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Abstract

Fractional differential equations have a wide range of applications in
Engineering, Physics and Technology including fractional differential
harmonic oscillator, fractional wave equation and fractional diffusion
equation.

After introducing some definitions in fractional derivatives and fractional
integrals including Grunwald-Letnikov, Riemann-Liouville and the Caputo
fractional derivative, we focus our attention mainly on the numerical
methods for solving fractional differential equation. These methods are: the
Adomian decomposition method, Homotopy perturbation method,
Variational iteration method and Matrix approach method.

The mathematical framework of these numerical methods together with their
convergance properties will be presented. These numerical methods will be
illustrated by some numerical examples. Comparisons between these
methods will be drawn. Numerical results show clearly that the matrix
approach method is one of the most powerful numerical techniques for
solving linear fractional differential equation in a comparison with other

numerical techniques.



Introduction

Historical background

The question that led to the birth of fractional calculus was from a letter
which is written by L Hopital asking Leibniz about the n" derivative of the
linear function f(t) = t, and what will happen when n = % [19]. In general,
what would the result be when n is fraction, then Leibniz replied and wrote
" this is an apparent paradox from which, one day, useful consequences will
be drawn", and from this inquestion between L Hopital and leibniz the new
field of mathematics was called fractional calculus, but in fact, the order of
differentiation or intigration can be any positive real number.

After L Hopital and Leibniz first inquestion, the field of fractional calculus
has motivated many famous mathematicians, such as Fourier (1820-1822),
Lacorix (1819), Riemann (1826-1866), Liouville (1809-1882), Laplace
(1812), Caputo, Euler (1730), and many others, and each of them made an
effort to make progress in this field of mathematics. Next we list some major
contributions to fractional calculus by famous mathematicians [32], [41].

In 1812, Laplace defined the fractional derivative by means of an integral.
In 1819, Lacorix was the first mathematician to define the mt* fractional
derivative using the gamma function. He applied his defintion on the
function £(t) = t™ in a paper published in 1819. The mt" derivative of
f@®)=t"is:

d™f(t) _ n! gn-—m
atm (n—-m)!

, M =m, mis aninteger (1)
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'n+1)

- [(m—m+1)

Moreover, Lacorix applied this definition when m=% , n=1, and

n-m

obtained:

dV2(t) At

dtt2 T Y g
In 1823, Abel applied fractional calculus in the solution of an integral
equation that arised from the formulation of the tautochrone problem.
The tautochrone problem is the problem of determining the shape of the
curve such that the time of a discent that a frictionless point mass needs to
slide down the curve under the work of gravity is independent of the starting
point.
Over the next ten years (1823 to 1832), no significant progress has been
made. In 1832, Liouville was successful in applying his definition of
fractional calculus to problems in potential theory.
After that, many mathematicians made very important work in fractional
calculus such as Riemann-Liouville, Grunwald-Letnikove, Caputo in 1967,
K.S.Miller, B.Ross in 1993 and many others.
While fractional derivatives can be defined in different ways, we will a dapt
the Riemann-Liouville and Caputo definitions.
Fractional differential equations have recently gained importance and
attention. The study of fractional differential equations ranges from
theoretical aspects of existence and uniqueness of solutions to the analytical

and numerical methods for finding solutions.
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Applications of Fractional Differential Equations

Fractional differential equations appear frequently in a number of fields such
as physics, polymer rheology, regular variation in thermodynamics,
biophysics, blood flow phenomena, aerodynamics, electrodynamics of
complex medium, viscoelasticity, capacity theory, electrical circuits and
control theory. An excellent account in the study of fractional differential
equations can be found in [24,30,36]. One of the most common fractional
differential equation is the time-fractional heat conduction equation with the

Caputo fractional derivative, i.e.

d*T
dt®
where a is the thermal diffusivity coefficient. Further examples of a

=aAT, 0<a<?2 (2)

fractional differential equation is the logistic equation of fractional order [5];

D%x(t) = rx(t)(l — x(t)), (3)

where D¢ is the Caputo fractional derivative of order 0 < a < 1. Moreover,

the fractional Rosenau-haynam equation which written as [33];

Dfu = uD,,(u) + uD, (u) + 3D, (u) D, (u), t>0 (4)

where u = u(x,t), a is a parameter describing the order of the fractional
derivative (0 < a < 1), t is the time, and x is the spatial coordinate.

The exictence and uniqueness of solutions for different types of fractional
differential equations have been discussed in [16].

In general, most of the fractional differentail equations do not have exact
solutions. Therefore, several numerical methods are used to approximate

solutions of fractional differential equations. Some of these methods include
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Adomian Decomposition Method [2], Homotopy Perturbation Method [18],
Variational Iteration Method [25], Laplace Transform Method [42], and
Matrix Approach Method [11].
The fractional derivative of order & > 0 has several definitions. These are:
Riemann-Liouville and the Caputo's definitions are the most commonly used
for the derivative of this order. For the fractional derivative,the Caputo's
definition is used, which is a modification of the Riemann-Liouville
definition; because it has an advantage of dealing properly with the initial
value problem since the initial condition is given in terms of the field
variables and their integer order. This case is widely used in physical
applications. This thesis is organized as follows:
In chapter one, we introduce some definitions for fractional and integral
derivatives. chapter two, we present some important definitions and
theorems involving Grunwald-Letnikove, Riemann Liouville and Caputo
fractional derivative and focus on some fractional differential equations such
as fractional harmonic oscillator, fractional wave equation and fractional
diffusion equation. In chapter three, we present some numerical methods;
namely: the Adomian decomposition method, Homotopy perturbation
method, Variational iteration method, Matrix approach method. In chapter
four, we implement the aforementioned numerical methods to solve linear
fractional differential equations using Maple and Matlap softwares, and draw
a comparison between analytical and numerical solutions for some numerical

examples.
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Chapter One

Fractional Calculus

1.1 Fractional Derivatives

Definition(1.1)[13] : Let Adenote the class of functions g(x)in the
form g(x) = x + Yn—, a, x™ which are analytic in U={xeC:|x|<1}.
The fractional derivative of order a, for g(x) € A,is defined as the

following:

1 d{x 9(6)

J = 0)" d@} Ob<a<1) (1.1)

DY g(x) = ma

where the multiplicity of (x — )% is deleted by requiring log(x — 6) to be
real when x —6 > 0.
where I'(a) is the so-called gamma function.
Definition (1.2) [38]: Gamma function: The gamma function denoted by
I'(p) is given by the integral:
I'(p) = j xP~le™* dx, p > 0. (1.2)
0
The above integral converges only for p > 0.
Also that the gamma function is a generalization of the factorial function,

since for any positive integer p,
I'(p) = j xP e *dx = (p — 1)\
0

Below is a list of some properties of the Gamma function where p € Z,n € N



1L T(p+1) =pl(p)

2. T(p)I'(p — 1) = n/sin(mp)
3. T'(n+1) =nl'(n) =n!
4. The Binomial coefficient is defined by the Gamma function
a .
a a—ljl
(a+b) _Z(i)a b,
i=0

a\ _ F(CZ+1)
where (l) T TG+ (a—i+1)’

Figure 1.1: The gamma function.

Definition (1.3) [38]: Beta function: The beta function denoted by B (u, v)

is given by the integral:

1

B(u,v) = j x4 (1= x)v Ldx, u,v > 0. (1.3)
0

The integral converges for u,v > 0.

The Beta function is related to the Gamma function through the relation:
B, v) = [OT@)
W)= F'(u+v)
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Definition (1.4)[13]: Let g(x) € A . the fractional dreivative of order n +
a is defined as :
dTl

DIMeg(x) = dx—n(D,‘g‘g(x)) O<a<ln=

0,1,2..) (1.4)

Definition (1.5)[13]: Let m—1<a<mmeN,a,A€C and the
functions u(x) and y(x) be such that both D*u(x) and D%y (x) exists. The
fractional derivative is a linear operator, i.e.,

D“(/l u(x) + y(x)) = AD%(x) + D%y (x). (1.5)

Definition(1.6)[51]: Let u(x) € C,|a, b], the modified fractional derivative
of function u(x) is defined by:

A%u(x)

c* '’

D%u(x) = lgl& (1.6)
where A%u(x) = %2,(=D(F)ux + (a — i)c)

Remark (1.1)[27][43] : we note that
%9 = g®) =t+ ) ant™,
n=2

2tg(t) =0g(t) =tg'(t) =t + X, na,t",
and /g(t) =0 (2 1g(1)) =t + T, niayt™ G=123.)
which called Salagean derivative operator introduced by Saldgean [44].
Also,

_ 2 (ot w 2
N7 tg(t) = ?fo g(2)dz =t + Xp_, ——ant" |
and, 0 7 g(t) = 01 (Q‘f“ (t)) =t+32 (i)] a t" (j =

’ 9 g n=2\, ;1) 9n

1,2,3,...)

which called Libera integral operator defined by libera [27].
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Definition (1.7)[15]: Fort € R, 0 < a < 1, the sine and cosine functions

in fractal space are given by:
n,t% = 1.7
Sthat™ =, JT(1+a(2i+ 1) (1.7)
1=
e (_1)it2ai
LT (1 + 2ia)
=0

cos,t* = (1.8)

Here are some fractal functions which can be expressed by Mittage Leffler

function
Ea(iata) - Ea(_iata)

Sin,t% =
2i%

l
E,(i%t%*) + E, (—i%t%)

cos,t% = 5
Eq(t)" + Eq(—t)”

sinh,t% = 5
Ea(t)a - Ea(_t)a
2 )

cosh, t% =

where E,, is the one parameter Mittage Leffler function.

Example 1.2: (Modified Fractional Derivative of Exponential

Function)
1< .«
a,ax — y; —1)i — i
D% —lcl_r)%caé (-1) (i)f(x+(a i)c)
lEOO
1 o ,
— i E —1)\i a(x+(a—i)c)
lcl—I;%Ca ( 1) (i)e
i=0 o
1 o .
— p X ]j _ 1\ ac(a—i)
e i) (1 () e}

i=0

Using the Binomial expression
ac _ 1\a _— _13\i a ac(a—i)
(e 1) —Z( 1) (i)e .
i=0

Then,



1
D% = e |im— (e% — 1)*
c-0c%

ax [ 1; e —1 ¢
=e (llm ( ))
c—-0 C

— eax(fr(o))a — aaeax

S0, D% = q%e?*

Example 1.3 (Fractional Derivative of sine and cosine)
o (—1Dine@HD ra2i+1) + 1
D“(sin a(nt)a) — Z ( ) ' ( ( ) )
Sir(l+ai+1D)r@Ri+1) -a+1)
(_1)ina(2i+1)
T T +ai+D—a)
l:
ot (_1)in2aina
~ L TQai+1)
t=0 (0.0 . .
N CD ()
— 1+ 2ai)

a2i+1)—a

a(2i)

2ai

i
= n%cos nt®

Hence,

D“(sin a(nt)“) = n% cos ,(nt)*
Similarly, since

cos ,(nt)* = sin (E — (nt)"‘) , We get
o \2

D% cos ,(nt)* = —n%sin ,(nt)*.
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1.2 Fractional Integrals

1.2.1 Basic Definitions

Definition (1.8)[26]: The Riemann-Liouville fractional integral operator of

orderp >0,m—1<p <m,m € N, of u(x) is defined as the following:
X
1

JPu(x) = T

f(x — )P u(t) dt ,x >0, (1.9)
0

1.2.2 Properties of Fractional Integrals
Definition (1.9)[45]: The identity operator: If we set p =0 in the
Riemann-Liouville fractional integral operator of order p (J?) then:

J°g(x) = g(x), i.e., J° = I (the identity operator). (1.10)

the semi- group property of the two operators J%, J# is defined by:
JeJE = jetb (1.11)

Definition (1.11)[45]: The commutative property: Suppose that a, § = 0,

the commutative property of the two operators /%, J?, is defined by:

JejE = jEje. (1.12)

From (1.11) and (1.12), we conclude that J¥JF = J&+B = [B+a = B«
Definition (1.12)[26]: Let m—1<a<mmeN,a,A€ C and the
functions u(x) and y(x) be such that both /*u(x) and J*y(x) exists. The

fractional integral is a linear operator, i.e.,

JE(Aul) +y() = ] ux) + J*y(x) (1.13)
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1.3 Euler Lagrange Equation

Definition (1.13) [6] : If u(x) is a curve in C?[c,d] that minimizes the
functional

Glu(x)] = fcdg(x,u(x),u’(x)) dx, (1.14)

Then the differential equation must satisfy:

dg d (dg
< —(==%)=o0.
dx dx \dx

This equation is called the Euler Lagrange equation.

Lemma (1.1)[49]: Let G(x) is a continuous function on [c, d], assume for
any continuous function u(x) such that u(c) =u(d) =0 we have
fcd G(xX)ulx)dx =0

Then G(x) is identically zero on [c,d ].

The solution of the Euler-Lagrange equation are called critical curves.

1.4 Differential Operators

Definition (1.14) [42]: Differential operators are a generalization of the
operation of differentiation
Du(x)=u'(x)
Double D allows to the second derivative:
D?u(x) = D(Du(x)) = Du'(x) = u"(x)
nt" power of D allows to the n‘*derivative:

D™u(x) = u™(x) (1.15)
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Definition (1.15)[10]: The linear differential equation of the nt"*order is
written as the following:
u™(x) + a; U™ V() + - + a1 (U’ (%) + a,(Dulx) =
g(x)(1.16)
Using the differential operator D, this equation (1.16) can be written as
G(D)u(x) = gx)
where G (D) is a differential polynomial equal to
GD)=D"+a,(x)D" 1+ +a, ;(x)D + a,(x)

Therefore the operator G (D) is an algebraic polynomial.

1.5 Hermitian Matrix

Definition (1.16) [3]: If square matrix is self-adjiont then it is Hermitian

matrix. So, a Hermitian matrix C=(c;;) is defined as C=C* where C* that

conjugate transpose. Is equivalent to the condition.
Cij = Cji

Definition (1.17) [4]: Hermitian matrices have real eigenvalues whose
eigenvectors form a unitary basis. Any matrix D that is not Hermitian can

be written as the sum of a Hermitian matrix and an anti-Hermitian matrix

D ==(D +D") +-(D — D).
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Chapter Two

Fractional Differential Equations and Exact Solutions

In this chapter we present some important definitions and theorems
involving Grunwald-Letnikove, Riemann Liouville and Caputo fractional
derivatives that used to find exact solutions to some fractional differential
equations such as fractional differential harmonic oscillator, fractional wave

equation and fractional diffusion equation.

2.1 Grunwald Letnikov Fractional Derivatives

Definition (2.1) [39]: The Grumwald-Letnikov fractional derivative with

fractional order p if u(t) € C™[0,t], is defined as :

DPu(t) = lim h-pz(—ni (’Z)u(t _ih) 2.1)
mh=t—a i=0
py _  TI'(p+1)
where (z) T —it+ 1)

Property 2.1 [7]:
() When0<p<1p [GLDgtu(t)](s) = sPu(s),
where u(s) = p[u](s)
(2) If p > 1, the laplace transform of the Grumwald-letnikov fractional

derivative does not exist in the classical sense .

3)DY.c = ct™P/T(1 — p),where c is a costant .
0.t
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Definiton (2.2) [37]: Grunwald- Letnikov composition with fractional
derivatives if u®() =0 , (i=0,1,..,c—1), ¢ = max(n,m) can be

shown as
oD (pDfu(t)) = ,DE( ,DPu(t)) = ,DF Pu(t), (22)

where0 <m<a<m+1,0<sn<p<n+1.
Definition(2.3)[37]: Grunwald-Letnikov fractional derivative of the power
function g(t) = (t — c¢)P is given as:

I'(p+1)

At — ) = ——" 7
Dit—c) [(—a+p+1)

(t—c)r @ (2.3)

Definition (2.4)[19]: The derivative of an integer ordera — n > 0,

n—1 < a < ncan be shown as :

t
1 d“
aDta_ng(t) = m ﬁ j(t - T)n_lg(l') dr, 0<n<1) (2.4)

Theorem (2.1)[49]: Suppose g(t) is (n—1) times continuously

differentiable function and g™ is bounded. If g(t) is a non constant periodic

function with period M, then ,Dfg(t) , where 0 < @ € N and n is the first

integer greater than «, cannot be periodic functions with period M .

Corollary (2.1) [50]: A differential equation of fractional order of the form
Dfu(t) = f(u®)

where 0 < a & N, cannot have any non- constant smooth periodic

solution.
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2.2 Riemann-Liouville Fractional Derivatives

2.2.1 Basic Definition

Definition (2.5)[32]:(Riemann-Liouville Derivative): Letn—1<p <
n € Z*.The Riemann- Liouville fractional derivative of order p is defined

as:

t
1 d" u(7)
Dfu(t) = Fn 7y dn) G- dr. (2.5)
0

Theorem (2.2)[15,51] : Let u(z) and I(z) are analytic functions , then the

following are valid:

d*(u(2)xl(2)) _ d%u(z) n d%l(z)

1.  dz® T dz® T dz@
5 d (u;z)al(z)) _ l( )d *u(z) n ( )d l(2)
u(z z Az
3 dal((z)) _ l(z ddu(g)T u(z )ddzlgx)
© o dz@ (1(2))?
a a
4, M = Cw where c is a constant

dz® = dza '’

5. If y(2) = (uof)(z), then £22 (Z) “(f(Z))(f(l)(Z))a

Theorem (2.3)[38]: Leibniz rule for Riemann- Liouville fractional
derivative: Lett >0, a eRRm>a >m—1,andm € N. If
u(t), g(t), and their derivatives are continuous on [0, t], then the following

holds:

D*(u(®)g(®) = Zi=o () D g(OID* u(®)], (2.6)
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Proof: See [38] for more details.
Theorem (2.4) [38]: Fractional derivative of constant function: Let
t>0,p€R,m>p>m—1,and m € N. The Riemann-Liouville

fractional derivative of constant function is in the form:

Cc

DPc =
¢ r(1-p)

t™P ,cisaconstant (2.7)

Proof: See [38] for more details.
Theorem (2.5)[21]: Fractional derivative of exponential function:
Supposethat L € C,a e R,m — 1 < a < m,and m € N. The fractional

derivative of exponential function as the form:
D*(e*) = t*E; (A0 (2.8)

Proof: see[21] for more details.
Theorem (2.6)[21]: Fractional derivative of cosine and sine funtions:
Supposethat A€ C,a € R,m >a >m—1,and m € N. The fractional

derivative of cosine and sine function as the form:
1 _ . .
D%(cos A t) =5t ((Eya-q(id t) + (Eyp-a(—iAt)) (2.9)

, 1,_ , ,
D%(sinAt) = — St a ((Elll_a(l/l t) — (Ep1_q(—id t)) (2.10)
where E, ,(f) is the Mittage-Leffler function.

Proof: See [21] for moe details.

2.2.2 Properties of Riemann-Liouville Fractional Derivative [21] [38] [43]:

Definition (2.6): Comutativity: The Riemann-Liouville derivative is

commutitive, if u®(b) =0,(i =0,1,2,..,c — 1) ¢ = max(n,m)
oDF (oDFu®) = ,0F (,Dfu(®) = D Pu(e),  (211)
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where0 <m<p<m+1, 0<n<a<n+1.

Definition (2.7): Linearity: The Riemann-Liouville fractional derivative

of a linear combination of functions is in the form:

D (au(t) + B g(t)) = aDFu(t) + DY g(t)

(2.12)

Definition (2.8): Interpolation: Letm —1<p <m,m € N,p € R and

u(t) be such that DPu(t) exists, then the following properties for the

Riemann-Liouville operator hold:
a. lim DPu(t) = u®(t)
p—)

: P _ . (k-1)
b. pglrcrllDt u(t) =u (t).

Defintion(2.9): Compisition with integer order derivative:
Letm—1<p<m,meN,p € R, then:

DPD™y(t) = DP*™u(t) + D™DPu(t).

Definition (2.10): Composition with fractional derivative:
Letm—-—1<p<mandn-—1<q <n,then:

(t-a)7P7t

p q _ p+q q-i
oDF (DFu®) = DF u(®) - B [0, Fo s

2.3 The Caputo Fractional Derivatives

2.3.1 Basic Definitions

(2.13)

(2.14)

Definition (2.11)[29]:The Caputo fractional derivative of function w(t) is

in the following :
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L[ wPe l<ac<
D“u(t) — F(TL - a) 0 (t - T)a+1—n v " “ "
" d™u(t)
W a=n€EN

Theorem (2.7) [10]: The Caputo fractional derivative of the power

function satisfies:

D&tC
r(c+1)
= [C—a+1)
0, n—-1<a<nC<n-1CeN. (2.15)

tc-2=p*Cn—-1<a<nC>n—1CER,

Proof: The proof of the second case

(D%t =0, n—1<a<n, C<n-—1, CeN)follows of the

differentiation of the constant function,(t)™ =0 for C<n —1,

C, n €eN.

The first case is proved by the definition of the Caputo fractional derivative

and the properties of the beta and gamma functions:

let n—1<a<n C>n-—1, CER:

pargC 1 t (TC)(n) i
i rn—a)l, (t—t)ett-n

v 1 t I(C+1)
D*tC_F(n—a),[OF(C—n+1)

(T)C—n (t _ T)n—a—l dr
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and using substitutiont = At, 0 <A1 <1

rcc+1 1
D&tC = e agr(_z )n " 1)f A (1 =D)Lt da
a — F(C + 1) C—-a ! -n n—-a—
Drtt = fm—orC—n+D)" jo @A =TT da
o r(c+1) .
D&tC = Fon— = n+1) tc"* BC—-n+1,n—a)
DatC — r(C+1) C—a rC—n+1DI'(n — a)
I'm—a)[(C—n+1) [(C—a+1)
pae = €Dy
" T(C—a+1)

Theorem (2.8)[21]: Leibniz rule for Caputo fractional derivative: Let

t>0peERm>p>m—1,andm € N. If u(t), g(t), and their

derivatives are continuous on [0, t], then the following holds

D (u()g(t)) = Z [Dig(®)][DF u(®)]

Z p(l 11 (u(t)g(t)) (0) (2.16)

Proof: See [21] for more details.

Theorem (2.9) [38]: The Caputo fractional derivative of constant function

is equal to zero
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Proof: Let m — 1 <p <m,m € N, and applying the definition of Caputo

derivative and since the m!" derivative of a constant is equal to zero, it

follows that:
t
P 1 C(m) d
DPc =
- I'(m—p) j (t —7)pti-k ‘
a
= 0. (2.17)

Theorem (2.10)[21]: Fractional derivative of exponential function:
Supposethat L € C,a e R,m — 1 < a < m,and m € N. The fractional

derivative of exponential function as the form:
Ai+mti+m—a

D& (et =z _memePE, () (2.18
(e ) Or(l+1+m_a) 1m p+1( ) ( )
1=

Proof: see[21] for more details.

Theorem(2.11)[21]: The fractional derivative of cosine and sine:
Supposethat A€ C,p € R,m >p >m—1,and m € N. The fractional

derivative of cosine and sine function is in the form:

b 1. mygm-p ;
DY (cos 16) = 7 (i)™ ((Exm-pea(ine)

+ (=)™ (Eymopsa (—id t))
Df(sindt) = — % i@)memrP ((E1,m—1o+1(i/1 t) - (_1)m(E1,m—1n+1(_i)L t))

where E, ;(f) is the Mittage-Leffler function.

Proof: The proof of the Caputo fractional derivative of cosine function:

it —it
Recall that :cos(t) = £ +2e te C
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piAt 4 p-idt
DP(cos At) = DP (T)

= (0P + D)
1, . ;
= (@™ P (B e (21)
+ (=)™ P (B pyopsa (i £))

1
= 2 @™ ((Evmops1 (2 6) + (D™ (Eymper (—id )

2.3.2 Properties of Caputo Fractional Derivative [21][38]:

Definition (2.12): Interpolation: Letm —1<p <m,m € N,p € R and
u(t) be such that DPu(t) exists, then the following properties for the

Caputo operator hold:
a. lim DPu(t) = u™(t)
p-m

b. lim ) DPu(t) = u™m=D(t) — um-1(0).

p-m-

Definition (2.13): Linearity: The Caputo fractional derivative of a linear
combination of functions is in the form:

DP(au(®) + B g(®) = abPu(t) + BDP (1) (2.19)

Definition(2.14): Composition with integer order: Letk — 1 <p < k,
k,m € N,p € R, then:

DPD™u(t) = DP ™ u(t) # D™DPu(t).
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2.4 Relation between Riemann-Liouville and Caputo Operator

Theorem(2.12)[15]: Lett > 0 , @ € R,and m-1< a < m € N, then the
following relation between the Riemann-Liouville and the Caputo

operators holds:

m-1 i—a
DIu(t) = Du(t) = Y - i ——u00) (2.20)
i=0

Proof: we will prove this theorem using the taylor series expansion about
the point O which is:

2 m-—1

I} t 17 m-—1
u(t) = u(0) + tu'(0) + o (0) + ---+mu( )(0)

+ Rm—l(Mm—l)

where the remainder term R,,,_; (M,,,_1), Where M,,,_, between 0 and t

m—1 i

— @) +R M

Xor(i+1)u (0) + Ry (My—1)
1=

where the remainder term R,,,_; (M,,,_1) 1S given by:

t

Rnca M) = |
0

u™ (D) (t — 7)™ !

m—11 &

= ﬁ Of u™ (1) (t — )™ ldr

= DM ()
Now, by using some properties of the Riemann-Liouville fractional
derivatives, and the Riemann-Liouville fractional derivative of the power

function, then we will have:
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m-—1

D%*u(t) = D¢ (Z F(it+ 1 u®(0) + Rm_1)

1=

m-—1 .
D 0(0) + DR
=) ——— + _
_OF(i+1)u © m-1
1=

= T@i+1) i
= D(0) + D¥D~™ul™ (¢
0F(i—a+1)F(i+1)u © W)

i=

m-—1 ,
i—a

t ,
— ) 0 p-m+a (m) t
ZOF(i—a+1)u @+ wm(®
i=

-

m-—1 ti
= ©(0) + DFu(t).
ZOF(i—a+1)u (0) + Dfu(®)
1=

This mean that:

m-—1 i
Dfu(®) = D*u() - ) - (if
i=0

—a

®
a+1) w(0).

Remark(2.1)[39]: This formula implies that the Caputo and Riemann-
Liouville fractional operator conicide if u(t) together with its first m — 1

derivatives vanish at t = 0.

2.5 Applications of Fractional Differntial Equations and Exact Solutions

Fractional differential equation plays very important role in Engineering and

Technology due to it has many applications.
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In this section we present some applications of fractional differential
equations. These applications are: Fractional harmonic oscillator, Fractional

wave equation, Fractional diffusion equation.

2.5.1 The Fractional Harmonic Oscillator

The fractional differential harmonic oscillator equation has a wide range of
applications, it is important in theoritical physics, in the field of classical
mechanics where it describes free oscillations and is a harmonic
approximation for an arbitrary potential mininum. This equation has the

fractional form as following [52]:

dx?2p

d*r
(n + r) y(x) =0, (2.21)

where p is fractional derivative and we are free to adjust the meaning and the

dimensions of the parametes n,r or both.
2
With the settings (d "+ %) y(x) =0

dx?2p

in units of nrs —system [r/n] is given as 1/s??.
The general form of the solution of equation (2.21) is given as :
y(x) = ¢y cos(ux) + ¢; sin(ux),

where c,, c; are constants, and w is the angular frequency of the oscillation.

2.5.1.1 The Harmonic Oscillator According to Riemann-Liouville

We will use Riemann-Liouville fractional derivative definition to solve the

harmonic oscillator differential equation using:
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I'(1 + mp)

DEX = ¥ tm= Dp)

We get two different linearly independent solutions [48]:
© x(2m+1)p

i = xP~1 —-1Hm = 2.22

sin(p,x) = x z =1 r(2m+ 2)p) (222)
m=0
had 2mp
,x) = xP~1 —-1Hm 2.23
m=0
With the property
DP sin(p, ux) = uP cos(p, ux) (2.24)
DP cos(p, ux) = —uP sin(p, ux) (2.25)
These functions are related to the Mittage-Liffler function:

sin(p, x) = x??"1E(2p, 2p, —x?P) (2.26)
cos(p,x) = xP'E(2p,p, —x*P) (2.27)

Whenp < 1, lirr(1) cos(p, ux) = oo, then we cannot give a non singular solution.
X—

2.5.1.2 The Harmonic Oscillator According to Caputo

We will use Caputo fractional derivative definition to solve the harmonic
oscillator differential equation using:

I'(1+ mp)
(m-1p
DPx™P = {r(1 +(m—Dp)" m >0
0 m=20

We get two different linearly independent solutions [47]:

(00]

. x(2m+1)p
sin(p, x) = ;0(—1) F+ 2m+ Dp) (2.28)
hod 2mp
cos(p,x) = Z (—1)mm (2.29)
m=0
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With the property
DP sin(p, ux) = uP cos(p, ux) (2.30)
DP cos(p, ux) = —uP sin(p, ux) (2.31)
These functions are related to the Mittage-Liffler function:
sin(p,x) = xPE(2p, 1 + p, —x?P) (2.32)

cos(p,x) = E(2p, —x?P) (2.33)

2.5.2The Fractional Damped Simple Harmonic Oscillator

The fractional harmonic oscillator behaves like a damped harmonic
oscillator for p < 1. The simple harmonic oscillator is written as the
following [46]:

y"(x) +ufy(x) =0, (2.34)
where u is the angular frequency of the oscillation.
When we add a damping force proportional to y’(x) then equation (2.34)
becomes as:

y"(x) + ay'(x) + uy(x) = 0. (2.35)

When there is an external force g(x) then equation (2.35) becomes as:

y'"' () + ay'(x) + u?y(x) = g(x).
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2.5.2.1 The Fractional Damped Simple Harmonic Oscillator According

to Laplace Transform Method

The fractional damped simple harmonic oscillator is obtaind from the
calssical one, but we replace y’(x) in the classical case by caputo fractional

derivative of order p and is formed as the following [46] :
y"(x) + aDPy(x) + uPy(x) = g(x), 0<p<i1 (2.36)
with two initial conditions :
y0)=¢ YO0 =c ,

where a, u, ¢, and c, are constants.

The solution of (2.36) is :

Cq 1 r
Y0 = coyol) = 5y60) = = [ Yh(x - D),
0

s+asP™1 x}
s2+asP+u?’

where y,(x) = L1 {

2.5.3 Fractional Wave Equation

Fractional wave equation used for the determination of the eigen frequencies
and eigen functions of vibrating systems.
The classical three dimensional wave equation with fractional case is given

as [26]:
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<d2p > d®  d?

dx?2p + dy?p + dz2p P dt2> ?(x,y,z,t) =0, (2.37)

where the dimension of the parameter p is determined in the nrs —system
by | = | and B(x,y,2,t) = XY (NZ(T (L)
The partial differential equation (2.37) is changed into a system of ordinary

differential equations:

d?»
dePX = —c2 X (2.38)
d?P
Y = —c2y (2.39)
d?p
i —c2 Z (2.40)
d’*T  u?

The costants u, ¢y, ¢y, ¢, satisfy the condition: u = p,/cZ + cZ + cZ .

And the solution of this system determined if there is a convenient set of
boundary conditions (Dirichlet, Neumann, mixed).

The simple case of a vibrating string with leangth equals 2p, which is
explained classicly by a one dimensional wave equation for the oscillation

X (x) and it has just the Dirichlet boundary conditions :
X(=b) =X() =0.
And the differential equation for a vibrating string is equivalent to the

differential equation for the harmonic oscillator.

2.5.4 Fractional Diffusion Equation

The fractional diffusion equations are the most important application of
fractional order derivatives, and the order of the resulting equation is related

to the so-called fractal dimension of the porous material.



29
To describe the transfer processes in fractals we get the following
equation:
ODté_lL(t) = hy(D), (2.42)
where L(t) is the macroscopic flow a cross the fractal interface, y(t) is the
local driving force, h is a constant, and d is the fractal dimension.

The first type of fractional diffusion equation is formed as [37]:

1 dp(s,t) k

oDIp(s,t) = —B ( USRI t)), (243)
ds S

where p(s, t) is the average probability density of random walks on

fractals, B and k are constants, and d is the anomalous diffusion exponent,

which depends on the fractal dimension of media.

The second type of fractional diffusion equation is formed as [31]:

2

Vi 1 0 d
dy _ -
ODt p(s, t) - Sdr_1 ds (Sd ! asp(s; t)); (244)

where d,, and d,- depend on the fractal dimension of the media.
The simple case of one dimensional differential equation is formed as [35]:

0%p(y,t)

5,7 (2.45)

If the order p be an arbitrary real order, including p = 1 and p = 2, then
equation (2.45) is called the fractional diffusion-wave equation, for p = 1
equation (2.45) becomes the classical diffusion equation and for p = 2 it

becomes the classical wave equation[28].
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Chapter Three

Numerical Methods for Solving Fractional Differential

Equation

In this chapter we introduce some important numerical techniques for solving

fractional differential equations; namely: The Adomian decomposition method,

Variational iteration method, Homotopy perturbation method and Matrix

approach method.

3.1 Theoretical Frameworks

Definition (3.1)[40]: (The Riemann-Liouville integral): The Riemann-

Liouville integral of order p > 0 is in the form:

_ 1 t
D790 == [ C—eP g e, p>0,

From a bove definition (3.1), we note that:

- I'(1
DL~ ") = g s (£
I'(1
(DFI(E = O™ = s = e

Lemma (3.1)[40]: If u(t) is continuous function, then

n—1

D7 (DP)u(®) = oDFu(®) = ) uD(@

i=0

(t — a)i=Pta

Fi—-p+q+1)

wheren—1<p <nandp <gq.

(3.1

(3.2)

(3.3)

(3.4)
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Proposition (3.1)[20]:

(00) (00) o0
E E Qi iy iy = E E Qi iy )i (3.5)

i1=0 l-n:O m=0 il,iz,...,in_l,inZO

Proposition (3.2)[20]: Moreover,

[0/0] o0 (0]
Z Z Qi iy, in )iy = Z Z Z Qi iy in_pin: (3:6)

m=0iq,iz,..In-1,in20 5=0 Qi iy,..in—1,in=0 in,=0

Definition (3.2)[38]: The Riemann-Liouville fractional integral
operator(2%) of order a > 0, of a function f € C;,A1 = —1, can be defined

as

1 t
0 = 5es jo t — 1) f(e)de  (a>0), (3.7)

0°f(6) = f (1),
Some properties of the operator 2%:
FoA,B>0and§ = —1:

(1) 0202Pf(6) = QPA (D) = OMFF (D),

e +1)
) Q/l 6 — /1+5_
@D = a5t

Definition (3.3)[22]:(The Mittage-Leffler function): The Mittage-Leffler

function is defined in two ways:
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(1) The one-parameter Mittage —Leffler function is defined as:

_ f!
Ep(f)—jzom, p>0, p€ER, fE(C (38)

(2) The two-parameter Mittage-Leffler function is defined as:

_ f!
Ep,a(f) —;m, p,0>0, p,o€ER, fE C (39)

3.2 The Adomian Decomposition Method

Let the n-term linear fractional differential equations with constant

coefficients:
cn DU F(6) + g [ DT F(E) 4 - 4 1 [ D] + o[ 2D £ (£) = g(0), (3.10)
fj(0)=akj, k:O,l,...,Tl, j=1,2,...,lk, lk—1Sa<lk,

where n+l>a,=2n>ay_q1..>a; > ay,cand a;are  real

constants, “*D” = &DPdenotes Caputo fractional derivative of order a.

take *D~"" to both sides of (3.10) and using lemma (3.1), then we get

f©+ C’;—‘l D) 4+ Z—‘) ‘D)

n n

lp—1
K an‘“k‘*‘f

we obtain the recursive relationship by the Adomian decomposition method,

as follows:
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lp—1

an_ak"'j

Ch— - c -
ﬁ@=—(21%%*%+m+£%ﬂ“ﬁmm,

n Cn

f(8) = (-1)? (—n DI g aD“O‘“")Z fo®, (3.12)

fs(©) = (= 1)S< il apfmiTin g +C° ape” ““) fo(®),

n n

adding all terms of the recursion, we get the solution of (3.10) as
HGEDWAG
s=0

= 32 (—1f (22 ey R apTa) £y (313)

n

Cn Cn

1 N S Cn_1 ANAn-1—"0n CO aAan%—Qan s —-a
= C—Z(—l) 271 ap + et 2 A D=%ng(t)
"s=o

o
+— 1 (_1)5 (Cn_l aDa’n—l_an + -
Cn -0 Cn
-1

0 an‘“k"‘f
aD“o an) z Z W (o
“r f ()F(1+an—ak+])

Let

I, = 1 1)s Cn-1 qrap-1-an €0 gprao—an ° -an
L= Y (1) (B apTn gy D ap@oen) poeng(r)
n —

n CTL
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1 - Cy_ _
= Y o (E e
CTL S=0 CTl

k-1

S aDao an) S c f(j)(O) it (3.14)
kzo Y L A+ an—ag+)) '
= j

=

Then,
f) =1L +1,. (3.15)

Then, we appreciate I; and I,:

For I, by [27] we obtain

_z( 1)5 (Cn 1 aDa’n 1~ an_|_ = Co aDao “n) D~ a’ng(t)

Cn
‘1N D" L
= C— Z o Z (n, lg, 11, -, ln_z)
0 ™ M=o " igigymin_220
n-2 i
% (C_p> 14 (t_T)(an—an_l)m+an+2?=_02(an_1—aj)ij—l (316)
Cn
p=0
(m) —1 nap—an_
L= T G FICT

Where iO + il + -4 in_z =m.

For I,, using lemma (3.1) then we obtain

iZ(_l)S (E ap%n-1=n 4 .
Cn 4 Cn
S=

k-1

0 It t“n_ak+j
aDao an) E (0
koc" Of S a——
= J

=




35

= iZ(_l)s Z s! (Cn—l)i"_1 <Cn_2>in—2 (C_O>i° (3.17)
Cn = lol .. i‘n—Z! Cn Cn e .

i0i1, min_220

n lg—1 _ ]
. . . tonT %kt
X Dln—l(an—l_an)"'ln—z(an—z_an)+"'+lo(“0_an) Ci A: .
Zk ; 2. T+ @y — g +))
= ]:

We can rewrite the above expession as the form:

lZ(—l)s z s! (Cn_1>ln—1 (Cn_z)ln—z (C_O)lo
Cn &t ioli1! .. ina!'\ ¢, Cn Cn

(01, rin—220

n lp—1

F(B)tan_“i+j+in—1(‘Zn—an—l)"'in—z(‘Zn—an—z)‘l""+i0(an_a0)
0 0
“ =0 “ F(B)- F(B + in—l(an - an—l) + i (an - an—z) +- io(an - “0))

k=0

(00]
1 - .
_ iZ(—l)s Z s! (Cn_1>1-n (Cn_2>ln 2 (C_())lo
Cn p? iolig! .. ip_2!'\ ¢, Cn Cn

i0)i1) in—220

n lg—1

tan_“k+j+in—1(an_an—l)"'in—z(an_an—2)+'”+io(an_a0)
X E Cy E a
j_

kj . . .
=0 ! F(B + o1 (an — anoq) Fino(ay —any) + -+ ig(a, — 0‘0))

1% s!
Cn igliq! . ip_y!
s=0

10)i1,00in—220

n . . .
=D 6 ) ay DT x (=) ' (=)™ () (3.18)
- Cn Cn Cn

t“n_ak"'j"‘in—l(an_an—1)+in—2(O‘n—an—z)"’““"io(an_ao)

X
L F(an + in—l(an - an—l) + in—z(an - an—z) + et io(an - ao)).
where 8 denotes 1 + a,, — a; + .

The above solution is equivalent to the following form:

L z Z z (_1)in-1+mM
Cn - igliq! . ip_q!

n -1 in—1=0m 19,1, 0in—220

o Co\in=1 sc Nin-2 cn o
2,6 D, s DI (5 G- @)
= Cn Cn Cn

k=0

tan_ak"'j"'in—l(“n_“n—l)"'in—z(an_an—z)"'"""io(an_ao)

X
B F(an + ln—l(an - an—l) + in—Z(an - an—z) +oet io(an - ao))_




n lg—1

= Cr Z akj D(ak_j_l)
k=0 j=0

n lp—1

= Ck Z aij(ak_j_
j=0

k=0

X = = ;
L F(ln—l(an - an—l) + (an - an—l)m + ZE:(Z)(an—l - ak)lk + ay).

1 i (-)m Z m!
Cn m! : iolig! iy y!

m=0 i0,i1,emin—-220
n-2 .
cr\'r n—z )
X (_) t(an_an—1)m+zk=o(an—l_ak)lk"'an—l
C
r=0 n
. Cr_1\'"-1 (1,1 + M)!
. Cn ln—1!
in-1=0

tin—l(an_an—l)

Ciz (—nll!)m z (M; i, iy, e, in_z)

n .. -
m=0 10)i1,:0in—220
n-2

ir
1) X (C_T> t(an_an—l)m*'z;c:(z)(an—l_ak)ik+an—1 . (319)

o)

=0

X E(m) <_ Cn-1 ta’n_an—1>

n-—2 .
an‘“n—erk:o(an—l_“k)lk+an Cn

So, by [2] we get the solution f(t) =1, + I,

ft 1 N (_1)m ( .. . )
= =) — E m; ig, g, o) in—z
0 Cnia m! "

i0)i1)in—220

% n-2 (C_P)ip (t — T)(a’n—a’n_l)m+a’n+2?=_02(0ln—1_aj)ij_l (320)

p=0 Cn
(m) _ -1 pap—an_
X Ea’n_an—l'an-l-z}l:—oz(an—l_aj)ij ( n D 1) g(T)dT

le—1 i
+ Xk=0Ck X <o ay; D@=I=1

where

(m; i, iq, oy in—2) =

F 1w (D™ L . -
;Zm=oTZio,il,...,in_zzo(m; lg, i1, s in_2)

iy _ ,
X n-—2 (C_r) t(an_an—l)m"'z;(l:g(an—l_ak)lk"'an—l

r=0 Cn

m Cn—1 -
<E™ (- )

An—An-1,0k=0@n-1—ap)ig+an Cn

m!

T .
igliq!.in—2!

and E[S'i,) (f) is the Mittag-Leffler function
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dk

Eﬁg? (f) = dfk EP.G
o~ k+DIFE
= ,Z;f! SOEYTET (3.21)

Substituting the Green function into the above expression,

1 ¢ (D™ o
Gn(t)=az - Z (m; g, iy, vy in—2)
m=0

i0)i1ain_220
i
n-2(p\P
<3 (2)" o -

Cn

T) (an_an—l)m+an+z?=_02(an—1_aj)ij_l

x E™ — &1 pan-an-s ) (3.22)

_2 .
An=Qn—1,n+X756 (an-1-a;)i; ( Cn

So the analytical general solution of (3.10) is in the form:

lp—1

£t = jo G, (t — 1)g(D)dT + kz:ock ; 0 6TV . (3.23)

3.3 Variational Iteration Method

The variational iteration method is greatly successful method that was
proposed in 1998 to solve fractional differential equations. Consider the

fractional differential equation [25] :

Yy +9g=0 (3.24)
e T9=0. :
DP
where IS the Caputo’s fractional derivatives

DtP
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defined as

Dpf(t) ~ 1 t f(m+1)(‘[)
Dt T(m+1-p)J, (t—1)p ™

dt , m<p<m+1, (3.25)

To show the basic notion of the variational iteration method, let the

following general linear equation: Lf (t) = g(t),

where L is the linear operator and g(t) is the inhomogeneous term. By [25]

the variational iteration method is as the form:
far1® = £, + [ MO (LD —g®) de . (3.26)

The variational iteration algorithms for three cases of the order of p by [12]

are given as:

In the case 0 < p < 1, we rewrite equation (3.24) in the form

df DPf df
dt+m—a+g—0. (3.27)

The variational iteration algorithms are given as follows

(Fasr(® = fu(®) = [; (52 + ga) ds
i fan® = fo(©) = [, (Z—tﬁl— It g ) ds (3.28)
fur@® = fo—{i{(Bl -ty g) — (Bl Sy g s,

The above iteration formulas are also valid when 1 < p < 2. We can rewrite

equation (3.24) in the form

d2f+Dpf d?*f
dt?2  DtP  dt?

+g=0. (3.29)

And the following iteration formulas are valid
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,

farr(® = fu®) + [ — 2+ g,)

| fr® = o + f5s —0) (B2 -Lhy g )ds (3:30)
p 2 14 2
o = i@ + [ s =) {(B2 - L+ g,) - (L2 - Lt 4 g,y )} ds.

when p is close to 1, equation (3.30) is valid for p approaching 2.

In the case N <p < N+ 1 , where N is a natural number, by [12] the

iteration formulas as form:

(s — )N~ 1 Doty —+ )ds
Dtp In

de

P dtN

Dpf de
— 2 24g. -

. t
for1(0) = (O + (—1)Nfo (N-1D)!

(S—t)N 1

frrn(® = fo(®) + (=D f

oD )d (3.31)

DtP dtN

)
|
fds.
DPf,_4 den 1
DtP deN +g“>/

for1 (D = £,(O + (_1)NJ (N—1)!
o !

(5 -

(

I
(S—t)N 1i

\

or

( DPf,
DtP

t 1 DP ) dN+1 Y
forr () = fo(®) + (=D J N,(s—t)”( Dtj; dtm{ +gn)d

| L GEEEe)

fan® = o0+ D s t)N#

t1
fasa(®) = £u(6) + (DN f s 0Y (T g ) as

(3.32)

ON'

ds .
. Dpfn—l dN+1fn—1 + d
\ \ DtP dtN+1 In | 45 )

Equation (3.31) is valid when p is close to N and when p is close to N+1

then equation (3.32) is valid and is more effectively.
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3.4 Homotopy Perturbation Method

The fractional initial value problem in the operator form is:
Def(t) + Lf () = g(v), (3.33)
f@0)y=¢, i=01,..,n—1, (3.34)

where c; is the initial conditions, L is the linear operator which might include
other fractional derivative operators D# (8 < a), while the function g, the
source function is assumed to be in C_,if a is an integer, and in C1, if a is

not an integer. The solution f(t) is to be determined in C”; .
In view of HPM, the follwing homotopy as the form [18]:
(1 =p)D*f +p[D*f + Lf(t) — g(©)] = 0. (3.35)
or
D*f + plLf(t) —g(®)] =0, (3.36)

where p € [0,1] is an embedding parameter. If p = 0, equations.(3.35) and

(3.36) become
D*f =0, (3.37)

and when p = 1, both (3.35) and (3.36) turn out to be the original FDE
(3.33).

The solution of equation (3.33) is:
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fO = fo(&) +pi®) +p* () + P> fs (&) + - (3.38)

Substituting p = 1 in equation (3.38) then we get the solution of equation

(3.33) as the form:

f@) = fot) + f1(0) + f2(8) + f3(t) + . (3.39)

Substituting (3.38) in (3.36) and gathering all the terms with the same powers

of p, we get
p®:D%fy =0, (3.40)
ph:DYfy = —Lfy + g(b), (3.41)
p*:D*f; = —Lfi(¢), (3.42)
p3: D*fs = —Lf,(¢), (3.43)
and so on.

take the operator /¢, the inverse operator of D%, which is defined by on both
sides of the above linear equations, the first three terms of the HPM solution

can be given as [17]:

n-—1 ti n-—1 ti

— @) — = L

fO_Zf (O)i!—zcli!;
i=0 =0

fi=—Q%[Lf(O] +%g®)],
f2 = —Q¥[Lf(D)],

fz = —Q¥[Lf ()],
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and the general form of the HPM solution can be given as:

fa=—Q% [Lfn—l(t)]-

Then the general solution of equation (3.33) given as:

fO=fo+thitfsttfot- (3.44)

3.5 Matrix Approach Method

3.5.1 Left-sided Fractional Derivative

Consider the function g(x), defined in [c, d], such that g(x) = 0 for x < c.

Of real order m — 1 < a < m, such as:

1 (d)m X g(e) de

a — B e
Lz g(x0) F(m—a)\dx/ J, (x—g)a—m+1

,(c <x<d). (3.45)

Let us take equidistant nodes with the step l:x; =il (i=0,1,...N) , in the

interval [c,d],wherex, =candxy =d .

Using the backward fractional difference approximation for the at"

derivative at the points x;,i = 0,1, ..., N, we have:

[
Veg(x) (a _
Dyig(x) = [ — =1 “Z(—l)l (j)gi_j ,i=01,..,N (3.46)
j=0

All N + 1 formulas (3.46) is equivalent the following matrix [11] :
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7V g (xo)
7V g(x,)
7*V%g(x2) | _
17V g (1)
7%V g(xn) g
_ [ J0 T
w® o 0 0 w0 o
w® w® o 0 . 0 92
liaWz(a) W@ we? 0 0 (3.47)
wi®, ( oW (@ w® w0
w®, Wyor o w® W@ @ In
| gy
@ — (—1yi (¢ ;= 0,1,..,N 3.48
w; = ; i=01,..,N. (3.48)

In equation (3.47) the column vector of function g;(i=0,1,..,N) is

multiplied by the matrix

w0 0 0 . 0
w9 w90 0 L0
1|, @ (@)
Ai=g|v w? w00 (3:49)
@ . (@) (a)
Wy q 0 Wga) w, wy, 0
Wy, Wve we? wi?wg?

The result is the column vector of approximated values of the fractional

derivative Dy g(x),i=0,1,..N.
The generating function for the matrix is
A,(z) =17%(1 — 2)~. (3.50)

Since for lower triangular matrices A% and A% we ever have
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Ry = AyAs = A7
Theorem  (31)[38]: If D¢ ( DEg) = Df( DEg(x))=
Dy (),

which holds if
g®P() =0, i =1,2,..,a—1, wherea = max{n,m}. (3.51)

Then we can treat such matrices as discrete analogues of the corresponding

left-sided fractional derivatives DY and CDf , Where
n—1<a<nandm-1<pf<m.

This means that if left-sided fractional derivatives of a function g(x)of
orders less than some integer a are considered, then they can all be replaced
with their corresponding discrete analogues, if the function g(x) satisfies to

condition (3.51).

3.5.2 Right-sided Fractional Derivative
Consider a function g(x), defined in [c, d], such that g(x) = 0 for x > d.

Assum that the function g(x) is good enough for considering its right sided

fractional derivative of real order o where (m — 1 < a < m),

D™ (j_x)m 4 g(e)de

D29 =t — o  G—pem

,(c <x<d). (3.52)
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We get the discrete analogue of the right sided fractional differentiation with
thestipl:x; =il (i =0,1,...,N),intheinterval [c, d], where x, = c and

xy = d, which is represented by the matrix [11]:

'wé“) Wl(“) Wlf,oi)l WIS,“) ]
0 W(ga) Wl(a) Wlsci)l
1 (@) . (a) . .
G =12 0 0 Wo o Wit v n (3.53)
0 .. 0 0 Wéa) Wl(a)
000 .. 0 0 w®?]

The generating function for the matrix Gy is the same for A% :
A,(z) =17*(1 — 2)“.

And the transposition of the matrix A% gives the matrix G5 and the opposite

is holds:
A" =65, GV =A% . (3.54)
Theorem (3.2) [38]: If the function g(x) satisfies the condition
gP@ =0, i=12,..,a—1. (3.55)

and if right sided fractional derivatives of a function g(x) of orders less than
some integer a are considered, then they can all be replaced with their

corresponding discrete analogues .

Useful Matrices: Eleminators

Eleminator, S; ; is obtained from the unit matrix by deleting rows

...,iN )

o)1) ees Iy -
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Example 3.1 [21]:

b1 by bi3
0O 1 0
B =|by1 by b23]; 51 = 0 0 1]
b31 b32 b33
bi; b3
byy by b by, b
Bsz[bzz b23]; s=lp p2 o] osesi=[2 4]
b3, b33

The system for finding approximated derivatives[21]: Consider the

following fractional differential equation with constant coefficients:
2i=oPi DY gx)=f(x), 0y <ay < <a,m—-1<a,<

m (3.56)
the Riemann-Liouville and Caputo derivatives coincide if
m—-1<a,<m and g¥9(x,) =0,i =0,1,...,m—1,

where p; is constant coefficient , gy = (g(xo),g(xl),...,g(xN))T and

Fy = (FGeo), 1), oo, FCt))'

By Backward differences the approximated derivatives in the a bove

condition have:

g9(xo) = g(xq) = - = g(xm-1) = 0. (3.57)

The system for finding the rest approximated terms can be formed as:

n
o
bj ANJ—m {SO,l ..... m—1gN} = 50,1 ..... m-1Fn- (3.58)
Jj=0
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Chapter Four

Numerical Examples and Results

In this chapter we try to apply the aforementioned numerical schemes;
namely: the Adomian decomposition method, Variational iteration method,
Homotopy perturbation method and Matrix approach method to find an
approximate solution of some linear fractional differential equations. This
can be achieved by using proper algorithms, Matlab and Maple software. A

comparison between the exact and numerical solutions will be drawn.
Example 4.1

Consider the linear fractional differential equation:

D%x(t) + x(t) = ﬁtz_“ +t3 (4.1)

with initial conditions:
x(0) =0,x'(0) =0.
The exact solution of equation (4.1) when a = 1.9 [34] is:

x(t) = t2.

4.1 The Numerical Realization of Equation (4.1) Using Adomian

Decomposition Method

Using lemma (3.1) and take D~% to both sides of equation (4.1)
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1

x(£) + D~%x(t) = D~f(£) + Z x®(0)

i=0

i

rGi+1)

Using Adomian decomposition method, we get:

1

xo(8) = D)+ ) xD(0)

i=0

i

r@+1)

x1(t) = =D™%x0(2),

X, (t) = =D7%x; (t) = (—1)2D~%%x, (1),

xs(t) = =D™%x5_1(t) = (=1)°D™*%x, (1),

(4.2)

(4.3)

then the solution of equation (4.1) obtained by adding all of the above terms

as follows:
x(©) = ) xs(0),
s=0
= D (DD (©),
s=0
1

S -s-Da N sp-sa i t!
=;<—1> D¢ )f(t)+;(—1)D D OO

i=0

0 t
1
—_ _1\S _ A\(s+a-
‘Zszo( D F((s+1)a)0j(t R

1

+Y 200 ) (-1

1=0

i+sa

ri+sa+1)’

(4.4)
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< a1 —(t -0
=!Z(t_ v I'(sa + a) fdr

s=0
1 0
+ z xO(0)pla-i-1 z ga-1 )
_ [(sa+a)|
=0 s=0

j (t = D" By o[~ (t — DIf (D)dx
0

1

+ Z x@O )@ =V[e1E, (—tD)],

i=0
t 1
_ j 6,(t = Df dr + ) xD@DE DG, (2),
0 i=0

where Gy (t) = t* 1E, o (—t%)

so, x(t) = fol G, (t —T)f(@)dt + x@(0)D@ DG, (t) + xD(0)D*G, (D),

(4.5)

by equation (3.21), we obtain:

_ay — foe) (_ta)i a—1 i
Eaa(=t%) = Lizo T(ai+a)’ G, () =t 2 Or(ai+a)’
(=)
G t — t(x 1 —_
1(6) IMai+a)’

I__

B © (_1)itai+a—1

_ Fai+a) ’
i=0

then the solution of equation (4.1) in general form is:
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Lo i (t _ T)ai+a—1 ) -
x(0) = J ;(_1) i (G

73 ) dr. (4.6)

)ai+a 1 2

Z( b’ lf - I'ai+a) T'(3-— a) T

(t T)O.’l+a 1
j I'(ai + a) v

drt

— 2(_1)1' [D—(ai+a) ﬁtz—a + D—(ai+a)t3] .
i=0

By definition (3.1), we get:

0o [ 2 F(B — a) 2—ataita
ArB—a) T B—a+ai + a)
x(t) = z —1)! .
( ) i— ( ) [ F(l + 3) 3t+aita j
FrA+3+ai+a)
when a = 1.9
[ 2 £2+190 ]
() = z( il TG 1 90" |
= 4.9+1.9i
* IGo+1.90)
2 6 2 6
_ 2 4 49 _ 39 6.8 1 ...
T tte! TTteel Ttost T

= t2 + 0.059247439t*° — 0.096770806t3° — 0.001776766299t°8

= t% — small terms. =~ t2.
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4.2 The Numerical Realization of Equation (4.1) Using Homotopy

Perturbation Method

According to equation (3.36), we can write the following homotopy:

2
D%x(t t) ———t?" 3 =0,
() + PO ~ 55—

the solution of equation (4.1) is:
x(t) = x0(t) + px1 (8) + p?x,(8) + pPa3(0) + -+, (4.7)

Substituting (4.7) into the above equation, and gathering terms with the same

power of p, then we get:

p°: D%xy(t) = 0, (4.8)
ph:D%x;(t) = —x0 () + f (1), (4.9)
p%: D%x,(t) = —x1(t), (4.10)
p3:D%3(t) = —x,(t), (4.11)

Applying Q%, the inverse operator of D%, on both sides of the equations from

(4.8)-(4.11), then we get:

xo () = z x(i)(O)%
i=0

tO 1

= x(0) o + x’(O)%
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=0

x1(8) = =Q%xo (O] + Q[ f (8]

[ 2
— Qa tZ—a t3:|,
NeEO N

] tz‘“] + Q[t3]
r'3 —a) ’

by using the definition of Riemann-Liouville fractional integral operator

(Q%) of order & = 0, we obtain:

2 IG-® .. T®
"TB-O)TGB-a+a) Ta+a

I 54a
F'(4+ a) ’

t3+a
=t? +

x2(8) = =% [x, (0],

_ o ') sia
= —() [tz + mt3 ],

— _Qa[tz] _ Qa [ F(4) t3+a],

4+ a)

— F(B) 2+a F(4) F(4 + a) 3+a+a
T TI'G+a) "TA+a)T@A+a+a) ’
2 6

— _—t2+6¥ _ = 4342
G+ a) 4+ 2a) ’

x3(8) = =Q%[xx (D],

= _Q“

)

2+a 6 3+2a]

2
[_ fG+a).  Ta+zo

— _Qa [_ t2+a] _ Qa 3+2a],

rG +a) [_ r'(4 + 2a)
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2 '3+ a) 6 ['(4+2a)

— 2+2a 3+3a
I3+ a)l(3+2a) ['(4 + 2a)T(3 + 3a) ’
- 24+2a +L 34+3a
'3+ 2a) '3+ 3a)

So the general solution of equation (4.1) is:

x(t) = xo(t) + x,(t) + x,(t) + x3(t) + ---. (4.12)
_ F(4) +a __ 2 +a __ 6 +2a
—t2+mt3 —F(3+a)t2 —F(4+2a)t3 20 4 ... (4.13)
Whena = 1.9
2 6
x(t) =t* + TG9) 9 — T@9) t39 — T8 to8 4. (4.14)

= t2 + 0.059247439¢*° — 0.096770806t 3
—0.001776766299¢t68 + --.

= t2 — small terms
~ t2,

4.3 The Numerical Realization of Equation (4.1) Using Variational

Iteration Method

The following algorithm is applied to find an approximate solution of

equation (4.1) using the variational iteration method.

If we take @ = 1.9 and y(t) = J2~*(x(t)), then equation (4.1) can be

written as the form:
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y"'(t) + D3ty (t) =

0.1 3
rap (4.15)

Algorithm (4.1)
This algorithm can be explained as follows:
let we start with y,(t) = 0
1. Calculate: 1) y;’ with respect to x
2) D%y, (x) by using definition (3.1)

3) y,(t) ,n=1,23,.. by using this recurance

relation

Vn+1(t)
: il () + D2y (x)
=@+ [a-0] 2 o | @
0 I'1.1)

For more details see [20].
We will use algorithm (4.1) to solve the numerical example (4.1).

By using the above recurance relation (4.16), we obtain y,, (t) ,n = 1,2,3, ...

by using the MAPLE package as follows:
y, (t) = 0.08333333333t* + 0.9100753299t21
y,(t) = 0.9100753299t%1 — 0.003347313231t>°

y5(t) = 0.9100753299t%! + 0.0007593018360¢t73
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y,(t) = 0.9100753299¢t*! — 0.000001111207366t°%7

y,(t) = 0.9100753299t%1 — small terms.

The sequence is convergent to y(t) = lim y,(t)
n—oo
y(t) = 0.9100753299¢t21,

4.4 The Numerical Realization of Equation (4.1) Using Matrix Approach
Method

The following algorithm is applied to find an approximation solution of

equation (4.1) using the matrix approach method.

Algorithm (4.2)

1. Input: 1) a, b: [a, b] is the interval for the solution function.
2) N: The number of subdivisions of [a, b].
3) Alpha: The order of differential equation.
4) x intial: x, = x; = 0.

5) f: The function on the right hand side of the

inhomogeneous fractional differential equation.
6) Exact solution g(t)

7) Set x, = a and xy = b.
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2. Calculate: 1) h = b_Ta

Dt,=kxh
3) f(tr)
3. Caculate: 1) h™¢
2) Wi(a) — (_1)1'(?)
3) The matrix A%
4) Adding identity matrix in the same size to A%
5) The inverse of the resulting matrix
4. Calculate: Solving the linear system
x,(t) = (W %A%+ D7 1xf
For more details see [8].

This linear system has a dimension N X 1 . For equation (4.1) the dimension

of the systemis 51 x 1.

We use the algorithm (4.2) to solve equation (4.1) . Table (4.1) displays the
exact and the numerical results using the Matrix approach method of

equation (4.1) when ¢ = 1.9 and the resulted error.



Table (4.1): The exact and numerical solutions using the Matrix approach method

57

where N=51.
ty Exact Approximation solution | Error
solution | x,,(t) = |x(t) — x,(0)]
x(t) = t?
0.0 0 0 0
0.1 0.1000 0.008621129726629 0.001378870273371
0.2 0.0400 0.037689907370590 0.00231009269410
0.3 0.0900 0.086539405801948 0.003460594198052
0.4 0.1600 0.154740697067752 0.005259302932248
0.5 0.2500 0.241931774005283 0.008068225994717
0.6 0.3600 0.347860012395293 0.012139987604707
0.7 0.4900 0.472440448226374 0.01755955177362
0.8 0.6400 0.615814946797499 0.024185053202501
0.9 0.8100 0.77840884576597 0.031591154203403
1 1.0000 0.960983804641099 0.039016195358901

It can be observed that the maximum error is 0.039016195358901.

The exact and approximate results of equation (4.1) are shown in Fig.4.2 (a)

and the resulted error is shown in Fig 4.2 (b).
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The Solution of Fractional Differential Equation by Matrix Approach

#  Approximation solutions [
ner Exact solutions T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xX-axise

Fig. 4.1 (a) A comparison between the exact and approximate solution in example 4.1

0.04

0.0356

0.03

=
=]
[
cn

0.0271

Absolute Error

0.015

0.01 1

0.005

0 0.1 0.2 03 04 05 06 0.7 08 0.9 1
X-axis

Fig. 4.1 (b) Absolute error between exact and numerical solution in example 4.1
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Example 4.2
Consider the linear fractional differential equation:
Dex(t)+x(t) =1, a € (1,2) (4.17)
with initial conditions:
x(0) =0,x'(0) =0.
The exact solution of example (4.2)[23] is:

x(t) = t"1E; 151 (—t*Y)

4.5 The Numerical Realization of Equation (4.17) Using Adomian

Decomposition Method

Using lemma (3.1) and take D~¢ to both sides of equation (4.17)
i

ri+1)

x(£) + D=x(t) = D “f(t)+Zx(‘)(O) (4.18)

Using Adomian decomposition method, we get:
i

ri+1)

xo(t) = D7OF (@) + Z x(0)

x1(t) = =D %x, (1),

X, (£) = =D7%x; (t) = (=1)2D~%%x, (1),
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x5(t) = =D"%x5_1(t) = (=1)*D™%x, (), (4.19)

Then the solution of equation (4.17) obtained by adding all of the above

terms

as follows:

e}

x(©) = ) x:(0),

s=0

= Z(—l)SD-S“xo(t),

(00]

1 i
Z( 1DSDESDEE(@) + ) (1D ) xO(0 )F( -

s=0 i=0

N 1 : +1)a—-1
=;(—1) GTTE Oja—rﬂ a1 ()

T Z x(0) ZH)S r(i+sa+1) (4.20)

i=0 s=0

o [=t— D
:!Z(t_) ['(sa + a) f@dr

s=0

1 a S
+ z x@(0)pa-i-1 Iz ra-1 foa +)a)

i=0

- f (t = DBy o[~ (t — DIf (@D)dx
0
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1

+ Z xD(0) D@ =D[¢e1E,  (—tD)],

i=0
t 1
_ j 6, (t = Df @dr + ) xDODE DG, (2),
0 i=0

where G, (t) = t* 1E, o (—t%)

50, x(t) = [ Gy (t — Df @dr + x@0)D@ VG, (¢) +

xW(0)D*G,(t), (4.21)

by equation (3.21), we obtain:

(_ta)i
Q) — - 7
Eqa(=t%) T (ai+a)’
1=0
So,
(_ta)i
— ra-1
G(6) =t _ 0F(ai+a)'
=

oo (_1)itai+a—1
- MNai +a) '

i=0

then the solution of equation (4.17) in general form is:

t oo ,
~ i (t — T)az+a—1
() = Of ;(—1) L (4.22)

(o) t .
B i (t _ T)al+a—1
_;(—1) Oj TR
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— Z(_l)l [D—(a’i+a) 1]
i=0
By definition (3.1), we get:

x(6) = ;(_1)i [F(l i(;i)+ O taim]’

when a = 1.1
1 1 1 1
£) = $11 £2.2 £33 _ £44 4L
*) =155 ren’ TT@s) ot T
1 1 1 1
_ F11 _ $22 £33 _ Y
0.95135 242397 1885534 2459885°

= 0.95557t11 — 0.41255 t%2 + 0.11293 t33 — 0.02242 t** + ...,

4.6 The Numerical Realization of Equation (4.17) Using Homotopy

Perturbation Method
According to equation (3.36), we can write the following homotopy:
D%x(t) + px(t) —1 =0,
the solution of equation (4.2) is in the following form:
x(t) = xo(t) + pxy (t) + p?x,(t) + p3x3(t) + . (4.23)

Substituting (4.23) into the above equation, and gathering terms with the

same power of p, then we get:

p°:D%x,(t) =0, (4.24)
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pt: D% (t) = —xo(t) + f (1), (4.25)
p2:D%x,(t) = —x; (1), (4.26)
p3:D%x5(t) = —x,(t), (4.27)

Applying Q%, the inverse operator of D%, on both sides of the equations from

(4.24)-(4.25), then we get:
1 ,
l

xo () = z x(i)(O)%
i=0

t° t!

=0
x1 () = =Q%xo ()] + Q*[f (t)]
= Q%[1],
by using the definition of Riemann-Liouville fractional integral operator
(Q%) of order @ > 0, we obtain:
1
= —ta
rl+a) '’

x2(8) = =% [x, (O],

— a

vl
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tZa

T TQa+1)

x3(8) = =Q%[x, (1)),

tZa
a |\ 000
[ [(2a + 1)]’
t3a

“T@a+ 1)

therefore, the solution of equation (4.17) in general form can be written as:

x(t) = xo(t) + x,(t) + x,(t) + x3(t) + ---.

ta t2a t3a

“T+a) TQatD) TGat+D

ai

— Z(_l)Hl t—
s [(ai+1)

Whena = 1.1

1.1 t2.2 t3'3 t4.4-

x(t) =

tl'l t2.2 t3'3 t4.4-

= 095135 242397 ' 8.85534 44.59885

rz1) T(32) @43 TG4

(4.27)

(4.28)

(4.29)

(4.30)

= 0.95557 t11 — 0.41255 t22 + 0.11293 £33 — 0.02242 t** + ---
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4.7 The Numerical Realization of Equation (4.17) Using Variational

Iteration Method

The following algorithm is applied to find an approximate solution of

equation (4.17) by using the variational iteration method.

If we take @ = 1.1 and y(t) =]§‘“(x(t)), then equation (4.17) can be

written as the form:
y"(t) + D°y(t) =1 (4.31)

Using algorithm (4.1) to solve the numerical example (4.2), we obtain

v (t) ,n =1,2,3,... by using the MAPLE package as follows:

1
yi(t) = Etz
y2(t) = %tz —%t3
y3(t) = %tz —%t3 +%t4
Ya(t) =%t2 —%t3 +%t4 _%ts

n i
yn(t) = . F

=2

The sequence is convergent to y(t) = lim y,(t)
n—oo

y(t) =et—1+t.
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4.8 The Numerical Realization of Equation (4.17) Using Matrix

Approach Method

Using algorithm (4.2) to solve equation (4.2), we obtain Table (4.2) which

displays the exact and the numerical results using the Matrix approach

method when ¢ = 1.1 and the resulted error.

Table (4.2): The exact and numerical solutions using the Matrix approach method

where N=51.,
ty Exact solution Approximation Error
4 (—1)i+1gt1i | solution x,(t) = |x(t) — x,(8)|

B T(1.1i+1)
0.0/0 0 0
0.1 10.073357053781371 | 0.058092499960337 | 0.015264553821034
0.2 ]0.151282884629052 | 0.135430820233760 | 0.015852064395293
0.3]0.226984580680193 | 0.211095760530730 | 0.015888820149463
0.4 | 0.29890238480688 | 0.283237827667134 |0.015664557141554
0.5]0.366411147911488 | 0. 351151361983237 | 0.015259785928251
0.6 | 0.429259300754372 | 0.414572350125656 | 0.014686950628716
0.7 1 0.487372840288318 | 0.473456997040934 | 0.013915843247384
0.8 | 0.540762298480572 | 0.52788452424550 0.012877774238022
0.9 | 0.589469952960841 | 0.578006370352886 | 0.011463582607954
1 ]0.633536032460000 | 0.624016649518593 | 0.009519382941407

It can be observed that the maximum error is 0.015888820149463 .

The exact and approximate results of equation (4.17) are shown in Fig.4.4

(a) and resulted error is shown in Fig 4.4 (b).
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The Solution of Fractional Differential Equation by Matrix Approach

0.7

#  Approximation solutions
Exact solutions ff*

T~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axise

Fig. 4.2 (a) A comparison between the exact and approximate solution in example 4.2

0.016

0.014 1

0.012 1

0.011

0.008 1

Absolute Error

0.006

0.004

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X=-axis

Fig. 4.2 (b) Absolute error between exact and numerical solution in example 4.2
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Conclusions

Fractional differential equations are used frequently in various fields of
physics and engineering.

In this thesis we have solved linear fractional differential equations using
various analytical and numerical techniques, namely; The Adomian
decomposition method, the Variational iteration method, the Homotopy
perturbation method and Matrix approach method.

The numerical methods were implemented in a form of algorithms to solve
some numerical test cases using Matlab and Maple softwares.

Numerical results have shown to be in a close agreement with the analytical
ones. Moreover, the numerical results for the proposed examples show
clearly that the matrix approach method is more efficient than its

counterparts.
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Appendix

Matlab code for the Matrix approach Method for solving example 3.1

clc;
clear all ;

syms €

gama=0.95135;

alpha=1.9;

a=0; % begin of interval

b=1; % end of interval

N=100;

pl=1;

p2=1;

X initial = [0 O0]"';
f=(2/gama) *t.” (2-alpha)+t."3;

exact £ = t."2;

h=(b-a) /N;
K=0:1:N;

tk=h.*K



76

format long

f=(eval (subs (f, t, tk)))

Bn=eye (N-2) ;

w=zeros (1,N-1) ;

for jJ=0:N-2

w(j+l) = (-1)"j * get combination (alpha,j);

end

for ¢ =1:N-1

for r=1:N-1

if r-c==0
Bn(r,r)=w(l);

elseif r>c

Bn(r,c)=w(r-c+1);

end

end

end
F=f (3:length (f));

X=inv (h" (-1.9) *Bnt+eye (N-1) ) *F';
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X total = [X initial;X]

exact f= eval (subs(exact f,t,tk))’

e=X total-exact f

abs error = abs(e);
max abs error = max(abs error)
splot

m=[X total',exact f',abs error']

plot (tk,X total,'*',tk,exact £, 'r'")
xlabel ('x—-axise'")

ylabel ("X (t) ")

title('\fontname{Artial} The Solution of
Fractional Differential Equation by Matrix
Approach', 'FontSize', 8)

legend ('Approximation solutions', 'Exact
solutions')

grid on

plot (tk,abs error, 'r'")

xlabel ('x—-axis ")

ylabel ('Absolute Error')

legend ('Error'")

grid on
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Matlab code for the Matrix approach Method for solving example 3.2
clc;
clear all ;

syms €

gama=0.95135;

alpha=1.1;

a=0; % begin of interval
b=1; % end of interval

N=100;

X initial = [0 O0]"';

f=1;

exact f =.9555790964*t" (11/10) -
.4125471292*t” (11/5)+.1129261690*t" (33/10) -

0.2242210374e-1*t~(22/5) ;

h=(b-a) /N;
K=0:1:N;
tk=h.*K;

format long

f=(eval (subs (f, t,tk)));
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Bn=eye (N-2) ;
w=zeros (1,N-1);
for jJ=0:N-2
w(j+1l) = (-1)"J * get combination (alpha,j);

end

for ¢ =1:N-1

for r=1:N-1

if r-c==
Bn(r,r)=w(l);
elseif r>c
Bn(r,c)=w(r-c+1);
end
end
end
F=f (3:1length(f));
X=inv (h"(-1.1) *Bnteye (N-1)) *F"';

X total = [X initial;X]

exact f= eval (subs(exact f,t,tk))’

e=X total-exact f

abs error = abs(e);
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max abs error = max(abs error)
splot
m=[X total',exact f',abs error']
plot (tk,X total,'*',tk,exact f,'r")
xlabel ('x—axise'")
ylabel ("X (t)")
title('\fontname{Artial} The Solution of
Fractional Differential Equation by Matrix
Approach', 'FontSize', 8)
legend ('Approximation solutions', '"Exact
solutions"')
grid on
plot (tk,abs error, 'r')
xlabel ('x—-axis ")
ylabel ('"Absolute Error')
legend ('Error")

grid on
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