An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005

On Pairwise Sublindel öf Spaces فضاءات ليندلوف الضعيفة الثنائية

Jamal Mustafa

Department of Mathematics. Al al-Bayt University. Mafraq. Jordan *E-mail: jjmmrr971@yahoo.com* Received: (4/10/2004), Accepted: (28/8/2005)

Abstract:

The purpose of the present paper is to introduce some generalizations of pairwise Lindelöf spaces, namely pairwise sublindelöf spaces, and to obtain some related results. We shall introduce two types of pairwise sublindelöf spaces, also a new types of mappings, p_1 -paralindelöf and p_2 -paralindelöf mappings, are introduced.

Keywords: Bitopological spaces, pairwise Lindelöf, p₁-paracompact, p₂-paracompact, pairwise regular, p-continuous functions.

ملخص:

في هذا البحث عرّفنا نوعين من فضاءات ليندلوف الضعيفة الثنائية كتعميم لفضاءات ليندلوف الثنائية ثم درسنا الفضاءات الجديدة من حيث وصفها وامتلاكها لبعض الخواص التبولوجية.

1. Introduction.

The concept of bitopological spaces was initiated by Kelly [5]. A set X equipped with two topologies τ_1 and τ_2 is called a bitopological space and is denoted by (X,τ_1,τ_2) .

In a bitopological space (X,τ_1,τ_2) , τ_1 is said to be regular with respect to τ_2 [5], if for each point x in X and each τ_1 -closed set F with $x \notin F$, there are a τ_1 -open set U and a τ_2 -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \phi$. (X,τ_1,τ_2) is pairwise regular [5] if τ_1 is regular with respect to τ_2 and τ_2 is regular with respect to τ_1 .

A cover U of a bitopological space (X,τ_1,τ_2) is called $\tau_1\tau_2$ -open cover [1] if $U \subseteq \tau_1 \cup \tau_2$. If, in addition, U contains at least one non-

empty member of τ_1 and at least one non-empty member of τ_2 , then \vec{U} is called pairwise open, [1].

A bitopological space (X,τ_1,τ_2) is called pairwise Lindelöf [1] if each pairwise open cover of X has a countable subcover. This concept also was studed by several authers like Hdeib and Fora, [3].

If U and \mathfrak{O} are $\tau_1\tau_2$ -open covers of the bitopological space (X,τ_1,τ_2) , then U is called a refinement of \mathfrak{O} , [2], if each $U \in U \cap \tau_i$ is contained in some $V \in \mathfrak{O} \cap \tau_i$, i=1,2.

A collection \mathcal{R} of subsets of the bitopological space (X,τ_1,τ_2) is called p₁-locally finite, [2], if $\mathcal{R} \cap \tau_i$ is locally finite in (X,τ_i) , i=1,2. Also a collection \mathcal{R} of subsets of the bitopological space (X,τ_1,τ_2) is called p₂-locally finite, [2], if $\mathcal{R} \cap \tau_i$ is locally finite in (X,τ_j) for each i $\neq j$; i,j=1,2.

Hdeib and Fora, [2], initiated a study of pairwise paracompact spaces. A bitopological space (X,τ_1,τ_2) is called p₁-paracompact (p₂-paracompact respectively), if each pairwise open cover of X has a p₁-locally (p₂-locally respectively) finite $\tau_1\tau_2$ -open refinement.

A function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\rho_1,\rho_2)$ is called pairwise continuous, [6], if the functions f: $(X,\tau_1) \rightarrow (Y,\rho_1)$ and f: $(X,\tau_2) \rightarrow (Y,\rho_2)$ are continuous.

We shall use p- to denote pairwise, e.g. p-Lindelöf stands for pairwise Lindelöf. The τ_i -closure of a set A will be denoted by cl_iA . and denote the set of real and rational numbers, respectively.

2. Definition and Subspaces of Pairwise Sublindelöf Spaces.

In the following definition we give two cocepts of pairwise sublindelöf spaces in bitopological spaces where as the concept of sublindelöf spaces was initiated by Hdeib, [4].

<u>Definition 2.1</u>: A bitopological space (X,τ_1,τ_2) is called p_i -sublindelöf if every p_i -locally finite p-open cover of X has a countable subcover for i=1,2.

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005 _____

Obviously, every p-Lindelöf space is p_1 -sublindelöf and p_2 -sublindelöf.

The following example shows that a p_1 -sublindelöf space and a p_2 -sublindelöf space may fail to be p-Lindelöf also it shows that the p_1 -sublindelöf property is not a hereditary property.

<u>Example 2.2</u>: Let $X = R \times R$, $\tau_1 = \tau_s \times \tau_s$, $\tau_2 = \tau_u \times \tau_u$ where τ_s is the sorgenfrey line topology and τ_u is the usual (standard) topology.

The space (X,τ_1,τ_2) is p₁-sublindelöf, indeed, if it is not p₁sublindelöf, then there exists a p₁-locally finite p-open cover $U = \{ U_\alpha : \alpha \in \Lambda \}$ of X such that U has no countable subcover. Obviously U must be an uncountable cover of X. Now if $A = \{ (x,y) : x,y \in Q \}$, then A is dense in (X,τ_1) and dense in (X,τ_2) . Therefore for each $\alpha \in \Lambda$, $U_\alpha \cap$ $A \neq \phi$. Since A is countable, some elements of A must be contained in uncountably many members of U. So there is an element of A which is contained in uncountably many members of $U \cap \tau_1$ or uncountably many members of $U \cap \tau_2$, say an element of A is contained in uncountably many members of $U \cap \tau_1$, so any τ_1 -open neighborhood of this element must intersect uncountably many members of $U \cap \tau_1$ and this contradicts the fact that U is p₁-locally finite.

In a similar way we can show that (X,τ_1,τ_2) is p₂-sublindelöf.

Now the subspace $L = \{ (x,y) : y = -x \}$ is a τ_1 -closed subspace of (X,τ_1,τ_2) which is not p₁-sublindelöf, because $\{\{x\} : x \in L\} \cup \{ [(-2, -1)\times(1,2)] \cap L \}$ is a p-open p₁-locally finite cover of L which has no countable subcover. Also, since this subspace is not p₁-sublindelöf then it is not p-Lindelöf and so (X,τ_1,τ_2) is not p-Lindelöf.

<u>**Definition 2.3:**</u> A subset F of a bitopological space X is said to be relatively p_i -sublindelöf if every p_i -locally finite (in X) p-open (in X) cover of F has a countable subcover for i=1,2.

<u>Definition 2.4</u>: A subset F of a bitopological space X is said to be relatively p_i -paracompact if every p-open (in X) cover of F has a p_i -locally finite (in X) $\tau_1\tau_2$ -open (in X) refinement for i=1,2.

It is easy to see that every τ_1 -closed and every τ_2 -closed subset of a p_i-sublindelöf space is relatively p_i-sublindelöf for i=1,2.

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005

<u>**Remark 2.5:**</u> (i) If F is a relatively p_i -paracompact, relatively p_i -sublindelöf subset of a bitopological space X, then F is a p-Lindelöf subspace of X.

(ii) If F is p_i -paracompact, p_i -sublindelöf subspace of a bitopological space X, then F is a p-Lindelöf subspace of X.

<u>Definition 2.6 [2]</u>: Let (X, τ_1, τ_2) be a bitopological space. A subset D of X is called p-dense if $cl_1D = cl_2D = X$ and for every p-open (in X) p_2 -locally finite (in X) countable cover \Im of D we have

$$\begin{split} cl_1 \cup \{V : V \in \mho \cap \tau_1 \} &\subseteq cl_2 \cup \{V : V \in \mho \cap \tau_1 \} \text{ or } \\ cl_2 \cup \{V : V \in \mho \cap \tau_2 \} \subseteq cl_1 \cup \{V : V \in \mho \cap \tau_2 \}. \end{split}$$

It is proved in Hdeib and Fora [2] that a p-regular p_2 -paracompact space X with a p-dense p-Lindelöf subspace A is p-Lindelöf. The following theorem is a generalization of this result.

<u>Theorem 2.7</u>: Let (X,τ_1,τ_2) be a p-regular p₂-paracompact space having a p-dense relatively p₂-sublindelöf subset A. Then X is p-Lindelöf.

Proof: Let U be any p-open cover of X. Then there exist $U_0 \neq \phi$ and $V_0 \neq \phi$ such that $U_0 \in U \cap \tau_1$ and $V_0 \in U \cap \tau_2$. Since (X, τ_1, τ_2) is p-regular and p₂-paracompact, U has a p₂-locally finite $\tau_1 \tau_2$ -open refinement \mho such that for each $V \in \mho \cap \tau_1$; cl_2V is contained in some $U \in U \cap \tau_1$ and for each $V \in \mho \cap \tau_2$; cl_1V is contained in some $U \in U \cap \tau_2$. Now \mho is a p-open cover of A (add U_0 to \mho if $\mho \cap \tau_1 = \phi$ and add V_0 to \mho if $\mho \cap \tau_2 = \phi$). Since A is relatively p₂-sublindelöf there exists a countable subcover \mho_0 of \mho which covers A. We may assume that \mho_0 is p-open. But A is p-dense in X, so we have two cases to consider:

Case 1. $cl_1 \cup \{ V : V \in \mho_0 \cap \tau_1 \} \subseteq cl_2 \cup \{ V : V \in \mho_0 \cap \tau_1 \}$: In this case we have

 $X = cl_1A$

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005

 $\subseteq cl_1 \cup \{ V : V \in \overline{\mathcal{O}}_0 \}$ $= cl_1 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_1 \} \cup cl_1 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_2 \}$ $\subseteq [cl_2 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_1 \}] \cup [cl_1 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_2 \}]$ $= [\cup \{ cl_2 V : V \in \overline{\mathcal{O}}_0 \cap \tau_1 \}] \cup [\cup \{ cl_1 V : V \in \overline{\mathcal{O}}_0 \cap \tau_2 \}]$ $Case 2. cl_2 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_2 \} \subseteq cl_1 \cup \{ V : V \in \overline{\mathcal{O}}_0 \cap \tau_2 \} : In this$ case we have $X = cl_2 A$

 $\subseteq cl_{2} \cup \{ V : V \in \mathcal{O}_{0} \}$ $= cl_{2} \cup \{ V : V \in \mathcal{O}_{0} \cap \tau_{1} \} \cup cl_{2} \cup \{ V : V \in \mathcal{O}_{0} \cap \tau_{2} \}$ $\subseteq [cl_{2} \cup \{ V : V \in \mathcal{O}_{0} \cap \tau_{1} \}] \cup [cl_{1} \cup \{ V : V \in \mathcal{O}_{0} \cap \tau_{2} \}]$ $= [\cup \{ cl_{2}V : V \in \mathcal{O}_{0} \cap \tau_{1} \}] \cup [\cup \{ cl_{1}V : V \in \mathcal{O}_{0} \cap \tau_{2} \}]$ Now in each case we get

$$X \subseteq \left[\cup \{ cl_2V : V \in \mathfrak{O}_0 \cap \mathfrak{r}_1 \} \right] \cup \left[\cup \{ cl_1V : V \in \mathfrak{O}_0 \cap \mathfrak{r}_2 \} \right]$$

For each $V \in \overline{\mathcal{O}}_0 \cap \tau_i$ choose one element $U_V \in U$ such that $cl_j V \subseteq U_V$ ($i \neq j$; i, j=1,2). Then { $U_V : V \in \overline{\mathcal{O}}_0$ } is a countable subcover of U for X. Hence the result.

Corollary 2.8: Let X be a p-regular p₂-paracompact bitopological space having a p-dense p₂-sublindelöf subset A. Then X is p-Lindelöf.

<u>**Proof:**</u> Since every p_2 -sublindelöf subspace is relatively p_2 -sublindelöf, the result follows from Theorem 2.7.

Now the result of Hdeib and Fora [2], mentioned before Theorem 2.7, can be obtained directly from Corollary 2.8.

3. Pairwise Sublindelöf Mappings.

In this section, we define new types of mappings namely p_1 -paralindelöf and p_2 -paralindelöf.

Definition 3.1: A p-continuous mapping f from a bitopological space (X,τ_1,τ_2) onto a bitopological space (Y,ρ_1,ρ_2) is called piparalindelöf if for each pi-locally finite p-open cover U of X, there is a pi-

_An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005

locally finite p-open cover \mho of Y such that for each V in \mho , f⁻¹(V) is contained in the union of countably many members of U for i=1,2.

<u>**Theorem 3.2:**</u> Let f be a p-continuous mapping from (X,τ_1,τ_2) onto a p₁-sublindelöf space (Y,ρ_1,ρ_2) . Then X is p₁-sublindelöf if and only if f is p₁-paralindelöf.

<u>**Proof**</u>: Suppose (X,τ_1,τ_2) is p_1 -sublindelöf. Let U be a p_1 -locally finite open cover of X. Then U has a countable subcover U'. Now $\{Y\}$ is a p_1 -locally finite p-open cover of Y such that $f^{-1}(Y)$ is contained in the union of countably many members of U. Hence f is p_1 -paralindelöf.

Conversely, suppose that $f: X \to Y$ is p_1 -paralindelöf and Y is p_1 -sublindelöf. Let U be a p_1 -locally finite p-open cover of X. Then there is a p_1 -locally finite p-open cover \mho of Y such that for each V in \mho , $f^{-1}(V)$ is a subset of a union of countably many members of U. Since Y is p_1 -sublindelöf, \mho has acountable subcover \mho' . Now $X = \bigcup \{ f^{-1}(V) : V \in \mho' \}$ and each $f^1(V)$ is covered by a countable subcollection of U. Then X is p_1 -sublindelöf.

Similarly we can prove the following theorem:

<u>**Theorem 3.3**</u>: Let f be a p-continuous mapping from (X,τ_1,τ_2) onto a p₂-sublindelöf space (Y,ρ_1,ρ_2) . Then X is p₂-sublindelöf if and only if f is p₂-paralindelöf.

<u>Theorem 3.4</u>: Let f be a p-continuous mapping from a bitopological space X onto a bitopological space Y. Then Y is p_1 -sublindelöf if X is so.

<u>**Proof**</u>: Let X be a p₁-sublindelöf space and \mho be a p₁-locally finite p-open cover of Y. Since f is a p-continuous mapping, f⁻¹(\mho) is p₁-locally finite p-open cover of X. Since X is p₁-sublindelöf, f⁻¹(\mho) has a countable subcover, say f⁻¹(\mho '). Therefore \mho ' is a countable subcover of \mho .

Similarly we can prove the followig theorem:

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005 _____

<u>Theorem 3.5</u>: Let f be a p-continuous mapping from a bitopological space X onto a bitopological space Y. Then Y is p_2 -sublindelöf if X is so.

<u>REFERENCES</u>

- [1] Fletcher, P., Hoyle, H. B. and Patty, C. W., "The comparison of topologies", *Duke Math. J.*, **36**, (1969), 325 – 331.
- [2] Hdeib, H.Z. and Fora, A. A., "On pairwise paracompact spaces", *Dirasat*, IX(2), (1982), 20 – 29.
- [3] Hdeib, H.Z. and Fora, A. A., "On pairwise Llidelöf spaces", *Rev. Colombiana Mat.*, **17**, (1983), 37-57.
- [4] Hdeib, H.Z., "On sublidelöf spaces", Dirasat, 10(2), (1983), 65 71.
- [5] Kelly, J.C., "Bitopological spaces", Proc. London Math. Soc., 13, (1963), 71 – 89.
- [6] Saegrove, M.J., "Pairwise complete regularity and compactification in bitopological spaces", J. London Math. Soc., 7, (1973), 286-290.

_An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005