices is denoted by N .

2) Every vertex in a null graph is isolated.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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Here are two examples of null graphs:

N, N,

Regular Graphs:

A regular graph on n vertices is a graph in which all vertices have the

same degree.

Ifdeg(v,)=rforalli=1,2, ..., nthen the graph is called r -regular.

Example 7: The graph G in Fig 9 is a 2-regular graph

Complete Graphs:

A complete graph on n vertices denoted by K, is a simple graph in
which each pair of distinct vertices are adjacent.

mn-1)

Note that K, is an (n - 1) - regular and has a size of edges.

Example 8: The following graph represents K,

VI V1
Vi v,
Fig 10K,

Next, we define another type of graphs; namely cycle graphs, which

will be studied in more detail.
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Cycle Graphs:

A cycle graph on n vertices, C,, n > 3 is a connected graph with n
vertices v,, v,, ..., v,, each of which has degree 2, with v, is adjacent to

v, fori=1,2,...,n-l and v,k is adjacenttov,.

!

Example 9: The cycles C,, C,, C, and C, are displayed in Fig 11

/\ O O

C, C, C, C,
Fig 11

Note: (1) Any cycle graph is a 2-regular graph.
(2) Any graph which contains no cycle is called acyclic graph.

Next, we will introduce a graph which is related to the cycle graphs.

Path Graphs:

A path graph on n vertices denoted by P, is a graph obtained from

C, by removing an edge. [f edge e = uv is deleted from C, , then we get the

"

path P, and it is denoted by C, —e.

Note that any path graph contains only two end vertices and any other

vertex has degree equals to two.

Example 10: The following graph represents P,

A v, v v

Fig 12 P,

3

Next, we introduce a special type of graphs which will play an

important role in our future study.
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Connected Graphs:

A graph G is connected if for any two vertices u. ve V(G) there is a

u-v path, otherwise it is said to be disconnected.

Example [1: The following graph G is connected

v, Vv, /v,, Ny,
Fig 13 G

Note: Every disconnected graph G can be split up into a number of

connected subgraphs, each of which is called a component of G.
Here are some definitions concerning connected graphs.
Definition [1-2-1]:

A graph G is called irreducible if for every ordered pair of vertices

v, and v, there is a path in G starting at v, and terminating at v,.

Note that an irreducible graph is a connected graph.
A bridge is a single edge whose removal disconnects a graph.

A cutset of a connected graph G is a set S of edges with the following

properties:
a. The removal of all edges in S disconnects G.

b. The removal of some (but not all) of the edges in S does not

disconnect G.

Example 12: The graph in Figl4 (a) is a graph with three components.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



TN
v, v, Vo. v,
(b)
Fig 14

In Fig 14 (b}, v,v, is a bridge, while {v,v.,v,v,} isa cutset.

Some graphs have the property that the set of vertices is made up of
two disjoint subsets, such that each edge connects a vertex in one of these

subsets to a vertex in the other subset.
Bipartite Graphs:

A bipartite graph G is a graph in which the vertex set can be split into
two disjoint sets A and B so that any edge in G joins a vertex in A and a
vertex in B. i.e a graph in which its vertices can be colored black and white
in such a way that each edge joins a black vertex ( in A) and a white vertex

(in B).

Example 13: The following graph is a bipartite graph

1 2
where A= {v,,v,} M

B-‘—'{V],V“VS} v v, \E
Fig 15

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Complete Bipartite Graphs:

A complete bipartite graph ts a bipartite graph in which every vertex

in A is joined to every vertex in B.
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Note: A complete bipartite graph with r black vertices and s white vertices

1s denoted by K{r, s} and it has r + s vertices and rxs edges
Example 14: The graph K (3, 4) is dispiayed in Fig 16

v, v, V.

Figle K (3,4)
Star Graphs

A star graph is a complete bipartite graph of the form K(1, n- 1) and is
denoted by S, .

Cube Graphs:

A k-cube graph denoted by Q, is a graph whose vertices correspond
to the sequence (a,, a. , ..., a, ), where each a, = 0 or I, and whose edges

join these sequences that differ in just one place.

Example 15: The following graph is the 3-cube graph Q,
001 011

101 111

000 010

233813

100 110

Fig 17 Q,

Note: a k-cube graph Q, has an order of 2*, a size of k 2*7', and it is

k-regular graph.
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In the following, we define another type of graphs-namely a tree-

which is usually used in representing some chemical molecules.
Note: Any graph that contains no cycles is called acyclic graph.
Trees:

A tree is a connected acyclic graph.

Example 16: The following graph represents a tree with 6 vertices
\J’ 5 L ]

Ve T VL] V.° A%

Vﬁ.

Fig 18
Trees have a lot of interesting properties, some of which are:
1) Every tree with n vertices has exactly n-1 edges.
2) Any two vertices in a tree are connected by exactly one path.
3) Any edge of a tree is a bridge.
Next, we define the complement of a given graph G.
The Complement of a Simple Graph:

If G is a simple graph with vertex set V (G), then its complement

~

denoted by G is the simple graph with vertex set V (G) in which two

vertices are adjacent if and only if they are not adjacent in G.

Example 17: Following is a graph G and its complement .
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Fig 19
Planar Graphs and Coloring of Graphs:

A graph can be drawn in many different ways, for example each of

the following drawings represents the same graph G.

\4 v AY4
! 2 1 i -
VIAV, v, v

Fig 20 G

Definition: A graph G is planar if it can be drawn in the plane in such a
way that no two edges meet each other except at a vertex to which they are

both incident. Any such drawing is called a plane drawing of G.

[f there is no plane drawing of a graph, then it is called a non-planar
graph. As an example of a non-planar graph is the complete bipartite graph

K (3, 3).
So the graph Ky in Fig 20 is a planar graph.

Definition [1-2-2]: Let G be a graph without loops. A k-coloring of G is an
assignment of k colors to the vertices of G such that adjacent vertices are
assigned different colors. If G has a k-coloring, then G is said to be k-

colorable. The chromatic number of G, denoted by X(G), is the smallest

number k for which G is k-colorable.
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A lot of work has been conducted on graph coloring of planar

graphs. The most important of which is the following theorem.
Theorem [1-2-3]: (The Four Color Theorem).

Every planar graph is 4-colorable. (For the proof see [22]).
[1-3] Operations on Graphs:

There are several ways that can be used to combine two graphs in
order to get new ones. The simplest of these are the union, sum, and

deletion of graphs.
[1-3-1] Union:

If G, =(V,, E)) and G, = (V., E,) where V(G,), V(G.) are
disjoint, then the union of G, and G. denoted by G,U G, ,is the graph
whose vertex-set is V,U V, and edge-setis E,U E.. For example, the null

graph N, is the union of n copies of N,.

Example 18: Consider the graph G shown in Fig 21

A X

K, K(2,2)
Fig21 G
[tisclearthat G=K, UK (2, 2).

Any disconnected graph is the union of two or more connected
subgraphs, each pair of which has no vertex in common. These disjoint

connected subgraphs are called components of the graph.
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[1-3-2] The Sum of Graphs:

Let G, and G, be two graphs, then the sum of G, and G , denoted
by (G,+ G,) is the graph resulting by first forming G, U G, and then

making every vertex of G, adjacent to every vertex of G,.

Example 19: The addition of two graphs is illustrated below

S

K, +K, = K,
Fig. 22

[1-3-3] Deletion of Graphs:

Let e be an edge of a graph G, then G-e is a subgraph of G obtained
from G by deleting the edge e.

In general, if F is any set of edges of G, then G-F is a subgraph of G

resulting by deleting all edges of F from G.

Also, if v is a vertex of the graph G. then G-v is the subgraph

obtained from G by removing the vertex v and all incident edges.

Example 20: A graph G, the graph G-e, and the graph G-v, are displayed.

Vi M2 vy 2 vy
€ e‘i

Va v, V., A\ Vi vV,
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Chapter Two
General Background in Matrix Theory



{2-0] Introduction:

In this chapter, we will make a general revision of some matrices by
means of some definitions and theorems concemning special types of

matrices.

First, we will provide a review of some important properties of

matrices especially symmetric matrices.
[2-1] Definitions and Theorems:

Here we define a symmetric matrix, which will be the focus of our

attention during the coming study.
Definition [2-1-1]: A matrix A = [a,] is called symmetric iff A" = A

where A’ = [a]] is the transpose of A. i.e a] =a  for every possible i.j.

Next, we define the term “‘eigenvalue” which is related to a square

matrix.

Definition [2-1-2]: let A be an (nxn) matrix. The number A is called an

eigenvalue of A if there exists a non-zero vector x such that

and every nonzero vector x satisfying (1) is called an eigenvector of A

associated with the eigenvalue A.

Next, we will define the characteristic polynomial of a matrix, a

polynomial of great importance of our work.

Definition [2-1-3]: Let A = [a, ] be an (nxn) matrix. The function

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



A-a, —ths e ... -d,
—dy A—dyw . . —d,,
F(4)=det(Al-A) =| : S

-a =,y e s A-u

nl

is called the characteristic polynomial of A.

The characteristic polynomial of an (n x n) matrix A is a polynomial

of degree n. So
f(A)=( 1) +a,, (A)"+a,, A "I+ +a, (4)*a,.

Definition [2-1-4]: If A is an (n x n) matrix, the minor M, is the

determinant of the ((n-1) x (n-1)) submatrix of A obtained by deleting the

1" row and the j” column of the matrix A.

In the next theorem, the coefficients of f (4 ) are determined in terms

of principal minors.

Theorem [2-1-5]: Let A be an (n x n) matrix,and f (41 )= ia, A" denotes

r=1b

its characteristic polynomial. Then the scalar a,, 0 <r <n is equal to the
sum of all principal minors of A of order (n - r) multiplied by (-1)"". In

particular, the coefficients of (1)", (1)"', and (1)" are respectively equal
to1,a,, =-tr(A),anda, = (-1) det (A). (For the proof see [21]).

Note: The equation f {4 ) = det (11-A) = 0 is called the characteristic

equation of A.
Next, we define the term ‘orthogonal matrix.’

Definition [2-1-6]: An (nxn) non-singular matrix A is called orthogonal. if

andonly if A" = A’
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i.e A'A=1 wherel is the identity matrix.

In the following theorem, some properties of real symmetric matrices

will be stated.

Theorem [2-1-7]: If A is an (n xn) real and symmetric matrix then:

(1) All eigenvalues of A are real.

(ii)There is a set of orthonormal eigenvectors for the matrix A.

(i) A=QAQ "' =QAQ’ where Q is a matrix whose

A0 0 L.
0 i 0 ... 0
columns are the orthonormal eigenvectors, A=1{0 0 '

In the following theorem, we state the relation between the

eigenvalues of a matrix, and the trace and determinant of that matrix.
Theorem [2-1-8]: Let A be an (nxn) matrix, then
(i) Tr(A)= D 1, =Ya,

(i) Det(A)=T]4, (the product of the eigenvalues).

(For the proofsee [21]).
Notes:
(i) If A =0isan A, then A is singular.

(i)  If A is symmetric thensois A", ne Z-.
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(ii1)  AB may be symmetric although A and B are not.

We now state the following theorem, which is useful in a variety of

applications and which applies to arbitrary real or complex matrices.

Theorem {2-1-9]: If1 |, 1 ,, ..., 4, are the eigenvalues, distinct or not, of a

matrix A of order n, and if p(A) is any polynomial function of A, then the

eigenvalues of p(A) are p(1 ). p(1.), ....p(4 ).
(For the proof see [21]).

Example 1: Consider the matrix

then the eigenvaluesof Aare 4, =1and 2, =3.

Now, let p(A)=A° +3 A be a polynomial function of A. then
2 ) 7
we [ L
1 2 1 2 1 2
=[5 ﬂ_FF 3}
4 5 3 6
_ I 7
7 11
which has 4, and 18 as an eigenvalues.

Note that these values agree with the theorem, where
p(A)=p(1)=1°+3(1)=4 and,

p(A.)=p(3)=3*+3(3)=18.
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Since p(A)=A", where m is a positive integer, is a polynomial

function of A, then we have the following special case:

Theorem [2-1-10]: If the eigenvalues of the (nxn) matrix A are

"

AsA <y ooy A, then the eigenvalues of A", where m is any positive

"y

integer,are 4", A5, ..., 4 0.
[2-2] Permutation Matrices:

In this section, we will consider a new type of matrices, namely
permutation matrices which will play a great role in circulant matrices,

which will be used in representing cycle graphs.

Definition [2-2-1]: A permutation matrix is an (nxn) matrix that has
exactly one entry equals to one in every row (column) and the rest of the
entries in that row (column) are zeros. i.e ; a permutation matrix is an (nxn)
matrix whose entries are zeros and ones, where any row or column contains

exactly one entry equals to one.
We will consider one kind of permutation matrices denoted by P.

This matrix P is defined as

o =

o100 ..0
Oo010..0
0001 ..0
P=
0 00 |
inwhich  p - i=1,2,..,n-1
pn| =1

p,-u foreveryotheri.j.
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Next, we will find the powers of permutation matrices.
2-2-2] Powers of Permutation Matrices:

The powers of the permutation matrix P, and which will be used

later, appear in the following example.

Example 2: Let

—_ o O O
oo o -
oo - O
o o O o

be a (4 x 4) permutation matrix then

0O 01 0
R 0O 0 0 1

P! =

1 0 0 0

01 0 0
and

0 0 0 1

1 0 00
P’ =

01 0 0

0 01 0
while

1 0 00

01 00
pt = =1

0 010

0 0 0 |1

and P’ =P.

[f P is the (nxn) permutation matrix P, then P" = 1.
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[2-2-3] Eigenvalues of Permutation Matrices:
In this section, we will find the eigenvalues and the eigenvectors of

permutation matrices which will be used in calculating eigenvalues and

eigenvectors of circulant matrices.

Let 1 be an eigenvalue of the (nxn) permutation matrix P, then by

definition, det( 4 , I - P) = 0 which, by calculations amounts to
A-1=0.

The solutions of this equation are

2 ki

! .:
A =e " wherek=1,2,...,nand i =-1.

Next, we show as an example, that if i, is an eigenvalue of the

(nxn) permutation matrix P, then A is the corresponding eigenvalue of

the matrix P°.

Letv_be an eigenvector of P corresponding to 4 , . then

Piv,=P*(Pv,)
=P*(A,v,)
=X, (P°v,)
=1 ,(P(Pv,)
=1 ,(P(A,v,)
=1,(A,(Pv,)
=1;(A,v,)

=A; Vv,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



20

As a special case of theorem [2-1-10], we state and prove the following

theorem concerning permutation matrices.

Theorem [2-2-3-a]: If 4 is an eigenvalue of the (nxn) permutation matrix

P, then | is the corresponding eigenvalue of P’ forj=1,2.....n.

Proof:

Let 1, be an eigenvalue of the (nxn) permutation matrix P and v,

be an eigenvector of P corresponding toi,, then using mathematical

induction:

1) We first show that it is true for j=1:
P'v, = 4! v (by definition of the eigenvalue),
so it is true for j=1.
(2) Assume that it is true forj= m(i.e P"v, = Anv, )
P"'v, =P(P"v,)

=P(A7v,) by assumption

=17 (Pvy,

=Ar(4,v,)

=V
So it is true forj =m+1 (Q.E.D).

Note that this proof is valid for theorem [2-1-10].
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As a result of this theorem, it is clear that if v _is an eigenvector of P
corresponding to4 , then the same vector v, is also a corresponding

eigenvector of P/ corresponding to 4 /.

Now, we will find the eigenvectors of the permutation matrix P,

[2-2-4] Eigenvectors of Permutation Matrices:

Let v, be an eigenvector of the (nxn) permutation matrix P

corresponding to the eigenvalue 2 ,, then we have

Pv,=2,v, (wherev ={vg vi ....vg |,

i 0 07 T v i -\". ]

0 1 . 0 vy, v
0 0 01O 0 ~ ki

1 0 (=)
. =g
1 00 01 [ Ve, S
or
_v‘:_ -1’,”_
Vi, vy

One of the solutions for this equation is
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2kin=lir iy T
— " " " " !
v, afe , € reery € ,e "]
hE- T EIRY a2y ki
— !
= ” n n
a[l,e yerrs € ,e " ]
2=y Jaki 2y 27k
:a[l’e " yeeny © " , € " ]*

where (a) is any arbitrary constant, and the symbol(’) denotes the
transpose of vectors, and () denotes the conjugate transpose of vectors

or matrices.

Next, we consider another type of matrices called irreducible
matrices, which will be used to find the eigenvectors of some matrices

related to special graphs.

Definition [2-2-5]: An (nxn) non-negative matrix A is said to be

irreducible if there is no permutation matrix of coordinates such that

PIrAP = 4, Ay
0 A

where P is an (nxn) permutation matrix , A,, is {rxr) matrix, and A,, is an

({(n-r)x{n-r)) matrix.

Irreducible matrices can be related to its powers as in the following

theorem.

Theorem [2-2-6]: An (nxn) non-negative matrix A is irreducible if and
only if (I,+A)" >0.

(For the proof see [42]).

Therefore, an (nxn) non-negative matrix is irreducible if and only if

the matrix (I,+ A)"' has positive entries.
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Example 3: Consider the following matrix A:

0 0 1 0
0 0 0 1
A:
01t 00
1 ¢ 00
S0
1 01 ¢
0 1 0 1
[,+A =
01 1 0
1 0 0 1
Theretore,
1 1 20
. 1 1 0 2
[.+A) =
(L7 A) 0 21 1
20 1 1
while
1 3 3 1
. 31 1 3
(1,+A) =
1 3 1 3
31 3 i

which has only positive entries, so A is irreducible.

It is easy to check that the matrix

0

0
M=

1

1

-0 O O
oD = -
e e R

is not irreducible since by direct computation we find
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o N =

(1,+M)" =

ot

b O b O
SN ke N
B S e S S e

which has zero entries.

At this point, it seems appropriate to finally state the following

important theorem:
Theorem [2-2-7].(Perron-Frobenius Theorem for Irreducible Matrices)
If A is an {nxn) non-negative, irreducible matrix, then:

1) One of its eigenvalues is positive and its magnitude is greater than or

equal to any of that of the other eigenvalues.

2) There is an eigenvector with positive entries corresponding to that

eigenvalue.

3) That eigenvalue is a simple root of the characteristic equation of A.
(For the proof see [33]).

[2-3] Circulant Matrices:

In the following, we will consider another type of matrices, namely

circulant matrices, which will be of a great importance in our future study.

Definition [2-3-1]: An (nxn) circulant matrix A is a matrix of the form
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=1

a,, 4, a . . u

" n=2

n-l

A: Hn-2

a,

a,  a, . . od,, 4,

in general, any circulant (nxn) matrix A whose first row is

(a,,a,, a,, ..., a,,) can be written as a polynomial function of an (nxn )

permutation matrix P and its powers as

A=al+aP+a,P'+...+a P,

Next, we give an example of a (5x 5) circulant matrix

Example 3: The matrix D shown below is a circulant matrix

1 2 3 4 §]
5123 4
D=4 51 2 3
34512
2 3 45 1

which can be written in terms of the permutation matrix P and its powers,

where
0 1 0 0 O]
0 01 00
P=|0 001 0
000 0 1
1. 00 0 0
as

D=1+2P+3P"+4P" +5P".
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d a b

c d u

~

Also1if A=

b=l

thenA=al+bP+cP> +dP*, where

—_ o o O
o - O D

0
1
0
0

o o O -

[2-3-2] Eigenvalues of Circulant Matrices:

In the following theorem, we will find the eigenvalues ot circulant

matrices.

Theorem [2-3-2-a]: If A is an (nxn) circulant matrix whose first row
entries are a,, a,,a,....,4,,, and 2 ,is an eigenvalue of the (nxn)
permutation matrix P, then the corresponding eigenvalue of A. «, is given
by

n-1

ak=2a,A;

i=0

Proof:

Let A be an (nxn) circulant matrix, «,be an eigenvalue of A,

n-|

A=>a,P’',soif v, isaneigenvector corresponding to a,, then

1=0
n=l

Av, = (Za,P’ }v,

=1}

&

=(a,P"+a, P' +a,P'+..+a, PV

=a,lv,+a,P'v, +a,P’v +..+a, Py,
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[ ¥]

— Q \ 2 -l
=a, A, v, ta A, v, ta, A, v, +..+a, A"v,

u-1|

=(a, 1} ta, A, ta, A+ +a, 2"y,
n-]

=(Za! i[)vk_

1=0

So a, is an eigenvalue of A........ Q.E.D.

n-{
Also note that an eigenvector of the circulant matrix A = Za P'is

1=t

v, which is an eigenvector of the permutation matrix P.
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Chapter Three
Matrix Representation of Graphs



[3-0] Introduction:

[n chapter 1, we noticed that a graph can be used to represent the
relationships between objects, we simply represent the objects by vertices,

and the relationships by edges joining these vertices.

In order to investigate these relationships more closely, we need to
study the theory of graphs in greater detail. We will introduce some useful

terminology which will be needed in the following study.

Matrices will provide a convenient way of describing a graph, and
since matrices lend themselves well to computer use, thev make it possible

to use the computer for extensive computational work in'graph theory.

There are various types of matrices that can be used to specify a

given graph. Here we describe the most important ones- the adjacency

matrix, the incidence matrix, and the distance matrix,

For simplicity, we restrict our attention to graphs without loops.
[3-1]The Adjacency Matrix

Here we define the adjacency matrix of a connected graph.

Definition [3-1-1]: Let G be a graph, with n vertices labeled as

V., V,, ...,v, , then the adjacency matnx, denoted by A(G) = [a,] is the

n 2

(nxn ) matrix in which a, is the number of edges joining vertices i and j.

For a simple graph, the adjacency matrix is a symmetric (0, 1)-

matrix in which a, =1 if v,is adjacent to v and zero otherwise.
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In the following example, the graph G and its adjacency matrix A(G)

are displayed.

Example 1: The graph G shown in Fig 24 is represented by the following

adjacency matrix

0103 2
1 001 0

A(G)=[0 0 0 1 0 v, v
311 01
2 0 0 1 0]

Fig 24: G

Next, we define a graph which is used to represent chemical
molecules. In particular it will represent the skeleton structure of an organic
compound with vertices representing usually the carbon atoms and edges

representing the chemical bonds between the atoms.

Definition [3-1-2]: Let G be a simple connected graph, and the set

{v,, V,,..., v, } be the set of vertices of G, and deg(v,) be the degree of

vertex v,. Then G is said to be a chemical graph if deg (v;) < 4 forall 1 =1,

2, ..., 0N

In the following example, we see the graph and the matrix

representation of Ethane molecule.
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Example 2: The graph shown in Fig 25 represents the chemical graph for

the Ethane molecule C,H,, the corresponding graph, and its adjacency

matrix.
I~’I H’ v, v,
H—C — &— H v, v, T v,
H H v, \Y
Fig 25
0 Lt 00 0 0 0 O]
1 01 110 O 0O
g1 0 00 0 0 0
010 0000 Q0
A(G)=
O 1 00 01 11
0 00 01 0 00
0 ¢ 0 01 0 00
00001 00 0]

This graph is a tree as it is a simple connected acyclic graph.
[3-1-a] Properties of adjacency matrix A (G):
1) A (G) is symmetric.

2) The sum of the numbers in any row or column of A(G) is the

degree of the corresponding vertex.
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3) If G has no loops then all the entries on the main diagonal are

ZEros,

4) If G has no multiple edges then the entries of A(G) are either zero

or onc.

5) For any (nxn) symmetric matrix A with non-negative integer

entries, we can associate a graph G with A as its adjacency matrix,
6) If G is a graph with vertex set V={v,,v......,v, },and if
A(G) =[a,]is its adjacency matrix, and for any positive integer m, let

A" = [u,] denotes the matrix multiplication of m copies. then for each i

and j, u, is the number of different walks of length m fromv tov .

i

7) If A(G) is the adjacency matrix for a graph G. and A" = [c, ], then

the number of triangles in G is (é Y Trace(A ™)), and the number of triangles

. . . 1
in G having v, as a vertex is (-2— )(Ci).

[3-1-b] The Adjacency Matrix of a Disconnected Graph:

Recall that a graph G is connected if for any two of its vertices there

is a path between them, otherwise it is called disconnected.

A disconnected graph can be regarded as the union of connected

graphs called components.
The vertices of any disconnected graph G can be labeled so

that its adjacency matrix A(G) has a block-diagonal form.
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The following example shows a connected graph and two

disconnected graphs with a number of components for each graph.

Example 3: Consider the graph shown below

v, v, vV, vV, v, vV, v,
V}A v, I\ A
v, V, V, V vV, V,vV, V.,
G, G, G
Fig 26

G, is connected, while G,, G, are disconnected and have two and three

components respectively.

The adjacency matrix of G, is:

0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
L 0 1 0 0 0 0
AG,)=
0 1 1
I 0
] 0 i 0 0]

which is a block-diagonal matrix. Note also that the number of components
of any disconnected graph G is the same as the number of blocks on the
diagonal of A(G), and each block is a square (kxk) matrix, where k is the

number of vertices in the corresponding component of G.
[3-2]The Incidence Matrix

Recall that the adjacency matrix of a graph represents the adjacency
of vertices, but the incidence matrix represents the incidence of vertices

and edges.
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Definition [3-2-1]: Let G be a graph without loops, with n vertices

{Vv,,V.,...,v,} and m edges {e, e., ....e, }. The incidence matnix, of the

"

graph G is the (nxm) matrix U(G) = [u, ] where

I

{l , If v, is incident with e .

0 , otherwise.
Example 4: Here is a graph G and its incidence matrix U(G)

vV, _e,_ v,

e,| e, e,
\E B ¥y
Fig 27

U(G)=

o O e -
o = o
—_— D D
_ D - O
o - - O

Note: The sum of the i” row of the incidence matrix is the degree of the

vertex v; while the sum in any column of the incidence matrix is 2.

Next, we define the line graph; a graph referred to in coloring

problems as L (G).

Definition [3-2-2]: The line graph L(G) of a simple graph G is the graph
obtained by taking the edges of G as vertices, and joining two of these
vertices whenever the corresponding edges of G have a vertex in common.
Simply, we can say that if ¢; and e, are two adjacent edges in the graph G,

then e, and e- are adjacent vertices in the line graph L(G).
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In the following example, we see a graph G and its corresponding

line graph L{QG).

Example 5: Here is a graph G and its line graph L(G):

L(G)
Fig 28

If G is a graph with p vertices and q edges, then the adjacency matrix
of L(G), and the incidence matrix of G; U(G) are related by the following

formula:
A(L(G)=U"U-21. (Due to Kimchoff [17]).
where  U: the incidence matrix of G
U’ : the transpose of U
[: the identity (qxq) matrix
A(L(Q)) : the adjacency matrix for the line graph.

In the next example, we apply the previous formula to a given graph

G.

Example 6: Here is a graph G, and the corresponding line graph L(G),

then we apply the previous formula:

V, eV, v
<, /\
V,© €, Vv, v v,

3
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110 01 0 1
010 1 00 0
U= A=
0 0 1 00 0 1
1 01 1 01 0
01 1
A(L(G)=|[1 0 0
1 00
1 1 ¢
1 0 0 o 1 0 1 00
u'u-2I=ij1 1 0 0}. 2101 0
0 0 1
0 0 1 0 0 1
I 0 1
2 171 [2 0 0
=11 2 of-{0 2 0
10 2] |00 2
0 1 1]
=11 0 0]=ALQ)
1 0 0]

[3-3]The Distance Matrix

Given any two distinct vertices v, and v, in the same component of

a graph G, there is at least one path between them, and there may be several

of various lengths. The length of the shortest path joining them is called the

distance between v, , v, and is denoted by d (v, ,v,).

Here are some basic concepts concerning connected graphs.

Definition [3-3-1] Let G (V, E) be a connected graph, and veV, then the

eccentricity of v denoted by e(v) is the maximum value of d(u ,v) where u is

allowed to range over all of the vertices of the graph G.
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e(v)=max { d(u, v):ueV,u=v }.

Definition [3-3-2]: The radius of a graph G{V, E). denoted by rad(G), is

defined to be the minimum eccentricity.
rad (G)=min { e(v): veV }.

The diameter of a connected graph is defined as the maximum

eccentricity.

Definition [3-3-3]: The centerof a graph G (V. E) is defined as
center (G) = {ve V:e (v)=rad (GQ)}.

Now, we introduce the last matrix representation of graphs; namely

the distance matrix.

Definition [3-3-4] Let G be a connected graph on n vertices, the distance

matrixof G denoted by D (G) = [d, ] is an {nxn) matrix where

d =

i

u’(v,.v,). iz
0 . i=

Example 5: Here is a graph G and its distance matrix

v, v,
0 1 2 1 2]
M\V 101 23
v, v, 5 DG)=|2 1 01 2
1 2101
2 3 2 1 0]

Fig 30: (_}
Properties of Distance Matrix:

1) D(G) is a square symmetric matrix with positive integer entries.
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) d;= identity relation
3)d,=d, symmetry
4yd, <d, +d, triangle inequality where i,j.k=1.2.....n.

[3-4] Some Known results Concerning Distance Matrices

Here we state some of the known results concerning the distance

matrix.
Theorem [3-4-a]: (R. Graham and H. Poilak 1971 )

If Tis atree on n vertices, D = D(T) is its distance matrix .then

D det(D)=(-1)"" (n-1) 2" and

2) D is non-singular with one positive eigenvalue and (n-1) negative

eigenvalues.
Theorem [3-4-b]: ( R. Graham and H. Pollak 1973).

If G =K(m, n) is a complete bipartite graph on n + m vertices then

det(D) = (-1)"" 2" (3nm-4n-4m+4).

Theorem [3-4-¢]: (Subhi N. Ruzieh 1989).

If T is a star S, on n vertices, D is its distance matrix with

eigenvalues:

5,>6,206.2... 29,

then

8, =n-2+vn'-3n+3,
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§.=n—2-n'=3n+3
and 6, =-2 for i=3,4,....n.

Theorem [3-4-d]: (Graham, R. and Pollak, H. 1973).
If G =K, is the complete graph on n vertices, then
det (D)=(n—-1)(-1)"".

Theorem [3-4-e]: (Ruzieh, Subhi N. 1989).

If G =C,, is a cycle on an even number of vertices, n = 2m. then

0, (D) =m" is the largest eigenvalue of D.
Lemma [3-4-f]: (Graham, R. et al. 1971)

If G is a cycle on n vertices, then the eigenvalues of D are given by

1-1
f(u) = Zu,u’
1=l

th

where u = n" root of unity and (0, a,, a., ..., a, ) is the first row in the

distance matrix of the cycle C, .

Proposition [3-4-g]: (Ruzieh, Subhi N. 1989).

If C, is the cycle on an odd number of vertices n=2m+1, then in
the spectrum of D(C , ) we have

1), =m{m + 1) and

2) the rest of the eigenvalues are all negative and are given by
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Sinz(mkzr)
h(k) = ———;’—, fork=1,2,...,2m.

. T
sin” (——)
1

Proposition [3-4-h]: (Ruzieh, Subhi N. 1989).

It C, is the cycle on an even number ot vertices n = 2m, then in the

distance spectrum of C, we have

(1) the distance spectral radius is 8,=m~,

(2) 5,,=0fork=2,4,...,2m-2 and
-1
(30, = ——

sin” (——)
n

fork=1,3,...,2m- 1.

Theorem [3-4-i]: (Ruzieh, Subhi N. 1989).
[fC, isacycleonn=2m+ | vertices, then

(1) the distance matrix D(C, ) is non-singular,

n -1

(2) its spectral radius is and

(3) the remaining (n - 1) eigenvalues are all negative.
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Eigenvalues and Eigenvectors related to
Special Matrices

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



48

[4-0] Introduction:

In this chapter, we will investigate the eigenvalues and eigenvectors

of the matrix B,, whose nonzero entries are the reciprocals of the

w1

corresponding nonzero entries of the distance matrix of the graph G. The

work will concentrate on the matrix B, related to the graph K(r, n-r).

Some of related results will be proved first, and those will be utilized

for our goal.
[4-1] Eigenvalues of Special Matrices:

In this section, we will state and prove a theorem to find the
eigenvalues of a matrix closely related to our work and whose results will

form the corner stone for reaching some main results in this work.

Theorem [4-1-1]: Consider the following matrix:

V2 au. 211 ]
V2 Vouoo 2 1| 1 r rows
1
V2 2. V2 1] 1
C=|1 1 1 V2 V2
B | (n-r) rows
1 ... 1 Y% Y% ... %

If P,.(a) is the characteristic polynomial of C, then

P, (a)=a" ta,,a""'+a,,a”" where the coefficients a,_,, a,, are
given by:
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_ 1
arhl R n
2
a,,= -2 r (n-r)
Proof:

Since the characteristic polynomial of C can be written as

Pe(a)y=a”" +a,,a"" +a, ,a"* +a _a" +...+2a, where
n=1 n-2 -3 e}

a, = the sum of all principal minor determinants of order (n-r) multiplied

by (-1)". Thereforea  =a, ,=...=a, = 0, so the matrix has rank equals to

two. Thus the matrix C has exactly two nonzero eigenvalues.

Therefore the characteristic polynomial takes the form
pC (a) -a "t an-l Q " + an—.’! a " ‘

Next, we finda, , anda,_,:

n-\

Now each (2x2) principal minor is the determinant of a (2x2)
principal square sub-matrix consisting of the elements on the intersections

of rows and columns i, j where:

j=r+1,r+2,...n

|

Any non-zero principal has the value =

— |\)|-—4

[Ql.—- —
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The number of choices of such principals = r(n - r). Therefore, the

sum of all (2x2) principal minors = -%(r) (n -r). But a, , = sum of all

(2x2) principal minors, then

3, =-trace (€)== (3 +2+...+2)=-(3)n ... QED.

This completes the proof of this theorem.

{4-1-2] Evaluation of eigenvalues of a special matrix
A related matrix to the distance matrix is the matrix B, whose
entries are the reciprocals of the distances from v, to v, . This matrix

models reasonably some physical situations and it is expected to be related
to some phystcal properties of some organic compounds, so its eigenvalues

and eigenvectors are of a great interest.

Definition [4-1-3]: Recall the definition of the distance matrix D(G )of a

graph G.

Define the matrix B, = [b ] where

dL,, , ifd, #0
b =
0 , ifd =0.

Example 1: Here is the complete bipartite graph K (2, 3) and the

corresponding matrix B, defined above.
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M 050 1 1 1

Fig 31 K (2,3)
Now, we state a known result concerning the spectrum of B | related
to the complete bipartite graph K(1, n-1), n>2.
Theorem [4-1- 4]: (Al-shelleh, Mukhtar M. 1999)

[£fB, is the matrix defined as before that corresponds to the complete
bipartite graph K(1,n-1) , (n>2) , then the spectrum of B, contains exactly

three distinct eigenvalues 4, > 0, -0.5 with muitiplicity n-2, and the last is

A, <0,

The values of 1, 1, are given by

n=2++n +12n-12

A, = and
4
1= n-2+ “":]2"*]2 (For the proof see [44])

[4-2] The Spectrum of B, related to Some Complete Bipartite Graphs

In this section, we will deal with some special cases of the matrix

B, , namely the matrix for K(r, n - r).
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Here we state and prove the following theorem about the spectrum of
B, and its eigenvectors.
Theorem [4-2-1]: Let B, be the matrix defined in [4-1-3] which

corresponds to the complete bipartite graph k(r, n - r), n > r then the

spectrum of B, contains exactly three distinct eigenvalues, 1 ,> 0, -(—;-)

with multiplicity (n-2), A, <0

where the values of A, and A , are given by:

:n—2+\/n3 +12rn-12¢°

A,
4
L =n=2-n+12m-12r
n 4
Proof:
Let D be the distance matrix corresponding to K(r, n - r), then
(02 2 .21 1 1 ... 1]
2 o211 10 ]
220 ...+ b1 1 .1
S S R S S S
22 ...2 0111 1
D=
1 1 ... 10 2 2 2
1 1 1 ... 1 2 0 2 2
: 2 20
R 2
11 122 2 0

and
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(0 05 05 ... 05 1 1 1 ]
05 0 05 ... 05 1 1 1 1
505 0 S U B 1

: .. 05
g _ |05 03 05 0 1 1 1 !
NN T 0 05 0.5 0.5
1ol 1 05 0 05 0.5
05 05 0 :
: 0.5
111 1 05 05 0.5 0

Consider the matrix C=B, + %I, then

05 05 05 ... 05 1 1 1 .. 1

05 05 ... 05 1 1 1 .. 1

05 05 ... 1 1 1 .. 1

S S S . S SRS S S
Cof05 05 0505 1 1 1
1 1 1 .. 1 05 05 05 ... 03
1 1 1 .. 1 050505 ... 05
R 0.5 0.5 0.5 ;

: : A : : Do 03

1 1 1 .. 1 0505 .. 05 05]

Let spectrum(B,)={41,,4,,4,,..,4,} and
spectrum (C)={a,, a,, @ 1,....a, }.
It is clear thata, = A, +%, and we see that C has only (2)

independent rows; rank(C) =2 so it has 2 nonzero eigenvalues.

So spectrum(C) = {a,, 0, a, }, 0 with multiplicity (n-2), therefore,

let

P(a)=a"+a, ,a"" +a,,a™

n-1 n-1

be the characteristic polynomial of C then
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a,,==-Tr(C)= -%n, and
a,, =sum of all (2x2) principal minors
=-(%)r(n-r) (see theorem [4-1-1]).
Hence, P, (a)y=a" +(-%) neg"' + (-%) r(n-r)a "
n=2 2 3
=a" («a -—na-zr(n-r))

Setting P . (&)= 0 we get the following equation:

sy a1 3 . .
a" (a” s nha- " r (n - r)) = 0, which has the solutions

a = 0 with muitiplicity (n - 2) and

11 | 3
a, = 5(-5n+\fzn +4(Z)r(n—r))

i

1 1 1, 3
a, E(En—\/:l—n +4(Z)r(n—r))

So for C we have

- n+\/n: +12rn—12r°

4
_ n—\/n:+l2rn—12r2
a" -
4
a,a,=...7a,, =0
Now, for B :

. . 1
Sincea, = A, + 5 we have
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n—2+\/n2 +12rn—12¢"
1
4

_"_ 2 _ 2
A"=n 2 \/n -;121‘:1 12r ...Q.E.D

Here we find the eigenvectors of B, :

Let x be an (nx1) non-zero vector which is an eigenvector

corresponds to an eigenvalue a of C=B, + él.

Since spectrum (C) = {a,, 0, a, }, 0 with multiplicity (n - 2) then

for @ = 0 we have

Cx=ax=>Cx=0

05 05 05 ... 05 v 1 1 ... t1[x] [o]
05 0505 ... 05 1 1 1 .. 1]|x
05 05 05 ... * 1 1 1 .. 1]~ 0
O ¢ 5. T : :
05 05 .. 0505 1 1 1 .. 1 _
1 1 1 .. 1t 050505 ... 05
i 1 1 .. 1 0505 05 ... 05
SRR 0.5 0.5 05 '
S 0.5
11 1 05 05 0.5 0.3]{x,] |0
Then E,: %x,+—x2+ + =X, +x,,tx,,,+t...+x,=0
vi=1,2,...,T (1)
E, X, +X, v 4X, +ox,, ++x_, +.+1x =0
2 2 2

vk=r+l,r42,,n ()

From (1) we get the following equation:
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X, TX, fo+x, +2x,,, +2x,,,+ ... +2x, =0

Therefore, we get the following (r - 1) independent orthonormal

vectors:

1

NG

(1.-1.0.0..., 0,0...., 0)7

—(1.1.-2,0.0.... 0,0...., 0)’

(1)

+
|

o

(1.1.1,.-3.0.0.....0,0.....0)"

1
J3+(=3)°

1

—(LL...1 = r.00....0)"
\/(r -D+(1-ry

Also from (2) we get the following equation:

2x, F2x, .. H2x, tx,, Fx,, ... +x, =0

Therefore, we get will the following (n-r-1) orthonormal independent

vectors:

1 {0,0,.... 0,1,-1,0.0,..., 0)7

,/1+(—1)’
1

N2+ (=2)°

1

A3+ (=3)°

(0,0,...0,1,1.-2,0,0,..., 0)'

(0.0.....0.1,1.1,-3,0.0..... 0)
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1

=(0.0.... 0.Lt.. 1= (n=ryn’
Jo-r-D+=(n-r)?

So we have (n - 2} independent orthonormal eigenvectors which

correspondto ¢, =0,for i =2,3,....,n-1.

Fora,, a, = 0O:

"

Let x be a non-zero vector with the property that

Cx=ax,a=a,,a,. So

050505 .. 05 1 1 1 .. 17 @,
0505 .. 05 1 1 1 ... 1]l o x,
0.5 S R ] x « x
N 05 1 it :
0505 .. 0505 1 1 1 .. t||:] |ax
11 1 05 05 05 05|11 |ax.
111 1 05 05 05 0.5
05 05 0.5 5
S S O S S S A 11 I .
(1 1 1 .. 1 0505 .. 05 05jx,] |ax, |

which gives the following equations:

E,:Z’x,+2i.\',=a.\:1
=l

t=r+k

E::Z’: x, + 22"2 x, = ax,
1=l

1=ra]
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E, :2) x + > x, =ax,
=1

t=r+l

Subtract E; from E; we get & (X, -x,)=0 = x. =X, since & = 0,

and similarly we getx, =x, = ... =x

re

By the same principle we get x,,, =x,., =... =x_ . and so the vector

L

is of the form

F e (1= r Yimes

Since «, > 0, then by Perron-Frobenius Theorem, there is an

eigenvector X' such that

Cx" =a, x" and x" has all positive entries, so a vector corresponding to
a, isof'the form (a.a.... a,h,b,.., b )" where both « and b are positive,
e M e’

romes {rm—rjtimes

thus the vector

xm=1_(1_l,___, 11.1..... i)’

FoHmes (= r plmex

is an eigenvector corresponds toa , > 0.
For ¢ = a, <0, there is an eigenvector

x": Cx™ =a ,x", x" contains both positive and negative entries.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



59

(nh

So x" is of the form

(ga.a... a.b.b.. h)' wherea>0,5<0. So

FoHmes (R —rYienes

r r ro;
(—1-1 ..... S )
‘—-—-v-—-* n-r n-r _n-r

rolmey

x(n]_

(""f Yhmes

is an eigenvector for C corresponds toa , <0.

Recall that the eigenvectors of B are the same as of C.

As a special case, when r = 2, we have the following results:

_ n=2++n +24n-48

A, =
4
1= n—-2-+n’ +24n-48
4
. - _ 1
Ar= A ==A,,=-0)
The following (n-2) independent orthonormal eigenvectors
correspond to 4, = —% fori=2,3,...,n-1:

1

JL+ (-1

(0,0,1,-1,0,0...., 0)".

(0.0.1,1,-2,0,..., 0)".

1
N2+ (-2)

(0,0.1.1.1.-3.,0..... 0)' .

1
\/3 +(=3)°
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1

\/(n -3+ (3-n)°

(0,01.1.1... 1.3 =~ n)" .

Fori , , we have the following eigenvector:

1

x" = (r.1.1,.. 1"
~ R
Fori , , we have the following eigenvector:
_ 2
xm= "ot 2 =y
2n n-2 n-12 n-2

—_—
(=2 )rmes

Note: If the complete bipartite graph is of the form K(m, n), then we get

the following forms:

m+n-2+Jm +14mn+n

A, =
4
i = min—2-m +14mn+n
" 4
_ _ _ . |
/1 2 - A‘ 3 e T /{‘ =] - —(5)
Fori,=4,=...=21,,,= —(%) we have the following (m+n-2)

independent orthonormal eigenvectors:

1
—=(1,-1,0,0,.., 0,0,.., 0)’
2
! =(1.1,-2.,0,0,.., 0,0..., 0)’
2+(-2)

Ll (111,-3.0.0....0,0....0)"
3+(=-3)
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1 .
= (Ll.....1 =m.0.0.....0)
\/(m -D+{-m)

.--'—’(o.o..... 0.1,-1,0.0..... 0)'
NETETE
——-1—,(0.0 ..... 0..1.-2.0,0.... 0)'
—\/2+(—2)‘

! (0.0.... 0.1.1.1.-3,0,0.... 0)

A3+ (=3)

1

=(0.01. 011 1= 1))’
\/(n -+ (1 =-n)"

For 4, we have the following eigenvector

{m + 0} s

For 1 ,we have the following eigenvector

(ny _ n m m m
mim+n) ————— n n n
R e —

" NS
{# yrimes

Corollary {4-2-3]: If B, is the matrix mentioned in theorem [4-2-1], then

det(B,,)=-(%)" (1-n—3rn+3rd).

Proof:
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[0 05 05 ... 05 t 1t | ,
05 0 05 ... 05 1 1 | T
0.5 05 0 ... 1 1 |
S (X T T S
B = 05 05 ... 05 0 1 1 | |
! 1 1 | IR | 0 05 05 ... 05
1 1 1 ... 1 05 0 05 0.5
: : : 05 05 0 :
S S SR
1 1 ' ... 1 0505 .. 05 0]
From theorem [4-2-1] we have
.- - _ ] .
A,=A,=.=1, = -(5) while
_ n=2+n? +12m—12r"
A=
4
1 = r.r—Zw-«/ﬂ:+l2rn—12r2

" <
butdet(B,) = IL[/I, = (—%)"-2 Ay 4,
=

:(_%)"*1 (%)((n-z):-(m +12rn—12r%))

=(—*;*)"_2 (%) (n“—4n+4-n°-12rn+12r?)

= —l #-1 l -7 — + 2
( 2) (16)4(1 n-3rn+3r’)
=(—%)"'2(1—n—3rn+3r3) Q.ED

The following table contains numerical values of the spectral radius 4,

and those of A4, of the complete bipartite graph on n vertices K(r. n-r), obtained

both by direct calculation using QR algorithm. and by the resulting formula in

theorem [4-2-1].
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? Graph A, X,
i By QR algorithm | By Formula By QR algorithm | By Formula
P K(2.1) | 1.686141 1.6861406 -1.186141 -1.1861406
| K(G.D [ 2.302776 2.3027756 -1.302776 -1.3027756
K(4.1) [2.886001 2.8860009 -1.386001 -1.3860009
K(5.1) | 3.4494940 3.4494897 -1.449490 -1.4494897
K(2.2) |25 2.5 -1.5 -1.5
K(3.2) |3.212214 3.212214 -1.712214 -1.712214
K(4.2) | 3.872281 3.872281 -1.872281 -1.872281
K(5.2) [4.5 4.5 -2 -2
K(6.2) |5.105552 5.105551 -2.105551 -2.105551
K(3.3 4 4 -2 -2
K(4.3) |[4.723112 4.72311099 -2.223111 -2.2231109
K{5.5) | 5.405126 5.4051248 -2.405125 -2.4051248
K(6.3) | 6.058422 6.0584129 -2.558423 -2.5584129
K{6.4) | 6.924429 6.9244289 -2.924429 -2.9244289
K(6.5) | 7.732929 7.732928 -3.232929 -3.232928

Note: As we proved before, if we consider the complete bipartite graph

K{r,n-r), spectrum (B)= {1 |, -(%) , A}, where

n=2+n +12rn—12r"

A=
4

S
_ n=2—n’ +12rm—12r
" 4

[fris fixed, then |ijm 4, = «.

w0

So 4, increases as n increases.
In the following table, we find the eigenvalues 4 ,, from the

resulting formula for several graphs as n increases rabidly:

Complete Complete Complete

bipartite bipartite bipartite

graph A, graph K(3n-| 4 graph K(d.n- | 4
K(2.n-2) 3) 4)

K(2.4) -1.872 K(3.3) -1.712 K{4.4) -1.872
K(2.6} -2.106 K(3.5) -2.223 | K(4.6) -2.500
K(2.8) -2.272 K(3.7) -2.558 K(4.8) -2.924
K2.10) -2.399 K(3.9) -2.806 K(4.10) -3.245
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Complete Complete i Complete

bipartite bipartite | bipartite

araph A, graph K(3n-| 4 graph K(4n-{ 4
K{2.n-2) 3) +4)

K(2.20) -2.762 K(3.21) -3.585 K(4.22) -1.298
K(2.30) -2.940 K(3.31) -3.893 K(4.32) -4.738
K(2.40) -3.048 K341 -4.087 | K{(4.42) -5.024
K{2.50) -3.120 K(3.51) -4.222 K{4.52) -5.228
K(2.100) -3.289 K(3,100) -4.550 K(4.100) -5.741
K{2.200) -3.388 K(3.200) -4.755 K(4.200) -6.077
K(2.300) -3.424 K(3.300) -4.832 [ K(4.300) -6.207
K(2.400) -3.442 K(3.400) -4.872 | K(4.402) -6.275
K(2.500) -3.453 K(3.500) -4.896 K(4.502) -6.318
K(2.600) -3.461 K(3.600) 1913 K(4.600 -6.347
K(2.1000) |-3.476 K(3.1000) -4.947 FK(4.1000) -6.407
K(2.2000) | -3.488 K(3.2000) -4.973 FK(4.2000) -6.453
K{(2.3000) -3.492 K(3.3000) | -4.982 FK(4.3000) -6.468
K(2.4000) -3.494 K(3.4000) | -4987 r K(4.4000) -6.476
K(2.3000) |-3.495 K(3.5000) -4.989 - K(4.5000) -6.481
K(2.10000) | -3.498 K(3.10000) |-4.995 - K(+4.10000) | -6.490
K(2.11000) | -3.498 K(3.11000) | -4.995 CKi4.11000) | -6.491
K(2.12000) | -3.492 K(3.12000) | -4.996 CK12000) | -6.492
K(2.20000) i -3.499 K(3.20000) | -4.997 - K(4.20000) | -6.495
K(2.50000) | -3.499 K(3.30000) | -4.998 | K(4.30000) | -6.497
K{(2.40000) | -3.499 K(3.40000) | -4.999 I K(4.40000) -6.499

From the table above. we see that the eigenvalue 4, has a limit as

n —> . Next we prove the following lemma which deals with the asymptotic

values of A

n-=—s

Proof:

n "

Lemma: If 4 =n—2—~./rz2 +12rn—12r"

Lim - _3
A, (2) (2)r-

4

Lim ; =Lim n=2-vn*+12rm-12r

n—r n

, then

n—rc

= Lim

n—xr

4

|

n=2-Jn +12m-12r" (n~2+n" +12m=12r7)

(n-—2+\/n: +12rn=12r")
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= Lim (l)(”‘”z)I —(n* +12rm—12r7)
n—» 4 ("‘2+\/’73+12rn—12r3)

Lim (l)((nz —dn+4—n’ —12rn+12r7)
10 4T (n=24 0 +12m-12r7)

_ Lim (=n+1=3rn+3r%)
n—u0 x 2
(n—2+n* +12m—12r%)

1+(H -3+
n n

= Lim
n—mn 4 ”,.2
1—:+J1+(3)—(‘*‘f )
M1 n n-
- —-1-3r
2

=-)-Gr.
This agrees with the previous table where as n - »
A,—>-35 for r=2
Ay = =5 for r=3

in—>-65 for r=4

e
Ay
22

s
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Chapter Five
Eigenvalues and Eigenvectors related

to Cycle Graphs
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[5-0]: Introduction

In this section, we deal with the matrix representation of cycle

graphs, and then we find the eigenvalues and eigenvectors of the matrix B,

related to cycle graphs for even and odd cases.

Recall that a cycle graph is a connected graph in which each of its

vertices has degree 2.

[5-1] Matrix Representation of Cycle Graphs:

If C, is a cycle graph then its distance matrix is a matrix of the form

01 2 3 1
101 2 2
23012 3

0 .

A=

0
123 t 0|

This matrix is a circulant matrix of the form

CIO 28 a: ves  sas a"_,
a"_l ao Hl fee aes a"_z
an-?. an—l aO ter man an—."

La d a .. .. ay ]

) .1
where forevenn a, =i for 0<i< (E)H and
a,=a, whenever j+k=n

while for odd values of n we have
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a =i for0<j< 2D

!

and

a, =a,,j+k=n

[5-2] Eigenvalues and Eigenvectors for B, related to C

Here we find the eigenvalues and eigenvectors for B, that is related
to C,, and we will also show that the eigenvalues of this matrix are real

because of the symmetry of B, .

Let P be an (n x n) permutation matrix, then

spectrum (Py={ 1,, 1,, ...,4 ,} where all the eigenvalues are the roots of
unity;

(2:: A‘)r_
A"=1=> 1 =%1=e " where k=0.1,2....,n-1

andi- = ~1.

n-|
SoifB,=a,[+a, P+a,P*+ . +a, P = Sq4p

k=0

then an eigenvalue «, of B, that corresponds to 4 | is given by

n-|

a,=Ya it,j=1,2,..n. (Theorem [2-1-9)).
k=4

Theorem [5-2-1]: Let P be an (n x n) permutation matrix, andA , is an
eigenvalue of P, then the corresponding eigenvalue of B  related to C, ; a, is

a real number.

Proof:

Let 2, be an eigenvalue of P,«, the corresponding eigenvalue of B .

We consider the following two cases:
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1) nisodd: Letn=2p+l

— ] 1 2 +i A pal >
=a, A, ta, A, +a, 4, t..+a A7 ta A"t ta, A7

p+l

=a,H(a, AL +a,, A )Ha, 4] +a, AT Ha, Al +a,, 4 0)

n+l

Now fora, A} +a, A}, where m+/=2p+ 1=n, we have a,=a, and,

am’l:,-i_afii’ =a (i;"-f-/l:)

m

27 km . . 2mkm 21 ki . . 27k
) +isin( ) + cos( )+ 1isin(
I n

=a,, {cos (

)

2r km 2r ki .. 21 km . 27 K
)+ cos ( ) +i(sin ( )+ sin (
n n

=a,, (cos(

)

2z km 2kl 27 k(m+! Ik
Note that + — ( ) _ < KN

=2k,

n n n i

2T km ) 2r ki
)=-sm(jr

So, sin (

). then the imaginary part of the

corresponding terms from the sum cancels and the remaining terms are

real. So «, is a real number.

The second part deals with even values of n.

2)niseven: Letn=2p
st=1 2p-1

a,= ya i,=Ya A]

i=0 =0

=a,d;ta i, +.ta, A" +a, A ta A+ ta,, A

=a,+(a il +a2ﬂ_,if”")+(a:,1f+ a. ALY L +

(ap—l /i’ f_' qi-aﬂ*-l/1 :+])+ap A‘f
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Now fora, A +a, A} where r+m =2p=n,wehavea, =a_ and

afAﬂ';. +af?JA:' :a (i:+i v )

L] k

2 kr .. 2mkr 27 km . . 2mkm
=a_ {cos ( } +1sin( )) + cos( ) +1sIn( ))
2p 2p 2p 2p
T km .. 2mh . 2mkm
=a, (cos ( ) +cos ( )} +1(sin (——) +sin ( )).
2p 2p
2 kr 2 km
Note that ( y+ ( )y = 2r krtm) 2k
2p 2p n
. 2 kr 27 km . 2T kr . 2rkm
since ( )y + ( )y =2xk = sin ( ) = -sin ¢ ), so the
n H n n
complex part cancels.
_ 2r kp . . T kp
Fora, A{ =a (cos ( 2 ) F1sin ( 5 )}
=a _(cos (7 k)ymk +isin (z k)).
So, sin(r k) =0 = the complex part cancels so «, is real. Q.E.D.

[5-3] Examples:

In the following two examples we will compute the eigenvalues of
the matrix B, of C,and C,.

Example 1: In this example we compute the eigenvalues and the

corresponding eigenvectors for the matrix B, of the cycle graph C,.

C, is the graph shown below
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which has the following distance matrix

O 1 2 1
1 01 2
D:
210 0 1
1 2 1 0
and
o 1 L
2
Lo 1 L
B.D)= 2
— 1 0 1
2
1 l— 1 0
L 2 |

which can be written in terms of the permutation matrix P as

B,(D)=01,+P+ % P+ P,

Now, since spectrum (P )={ 4,, 1,, 1 +» 4, } where

A * =1 which has the following solutions:

Then spectrum (B, (D) ) = {2.5, -(%), -1.5}, -{%) with multiplicity 2.
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Note: The graph C,can be regarded as K (2, 2) which has real

eigenvalues as calculated before and which were shown to be
=25 a,.=-15,a. =a, =-()
o, =i0,a, =-1.0, a, aJ——(;).
Here we find the eigenvectors of B, for C, corresponding to these
eigenvalues:

Leta be an eigenvalue of B,,andve C":v=x+i Yy, X,y € R” be

the corresponding eigenvector.

SoB,v=a v, azcRimpliesB,(x+iy)=a (x+iy)
B,x+B,(iy)=a x+a (iy) where

X: is a pure real vector

ly: is a pure imaginary vector. So

B,x =a x: gives a real vector

B,(1y)=a (iy): gives a complex vector.

So corresponding toa e R:

There is a pure real vector which is wanted, and a pure complex

vector. Hence for the real part we have

B, x =a x which is equivalent to the following equation
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01 L
2

| X, X,
Lo s ¥,

- i 4
% 1o 1] |* %
<y X, X,
1 = 1 0
L2 i

By solving this system, we have

X, (“2ta)=x,(2+a) ie x,=x, when ax—.‘l;.

e

Similarly x, =x, andx3=% (a—% )X,

So fore = 2.5, x,= | we have the corresponding eigenvector:
v, =[1, 1,1, 1}]".

Fore =-1.5, we have the corresponding eigenvector
v,=[1,-1,1,-1]".

For a = -(%) , we will have the following two independent equations:

x,+t2x,+x,+2x, =0,
2x,+x,+2x, +x, =0.
By solving these equations we will have the following eigenvectors:
v, =[0,1,0,-1]"
v,.=[1,0,-1,0]".

I 1 1 Iy
So the set {(E) vy, ("-‘J—E-)Vg, (E) vy, (5 ) v4} 1s an orthonormal set of

eigenvectors.
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Example 2: In this example we compute the eigenvalues and the

corresponding eigenvectors for the matrix B of the cycle graph C..

C. is the graph shown below

v, v,
Fig 33 C,

Let D be the distance matrix corresponding to C, then

B.(D)=01+P+ (3)P* +(3) P +Pp"

where P is a (5x5) permutation matrix then

spectrum(P) ={ 1, 1,, 4,, 4, 4.} and each value of 1, satisties

27 ki
(
A, =1l= A, =V1=e 7 where k = 01.2.3.4.

2”5 k) +1i sin(zx k

SO A ,,, =cos( 5

)y where k = 0.1.2.3.4.

By direct computation we will get the following results:
1 =1
4.=cos (ZT”) + i sin (E-SE) =0.309016 + 0.9510565 i
A, = cos (47”) + i sin (4—53) = -0.8090169 + 0.587785 i

1, =cos (?-Si) + i sin (isi) = -0.8090169 - 0.587785 i

i, =cos G5y + i sin (§-5-’5) = 0.309016 - 0.9510565 i.
h]
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So by using the formula

4
Q,=>a A! i=12345.
k=0

a, =-0.1909830056
o, =-1.3090169943
@, =-1.3090169943

a, =-0.1909830056

By direct calculation we get the following normalized eigenvectors:
v, =[0.447216, 0.447216, 0.447216, 0.447216, 0.447216]'

v, =[-0.583731, - 0.411899, 0.329163, 0.615333, 0.051133]’

v, =[0.619128, - 0.387053, 0.607137, - 0.595315, 0.356103]"

v, =[-0.632166, 0.500190, - 0.177158, - 0.213542, 0.522677]"

v, =[0.243430, - 0.479937, - 0.540048, 0.146169, 0.630385}"

[5-4] Applications:

The subject of eigenvalues and eigenvectors has a lot of applications
in graph theory as well as in all of sciences.

applicable in graph theory is that most of the matrices we deal with are

symmetric.

The eigenvalues of the adjacency matrix of a graph play an important
role in graph coloring. In particular, the spectral radius of the adjacency
matrix provides a very accurate bound on the chromatic number of a graph.

They play a good role also in solving differential equations when a

graphical method is applied.

What makes it more
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The eigenvalues of the distance matrix of a connected graph are widely
involved in the study of chemical applications of graph theory. Theyv
reflect and reveal many of the physical properties of the compound as
melting, freezing or boiling points besides some other properties of the
compound. In fact, it has been shown that the eigenvector entries of the
vector associated with the spectral radius of the distance matrix are smallest
in the center of the graph and tend to increase as we move away from the

center to assume their maximum values on the boundary of the graph.

In our work, we are examining the matrix whose nonzero entries
are the reciprocals of the nonzero distances of a connected graph. In this
case we note that the eigenvector entries are maximum in the center of
graph and tend to decrease as we move away from the center and to assume
their minimum values on the boundary of the graph. These phenomena
make it easy when planning in the network. I[f one is looking for the
network consisting of the cities and towns in a certain country, then the
eigenvector entries place more attention on the cities in the center of the
country which have minimum eccentricities or cities with more connections
with other cities. This helps, for example, when assigning a budget of each

city for the purpose of development and underground work.

This is a small part of the story. For more on this subject one may

refer to books dealing with applications on this subject.

In the following graphs we will compare the eccentricity of a vertex and

the corresponding entry of the eigenvector which corresponds to the spectral

radius of the matrix B .
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The grapf with eccentricities The graph with entres of

the eigenvector corresponding

on vertices. to the spectral radius.

Bxkkddkkkkknokkr Rk kkkkok Rk ko kR K TRk EF S A kA Rk Rk R Rk Rk Rk Rk K

0.32
3
2
2
3 3
0.35
A= 4474814
3 3 0.32 0.32
3\ 2 )/ 3 0.3 0.45 ;4 0.32
3/ \ 3 0.32 \ 032
3, =4.145751

0.26

0.26

R, =4.711060
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We just note at this stage. that vertices with greater eigenvector entries are

with smaller eccentricities, and tend to be in the center of the graph. This could

be investigated later.

Conclusion

In this work, some results were derived explicitly giving the

eigenvalues and eigenvectors of the matrix B, , whose nonzero entries are

the reciprocals of the corresponding nonzero entries in the distance matrix

of a connected graph G. The discussion was focused on the complete

bipartite graph K(r, n - r) and the cycle graphs C , for any integer n>3.

The spectra of the matrix B,and the eigenvectors are explicitly

stated.

We hope that, in the future, the work will be continued from this

point on, and the matrices related to the other graphs like the path graph

P,, branching cycles, and other graphs will be discussed.
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