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By
Ghadeer Ghanem Fayez Qwadreh
Supervisor
Dr. Abdallah Hakawati

Abstract

The problem of best approximation is the problem of finding, for a

given point xeX and a given set G in a normed linear space ( X, |-||), a

point g, G which should be nearest to x among all points of the set G.

This thesis contains properties of best approximations in spaces with

the S-property. We provide original results about Orlicz subspaces, and
about L?(u, X), 1< p<oo subspaces with the S—property.

Asamajor result we prove that: if Gisa closed subspace of X and

has the S—property. Then the following are equivalent:
1. GisaChebyshev subspace of X.
2. L*(1,G) isaChebyshev subspace of L* (1,X).

3. L?(u,G) isaChebyshev subspace of L* (1,X), 1< p <co.



Preface

The problem of best approximation is the problem of finding, for

a given point xeX and a given set G in a normed linear space ( X,|/|)

apoint g,e G which should be nearest to x among al points of the set G.

We shall denote by P(x,G), the set of all elements of best

approximants (approximations) of xin G,

i.e. P(xG)={g,e G: |x—g,|=inf{|x-g|:geG}}.

The problem of best approximation began, in 1853, with P.L.
Chebyshev who was led to state, the problem of finding for a rea

continuous function x(t) on a segment [a,b], an agebraic polynomial

g,(t) = iaf”t“l of degree < n-1, such that the deviation of the polynomials

from the function x(t) on the segment [a,b] be the least possible among the
deviations of all algebraic polynomials g(t) :_Zn:ai t'of degree < n-1. In

other words; the problem of best approximation of the function x(t) by

algebraic polynomials g(t) of degree<n-1[9].

Many remarkable results appeared in Al-Dwaik's Masters Thesis
[7]. Al-Dwaik gave the following definition : given a Banach space X, and
a closed subspace G, then the subspace G is said to have the S—property
in X if z,eP(x,,G) and z,eP(x,,G) imply that z+ z,eP(x,+ X,,G)

(x,X, € X).

Chapter four of Al-Dwaik's thesis contains the following results:



2

1- Let X be any Banach space and G be a closed subspace of X with the
S-property, then L*(4,G) is proximina in L'(u,X) if and only if
L= (u,G) isproximinal in L~ (u,X).

2- Let X be any Banach space and G be a closed subspace of X which has

the S—property. The following are equivalent :
(i)- Gisproximina in X.
(ii)- L*(u4,G) isproximinal in L (u,X).

3- If G has the S—property in X, then L?(u,G) has the S-property in

L (.X).
Many other results can be found in there.

In this thesis we adopt the same definition as in Al-Dwaik [7], but X
IS a metric linear space, instead of a Banach space. My thesis consists of
three chapters; each chapter is divided into sections. A triple like 1.3.2
indicates item (definitions, theorems, corollary, lemma ...etc) number two
in section three of chapter one. At the end of the thesis we present a

collection of references, an appendix and abstract in Arabic.

In chapter one, we introduce the basic results and definitions which
shall be needed in the following chapters. The topics include metric linear
spaces, Hilbert spaces, Banach spaces, projections, orthogonality,

measurabl e spaces and integrable functions.
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Chapter two will be devoted to an introduction to fundamental ideas
behind best approximations in normed linear spaces, Orlicz spaces, and the
spaces L " (u, X), 1 < p< oo, which we need in chapter three. Section (2.1)
contains some properties of P(x,G) and theorems on best approximation. In
Section (2.2) we define the 1-complemented subspace and L ”—summand
subspace, 1< p <o0. We aso have theorems on best approximations in these
subspaces and prove that if G is an L"—summand subspace, then G is a
Chebyshev subspace. In Section (2.3) we define the modulus function (¢),
Orlicz space, and will have theorems on best approximations in subspaces

of Orlicz spaceand L " (1,X), 1 < p < o, which we need in section (3.2).

Chapter three is the main part of the thesis and contains two sections,
Section (3.1) contains some theorems and consequences from Al-Dwaik

[7], and the following new resullts:

1. In Example (3.1.3) we will see that if G is proximinal in X, it does not

necessarily follow that G has the S—property.

2. In Remark (3.1.2) we will see that if G has the S—property, it does not

necessarily follow that G is proximinal.

3. If Gisan L®—summand, 1< p <o, then G has the S-property.

4. In Example (3.1.19) we will see that if P_'(0) is proximinal in X which

has the S—property and G has the S—property, and then G is proximinal.

5. Let X be anormed linear space, then any closed subspace G of X which
has the S—property is a semi—Chebyshev subspace of X.
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6. Let X be anormed linear space. If P (0) is a closed subspace of X, then

G has the S—property in X.

7. Let G be a closed subspace of a normed linear space X which has the
S—property. If G isproximinal, then G is a Chebyshev subspace of X.

There are more results which can be found in section (3.1).

In section (3.2) we have many results about the Orlicz subspaces and
L"(1,X), 1< p <o, subspaces with the S—property. The following are the

main theorems in this section:

1. Theorem (3.1.4) and Theorem (3.1.5) imply that L°(xG) has the

S—property in L " (1,X) 1< p <co< G hasthe S—property in X.
2. L”(u1,G) hasthe S—property inL” (1,X) = G hasthe S—property in X.

3. Let L"(1,G) be a Chebyshev subspace of L™ (1,X). If G has the
S—property, then L™ (1,G) hasthe S—property in L~ (z,X).

4. L°(1,G) hasthe S—property in L* (1,X) = G hasthe S-property in X.
5. 1If ¢_(S,G) has the S—property in?_(S, X), then G has the S—property
in X.

The most important consequence of the above theoremsiis that: if G
Is a closed subspace of X and has the S—property. Then the following are
equivalent:

a) G isaChebyshev subspace of X.
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b) L*®(«G) isaChebyshev subspace of L* (1,X).
c) L°(uG) isaChebyshev subspace of L * (1,X), 1< p <co.

Finaly; | ask God to be our assistant always we do remain.
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Chapter One

Preliminaries

1. Introduction
In this chapter we present some definitions and theorems on metric
topics which will be needed in the next chapters. These definitions and

theorems can be found in the texts and are foundational to the study of best

approximations and the S—property.
1.1. Metric and Normed Linear Spaces

The following are the definitions and theorems regarding metric and
normed linear spaces and they are essential to prove properties of best
approximations. These can be found in textbooks of functional analysis by
Kantorovich et al. and Lebedev et al. and Singer on best approximations in
normed linear spaces[11, 12, and 9].

Definition 1.1.1: (Akilov [11]). A set X is called a metric space if to each
pair of elements X, y € X there is associated a real number d(x,y), the

distance between x and y, subject to the following conditions:

M21:- d(xy) > 0,and d(x,y) =0iff x=y.

M2:- d(x,y) = d(y,X).

M3:- d(xy) < d(x,2) +d(zy) for any ze X (Thisisthe triangle inequality).

Such function d: XxX —- Riscaledametricon X. =
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Theorem 1.1.2: (Akilov [11]). d(x,)y) is a continuous function on its

arguments, that is, if x - xand y — vy, thend(x_,y. )— d(x.y).

Definition 1.1.3: (Akilov [11]). A set G — X is said to be closed if every

convergent sequence{ x } — G convergestoapointinG. =

Definition 1.1.4: (Akilov [11]). The distance of a point x,from aset G X

such that (X,d) is a metric space, is given by
d(x,,G) =inf {d(x,, 9): ge G}. ]

Definition 1.1.5: (Lebedev [12]). Let K be the field of real or complex
numbers (the field of scalars). A set X is called a vector (or linear) space
over K if for every two of its elements x and y there is defined asum x + y
an element of X, and if for every element x € X and every scaar 1 €K there

Is defined a product Ax aso an element of X, such that the following

axioms are satisfied for all elementsx, y, z e X and all scalarsA, i eK:

1 x+y=y+Xx

N

X+(y+2=Xx+ytz

3. thereisazero element, Oc X, such that x + 0 = x ;
4. Aux)= () x;

5 A(x+Yy)=Ax+ Ay;

6. (A+ u)X=AX+pux. ®
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Remark 1.1.6: (Akilov [11]). Let X be a vector space. Then:
1. x=yisequivaenttox —y=0.
2. Foralxe X, thereisaunique x” e X such that x + x’= 0. In fact

x’= (-1)x and x’isusualy written as—x and is called the negative of x.

Definition 1.1.7: (Lebedev [12]). || is called anorm of x in alinear space

Xif itisarea valued function defined for every xe X which satisfies the

following norm axioms:

N1: |x| > O, and |x|=0iff x=0.

N2: [ax] =[2] |-

N3: |x+ y|<[x|+|y| (Thisisthe triangle inequality).

A vector space X having a fixed norm on it is called a normed linear

space. ®

Remark 1.1.8: (Akilov [11]). Let X be a normed linear space, then:

1. If wesetd(xy) =|x—y|,vx,ye X, then disametric on X.

2 =l <[x= -

3. |¥ isacontinuous function of x, that is, if x,— x, then x| — |x|.
Definition 1.1.9: (Lebedev [12]). Let X be a normed linear space and

suppose GcX, G is called a subspace of X if it is a linear space; i.e. one

which satisfies conditions (1-6) listed in definition 1.1.5, and has the norm
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on G obtained by restricting the norm on X to the subset G. The norm on G

is said to be induced by the norm on X. u

Theorem 1.1.10 : (Singer [9]). Let X be a normed linear space and G a

linear subspace of X. Then:-

1. d(x + g,G) = d(x,G) (xe X, geG).

2. d(x+ y,G) < d(x,G) + d(y,G) (X, y €X).

3. d(@xG) = |a| d(x,G) (X €X, o scalar).
4. [d(xG)-d(y,G) <[x-y] (X, y €X).

5. d(xG) <[] (xeX).

Proof: - For (1). Let x € X, g € G and € > 0 be arbitrary, by the definition
of d(x,G) =inf { |x—g|: g G} thereexists g, e G such that

Ix—g,|<d(x,G) +e¢ (1.2)
Consequently, we have
d(x + 9,G) <|x+g—(g, +9)[= [x— g,| <d(x.G) + ¢
But xe X, ge G and € > 0 were arbitrary, hence
d(x+ g,G) < d(x,G) (xe X, geG). (1.2)

Applying these relations for x+ge X instead of x and for — geG
instead of ge G, we obtain
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d(x,G) < d(x+ 9,G) (xeX, geG). (1.3)
From (1.2) and (1.3) we get d(x + 9,G) = d(x,G), x € X, g € G.

For (2) of the theorem: Let x, y € X and & > 0 be arbitrary. By the
definition of d(x,G) and d(y,G) thereexist g,, g, € G such that

[x—g,| < dxG) +e/2 ly—g,| < d(y.G) +e/2
Conseguently, we have
dix + y.G)<|x+y— (g, +9,)| <[x- g, + ly- g,| < dxG) + d(y.G) + ¢
But x, ye X, and € > 0 were arbitrary, hence

dx+ y,G) < d(x,G) +d(y,G) (X, y €X).

For (3) of thetheorem: Let x € X, a =0 ascaar, and € > 0 be arbitrary and
take g,e G for which

Ix=g,| <d(x,G) + (¢/|)). (1.4)

We have
d(ex,G) < Hax— agOH =‘a‘ HX— gOH < ‘a‘ d(x,G) + &.
It follows that

d(ax,G) <|a| d(xG). (1.5)

Applying this relation for ax instead of x and for 1/« instead of o we

obtain:
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d(xG) = d(l/ & (ax), G) <(U|a]) d(ax,G).

Hence |a| d(x,G) < d(ax,G). (1.6)
From (1.5) and (1.6) and since d(0,G ) = 0, we get

| d(x,G) = d(ax,G).
For (4): Let x,y € X and ¢ > 0 be arbitrary and take g, G with

ly—g,| < d(y.G)+e. (1.7)

We have

d(x.G) <|x—g,|<[x-Y|+]|y-go|<[x- Y] +d(¥.G) +e.
But x, y and € > 0 were arbitrary, there follows

d(x,G) - d(y.G) <|jx-y].
In these relations, interchange x and y to yield:

d(y,G) —d(xG) <|x-Y].
Hence |d(x,G)-d(y,G)|<|x-Y]. (1.8)
For (5) of the theorem: Let xe X andy = 0, then by relation (1.8)

d(x,G) -d(0,G)|<x-0|

Butd(0,G) =0, thend(x,G) <|x|, xeX. =
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Theorem 1.1.11: (Singer [9]). Let X be a normed linear space and G a

linear subspace of X. Then we have
d(x,G) =inf {|x—g|| : 9eG, |g|<2]|x] }.
Proof: - If xe X, g,eG and|g,| > 2[x|, then taking into account

d(x,G) <|x|, xe X, (part (5) of Theorem 1.1.10). One has

k=00l 1|~ > 2 [ = = 0x.@)

Since for al g,eG such that|g,| > 2|)x|, we have d(x,G) <|x-g,|, then
d(x,G) =inf {|x-g|:0eG, [g|<2|x|}. =

Definition 1.1.12: (Lebedev [12]). A space Sis said to be alinear subspace

of alinear space X if Sislinear space and Sisasubset of X. &

Definition 1.1.13: (Lebedev [12]). A metric space X is said to be complete
if any Cauchy sequence in X has a limit in X; otherwise it is said to be

incomplete. m
1.2. Linear Operators

Essential definitions and fundamental theorems on linear operators
that will be required in many places of the thesis can be found in texts by
Siddigi and by Kreyszig, as well as by singer, and by Lebedev et a.
[14, 10, 9, 12].
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Definition 1.2.1: (Lebedev [12]). The operator A is a linear operator from

Xinto Y and X, Y are linear spaces, if its domain D(A) is a linear subspace

of X and for every x,, X, € D(A), and every «, § (scalars) we have :
Alax+ fX,) =aA(X,) + 5 AX,)
For alinear operator A, the image A(X) isusually written Ax. ®

The null space N (A) consisting of al xe X such that Ax = 0 is a subspace
of X.

Definition 1.2.2: (Kreyszig [10]). Let X and Y be normed linear spaces and

T. D (T) > Y alinear operator where D (T) < X.The operator T is said to
be bounded if there is a real number k such that for al xe D(T),

[T <kl

Theorem 1.2.3: (Siddiqgi [14]). Let A: D (A) —> Y be a linear operator

where D (A)c X and X, Y are normed linear spaces, Then:
1. Aiscontinuousiff A is bounded.
2. If Aisbounded, then N (A) is closed subspace.

Definition 1.2.4: (Kreyszig [10]). A linear functional f is a linear operator

with domain in avector space X and rangein the scalar field K of X. ®
Definition 1.2.5: (Kreyszig [10]).

1. Theset of al linear functionals defined on a vector space X can itself be

made into a vector space and is denoted by X* and is called the dual
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space. The sup norm on the unit disc of X will turn X" into a normed

linear space.
2. B[X] isthe set of all bounded operatorsfrom Xinto X. =

Definition 1.2.6: (Singer [9]). A subset H of a vector space X is caled a
hyperplane if there exists a bounded linear functional, f # 0, defined on X

andascadar o suchthat H ={xeX: f(x) =« }. ®
Theorem 1.2.7: (Singer [9]). Let X be anormed linear space and

H={xe X: f (X) =a } be ahyperplane of X then the distance of the point x to
the hyperplaneH is

‘f(x)—a‘

d(xH) = TR

Remark 1.2.8: (Siddiqi [14]). An arbitrary f € ¢ “(The space ¢ consists of

all convergent sequences of scalars with the sup norm) can be expressed as

f(X) =yolimxn+iynxn wherex = (x,, X,, X;,...) € cand

n—ow n=1

Y= (Vor Yo ¥ suchtht Sofy,| <o and =y, + Xy

1.3. Hilbert and Banach Spaces:-

We need to define Hilbert and Banach spaces for the next chapters,
and we can find the definitions in texts by Lebedev et a. and by Kreyszig
[10, 12].
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Definition 1.3.1: (Lebedev [12]). A complete normed linear space is called

aBanachspace. =

Definition 1.3.2: (Kreyszig [10]). Let X be a vector space over the field K.
An inner product on X is a function <, >: XxX — K such that for all

X, Y, ze Xand ascaar a , we have:-
Pl:<x+vy,z2=<Xx,22+<y, 2>

P2: <aX, y>= a<xy>

P3:<x, y> =<y, x>

P4: <x, x> > 0 VxeX, and <x, x>=0iff x=0.

An inner product on X defines a norm on X given by |x|=+/<x,x> and

ametric on X given by d(x, y) = [x— y| =< x-y,x-y> .
Aninner product spaceis alinear space with an inner product onit. =

Definition 1.3.3: (Lebedev [12]). A complete inner product space is called

a Hilbert space. u

Remark 1.3.4: (Kreyszig [10]). If H is a Hilbert space, then for elements

X, Yy € H we have the equation (Thisisthe parallelogram law)

s vl x= v =207 + )
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1.4. Orthogonal Sets

Kreyszigs book on functional anaysis provides necessary
definitions and theorems regarding orthogonal sets and direct sums of
Hilbert spaces, but the properties of orthogonal elements in normed linear

spaces can be found in Singer [10, 9].

Definition 1.4.1: (Singer [9]). An element x of a normed linear space X is

said to be orthogonal to an element ye X, and we write x Ly, if we have

|x+ ay| =[x for every scllara . m

Remark 1.4.2: (Singer [9]). Two vectors x and y in an inner product space

X are called orthogonal, written as (x_Ly), if and only if <x,y>=0.

<X y>
<Y,y>

Proof: Let x,ye X and<x,y> # 0. Thenfor o =— we have

<SXY> o <XY>
<Y, y>T <y y>
<X, y>| +\<x,y>\
<Y, y> <y, y>’
< x,y>[
<y, y>

%+ oeyH2 =< X —

y>

=< X, X>-2 <VY,y>

=< X, X>—

This contradicts our assumption. Therefore ||x + ay| > x|, hence x Ly.

For the converse, let < x, y > = 0. Then for every scalar @ we have
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[+ o =< x+ @y x+ ay >= X" +[af [y 2"
Hence xLly. ®

Definition 1.4.3: (Kreyszig [10]). A vector space X is said to be the direct

sum of two subspaces Y and Z of X, written X=Y @ Z, if each xe X has a

unigue representation x =y + z, yeV, ze Z.

Then Z is called an algebraic complement of Y in X and vice versa,

and Y, Z are called a complementary pair of subspacesin X. =

In the general Hilbert space X, we obtain the interesting
representation of X as a direct sum of any closed subspace M of X and its
orthogona complement M* = {xe X: XL M} which is the set of all vectors

orthogonal to each member of M [10].

Theorem 1.4.4: (Kreyszig [10]). If M is a closed subspace of a Hilbert

space X, then
X=MaeM".
Theorem 1.4.5: (Kreyszig [10]). If X Ly in aninner product space X, then
e v =" 1
1.5. Projections

Requisite theorems on projections on Banach spaces can be found in

Limaye [15].
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Definition 1.5.1: (Limaye [15]). If X is anormed linear space and P< B[ X]

satisfiesP?= P, then P is called a projection. ®

Theorem 1.5.2: (Limaye [15]). If P is a projection on a Banach space X
and if M and N are its range and null space, respectively, then M and N are

closed subspacesand X=M® N.

Theorem 1.5.3: (Limaye [15]). Let X be a Banach space, and M and N be
closed subspaces of X such that X=M@® N. The mapping defined on each
z=Xx+Yy,xeM, yeN, by P(2) = x is a projection on X whose range is M

and whose null spaceisN.
1.6. M easur able Spaces and | ntegrable Functions

Rudin's Real and Complex analysis contains definitions for measure
spaces and integrable functions and we will use a definition from Deeb and

Khalil for Bochner p—integrable functions [13, 1].
Definition 1.6.1: (Rudin [13]).

(@) A collection X of subsets of aset Xissaidto bea o —agebrain X if it

has the following properties:
1. XeX
2. If Ae X, then A° € £ where A°isthe complement of Arelativeto X

3. 1fA=JA, A e forn=123,.....,then Ac =

n=1
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(b) If ¥ isa o—adgebrain X, then X is called a measurable space, and the

members of X are called the measurable setsin X.

(c) If X is ameasurable space, Y is atopological space, and f is a mapping

of X into Y, then f is said to be measurable provided that f (V) is a

measurable set in X for each openset Vin'Y.

For the subset E of X, let . denote the characteristic function of E. . is

measurable iff Eismeasurable. =
Definition 1.6.2: (Rudin [13]).

(a) A positive measure is afunction y, defined on a o — algebraX , whose

range isin [0,0] and which is countably additive. This means that if {A_}

Isadigoint countable collection of members of £, then

HUA) = T u(A)

(b) A measure space is a measurable space which has a measure defined on

the o — algebra of its measurable sets.

A property which is true except for a set of measure zero is said to hold

amost everywhere (a.e). =

Definition 1.6.3: (Rudin [13]). A function f: 2 —>X is said to be simple if

its range contains only finitely many points x,, X,,..., X, and if f™(x.) is

measurable for i = 1,2,3,...,n. Such a function then can be written as
f=)"x . wherefor eachi, E,= f(x,). We define [f du=3 x u(E NE).



20
If f is a non-negative measurable function on E, then we define

[f dp=sup{ [sdu: O<s<f, and sis a simple and measurable function on E}.

Remark 1.6.4: (Rudin [13]). The following propositions are immediate
consequences of the definition. Functions and sets are assumed to be

measurable on a measure space E:

1 If AcBandf>0,then [fdu< [fdu.

2. 1f f>0and [fdu=0,thenf=0 ae onE.
3. If cisconstant, then [c du = c p(E).

4. 1f0< f<g then | fdu< [gdu.

5 IfE=E,|JE,, whereE,and E, aredisjoint, then

[fdu = [fdu+ [fdu

Definition 1.6.5: (Deeb [1]). Let X be areal Banach space, and (2, 1) bea

finite measure space. The space of Bochner p—integrable functions defined

on (Q,u) with values in the Banach space X is denotedL”(u, X). For

fel”(u, X), we define the norm

o
(1OF 6] 15p<w

Itl, =9 Mf®fdey  0<p<1
ess.sup| f (t)] p =
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Where | f| :&ss.st,lejgp\\f(t)\\:inf{M:y{t: [f@®)) >M}=0}. m

Itisclear that if f e L”(x, X), then | f (t)|< | f|| ae. t. by thedefinition of

essential supremum in Rudin [13].

Although the preceding is not an exhaustive list of theorems and
proofs concerning the study of the S-property, they are central in the
following discussion. We will use these tools to build our understanding of

properties of the set of best approximations.
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Chapter Two
Best Approximation in Normed Linear Space
2. Introduction.

Let X be a normed linear space and G be a subspace of X and xe X;

then the problem of best approximation consists of finding an eement
d,€G such that |x — g | =d(x,G) =inf { |x—g| : g €G}.

Every g,G with this property is caled an element of best

approximation of x, or g, is a best approximant of x in G. We see that for

all xe X a best approximation of x in G is an element of minimal distance

from the given x. Such a g, G may or may not exist. We shall denote the

set of all elements of best approximation of x by elements of the set G by
P(x,G),i.e. P(XG)={g,eG: |[x—g,|=d(x,G)}.

2.1 . The Proximinal Setsand The Set of Best Approximations

Singer's book and Al-Dwaik's thesis provide the basic theorems on
proximinal sets and the set of best approximations which we will need in
our study [9, 7].

First, we will begin with some properties of P(x,G).

Theorem 2.1.1: (Singer [9]). Let G be a subspace of a normed linear
space X:
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1. If xeG, then P(x,G) ={x}.
2. If Gisnot closed and xe G /G, then P(x,G) = &.

Theorem 2.1.2: (Al-Dwalik [7]). Let G be a subspace of a normed space X,

then, for xe X:
1. P(x,G) isabounded set.

2. If Gisaclosed subspace of X, then P(x,G) is aclosed set.

Proof: - For (1), let g, € P(x,G), then |g,| <2|x| by Theorem 1.1.11.

Thus P(x,G) is a bounded set.

For (2), we show that if {g, } is a sequencein P(x,G), such that g, —» g,
then geP(x,G). Now g, eP(x,G) VneN, 0 |[x-g,[=d(x,G)=5, VneN.

Also g, e G. Since G isaclosed subspace, then ge G.

But the function F,:G— R defined by F, (g) =[x g| V geG iscontinuous
by part (3) of Remark 1.1.8.S0 F (g,)— F (g) impliesthat

[x=g.] =[x~ g 2.2)

But [x-g,| =&, VneN, so [x-g| =5. Therefore ge P(x,G). ®

The following theorem is proved by Al-Dwaik, but we will provide

another proof.

Theorem 2.1.3: (Al-Dwaik [7]). Let G be a subspace of a normed linear

space X:
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1. If zeP(x,G), then a ze P(a x,G) for al scalars « .
2. IfzeP(x,G),thenz+ g eP(x+ g,G) for all geG.

Proof: For part (1): Let xeX and zeP(x,G); we want to show that

azeP(a x,G) for any scalar « .

e

=la] [x-7
=|a| d(x,G) because ze P(x,G).
=d(ax,G) by part (3) of Theorem 1.1.10.

Consequently, for xe X and scalar « we have
Hax — aZH =d(ax,G). (2.2
Therefore o ze P(a x,G), for xeXand scaar « .

For part (2): Let xeX, geG and zeP(x,G); we want to show that

z+ geP(x+ g,G).
[x+g-(z+9)=|x-7
= d(x,G) because ze P(x,G).
=d(x+ g,G) Dby part (1) of Theorem 1.1.10.

Consequently, we have

|x+g-(z+9)|=d(x+9,G), VgeG. (2.3)
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Therefore z+ geP(x+ g,G), forany geG. =

Any set G < X which has the property that P(x,G) =, Vxe X, is
called a proximinal set in X. We cal G a semi—Chebyshev set if for every
xe X, the set P(x,G) contains at most one element. G is called Chebyshev if
it is simultaneously proximina and semi—Chebyshev, i.e. if for every xe X

the set P(x,G) contains exactly one element [9].

Lemma 2.1.4. (Singer [9]). Let X be a normed linear space, G a linear
subspace of X, xe X \Gand g,€G. We have g,€ P(x,G) if and only if

X-9g,LG.
Proof: By the definition of orthogonality, we have

Ix—g, +ag|>|x-g,| (9eG, a being scalar) (2.4)
and thisis obviously equivalent to g, € P(x,G). u

Theorem 2.1.5: (Singer [9]). Let X be a normed linear space and H a
hyperplane in X, passing through the origin. H is proximinal if and only if
there exists an element ze X {0} such that Oe P(z,H)(i.e. such that

z1 H).

Theorem 2.1.6: (Al-Dwaik [7]). For a subspace G of a normed linear

space X, the following are equivalent:

1. Gisproximina in X.

2. X=G+ P_(0) whereP_'(0) ={ xe X: 0eP(x,G)}.
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Proof: (1) — (2). If Gisproximinal and xe X, then
X=g, + (Xx-g,) eG+P_(0), where g, e P(x,G).

(2) > (1). Let xeXand x= g,+ ye G + P, (0) whereg,e Gand ye P (0)
then Oe P(y,G) = P(x—g,,G). Thisimplies that

d(x-9,.G) = |[x— g,|= d(x,G) = ||x— g,
Henceg, e P(x,G), so Gisproximina. =

2.2. 1-complemented and L”—summand Subspaces

Deeb and Khalil defined the 1-complemented subspace and

L°"—summand subspace, 1< p<o, and gave theorems on best

approximations in these spaces [6, 1].

Definition 2.2.1: (Deeb [1]). A subspace G of a Banach space X is called
1-complemented in X if there is a closed subspace W in X such that

X = G®W and the projection P: X—W is a contractive projection, (i.e.
[Px| < ¥xe X ). m

Lemma 2.2.2: (Deeb [1]). If G is 1-complemented in X, then G is

proximinal in X.

Proof: Let X= G®W and xeX. Then x = g + w, where geG, we W
and|w| <||x|, we show that |x—g||<|x-y| VYyeG. Assume that there

exists 9,#9eG such that|x-g,|<|x-g|. Set w,= x - g,. By the

uniqueness of the representation of x we have w, ¢ W.
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Hencew,= g, + w,, whereg, € G, w, e W and|w,| < |w|. Therefore

X=W, +09,=(9,*W,)+09,=(9,+9,) + W,
and consequently g=g,+ 9, andw = w,. Thus
o = v | < ] (29)
But by assumption, |, =|x - g,| <|x— g] =|w|

This contradicts the assumption. Consequently |x—g||<|x-y| VyeG.

Hence Gisproximina inX. =
Now we need the following definition of L *—summand subspaces.

Definition 2.2.3: (Khalil [6]). A closed subspace G of a Banach space

Xis caled an L°?—summand, 1< p<oo, if there is a bounded projection

P: X—>G whichisonto, and|x|" =|P(x)|" + |x - P(x)|". =

Theorem 2.2.4: (Khalil [6]). If Gisan L”-summand, then G is proximinal
in X.

Proof: Let x X, for every ge G we have
x=g" =[P(x-g)" +[x-g-P(x-g)’
=[P0x)-g” + x = P(x)”

> x - P(x)|"

Hence|x — g =[x - P(x)|, i.e. P(X) eP(x,G). Thus G is proximinal in X.m
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Now, we prove this new result on L* -summand, 1< p<c.

Theorem 2.2.5: Let X be a Banach space and G be a closed subspace of X.
If Gisan L” —summand, 1< p<oo, then G is a Chebyshev subspace.

Proof: Let xeX and G be an L°*—summand, then there exists a bounded
projection T: X— G which is onto, and so by the proof of Theorem 2.2.4

we have T(X) € P(x,G).
Now, assume that g, € P(x,G), then
x=go" =x=TC)" (26)
So, for 1< p< oo, we have
x=go" =[TOc=go )" +x= g, = T(x- g, )" (27)
=[T0) = gl +[x=T)"
Conseguently, we have

[T(x)-g,|=0= T(¥) =g, (by the definition of the norm).

Therefore G is Chebyshev. =

2.3 Approximation in Orlicz Spacesand inL " (x4, X),1<p<wo

This section contains the concept of a modulus function and Orlicz
spaces, in which we have some theorems on best approximation. Moreover,

many of theorems and definitions in this section can be found in the
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articles by Deeb and by Khalil, also by Al-Dwaik and by Cheney et a.
[1,2,3,4,5,7,8].

Definition 2.3.1:

a) (Deeb [5]). A functiong: [0,0) —[0,x) is called amodulus function if:
(i) ¢ iscontinuous at 0 and isincreasing.

(i) p(X)=0 < x=0.

(i) p(X+Yy) <p(X) + #(y), (¢ isasubadditive function).

Examples of such functions are ¢ (x) = x°, 0 < p<1, and¢ (X) = In(1+X).

#(x)
1+ p(x)

is aso a modulus

In fact if ¢ is a modulus function, then y(x)=

function.

b) (Deeb [5]). Let X be areal Banach space, and (2, 1) be afinite measure

space. For agiven modulus functiong , we define the Orlicz space

L (4 X) = {messurable function f: @ — X : [¢(| (t))ec(t) < 0}

Thefunctiond: L*(u,X)x L*(u,X)—[0,20), given by

d(f,g) = ymf(t)—g(tm)du(t) (2.8)

defines a metric on L?(x,X), under which it becomes a complete
metric linear space. For f € L’ (x4, X), wewrite | f||, = j¢(ﬂf(t)ﬂ)d,u(t).
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Then (L’ (y,X),H-H¢) is a complete metric linear space. If ¢(x)=x", 0<p<1,

then L’ (u,X) isthe space L° (u,X), 0 < p <1(p-Bochner space) and if ¢

is bounded, then L* (12 ,X) becomes the space of all measurable functions.

c) (Deeb [4]). For a Banach space X, we define

7*(X) :{(f(n));gqfqn(nx\)@o, f (n)eX, vne N}

For f € ¢*(X), set ||f],= i;ﬁ”f(n)ﬂ Then (ﬁ“’(X),H-HV}) is a complete metric
linear space. ®

Clearly; for every nonnegative integer m we have: ¢ (mx) <mg(x) vx > 0
and we will use thisresult in proof the following theorem; then turn to alist

of useful facts which we will need.

Theorem 2.3.2: (Deeb [5]). If ¢ isamodulus function and X is a Banach
space, then L*(u, X )< L? (i, X).

Proof: For each real number y>0, we have [y] <y < [y]+1, where

[] denotes the greatest integer function. But ¢ is increasing and

subadditive, then:

d(<p (Y +D<o(YD+4 (D) <[yl¢(D+ ¢(1)<yg(D)+ ¢ (1) <(y+1)¢ (1)

If y> 1, theng (y) < 2y (1): and if y<1, then ¢ (y) < ¢ (1)

Now, let feL*(x, X) and A={teQ: |f(t)|<1} and B={ te Q:|f (t)|>1}
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Then we have

I, = ol )
- [0 0utt)+ AT 0uty

B

< [¢@@) du(t)+ [2f @) 4Q) du(t)
<) w(Q)+24Q) |f|,<o.Hencefe L(u,X). ®

Theorem 2.3.3: (Deeb [4]). Let G be a closed subspace of a Banach space
X. If g is a best approximant of f in L’(x,G), then g(t) is a best

approximant of f (t) in G for amostall t € Q.

Corollary 2.3.4: (Cheney [8]). Let G be a closed subspace of a Banach
space X. If g is a best approximant of f in L*(x,G), then g(t) is a best

approximant of f (t) in G for amostall t € Q.

Theorem 2.3.5: (Deeb [4]). Let G be a closed subspace of a Banach space

X and ¢ be a strictly increasing modulus function. If G is a proximina

subspace of X, then ¢*(G) is a proximinal subspace of ¢*(X).

Proof: - Let a sequence f ={f (n)}e ¢*(X), since G is a proximinal in X,
for each n, there exists g(n) e G such that d( f (n) ,G) = | f (n) - g(n).

Furthermore
la(m]<lgm -t )]+[f(m]<[o-fm)]+[fm)]=2]fm)]. (29

Consequently, g = {g(n)} € ¢*(G).
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Now, we claim that g is a best approximation for f in¢?(G). To see
that, let h be any element of ¢*(G), then

[ =l, = S(1 () - b)) = ()£ () - o) = gl

Hence d(f,7*(G)) =||f - g|,, and ge P(f,*(G)). ]

Theorem 2.3.6: (Deeb [4]). Let G be a proximinal subspace of X. Then for
every smplefunctionfe L?(x, X), P(f,L?(«,G)) isnot empty.
Proof: Let f :i Le %, Where E; are digoint measurable sets inQ. Set

g =i %e Y, Where y, eP(x,,G). If his an arbitrary element in L*(x,G)

then we have

|f=h], = I¢(Hf(t) h@)[) de(®

]

i=1

Jo(|f@®) —h@)]) dp ()

=3 (% - h@)) du

i=1 g
i

=}

i=1

Jo(0x - duett

S

Jo(|f®)-9g®) du(®)

i=1

[(f -9 du(®) =[f -g],-

Hence |f —g|, =inf {|[f —h|, :he L*(4,G)} =d(f.L*(,G)).

Therefore geP (f, L (1,G)). =
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Theorem 2.3.7: (Deeb [4]). Let G be a closed subspace of X. Then the

following are equivalent:
(i) L*(x,G) isproximinal inL?(u, X).
(i) L*(u,G) isproximinal in L*(u, X).

Proof: (i)—>(ii). Let felL'(u,X). Since L'(u,X)cL?’(u,X), then
feL?(u,X), but L*(x,G) is proximinal in L’(x,X) so there exists
geL’(«,G) such that

|f—g], <|f -h|, vheL*(«G).
Theorem 2.3.3 implies that

[f@®)-g@)|<|ft)-y| VyeG, ae teQ. (2.10)
Theorem 1.1.10 part (5) impliesthat| f (t) — g(t)| < || f (t)], ae. te Q.
Hence [g(t)| <[g®) - f@t)|+[f®)] < 2|f (t)| ae. te thusge L*(,G).
From (2.10) we get

[ft)—g®)|<|f@®)-kt)| Vke L'(x,G) ae t. (2.11)

Integrating both sides we get:

[~ gl <[ f -], vke L(1G). 212

Therefore L*(x,G) is proximinal in L*(x, X).
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Conversely, (ii) — (i). Definethe map J: L*(u, X) — L*(u, X) by J(f)= f

where

fo=[TO0TOD/tO]  fO=0
0 f(t)=0

At first we show that f e L*(x, X).

= 70| auo

_pro)
2 |fQ)

= Jp(|f @) du® =[], <eo.

[f®)] dee(®

Second, we claim that J is onto.

g4 (a®/|a®)]

Letge L'(u, X) and let f (t) = { 0

Then 1], = 6|1 ) du)

A(I0)) )d
o L8P 1g0 | auco

flo)] dat)

=g, <=

Hencef e L/(u, X)and J () =g.

(2.13)

g(t)=0
g(t)=0

Finally since ¢ isoneto oneit follows that J is one-to-one. It is now clear

that J(L*(u,G)) = L*(1,G).
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Now, let feL*(u, X).Then J(f )= f e L*(x, X )and there exists § eL*(u,G)

such that Hf —g| < f—ﬁHl for al he L*(x,G). By Corollary 2.3.4; we

1

have

Hf (t) - g(t)H st (t) - yH VyeG ae t. (2.14)

Since § eL*(x,G) and Jisonto, there exists ge L *(u, G)such that J(g)=¢ .

s(la®]f ®]g®)
#(If OPlo®)] |

#(/f @)
If O

[f O
#(|f ®))

Hence

f(t)- ae. t.and VyeG.

Y

ng«)-

Now take he L*(x,G). Then

h(t)eG ae. t.

Hence | (t) - w(t)| <[ f (t) - h(t)| ae. t.and Yhel’(x,G), where

_ #(a®plf O]

t) =
O S0t hlow

a(t).

Using the fact that |g(t)]| < 2-| f (t)|| we see that we L*(x,G) asfollows

49D |f O]
#(f @ o]

()| = la®): (2.15)

2D O
RO

=2/ f )|
Hencewe L*(x,G). ThusL?(x,G) isproximinal in L’ (z, X). =

In asimilar way we can prove the following theorem.
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Theorem 2.3.8: (Deeb [2]). Let G be a closed subspace of a Banach space

X. If 1<p<oo, the following are equivalent:
(i) L"(x,G) isproximina inL" (g, X).
(i) L*(u,G) isproximinal in L*(u, X).

Theorem 2.3.9: (Deeb [1]). Let G be a closed subspace of a Banach space
X. If L*(,G) is proximinal in L*(z, X), then L”(x,G) is proximina in

L” (u, X).

Proof: Letfe L*(u, X). SinceL*(u, X) cL*(u, X), feL*(x, X) and there
existsg e L*(u,G) suchthat |f —g|, =d(f, L*(x,G)).

By Corollary 2.3.4, it follows that

If©)-g@®)|=d(f(t),G) ae t (2.16)
Hence

[f@®)-g®)|<|fE)-y| ae. t, VyeG. (2.17)
In particular

[f®)-g®)|<[ft)-ht)] ae t Vhel(x,G). (2.18)

But L”(x,G)c L*(u,G), and hence, for every kin L” («,G), we have
1) - o) <[ f ©) — k)| ae t (2.19)

Now since |g(t)|< 2| f(t)] ae t Hencege L"(,G).
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And so it follows from relation (2.19) that

lt-gl <[t -K. vkeL"(uG).
Consequently, L”(x,G) isproximinal inL*(xz, X). =

Theorem 2.3.10: (Al-Dwaik [7]). Let G be a closed subspace of a Banach
space X. If L?(u,G) isproximinal in L’ (x, X), then G isproximinal in X.

Proof: Let xeX, we define f (t) = x,VteQ, then feL’(u, X) (because
[o( f ) deet) = [o()X])de(t) = #(|X])ue(2) < 0 (since]|X| < o0 and (2, ) is

a finite measure space). Since L’ (u,G) is proximinal in L?(u, X), there
exists gel’(u,G) such that|f —gH¢ =d(f,’(«,G)). Theorem 2.3.3

implies
H f(t)- g(t)H < H f(t)- yH ae t,andV yeG. (2.20)

Hence [x—g(t)|<|x-y| ae t,andVyeG.

Consequently, Gisproximina in X. =

The following theorem is proved by Al-Dwaik [7], but we will

provide another proof.

Theorem 2.3.11: Let G be a closed subspace of a Banach space X. If
L”(u,G)isproximinal in L” (x, X), then G is proximinal in X.

Proof: Let xe X and ||| denote the norm of X. Consider the function f (t) = x,
Vte Q. Then feL”(u, X). Since L” (x,G)is proximinal in L~ (x, X), then
dgeL” (u,G) such that
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ess.supl(f - 9)®)] = | F ~g.=d (. L" (.))

Hencefor al h e L”(u,G)wehave |f —g| <|f-h| . Andsowehave

It -0 =[x-g®)|<|f-g <|f-h ae t  (221)

In particular, let h (t) = y, Vte2 and yeG, then h eL"(x,G) and so

by (2.21) we have
[x-a9@®)|<|f-h] aet (2.22)
But |f-h| =inf{M:u{t:|f(t)-h )| >M}=0}

=inf {M: {t: |[x—y| >M} =0}
x4
By relation (2.22) we have
x—g)] <|x-y|] ae tandyeG. (2.23)
SinceyeG isarbitrary, then relation (2.23) istrue for all ye G and so
g(t) e P(x,G) ae t,and VxeX

We have proved that P(x,G) contains g(t) amost every t, and all what we

need isjust one such g(t). Hence Gisproximina in X. =

Theorem 2.3.12: (Deeb [3]). Let G be a closed subspace of a Banach space
X M LP(u,G)is proximina in L°(u, X)for 1< p <o, then G is proximina

in X.
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Proof: If L°(x,G)is proximinal in L?(x«, X) for 1 < p <, then theorem
2.3.8 implies that L'(x,G) is proximina in L*(x«,X).Theorem 2.3.9
implies L” (x,G) is proximina in L”(x, X). Now, theorem 2.3.11 implies

that G isproximinal in X. =

Theorem 2.3.13: (Al-Dwaik [7]). If G is 1-complemented in X, then
L*(u,G) is 1-complemented in L*(u, X).

Proof: Let X = G @W and let P. X—>W be a contractive projection.
Hence x = (I-P)(x) +P(x) and |P(x)| <[|. For fe L*(x, X), set

f.=(1-P)o f, f, =Pof, then
[Tl = [IT.0] du@®= JIP(f @) dpu®) < [IT O] du®)=] ], <.
Hence f,e L*'(u,W). Also
[£.], = [If.0] du®) = (1 =P)(F )] duet) = [|f (£) = P(F ()] dpelt)
< [If @]du®+ [IPCE @) dat) < [ @du)+ [If ©)]dwu)
=2[f], <o
Hence f e L'(u,G).Clearly f= f, +f,.

Since W is a closed subspace of X, then L*(x,W) is a closed subspace of
L'(u, X).Alsoif feL*(x,W) NL*'(x,G), thenfeL'(u,W)and feL*(u,G).

Thusf (t) eWand f (t) €G,Vte Q, but GNW = {0},

s f(t) = 0,Vt e @ =T =0.
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Hence L*(u, X)=L*(1,G) ®L*(x,W). Define P : L*(u, X) > L*(1,W)
by P(f)=Pof=f, Vfe L'(u X),P isacontractive projection.

So L*(u,G)is1-complemented inL*(z, X). ™=

Corollary 2.3.14: (Al-Dwaik [7]). If G is 1-complemented in X, then
L*(u,G) isproximinal in L*(u, X).

Proof: The Corollary follows from the above Theorem and Lemma 2.2.2.

Definition 2.3.15: (Deeb [4]). A closed subspace G of a Banach space X is

called a ¢ —summand of X if there is a bounded projection P: X— G such

that
o([X) = ¢ (JPX) + #([x-P(X)) ¥ xeX; (2.24)
where ¢ isamodulusfunction. =

Theorem 2.3.16: (Deeb [4]). If G isa ¢—summand of a Banach space X,

then G is proximinal in X.
Proof: - Let xe X, for every ge G we have
#(Ix-gl) = ¢ (|P(x=9)) + ¢ (|(x-9) - P(x-g)|)
= ¢([P(x=9)) + ¢ (Jx—P()])
> ¢ (|x—PX)).
Hence |x— g > [x— P(x)] (i.e. P() e P(x,G)). Thus G is proximinal in X. ®

Remark 2.3.17: (Al-Dwaik [7]). If G isa ¢ —summand of a Banach space
X, then G is a Chebyshev subspace.
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Proof: Assume that G is a ¢—summand of X. The above theorem implies

that P(x) e P(x,G).
Now suppose g, e P(x,G) i.e. [x— g, =[x - P(x)]. But x-g, € X, then
#([x=go]) = #([P(x=g,)]) + ¢ ([x - g, = P(x~g,)|)
= ¢([PCY-go|) + ¢(|x-PX)).

Hence ¢ (|P(x) - g,]) =0 = P(x) = g,.

Therefore P(x) is the unique best approximant of x in G. Thus G is
Chebyshev. =

In the remaining part of the thesis, we will assume that the modulus

function ¢ is positive homogeneous (i.e. forA >0 ¢(Ax) = A¢(x) [11]) to

make Orlicz spaces normed linear.

Theorem 2.3.18: Let X be a Banach space and G be a closed subspace of
X. If Gisa ¢—summand of X, then ¢/(G) isal-summand of ¢’ (X).

Proof: Let P. X — G be abounded linear projection with
#(|X) = ¢(JPXI|) + ([ x - P(X)[), ¥xeX.

Let Q: /*(X) > ¢*(G) bedefined as Q( ) = Q{f (N)}) = {P(f (n))}. We
claim that {P(f (n))} e ¢*(G). Clearly; P(f(n))eG Vvn.

Since P is bounded, then there exists a rea number k such that vV xe X we
have, |Px| <k|x|. And so
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IRUOI, =[{PC (Y, =P ()] < oK f () =KX gl f (] = K| ], <0

ThereforeQ(f) ={P(f (n))} e ¢*(G), and Q is abounded linear projection.
Sincef (N)e X, Vn, and since G is a ¢ —summand of X;
#1t ]= #IP(E )] + 401 - PY(F )], v (225)
= St ()]= 2 PCf ()] + gt - PY(f (). (226)
= [f], =[P, +]( ~Q)(T)],: and consequently, Q is the
required projection.
Therefore ¢¢(G) isal-summand of 7¢(X). m

Corollary 2.3.19: If Gisa ¢—summand of X, then ¢*(G)is a Chebyshev

subspacein/’ (X).

Proof: - Let G be a ¢—summand of X. Theorem 2.3.18 implies ¢/ (G) isa
1-summand of ¢/ (X). Theorem 2.3.17 implies ¢?(G) is a Chebyshev

subspacein/?(X). =

For the general case we have the following theorem:

Theorem 2.3.20: (Deeb [4]). Let G be ag—summand of X, then L’ (x,G)is

1-summand of L’ (z, X).

Proof: Let P. X— G bethe associated projection for G. Let
P :L%(u,X)— L*(1,G), bedefined by P () (t) = P(f (t)).

Clearly P (f)e L*(u,G). Furthermore
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¢ f @) =g|P(f )]+ 4|1 - P)F ) (2.27)

Hence

Jol Ol = J8lPCf @Oduet) + [4l01 —~P)(f @)t
so, ], =|P(F)], ] -PxF),.

Consequently, P is the required projection and so L%(x,G) is a

1-summand of L’ (z, X). ™

Corollary 2.3.21: If G is a ¢—summand of X, then L’(ux,G) is a
Chebyshev subspace of L’ (1, X).

Proof: Let G be a ¢ —summand of X. Theorem 2.3.20 implies L’(x,G) is
a l-summand of L’(x,X). Theorem 2.3.17 implies L’(x,G) is a
Chebyshev subspace L’ (1, X). ®

Definition 2.3.22: (Cheney [8]). If Sis acompact Hausdorff space and X is
a Banach space; C(SX) denotes the Banach space of all continuous maps f
from S into X with norm defined by |f| =sup|f(s)|, and we define

st

¢ _(SX) by the set of al bounded maps from Sinto X with norm defined
by [ ], =sup|f(s)]. =

Isl<t

Theorem 2.3.23: (Cheney [8]). Let G be a closed subspace of a Banach

space X. Let Sbe acompact Hausdorff space. For each f € C(SX) we have

d(f,C(SG)) = d(f, 7. (SG)) = sup d(f (3),G). (2.28)
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Chapter Three

The S-property

3. Introduction

Let X be a linear metric space and G a closed subspace of X. The
space G is said to have the S-property in X if z,e P(x,,G)and z,e P(x,,G)
imply that z,+ z, eP(x, + X,,G) VX,, X, €X. This chapter has many new
results which will be proved. We also give examples that answer some

open questions. More results are found in Al-Dwaik's thesis [7].
3.1. The S-property and Best Approximation

Many interesting theorems on the S—property can be found in [7],
and here we present new results which describe the relation between the

S—property and best approximations. Also between the S—-property and
P (O [7].

In the following example we see a subspace G < X which has the

S—property.

Example 3.1.1 (Al-Dwaik [7]) Let X = R® and G be the xy—plane, then for

a given point h = (xo, Yo, Z), the unique best approximation of h in G is
go= (%o, Yo, 0) and the distance from h to G is |z| (i.e. d(h,G) =|z,| ) and

since hisarbitrary, then P(h,G) = &, VheX

Now assume g, eP(h,,G) and g, eP(h,,G) where h,.= (x,, y,, Z,)
and h2: (XZ ! y2’ ZZ)’ then glz (Xl’ yl’ O) and gZ= (XZ’ y2’ O)
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Sinceh,+ h,= (X,+ X,,y,*+Y,,z,+ z,) and g,+ g,= (X,+ X,, Y, *+ ¥,, O).

Thereforeg,+ g, e P(h,+ h,,G), thus G hasthe S-property. ®

Remark 3.1.2: In aBanach space X, if G has the S—property, it does not

necessarily follow that G is proximinal in X. For example, take X = c,(the

space of all sequences of scalars converging to zero) and here we use the

real sequences with | x|=sup|x | and G ={x={x} ecozizmxﬂ: 0}. First,

Xn

we claim that G= {0}, (0 is the zero sequence)." This construction is due to
Dr. Justin Heavilin who was visiting at An-Ngah University in the year
2007/2008". To begin with; choose a rea seguence x ec,\G such

thatiz*‘ X, <oo, and assume

n=1

a=Y2"x #0. (3.1)

Now consider the sequencey ={ vy, }, with
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Therefore y € G. ThusG #{0} (i.e. Gisnot trivial).

Now, consider the linear functional f (x) = iZ‘”xn, such that fe ¢,” and by

n=1

Remark 1.2.8 we have| f|=1. Itisclear that N(f) = G = {x : f (x) = 0}, and

so by Theorem 1.2.3, we have G isaclosed hyperplaneinc,.
Lettinge® =(1,0,0,...)e ¢, \G. Theorem 1.2.7 implies that

de®,G) :%. Assumethat 3g=(g,)eG satisfies |e” - g = %.Then
le® - g :sup{ e —g,|:k :12,3,...}

=sur>{ 1-g.l |9, \gg\,---} =

N |-

1 1 1 1
Therefore [1- g1\§§ = 1—\g1\s§:> \91\25 and \gk\sg, Vk> 2

Since i 2"g,= 0, we get that
n=1

2 9,+3279,=0= 3.27g,= 0,2 32", = o], thenwehave
27 & = 2 = 2

1.1 - - <1 1

Z<Zgl=>2"g <Y 2"g <Y 2"(D)==. 3.2

1

1 0
:\gl\:E and ;2‘” g,

SinceiZ‘“ g, :%, then we have
n=2

1 - 1

- + 2’” P

219+ 2278.[=7

n=3

0=~ g,
n 4 4 2
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1 1 2 la., 1
=g=alt-le)-22%l= 332" =5
1 1
1
j‘gz‘:E

So we must have equality in (3.2), and that can happen only if

g, :% for al n. But this contradicts our assumption that g ec,. ThusG is

not proximinal inc,.

Finally; let xec,\G and suppose that P(x,G)=J, i.e. 3zeP(x,G); so

Oe P(x-z2G) by part (2) of Theorem 2.1.3.

This means that there exists x—ze c,\{ 0} such that O P(x—zG). Theorem
2.1.5 implies that G is proximina in c,which is a contradiction to the
above discussion for e®. Therefore P(x,G)= & Vxec, — G. Hence G has

the S-property "vacuously" inc,. =

In the following example we see that if X isaBanach spaceand G is
a proximinal subspace, it is not necessarily implied that G has the

S—property.
Example 3.1.3: Let X=R*with |x|=|x|+|x,| and let G = {(a,a):a eR}.
We claim that G is proximinal in X. Let x = (x,X,)eX and for any

g=(a,a)eG, wehave
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[x=g=[x-al+x -a]
=[x —al +]a = x|
> (X, — X,|
= d(x,G) =[x, —X,| (3.3)
Since (X,,X,) G, then
d(x,G) < [x— (%, %,)|
=% = % H]%, = X, =[x =%,
Hence d(x,G) <|x, — X,|. (3.4
By (3.3) and (3.4) we have
d(X,G) =[x = %,|, VX=(X,X%,) € X.
Therefore P(x,G) # &, ¥xe X.Thus G is proximinal in X.
Now let x = (1,-1) and y=—x =(-1, 1) in X\G.
Itisclear (1,1), (-1,-1) € P(x,G). Part (1) of Theorem 2.1.3 implies
(1,2), (-1,-1) eP(y,G).
Now take (1,1) e P(x,G) and (1,1) €P(y,G), so that

11D+ (11 =(22 andx+y=x+(-Xx) =0. But (2,2)¢ P(x+Y,G) i.e
(2,2) ¢ P(0,G) ={0}.Therefore G does not have the S- property . =
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Theorem 3.1.4: Let X be a normed linear space, then any closed subspace

G with the S—property is a semi—Chebyshev.

Proof: Let xe X\G and z,, z, e P(x,G), then —z ,— z, e P(—x,G) by part (1)

of Theorem 2.1.3.

Since G has the S-property and z, € P(x,G), —z, € P(—x,G), then
z,+(-2) e P(x+ (-%),G) = z -z, e P(0,G)

But P(0,G) = {0}, since0eG =2z -2, =0=2 =12,

Therefore G is a semi—Chebyshev subspaceof X. =

We know that a Chebyshev subspace is a specia case of a semi—

Chebyshev subspace and so we have the following corollary.

Corollary 3.1.5: Let X be a normed linear space and G be a closed
subspace of X and G has the S—property. If G is proximina, then G is
a Chebyshev subspace.

Proof: Let G be a closed subspace which is proximinal and has the
S—property in X. Theorem 3.1.4 implies G is proximina and semi—

Chebyshev, then G isa Chebyshev subspace. =

We need the following theorem from Al-Dwaik's thesis to show that

G is a closed subspace of a Banach space X which has the S—property if
and only if P (0) isasubspace of X.
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Theorem 3.1.6: (Al-Dwaik [7]). Let X be a Banach space, and G a closed
subspace of X which has the S-property, then P_'(0) is a closed subspace of

X and P2(0) NG ={0}.

Proof: Let x,, x, eP_(0), so; 0 P(x,,G) and 0 P(x,,G). Since G has the

S-property we get 0 P(x,+ x,,G). Hence
X,+ X, e PZ(0). (3.5)
Let xe PZ(0) and « be any scalar. Then
d(ax, G)=|a|d(x,G)=|a|[X| = |ox| = 0 P(ax,G).
= axe P;'(0). (3.6)
By (3.5) and (3.6) P_'(0) is asubspace of X.

Now let (x,) be a sequence in P_(0)and xe X such that limx, = x. By

n—ow

part (5) of Theorem 1.1.10 we have d(x,G) < ||

Given & > 0. There exists anatural number N(e) such that |x, — x| <& for all

n>N(e). Fixing n > N(g) we have:

+ ||X

n

<[x=x,

=[x =x, +x,
<e+ x|
<e+|x, —d|
<e+|x, = +[x-d|

< 2 +|x-g||, VgeG.
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Since & > 0 was arbitrary, then|x| <|x - g| Vg e G; and so by the definition

of best approximation we have 0< P(x,G), hence xe P.*(0).
Thus P;*(0) isaclosed subspacein X.
LetgeG N P*(0) = geP_(0)and ge G
= geGand [g-0/=d(9,G)=0=9=0
Therefore GN P (0)={0}. =

Now, we will prove the converse of Theorem 3.1.6 for normed linear

spaces.

Theorem 3.1.7: Let X be a normed linear space. If P;*(0) is a closed

subspace of X, then G has the S-property in X.

Proof: Let x, y € X and g, e P(x,G), g, €P(y,G), then x — g, € P;*(0) and
y —g, € P;*(0). Since P,*(0) isaclosed subspace of Xand x —g, e P.*(0)

y —g, € P;*(0), then we have
X+y-g,-9,€ R'(0) = 0eP(x+y-9,-9,.6)= 9,+ g, eP(x + y,G).
Therefore G hasthe S—property. =

The following theorem can be proved immediately by the

S—property, but here we will provide another proof.

Theorem 3.1.8: Let X be a normed linear space. If P,*(0) is a linear

subspace of X, then G is semi—Chebyshev.
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Proof: Let xe Xand g,, g,eP(x,G), then x— g, P.*(0) and x —g,< P.*(0).
Since P.*(0) isaclosed subspace of X, then
Xx-g,-(x-g,)e P,*(0) = g,-9,¢ P,*(0) andsinceg,,g,<G, then
9,-9,eP*(0NG =g,-9,=0

= 0,/ 0,, by Remark 1.1.6.
Hence G is a semi—Chebyshev subspace of X. =

In chapter two we see that if G is 1-complemented, then G is
proximinal subspace, Al-Dwaik proved that the converse is true if G has

the S—property.

Theorem 3.1.9: (Al-Dwaik [7]). Let X be any Banach space, and G a
closed subspace of X which has the S—property. G is proximinal in X if and

only if Gis1-complementedin X.

Proof: If Gis1-complemented in X, then by Lemma 2.2.2 it is proximinal

in X. Now suppose that G is proximina in X. Theorem 2.1.6 implies
X = G+ P,;*(0). Theorem 3.1.6 implies that P,*(0) is a closed subspace of

Xand P;*(0) NG ={0}. Hence X =G® P.*(0).
Now define P: X — P.*(0) by

P(X) =P(g+ 2 =zwherex=g+ z g €G, ze P,*(0).
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|| > d(x,G) =d(g + z,G)

= d(z,G)

=4

Therefore |X|>| 7.

Hence P is a contractive projection. Thus G is 1-complemented in X. =

Corollary 3.1.10: Let X be a Banach space, and G be a closed subspace of
X which has the S—property. G is a Chebyshev subspace in X if and only if

it is 1-complemented in X.

Proof: Suppose G has the S—property, then G is Chebyshev if and only if G
Is proximinal in X by Corollary 3.1.5. Theorem 3.1.9 implies G is
Chebyshev if and only if it is 1-complemented in X. =

Theorem 3.1.11: Let X be a Banach space and G be a closed subspace of
X. If G is an L"—summand subspace of X, 1< p <, then G has the
S—property.

Proof: Let x,, X,e X and G be an L°-summand subspace, then there
exists a bounded projection E: X— G which is onto G. By Theorem 2.2.5
we have P(x,,G) = {E(x,)} and P(x,,G) = {E(X,)}. (X,,X,€X).

Since P(x,+ X,,G) = {E(x,+ X,)} ={E(X,) + E(X,)}. Therefore G has the

S—property. =

Corollary 3.1.12: Let G be a closed subspace of a Hilbert space X, then G
has the S—property.
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Proof: Let X be aHilbert space and G be a closed subspace. Theorem 1.4.4
implies X = G®G™ such that G*= {xe X: x L G}. Theorem 1.5.3 implies
there exists a bounded projection E: X— G. Theorem 1.4.5 implies that for

al xe X, we have

X =|[EQ) +[x- E()* vxe X.

By the definition of L°-summand subspace, G is an L*-summand
subspace of X, and consequently Theorem 3.1.11 implies G has the
S—property. u

Theorem 3.1.13: (Al-Dwaik [7]). Let X be a Banach space and G a closed
subspace of X. If G isa ¢—summand of X, then G has the S—property.

Proof: Let z, e P(x,,G), z,eP(x,,G). Since G is a ¢ —summand of X then

there exists a projection E: X — G such that E(xX) is a unique best
approximant of x in G ¥xeX by Theorem 2.3.16 and Remark 2.3.17.

Hence

z, = E(x,) and z, = E(x,). Butz, + z,= E(x,) + E(x,) = E(x,+ X,) since

Eislinear.

Thisimpliesthat z, + z, € P(x,+ X,,G). Thus G hasthe S—property. =

Theorem 3.1.14: (Al-Dwaik [7]). Let X be a Banach space and G a closed
subspace of X. If G is 1-complemented and Chebyshev in X, then G hasthe
S—property.
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Proof: Let z, e P(x,,G), z,eP(x,,G). Since G is 1-complemented in X then

there exists a closed subspace Wc X such that X = G®W. Thisimplies that

X, and x, can be written uniquely in the form
X:L:g1+W1’ X2 292+W2

whereg,, g, € G, and w,,w, € W. From the proof of Lemma 2.2.2 and the

assumption that G is Chebyshev wegetthat z, = g9,,2,= g, .

Now x,+ X,= (g,+ ¢,) + (w,+ w,). Since G is a subspace, g,+ g, €G.

Also Wis asubspace, w,+ w, € W. It now follows that
Zl+ ZZ=91+ gz € P(Xl+ XZ’G)'
Thus G hasthe S-property. =

Theorem 3.1.15: (Al-Dwaik [7]). Let X be a Banach space and G a closed

subspace of X which has the S-property. If G is proximina in X then
P (0) is proximinal in X and hasthe S—property.

Proof: Let xe X. The proof of Theorem 3.1.9 implies that x can be written

uniquely, in the form
Xx=g+z geG,ze P(0) (3.7)
Now geG = glw vweP (0) = gl P/ (0) = 0eP(g,P; (0)

=d(g,P(0) =g (3.8)
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From (3.7) and (3.8) we get
d(x-z P2 (0) = |x—2Z = d(x, P¢(0) = |x—7.
Therefore ze P(x, P (0)) i.e. z= x— gwhere ge P(x,G) (3.9

Thus, P (0) is proximinal in X. To show, P;*(0) has the S—property, let
z,eP(x,,P;* (0)) and z, e P(x,, P.* (0)).From (3.9) we get

X,—z,eP(x,,G) and x, -z, e P(x,,G).
Since G has the S—property, then
X,+ X, —(z,*+ z,)eP(x,+ x,,G)=>z,+ z, e P(x,+ X,,P_ (0)).
ThusP_'(0) hasthe S-property. =
Now we have the following three corollaries.

Corollary 3.1.16: Let X be a Banach space and G a closed subspace of X
which has the S—property. If G is a Chebyshev subspace, then P (0) is

Chebyshev and has the S—property.

Proof: Let G have the S-property. Theorem 3.1.15 implies P (0) is

proximina and has the S-property. Corollary 3.1.5 implies P (0) is

a Chebyshev subspace of X and hasthe S-property. =

Corollary 3.1.17: Let X be a Banach space and G a closed subspace of X
and Chebyshev. If P_'(0) is a closed subspace of X, then P (0) is

a Chebyshev subspace of X.
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Proof: Let P (0) be aclosed subspace of X and G is Chebyshev. Theorem
3.1.7 implies G has the S-property and Chebyshev. Corollary 3.1.16
implies P_' (0) is a Chebyshev subspace . u

Corollary 3.1.18: Let X be a Banach space and G be a ¢ — summand of X,
then P’ (0) has the S-property and is a Chebyshev subspace.

Proof: Let G be a ¢ —summand of X. Theorem 3.1.13 implies that G has
the S—property and Chebyshev. Corollary 3.1.16 implies P_'(0) has the

S—property and is a Chebyshev subspace. u

In the following example we show that the converse of Theorem 3.1.15 is
not true.

Example 3.1.19: Let X = ¢, and G = {(x,) : >2"x,= O}, with
|X| =sup|x,|. Remark 3.1.2 shows that G is not proximinal in X and has the
S—property and that P(x,G) =, Vxe X\G; s0 0¢ P(x,G),vxe X \G
and hence P_' (0)={0}. Clearly P_'(0) is a closed linear subspace of X and

Chebyshev (being proximinal with the S—property). Moreover,

d(x,PZ(0)=|x—0|=[x| ¥xe X =P(x, P2(0))={0}.

Now let x, y € X, then P(x, P_' (0))={0}, P(y, P.' (0))={0} and for x + ye X
P(x+ vy, P (0)) ={0} = P_(0) hasthe S—property.

Therefore G has the S-property and P_'(0) has the S—property and is

Chebyshev, but G is not proximinal. ]
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Theorem 3.1.20: (Al-Dwaik [7]). Let X be a Banach space and G be
proximinal in X. If G hasthe S-property, then P.; (0) = G.

P5'(0)

Proof : LetgeG =zlg V ze PJ(0) = g L P_(0) = 0eP(g, P_ (0))
=ge P _ (0).

(0)

Therefore

Gc P! (0) (3.10)

Ps*(0)

Now let xe Pt (0). Then by the proof of Theorem 3.1.9 we have

R (0)
X=X, +X, wherex,eGandx,e P.(0). (3.11)

SinceG < P}, (0),x, € Pt (0), thenx,=x-x,& P} (0).

R (0) R (0)
But x, € P (0). Theorem 3.1.9 impliesx, = x —x,=0.
= X=X, =>XeG

Therefore

P (0)c G (3.12)

(0)

From (3.10) and (3.12) we have P,  (0) =G. u

P5(0)

Theorem 3.1.21: (Al-Dwaik [7]). If G is a semi—Chebyshev hyperplane in

a Banach space X passing through the origin, then G has the S—property.
Proof: case (1): Gisproximinal in X. Let f e X" so that

G = {yeX: f(y) =0}. Fix an arbitrary ze X\G so f(2) = 0, and let
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Y,=X-Z %Where xe X, sof(y,) =0, hencey, e G. Consequently
z
X=G®[7d where[z] ={az: o scalar}. (3.13)

Now let z, e P(x,,G), z, e P(X,,G). It will be shown that
z, + 2, eP(x,+X,,G). (3.14)

By (3.13) every x,, X, € X can be written uniquely in the form

X,=0,+a,z, X,=0,+ a,Z (3.15)
whereg,,g,€Gand « , « , arescalars.
Now assume that g' € P(x,+X,,G), then by (3.15)
geP(9,+ 9,+(a ,+a ,)z,G). Theorem 2.1.3 implies
g=0,*r0,t(a,*a,)w=0g,+ra W+ g,+a ,wwhereweP(z,G).
Since we P(z,G), Theorem 2.1.3 implies that
9,*a ,weP(g,+ o ,2zG)=P(x,,G)and g, + « ,weP(g,+ a ,2,G)= P(x,,G).
Henceg,+a W=2,0,ta ,w=z,andg =z, + z,.
Therefore z, + z, e P(x,+X,,G). Thus G has the S-property.

Case (2): If Gisnot proximina in X, then theorem 2.1.5 implies P(x,G)=9Y
Vxe X—G. Thus G hasthe S—property. ®



60

Let X be a normed linear space, and G be proximinal in X, then any
map which associates with each element of X one of its best
approximationsin G is called a proximity map. This mapping is, in general,

nonlinear.

Theorem 3.1.22: (Al-Dwaik [7]). Let X be a Banach space, and G be a
Chebyshev subspace of X. There exists a linear proximity map if and only
if G hasthe S—property.

Proof: Let T be a linear proximity map. We clam that G has the

S—property.
Letz, eP(x,,G) and z, e P(x, ,G).

Now z + z, = T(x,) + T(x,) = T(X,+X,)eP(x,+X,,G). Therefore G has

the S—property.

Conversely, assume that G has the S—property.
Define T: X— G such that T(X) € P(x,G). Now we claim that T islinear.
Let x,, X, € X, weshow that T (x,+x,) = T(x,) + T(X,).

Now T(x,)eP(x,,G), T(x,)eP(x,,G). Since G has the S-property, then
T(x,) +T(x,) e P(X,+X,,G).

Also T(x,+x,) e P(x,+x,,G) and Since G is Chebyshev, then

T, +X,) =T(x,) + T(X,) (3.16)
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Let xe X, o scaar then T(X) € P(x,G). Theorem 2.1.3 implies that

aT(X) eP(ax,G), dso T(a X) e P(ax,G).
Since G is a Chebyshev subspace of X, then

aT(X) =T(aX) (3.17)
By (3.16) and (3.17) wehave T isalinear map. =

3.2 The S—property of Subspaces of Orlicz Spacesand L"(u, X)

In this section we have many new consequences about the Orlicz

subspaces and L"(u, X) subspaces which have the S—property. First, we

need the following theorem from Al-Dwaik [7].

Theorem 3.2.1: (Al-Dwaik [7]). Let X be a Banach space and G be a
closed subspace of X. If G has the S—property in X, then L’ («,G) has the

S—property in L (1 ,X).
Proof: Letg,eP(f,,L°(x,G))andg, eP(f,,L?(u,G)), wewill show that

g, +9g, eP(f+f, L(«,G). Now g,eP(f,,L°(x,G)), Theorem 2.3.3
implies g, (t)e P(f,(t),G) ae te Q. Alsog, €P(f,, L’(x«,G)), Theorem
2.3.3impliesg, (t) eP(1,(1),G) ae teQ.

Hence

d(( f,+ £,)®.6) = [(f, + ,)1) - (9, + 9,)(1)] ae t. (3.18)
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And we have
[(f, + £,)(0) = (g, + 9,)O)| <|(F, + £.)O) - y| ae tand VyeG. (3.19)
In particular
[(f, + £,)(t) - (9, + 8,) )] <[(F, + £,)®) —h(t)| ae tand Vhe L*(u,G).
Since ¢ isincreasing, then
¢ (|(f, + £.)0 = (9, + 9)O) < #((f, + £,)®) - h))ae t,Vhel’(u,G).
Integrating both sides we get

[(f+ £~ (g, + g, <[(f,+ f.)-h, Vhel’(x.G). (320
Henced( f,+ f,.G) = |(f, + f,) (g, +9,)],.

Thereforeg,+ g, eP(f,+ f,,L?(x,G)). ThusL’(u,G) has the S-property

inL!(u,X). =

Now, we will present our results on Orlicz subspaces and L (x,G) with

the S—property, and will start with the converse of the last theorem.

Theorem 3.2.2: Let X be a Banach space and G be a closed subspace of X.
If L?(u,G) has the S—property in L?(u,X), then G has the S-property

in X.

Proof: Suppose L’(ux,G) has the S-property in L?(ux,X), and let

z, eP(x,,G) for i=1, 2; wewant to show z,+ z, e P(X,+X,,G).
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Now let f (t) = x, and g, (t) = z,,Vte Qand for i=1,2; and since |x|< o,
V xe X (by definition of the norm ), then f,, f,,9,,9, eL*(x, X), Theorem
2.3.2implies f,f,,9,,9,eL’(u,X)suchthatg, e L’ (x,G) i=1, 2.

First, we show that g. e P(f., L’ (u,G)) (i =1, 2).
Now for i =1, 2, we have
z, eP(x,,G) =[x —z|<|x -] VyeG.

= |fM)-g®|<[ft)-y] VyeGandV teQ.

= |f.(t) - g ®)<[f.(t)-h(t)] VteQ and Vhe L(x,G).
Since ¢ isdtrictly increasing, then we have
#(|f. ) — g O <a(f t)-ht)]) VteQ and Vhe L(u,G). (3.22)
=|f -, <[f -h|,vheL’(4.G)= g, eP(f, L*(1,G)i=12
Since L’ (u,G) hasthe S—property in L* (1 ,X),
g,+g,eP(f+f,L°(u,G)) (3.22)
Theorem 2.3.3 implies

(9, + 9,)(®) eP((f,+ £,)®), L (1.G))) ae t (3.23)

Then z,+ z, e P(X,+ X,,G). Therefore G has the S-property in X. ®

This section has many equivaent relations, and the following

corollary isthefirst.
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Corollary 3.2.3: Let X be a Banach space and G a closed subspace of X

then the following are equivalent:
1. G hasthe S—property in X.

2. L?(u,G) hasthe S—property in L’ (u, X).

Proof: This corollary follows From Theorem 3.2.1 and Theorem 3.2.2

immediately. ®

Moreover, some important results on L"(x, X) subspaces with the

S—property will now follow.
First, if p=1.

Theorem 3.2.4: Let X be a Banach space and G a closed subspace of X,

then the following are equivalent:
1. G hasthe S—property in X.
2. L'(u,G) hasthe S—property in L*(z, X).

Proof: (1) - (2). Suppose (1) and let f eL'(u, X) and g, eP(f,,L*(«,G))
such that i=1, 2.We want to show that g,+ g, e P(f,+ f,,L'(«,G)) .

Now if g, e P(f,,L*(x,G)). Corollary 2.3.4 implies
g,(t) eP(f,(1),G) ae teQ (3.24)
Alsog, eP(f,,L'(«,G)). Cordllary 2.3.4implies

g, eP(f,(1),G) ae teQ (3.25)
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Since G has the S—property, from (3.24) and (3.25) we have

(9,+ 9,)OeP((f,+ 1,)(0),6) ae teQ. (3.26)

Hence

d((f,+ £,)®.6) = |(f,+ £,)) - (9, +9,)V)] ae teQ. (327)

Then we have
[(F,+ £,)() - (9, + @) <[(f, + £,)O) Y| VyeG, ae. teQ.

Consequently, we have

[(f, + £,)(1) = (9, + g,)O)| <[(f, + £,)O) —h(t)|, ae teQ,Vhel}(u,G).

=[(f,+£,)=(9,+9,).<[(f, + £,)=h|, ¥vhe L'(uG). (3.28)

Thereforeg,+ g, eP(f,+ f,, L'(«,G)). Thus L*(«,G) has the S—property
inL*(u, X).

(2)—>(1). Suppose (2) and let x,, x, e X and z, e P(x,,G), z, e P(x,,G). We

want to show that z,+ z, e P(x,+ X, ,G).

Consider the constant functionsf,, f,, g,, g,defined as follows f, (t) = x,,

f,t)=x,,0,()=2,0,(t) =z, Vte Q. Clearly
f,, f,e L'(1,X) andg,,9, € L' (1,G).
First weshow that g.e P( ., L'(«,G)),i =1, 2.

Now for i =1, 2 we have
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[fo-a@l=x-2]  vteo
<[x -y vyeG
=|f.®) -y VyeG and Vte Q.
ThenV h e L'(¢,G)andi =1, 2, we have
[f.(t) - g, @) <[ f.(t) - h@)|, Vte Q. (3.29)
= [f, - g <[, —h]., vh e L(x,G)andi =1, 2. (3.30)
Thusg. eP(f,L"(«,G)), i=1, 2.
Since L*'(u,G) hasthe S—property in L*(«, X), then
g,*g,eP(f+f, L'(uG)). (3.31)
By Corollary 2.3.4, wehave (g,+ g,) (t) eP((f,+ f,)(1),G) VteQ.
Then z + z,eP(x,+ X,,G). Therefore G hasthe S-property in X. =
Second, if 1< p <o

Theorem 3.2.5: Let X be a Banach space and G be a closed subspace of X

then the following are equivalent:
(1) L°(u,G) hasthe S—property inL " (u,X),1<p< .
(ii) G hasthe S—property in X.

Proof: (i)—(ii). Let x, e X and z, e P(x,,G) for i =1, 2. We want to show

that z, + z, e P(X,+ X,,G).
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Consider the constant functions f (t) = x, and g, (t) =z, fori =1, 2 and

vteQ.Clearly f.e L?(u,X),1<p<ow,andg, e L(u,G)fori=1,2.
Weclaimthat g e P(f,, L°(u,G)) fori=1, 2.
If.~9l,= It O-0.0fdu®
= [Ix - 2] dutt)
< [|x =y du(t), VyeG because z, eP(x, ,G).
Andsoforal he L?(u,G) andi=1, 2, we get
H fi - giHE < j\x - h(t)de,u(t)
= [1£.0) - ho| dut)
<[, -
Then, for all he L®(u,G), wehave |f, — g, <|f —h| ,i=12
Henceg, eP(f,,L°(x,G)),i=1, 2.
SinceL?(u,G) hasthe S—property inL*(u,X) 1<p< «, then
9,+0,e P(f,+f,L°(u,G))
Thusforal he L?(u,G), we have
|f,+ f, —(91+92)Hp <|f, +f, —th

And | f,+f,—(g,+0,)|, <|f,+f,-h]] (1<p<e).
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Now we have

[f,+ £, = (9, + )= [, + £.)0) - (9, + 9,)O)] "duu(t)
= [l + %) — (2 + 2,)| du(t)

=|(x, +%,) = (2, +2,)|" u(Q) (3.32)

[ £+ f,=h]; = [I(f, + £,)(®©) - h@)]" du(®)

= JI(x +x,) = h(®)|"du(t). (3.33)

From (3.32) and (3.33), we have

[ +%,) = (z +2)[" 1(Q) < [|(x+x%)=h) du(t), Vhe L*(u,G).

In particular, for yeG, let h (t) =y, Vt e © beaconstant function, and

clearly h e L°(x,G), and so we have

[ +%) = (z+Z)]" (@) < [l(x +%)(E) - y] du(t)

= |(x + %)= y|" Q).

Since (1,£J) is afinite measure space (i.e. u(£2) <o) and assume () >0,

then
[+ %)= (z+2)]"< |0 +%) =¥ (3.34)
SinceyeG was arbitrary,

|(x +%,) = (z.+2)||< |[(x + %) - Y], V yeG. (3.35)
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Hencez, + z, e P(x,+ X,,G). Therefore G has the S—property in X.

Conversely. Let f e L°(u,X) and g, eP(f, L?(x,G)) for i =1, 2 and
1<p<w.Thenforany helL®(u,G) wehave|f —g| <|f —h .

Using the same arguments as in Lemma 2.10 of Light and Cheney [8] we

get
If@O-g®)<[f®) -y ae tVvyeGandi=1,2 (3.36)
Thenwehaveg, (t) € P(f. (1),G) ae t,andfori=1,2.
Since G hasthe S—property in X, then
(g,+9,))eP((f+ f)(1),6) ae t (3.37)
Hence, for all ye G, we have
H( f,+f)t)—(g,+ 92)(t)H < H( f,+ f)(t) - yH ae t. (3.38)
Hence Vhe L°(u,G) we have
H( f,+f)t)—(g,+ 92)(t)H < H( f,+ f,)(t)- h(t)H ae t.
= H( f,+f)t)—(9,+ gz)(t)Hp < H( f,+ 1)) - h(t)Hp ae t,1<p<w.
= |f,+f,—(g9,+ gz)HZ <|f, +f, —hHZ

=|f,+f,-(g,+9,), <|f,.+f,~h|,  VheL*(u,0G).

Hence g,+ g, eP(f,+ f,,L°(x,G)),1<p< . Therefore L"(x,G) has

the S—property inL" (u,X),1<p<o.
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From the previous theorems we have the following interesting result.

Theorem 3.2.6: Let G be a closed subspace of a Banach space X which has

the S—property in X, then the following are equivalent:

1. GisaChebyshev subspace of X
2. L’ (u,G) isaChebyshev subspace of L (1 ,X).

3. L°(u,G) isaChebyshev subspaceof L°(u,X) 1< p<o.

Proof: (1) —(2). Let G have the S—property in X. Theorem 3.2.4 implies
L'(«,G) has the S-property in L'(x,X). Since G is a Chebyshev
(proximinal)= G is 1-complemented in X by Corollary 3.1.10. Theorem
2.3.13 implies that L*(x,G) is 1-complemented in L*(x«, X), then by
Lemma2.2.2 we have L*(x,G)is proximinal in L*(u, X). Since L*(x,G)is
proximinal and has the S-property in L*(u, X), then L*'(x,G)is a
Chebyshev subspace of L*(u, X), (by Corollary 3.1.5). Andso L’ (u,G)is
a proximina subspace of L’ (,X), (by Theorem 2.3.7); and since G has
the S-property in X, then L’ (x,G) has the S—property in L?(u,X) (by
Theorem 3.2.1). Hence L’ (u,G) is a Chebyshev subspace of L (u, X)

(by Corollary 3.1.5).

(2)—>(3). Let L’ (u,G) be a Chebyshev subspace of L? (1, X) which has
the S—property. Theorem 2.3.7 implies L*(x,G) is proximina (Chebyshev)
subspace of L*(u, X) and Theorem 2.3.8 implies L° («,G) is a proximinal

subspace of L " (,X). Theorem 3.2.5impliesL " ( x£,G) has the S—property
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in L?(u,X), then by Corollary 3.1.5 we have L°(u,G) is a Chebyshev

subspace of L° (1 ,X).

(3—(1). Let L°(u,G) be a Chebyshev subspace of L*(x«,X), then by
Theorem 2.3.12, G is proximinal in X but also G has the S—property in X,
so G is a Chebyshev subspace of X (by Corollary 3.1.5). =

Finaly, if p=o; we have:

Theorem 3.2.7: Let X be a Banach space and G be a closed subspace of X.
If L™ (u«,G) hasthe S—property in L~ (x,X), then G has the S—property.

Proof: Suppose L~ («,G) has the S—property in L” (x,X) and let X, e X and
z, eP(x,,G) fori =1, 2. We want to show that z,+ z, e P(X,+ X, ,G).

Now consider the constant functions f, (t) = x, and g, (t) = z,for i =1, 2 and

VteQ.Itisclearf e L"(u,X)andg, e L™ (u,G) fori =1, 2.
Weclamthat g, eP(f,L"(«,G)) fori=1, 2.
Now fori =1, 2and Vt e 2 we have
H -9 (t)H - H)ﬁ - ZiH
<|x -y| VyeG, becausez eP(x;,G)fori=1,2.
=|f.®-y| vyeGi=12
Thenforal he L”(u,G) we have

|f.) — g, ()] <[ f. @) - h(t)] VteQ andi=1,2.
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Thenwe have | f, — g, <|/f, —h| =12 vheL"(u,G).

Henceg, eP(f,L"(x,G))fori =1, 2.

Because L (1£,G) hasthe S—property in L~ ( z,X), then

g9,+9,eP(f+f,L"(u,G)

= |f, +f,- (9, +9,)|, <||f. + f, - |, Vhe L"(,G).

But we have

H f,+f,—(g,+ gz)Hw =inf {M: p{t: H(f1+ f,)(t) - (g, + 92)('[)H> M }=0}
=inf{M:p{t: [(x +%)-(z+2)|>M} =0}
=[x + %)= (z+2)

= |(f, + £ - (g, + 9,)1)] VteQ.

In particular, let h (t) =y, VteQsuch that ye G be a constant function,
then |f,+f,—h | =inf{M:p{t:|(f,+ f,)®)—h,)|>M} =0}

=inf {M: p{t:|(x, + x,) - y[>M} =0}

= (% +x) -y

=|(f,+ )0 -h, ()] vteQ.
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Hence
(% +%)=(z+2)| =|f.+f,-(9,+9,),

<|f+f,-h|
=[x +x%,) - Y|, yeG.
Sinceye G was arbitrary, then
(% + %)= (z.+2)|<|(x +x) -], VyeG. (3.39)
Therefore z,+ z, e P(x,+ X,,G). Thus G has the S-property in X. ]

We saw in the previous theorem that if L (x,G) has the S—property
in L™ (u«,X), then G has the S—property. Now what about the converse?; to
answer this question we assume that L” («,G) is a Chebyshev subspace of

L” (1, X).

Theorem 3.2.8. Let G be a closed subspace of a Banach space X and
suppose L”(u,G) is a Chebyshev subspace of L”(u,X). If G has the
S—property in X, then L~ ( z£,G) hasthe S—property in L~ ( z,X).

Proof: Let f eL”(u,X),1=1,2. SinceL”(u,G) isChebysnev =L"(u,G)
is proximina in L”(x,X)=G is proximina in X =G is Chebyshev
(because G has the S—property in X). Theorem 3.2.4 and Theorem 3.2.6
imply that L*(«,G) is Chebyshev and has the S-property in L*(u, X).
Thenfori=1,2 3" h e L'(x,G) suchthat h, eP(f, ,L'(«,G)); and since
Iht)|<2]f,(t)| ae t, then h, eL”(x,G). Using the same arguments as in
Theorem 2.3.9wehaveh, € P(f ,L”(u,G)).

Now since h. eP( f ,L*(x,G)), i =1,2, and L*(x,G) has the S—property in
L(u, X), thenh,+ h, e P(f,+ f,,L(1,G)).
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Since f,+ f,e L"(x,G) and |h(t)+h,(t)|<2]f,()+ f,)| ae t, then

once again; using the same arguments as in Theorem 2.3.9 we have

h,+ h,e P(f+f,L"(x,G));, and since L”(x,G) is Chebyshev, then

L” (u,G) hasthe S—property inL" (x,X). =
Now, we have:

Corollary 3.2.9: Let G be a closed subspace of a Banach space X which
has the S—property. If L”(x,G) isa Chebyshev subspace of L~ (z£,X), then

G isa Chebyshev subspace of X.
Proof: By Theorem 2.3.11 and Theorem 3.2.8. m

Theorem 3.2.10: Let G be a closed subspace of the Banach space X and S
be a compact Hausdorff space. If 7 (SG) has the S-property in/ _ (SX)

then G has the S—property in X.

Proof: Let x, e Xand z, e P(x,,G), i =1, 2. Consider the constant functions

f(9=x,0,(9=z fori=1,2and VseS Then
f,g. eC(SX)c £, (SX) Vi =1, 2; and for each i, we show that
g, eP(f ., (SG)).Fori=1,2.

Fori=1, 2, we have
It gl =supfi(s) - g, (s)]= suplx ~ 2] =[x -z]< [x -y VyeG.
Because z, e P(x,,G), i =1, 2. Then, for dl he /_(SG) and i = 1, 2, we

have
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If. =g, =[x =h(s)| <sup|x —h(s)| <[f ~h|,

Thereforeg. eP(f, 7 (SG)).
Since ¢ _ (SG) hasthe S-property in £ _ (SX), then
9,%9,€ P(f,+ 1,0 (SG)).

Now, Theorem 2.3.23 implies that

[f.+ 1, =(9,+ @), =supd(( .+ £,)(5).6) , seS

=supd(x,+ x,,G) , SES

=d(x,+ x,,G). (3.40)
By definition of the norm of 7/ _ (SX) , we have
H fl + fz - (gl + gz)”Oc :Sl'sjp H( f1 + fz)(s) - (91 + gz)(s)u

=sup Ix +%,—(z.+2)|,seS

=[x +x, - (z,+ 2)| (3.41)
By relations (3.40) and (3.41) we have d(x,+ x,,G) =[x, +x, —(z + ).

Thereforez,+ z, e P(x,+ X, ,G). Hence G has the S—property in X. ]
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Conclusion

This thesis contains a few properties of best approximations and the
S—property. We conclude from Remark 3.1.2 and Example 3.1.3 that if a
subspace, G, has the S—property, then G is not necessarily proximinal in X;
and moreover, if G is proximina in X, G does not necessarily possess the
S—property. However, we see that every closed subspace G with the
S—property is a semi—Chebyshev subspace. Furthermore, from Theorem

3.1.6 and Theorem 3.1.7 we conclude that G has the S—property if and only

if P,*(0)isaclosed subspace of X where X is a Banach space.

In section 3.2 we have the most important results about Orlicz and

L®(u,X) subspaces. If G is a closed subspace of a Banach space X, then

we have the following:

1. G hasthe S-property < L’ (u,G) hasthe S-property.
2. G hasthe S-property < L*(u,G) hasthe S-property.
3. G hasthe S—property < L*(u,G) hasthe S—property.
4. L”(u,G) hasthe S—property = G has the S—property.

5. ¢ _(SG) hasthe S-property = G has the S—property.

Other results can also be found in the thesis.
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Appendix

It was pointed out that Al-Dwaik's thesis is not published, so this
appendix is intended to include the theorems that are not mentioned in this

thesis, or which we give different proofs.

Theorem 1: Theinfinite dimensional subspace c,of cisproximinal in c.
Proof: On c define the linear functional f by f (x) =lim x =vy.

Then c,={g={g,}ec:f(g) =0} isthe hyperplane of c and if xec, then
d(x,c,) =|y| by Theorem 1.2.6 and Remark 1.2.7.

Letg={g,} bedefinedas, g =x —V.

Now ge c,and | x — g| =sup{

X —g.|:neN}

:Sup{

X, = (%, —y):neN} =|y.
Hence d(x,c,) = |x — g| and so; ge P(x,c, ).
Since x was arbitrary; c,isproximinal in c.

Theorem 2: Every modulus function is continuous on [0,0).

Proof: Let x,e[0,0). We show that ¢ is continuous a x,, Ii.e
LLT¢(X) = ¢(X,) . At first we show that

#(X) — #(y)| < (X~ Y]) VX, ye[0,0).

Now|X =|x—y+ Y| <|x— Y| +|y, since ¢ isincreasing and subadditive we

get (X)) <p(x— ) +4(y)-
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So #(X) - #( ) < (x - ) (AD)

If we interchange x and y, then we have
#(Y) — (X < p(x~y)) (A2)
By (A1) and (A2) we have

6(X) - #(Y)|< (x-y) ¥xye[0,x).

Now given ¢ > 0, there exists 6(¢) > 0 such that if 0<x<d(g), then
#(X)| <e, because ¢ is continuous at 0. But [#(X) — ¢(x,)| < #(x - Y| <e if

X = X%,| <8(¢). Hence ¢ is continuous at x,and since x,is arbitrary, then ¢

IS continuous on [0,).

Theorem 3: Let G be a closed subspace of a Banach space X. If L” (u,G)is

proximinal in L” (u, X), then G isproximinal in X.

Proof: Let xeX. Consider the function f (t) =x Vte Q, then fe L (u, X).
Hencethere exists ge L” (u,G) such that|| f — g| =d(f,L"(x,G)).

By theorem [11, p.36] ||f — g :Slthd(f 1),G).
Hence||f — g = Sltjpd(X,G) ,sincef (t) =x Vte Q.
|f —g|, =d(x,G). But d(x,G)=sup{ [x— g(t)|:t e 2}.
= [x - g(t)| < d(xG)

Therefore Gisproximina inX. =
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Theorem 4: Let G be a closed subspace of a Hilbert space X, then G has

the S—property.

Proof: Letx € X, z € P(x,G) fori=1, 2. Weshow z + z, e P(x, + X,,G).
Theorem 2.1.4 implies x —z L Gfori=1, 2. Hence

<x —z,0>=0,VgeG.

Now, <x +X,-(z+2),0> = <X -Z,0>+<X,-2,9> = 0, V geG.
Hencex +x,-(z,+z,) LG.

Theorem 2.1.4 implies thatz +z, € P(x +X,,G). Thus G has the

S-property. =

Theorem 5: Let G be a closed subspace of a Banach space X. If G has the
S-property, then L’ (u,P;*(0)) = B, ., (0).

Proof: Letf e L’(u,P;*(0))i.e f (e P*(0)Vte 2, and so | f| <oo. Now
we have

O0e P(f(1),G)=d(f(t),G) :Hf(t)H,Vt e, i.e.Hf(t)HSHf(t) - gH vgeG
and VteQ.

In particular:

[f @) <|f®)-h@), Yhel’(u,G).

= ¢ fO)< (| f©) - h)) vhel’(uG).

= |f], <[f ~H|,, Vhel(u,0).
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Hence d(f,L’(u,G))=|f| , therefore 0c P(f,L’(#,G))= f e P, (0).
¢

L (1.G)
Thus L (1, P;*(0)) = P (0). .

LY (u.G)

Remark 6: If G is 1-complemented in X, then G may not be a Chebyshev

subspace.

For Example let X = R* and G = {(g,0) : geG} with |(x,y)|=|X+|¥,

then G is proximinal and not Chebyshev.

Now, let W= {(0,w) : we R}, then (X,y)=(x,x)+(0,y— X).
Clearly R*= GO W.

We define P : X— W as P(x,y) = P((x,x)+(0,y—X)) = (0O,y—X)
Now w] =0,y =) =ly =X <y +[X = |x V)|

Hence P is a contractive projection.

Therefore G is 1-complemented in X. =
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