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MATHEMATICAL ANALYSIS OF
A VIBRATING RIGID WATER TANK

Amin H. Helou *
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Abstract

The hydrodynamic pressure distribution on the wall of a vibrating
water tank is traditionally expressed as a summation of two components ; an
impulsive component and a convective one obtained by separating the poten-
tial function into two parts . This requires solving Laplace's equation in two
stages each with a separate set of boundry conditions .

The following is one step systematic solution to the problem in a frame
moving with the tank . It proves to be simple , compact and could lead to the
impulsive , frequency independent and the convective , frequency dependent
components of pressure at the water tank wall .

Introduction

Water tanks are generally constructed of either reinforced concrete or of
steel . As such , they are treated as rigid or flexible depending on the construction
material and on the tank's relative dimensions . Dynamic analysis of such water
— tank systems has traditionally been approached by separating the potential
function into two parts : impulsive which is frequency independent , and convec-
tive , which is proportional to the sloshing frequency of the liquid . Although the
intention is understood to be the separation of a frequency dependent component
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of the pressure from the frequency independent component , this requires the
tedious task of having to solve the Laplace's equation twice each time with a diffe-

rent set of boundry conditions (7) .

This presentation illustrates a systematic solution to Laplace's equation to
yield the total potential for the case of a rigid tank . It is noticed that by dropping
the surface effects , the solution easily leads to the impulsive and the convective
components , if that is desired . The present study is limited to the case of a rigid
water tank subject to a harmonic ground excitation of unit amplitude and a
steady state response .

Problem Statement and Its Solution

Consider the vertical cylindrical tank shown in Figure 1 . The tank is as-
sumed rigid and subject to horizontal harmonic ground excitation of unit
amplitude . For all practical purposes , the water in the tank may safely be as-
sumed incompressible and its motion irrotational . Let the potential function rep-
resenting the fluid motion be 4) . Then Laplace's equation of motion will be

V 2 4=00 ( 1)

The following are the boundary conditions written in a reference frame
moving with the tank .

" = 0 at r = r0. 	 ( 2 )a r 

" = 0 at z = -H
3 z

At the water surface , two conditions are available . One requires a particle
on the surface to stay on the surface , and the other requires the pressure at the
surface to have a prescribed value .

With reference to a moving frame , the Bernoulli's equation for the pressure
distribution is

3 4)	 •P = -p — -t-a 	XH(t) r cos e + gz }

The first two terms in Equation 5 represent the dynamic pressure distribu-
tion while the third term is simply the hydrostatic pressure .

and

( 3 )

( 5 )

8



	1P-
r

An-Najah J. Res. Vol. 1 ( 1989 ) Number 6
	

Amin Helou

_ - -

V V v 
XH(t

( a ) Vertical section

( b ) Horizontal section

Figure 1 . Rigid Water Tank Subjected to Seismic Excitation
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Equation 1 is solved by the standard method of separation of variables . In

cylindrical coordinates let

(7.r.O.t) — 7(7).R(r). 0( El ).t(t)	 ( 6 )

By inspection ,the eigenfunction in 8 is found to be

( 6 ) = cos	 ( 7 )

This implies that the eigenfunctions in z and r are obtained from the solutions to

the following two equations .

Z" ( z ) 	k2.	 ( 8 )
Z(z)

and

r2R" + rR' + ( k 2r2 — 1) R = 0	 ( 9 )

Equation 8 is a well posed Sturm-Liouville problem with the following homogene-

ous Neumann boundary condition ( 4 ' .

dZ
— 0	 at z = —H	 ( 10 )

Equation 9 is a Bessel's equation governed by the boundary condition

= 0	 at r	 r„	 ( 11 )

k 22 is to take all possible values ( i . e . positive , zero and negative ) for k 2 	0

trivial solutions are obtained , however , for k 2 	0 the solution is

7. (z) — C cosh k (	 + H)
	

( 12 )

The standard solution to equation 9 is

R(r)	 DJ 1 (kr) + EY 1 (kr)
	

( 13 )

where J l is the Bessel function of the first kind and first order
Y 1 is the Bessel function of the second kind and first order

di
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C, D, and E are constants of integration .

Since Y 1 leads to a singularity at the origin , it is dropped and the solution reduces
to

R(r) = D.J i (kr) 	 ( 14 )

Boundary condition 11 implies that either D = 0 which is a trivial solution or
J' 1 ( kro ) = 0 . Hence , the eigenvalues are obtained as the roots to the equation .

J' ( kro ) = 0 	 ( 15 )

Because Equation 15 has an infinite number of roots , the solution is written as a
summation of the following infinite series

c1) = cos 0 E Tn (t)coshkn ( z + H)J i (kn r) 	 ( 16 )
n=1

Where in ( t ) is a function of time yet to be determined . This is achieved by in-
voking the boundary conditions at the surface .

Prescribing the pressure at the surface z = n to be atmospheric gives

cos() I Tn (t)cosh(kn H)J i (kn r)+54/(t)rcose+g,n = 0 	 ( 17 )
n=1

in which n is unknown , but could be obtained from the following linearized
kinematic boundary condition

All =" 	 at z = 0
a t 	 az

or

n = .1 	 a 	 dt 	 at z = 0
az ( 18 )

From which it follows that
CO

n = cos 0 E Tn ( t )kn sinh ( knH ),1 1 (knr)
n=1

substituting for n into Equation 17 yields

(

(

19 )

20 )

t ) cosh ( knH ) ( knr ) + g E Tn( t ) knsinh ( knH ) ( knr ) +
n=1 	 n=1

("1.
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Cn

Multiplying both sides of Equation 20 by rJ i ( ksr) and invoking the following or-
thogonality property of J 1 .

r0
f rJ i (kn r)J i (ksr) =0,forn x s

0

yields the following system of uncoupled linear differential equations for Tn .

( 21 )

in( t ) + g kntanh ( knH ) Tn( t ) — 	
( knro)2 — 1 ] cosh ( knH ) J 1 ( knro )

which is of the form

Tn( t ) + Bn Tn( t )	 Cn XH( t )

where Bn = g kn tanh ( knH )

2r0 	 1

[ ( knro )2 — 1 ]	 cosh ( knH ) ( knro )

For 'ill( t) = e , the particular solution to equation 22 is

C n e
T0 (t) - 	 2

B n - w

with all of the eigenfunctions computed , the potential function takes the form

-iwt

	

co 	 Cn e
	= —cos0(1w) E 	

2 	
coshk0 (z+H).1 1 (knr ) 	 ( 24 )

Now that the potential function is fully determined , the water surface displace-
ment and the pressure distribution at the water tank wall may easily be computed
for any value of excitation frequency . The dynamic pressure is obtained from
Bernoulli's equation

2r0 	 kil(t)

( 22 )

( 23 )

n=1 13 0
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=p cosh e 	 E 	 2 coshkn (z+H)J ( ko ro) , — pro cos e -e i wt

(25 )
n=1 B n -w

An-Najah J. Res. Vol. 1 ( 1989 ) Number 6 	 Amin Helou

Figure 2 is a plot of the amplitude of the dynamic pressure distribution ( p) on the
wall of a tank hVing a 10—meter radius and water 5 meters in depth . The com-
putations are for 8 = 0 and w = 4.42 rad/second . This value of w is randomly
chosen to he different from any natural frequency of the sloshing fluid



Second Term 	 First Term
Contribution 	 Contribution

	Figure 2 . Pressure distribution at the wall taken for 	 0
(W = 4.42, 	 limiting value )
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Figure 3 .The impulsive pressure distribution taken for 6 = 0
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Discussion

Upon the examination of Equation 25 and of Figure 2 , it is noticed that
while the first term is frequency and depth dependent , the second is proportional
to the radius only . Although the contribution of the first term quickly reaches a
limiting value as the value of w is increased yet it does not look appropriate to
neglect it under any circumstance . Moreover , since in the analysis of fluid —
structure interaction systems , it is convenient to deal with a frequency
independent pressure distribution ; all that is needed is to set w-4 =0 in equation
25 . The result is shown in Figure 3. This is exactly what is referred to in the
literature ( 5 ) as the impulsive pressure . This operation means that the surface
effects are neglected which is universally accepted at rather high values of
excitation frequencies .

List of Symbols

0	 potential function of fluid motion

r, z, g = cylindrical coodinate system.

p 	 = fluid density

511-1 	 = horizontal ground acceleration

t 	 = time

w 	 = angular frequency of oscillation

= radius of tank

H 	 = depth of fluid

k 	 = wave number

= wave height

P	 = pressure amplitude

= the Bessel function of the first kind and first order

= the Bessel function of the second kind and first order

Other symbols are defined as they appear in text .
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