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Abstract 

In the present work, The ground state energy of shallow donor impurity in 

GaAs/AlGaAs heterostructure with Gaussian potential using the shifted 

    expansion method had been calculated. The effects of the impurity on 

the ground state energy, the dot radius R, confining potential depth    and 

dimension   had been investigated. The impurity binding energy of the 

ground state has been calculated as a function of dot radius R, confining 

potential depth    and dimension  . we had found that the impurity binding 

energy of the ground state increases as confining potential depth      

increases while it decreases as dot radius R and  dimension   increases . In 

addition, we had also computed the heat capacity     and entropy    of 

donor impurity in QD and investigated the dependence of these quantities 

on dot radius R, confining potential depth   , dimension   and temperature 

T. the comparison shows that our results are in very good agreement with 

the reported work. 
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Chapter One 

Introduction 

1.1 Nanotechnology and Quantum Confinement Effect 

Nano science is the study of phenomena and manipulation of materials at 

atomic, molecular and macromolecular scales (quantum-scale), where 

properties differ significantly from those at a larger scale.  

Nanotechnology is the field of understanding and manipulation of matter 

with at least one characteristic dimension measured in nanometers             

(A nanometer is one-billionth of a meter: ten times the diameter of a 

hydrogen atom) with novel size-dependent physical and chemical 

properties. 

The nanoscopic scale is the size at which fluctuations in the averaged 

properties begin to have a significant effect on the behavior of a system 

(due to the motion and behavior of individual particles).   

The most popular term in the Nano world is quantum confinement effect 

which is essentially due to changes in the atomic structure as a result of 

direct influence of ultra-small length scale on the energy band structure [1]. 

Quantum confined structure is one in which the motion of the carriers 

(electron and hole) are confined in one or more directions by potential 

barriers. 

As the size of particle decrease till we reach a nano scale (the decrease in 

confining dimension) makes the energy levels discrete which means 
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confine the motion of randomly moving electron to restrict its motion in 

specific energy levels. The presence of many atoms in a bulk material 

causes splitting of the electronic energy levels, giving continuous energy 

bands separated by a forbidden zone. When the particle dimension of a 

semiconductor near to and below the bulk semiconductor Bohr exciton 

radius (the distance in an electron-hole pair) the continuous energy bands 

of a bulk material collapse into discrete, atomic like energy levels.  

 Based on the confinement direction, a quantum confined structure will be 

classified into: 

1) Three-dimensional (3D) structure or bulk structure: No quantization of 

the particle motion occurs, i.e., the particle is free.  

2) Two-dimensional (2D) structure or quantum well: Quantization of the 

particle motion occurs in one direction, while the particle is free to move in 

the other two directions.  

3) One-dimensional (1D) structure or quantum wire: Quantization occurs 

in two directions, leading to free movement along only one direction.  

4) Zero-dimensional (0D) structure or quantum dot (sometimes called 

“quantum box”, “nano Crystal”): Quantization occurs in all three 

directions. 

The confinement phenomena change significantly the density of states of 

the system and the energy spectra. In solid-state and condensed matter 

physics, the density of states (DOS) of a system describes the number of 
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states per interval of energy at each energy level that are available to be 

occupied by electrons. For QD the density of state shows a discrete 

behavior unlike to the other confinements which have a continuous density 

of state as shown in figure (1-1). 

 

Figure (1-1): Quantum confinement in nanostructure and density of state as function of energy. 

   The properties of materials will be different at the nano scale for two 

main reasons. First, nanomaterial's have a relatively larger surface area ,this 

can make materials more chemically reactive, and affect their strength or 

electrical properties. Second, quantum effects can begin to dominate the 

behavior of matter at the nano scale affecting the optical, electrical and 

magnetic behavior of materials.  

 The nanofabrication techniques allow us to control precisely both the size 

and the shape of the low dimensional system. In the last few years there 

was a rapid progress in the fabrication and processing of nanostructures. 
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The nanotechnology will have major impacts on all aspects of the world, 

and its ability to further improve daily life is limitless, nanotechnology 

seems to hold the key into the future of the world. This technology has 

allowed for specific properties such as strength, durability, reactivity, 

conductance, and several other traits to be tailored towards each project of 

interest [2, 3].  

The applications and uses of nanomaterial in electronic and mechanical 

devices, in optical and magnetic components, quantum computing, tissue 

engineering, and other biotechnologies, with smallest features, widths well 

below 100 nm, are the economically most important parts of the 

nanotechnology nowadays and presumably in the near future. 

1.2 Quantum Hetrostructure and Quantum Dots 

      Nano science is a very interesting and technologically relevant area of 

condensed matter physics. With the development of modern technology it 

is now possible to produce zero dimensional (0 D) systems called quantum 

dots (QDs). 

Quantum dots(QDs) are the typical examples of ultra-small systems in the 

areas of electronics and optoelectronics where the electrons are confined in 

all three dimensions.  

Quantum dot (QD) is a conducting island (semiconductor crystals) of a size 

comparable to the Fermi wavelength (wavelength that correspond to 

the highest occupied energy level of a material at absolute zero 
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temperature). QDs are that usually ranging from (2 to 10) nanometers and 

(10 to 50) atoms in diameter.  

The electrons are confined in all three spatial dimensions using artificial 

confining potentials. The number of electrons can be manipulated easily by 

conventional nanofabrication methods.The number of electrons in atoms 

can be tuned by ionization, while in QDs by changing the confinement 

potential [ 4,5].  

When we apply energy in the form of electric field or heat the electrons can 

freely move within an area from a few nanometers to a few hundred of 

nanometers (defined by the Bohr radius which represents the mean radius 

of electron around the nucleus of hydrogen atom in its lowest energy level) 

in a bulk semiconductor so the continuous conduction and valence energy 

bands exist which are separated by an energy gap . Contrary, in a quantum 

dot, discrete atomic like states with energies that are determined by the 

quantum dot radius appear because the excitons (excited electron and an 

associated hole) cannot move freely. 

The effect of the strong electron confinement in a nano structure leads to a 

small energy separation between the sub bands, increase the dipole 

transition value, and achieve resonance condition [6]. This is very similar 

to the famous particle-in-a-box and can be understood by the Heisenberg 

Uncertainty Principle , the more spatially confined and localized a particle 

becomes, the wider the range of its momentum/energy. 
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QDs band gap can be controlled by its size. So we can engineer their 

optical and electrical properties. Smaller QDs have large band gaps as 

shown in figure (1-2).  

 

Figure (1-2): Controlling the band gap by quantum dots size. 

    New potential application in optoelectronics will be discovered by 

changing in the electronic and optical properties of QDs which may be 

controlled by an appropriate selection of the sample geometry and material 

parameters so the size and shape of quantum dots can be experimentally 

tuned over a wide range [10]. Therefore, quantum dots are sometimes 

called artificial atoms [11]. Quantum dots have great potential for 

applications in micro-electronic devices such as quantum dot lasers, solar 

cells, single electron transistors and quantum computers [12, 13]. 
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   The physics of shallow donor impurity states in QDs is an interesting 

subject so many theoretical and experimental  studies of impurity related 

properties in low dimensional heterostructure have been reported in the last 

decade . Because their presence can dramatically alter the performance of 

QDs and their optical and transport (electrical) properties. The donor 

impurity binding energy increasing continuously as the QD size decreases; 

also it depends on the donor impurity position [8,9].  

 In this work we will focus on the heterostructure with impurity, where the 

electron interacts with the impurity ion by Coulomb potential. The structure 

of our system is sketched in figure (1.3). 

 

Figure (1-3): The structure of two-dimensional electron confined in GaAs layer bounded to an 

off donor impurity located in the AlGaAs layer. 

The heterostructure in the ( x-y) plane with the impurity in the ( z ) axis at 

the distance (0, 0, d), which include two AlGaAs layers separated by GaAs 

layer, one of the AlGaAs layer doped with silicon donor impurity located at 
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distance (d) along the growth axis in order to have free electrons in the 

heterostructure (n- type AlGaAs). 

 The (n-AlGaAs) layer is the source of free electrons in the heterostructure 

these free electrons move from AlGaAs layer with high band gap to lower 

band gap GaAs layer. The electrons are trapped in the quantum well of 

GaAs layer. In this way the 2D structure where the motion of the electrons 

is quantized along growth axis (z direction) while the electron is free to 

move in (x-y) plane can be created as shown in figure (1-4). 

 

Figure (1-4 ): A sketch of forming 2DEG. 

   The QDs can be fabricated by two different ways , the first one is made 

by using lithography etching techniques of microchip manufacturing and 

the second is molecular beam epitaxy which can be done by applying 

chemical processes to get a QD from bulk material [7].  
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1.3 Literature survey 

     The binding energy of the hydrogenic impurity in the quantum dot is 

extensively studied. Most of the theoretical works carried out on shallow 

donors in spherical quantum dots employ variational approaches [14], or 

alternatively, perturbation method limited to the strong confinement regime 

[15], while the exact solution has been obtained for centered          

impurities [16].    

Zhu et al. solved the finite potential well for impurity in the center of 

spherical quantum dot and obtained the exact solution by using the method 

of series expansion [17, 18]. Bose et al. obtained the binding energy of a 

shallow hydrogenic impurity in a spherical quantum dot with a parabolic 

potential shape by perturbation method [32]. Using  variational  and  

fractional-dimensional  space  approaches,  Porras-Montenegro  and Perez-

Merchancano  and  Oliveira et  al.  have  calculated the  binding  energy for  

shallow- donor  impurities  in  rectangular quantum  dots for  both  finite 

and  infinite potential  confinement [19].  

A computational scheme yields to exact energies of a spherical 

nanocrystallite with a shallow donor impurity located anywhere inside is 

presented by Movilla and Planelles[20].  Gharaati and Khordad used a 

modified Gaussian potential to calculate energy levels for spherical 

quantum dot within effective mass approximation [21]. Boda et al. 

investigated the Gaussian confinement of hydrogenic donor impurity by a 

very simple variational wave function [22].    
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The method of       expansion has been developed, which was proposed 

by Sukhatme and Imbo [23, 24] to calculate the spectra of an electron and a 

donor in QD. Elsaid had studied the quantum dot Hamiltonian by this 

method in different works [30, 31]. It is a powerful tool to solve 

Schrodinger equation for spherical symmetric potentials and it is used in 

different branches of theoretical physics. 

The method is simple, and it gives accurate results of energy eigenvalues 

calculations of the system without dealing with robust numerical 

calculations or trail wave functions . The shifted      expansion surpasses 

most approximation methods in its domain applicability and the accuracy 

of its result while the      expansion method is applicable to the entire 

range of the magnetic field strength, while the perturbation theory is 

limited to a weak range only. 

     In this work, we shall apply the shifted        expansion method to 

calculate the eigenenergies of donor impurity in QD with Gaussian 

confinement.  

1.4 Research objectives 

The main aims of this research can be summarized as follows: 

       Firstly, The energy and binding energy spectrum of an electron donor 

impurity in spherical QD related to the Gaussian potential will be 

calculated by using  the shifted     expansion method. The obtained 

results will be compared with previous studies. In addition the computed 
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state energies will be calculated as a function of dot radius ( ) and  

confining potential depth (  ) and dimension (  . 

       Secondly, the effect of dimensionality on the state energy of the 

quantum dot system will be investigated. The heat capacity (    ) and 

entropy (S) as a thermal quantities of the QD system will be calculated. 

1.5 Outlines of thesis 

In this work, the heat capacity      and entropy     of donor impurity in 

QD system have been calculated as a thermodynamic quantities of the 

system as a function of dot radius  ( ),  confining potential depth (  ), 

dimension (   and temperature (T). Since, the eigenvalues of an electron 

donor impurity in QD related to the Gaussian potential will be the starting 

point to calculate the physical properties of the system,  the shifted   

   expansion method has been used to solve QD Hamiltonian and obtain 

the eigen energies. Second, the eigen energies spectra have been calculated 

to display theoretically the behavior of the heat capacity      and 

entropy      of the QD as function of dot radius       ,  confining potential 

depth (  ), dimension (   and temperature (T). 

The rest of thesis is organized as follows: Hamiltonian of donor impurity in 

QD with Gaussian potential, the principle of the Shifted      expansion 

method and how to calculate the heat capacity       and entropy     of the 

QD system from the mean energy expression are presented in chapter II. In 

chapter III, the results of energy and heat capacity      and entropy     of 

our work have been displayed and discussed, while the final chapter 

devoted for conclusions and future work. 
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Chapter Two 

Theory of Impurity Confined in Heterostructure 

This chapter consists of three main parts: the Hamiltonian of donor 

impurity in QD with Gaussian potential, Shifted      Expansion Method, 

The Heat capacity     and Entropy    . 

2.1 Hamiltonian of Donor Impurity in QD with Gaussian Potential 

The standard Hamiltonian of an electron in the presence of a hydrogenic 

donor located at the center of quantum dot can be written as follows: 

  = -   
  

 
                                                                                                     

where:  

    : symmetric attractive Gaussian confinement potential , given by: 

          
        

                                                                                 (2) 

with: 

  = potential well depth.  

  = quantum dot radius ( the range of the confinement potential ). 

 : electron position coordinate,           for the 2D and           for 

the 3D. 

Coulomb attractive interaction between the donor electron and the 

hydrogenic nucleus is represented by second term in Hamiltonian.          
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      When the donor impurity is absented and        as donor impurity 

is presented. 

Gaussian confining potential can be treated as parabolic potential plus a 

perturbation because the deviation of Gaussian confining from the 

parabolic potential is small enough.  

2.2 Shifted        Expansion Method 

The solution of donor impurity Hamiltonian , equation (1) , with Gaussian 

potential , equation (2) , cannot be obtained in analytic closed form. In this 

thesis, we intend to solve the Hamiltonian by using the shifted     

expansion method. The radial part Schrodinger equation in   dimensional 

space can be expressed as: 

* 
    

   (
  

   
    

 
  

   
 

        

  )      +                                    (3)                                                                  

where: 

   :  Electron effective mass. 

                 . 

  : Number of spatial dimensions. 

The term              is the eigenvalue of the square of the 

  dimensional orbital angular momentum and    | | where     is the 

magnetic quantum number (               which labels the QD 

energy states. 
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The first derivative  term in  - dimensional Schrodinger equation, Eq.(3)  

can be removed by appropriate substitution: 

       
   
                                                                                                         

Equation ( 3 ) will take the following form : 

( 
    

   
 
  

   
 

( ̅     )( ̅     )   

     
     )                    

Where  ̅=      , and   is suitable shift parameter that can be 

determined later. 

To calculate the energy eigenvalues,       , we will expand Schrodinger 

equation in terms of  parameter (  ̅ ) and shift parameter (  ). The  

complete mathematical steps that lead to the QD energy eigenvalues 

expressions in terms of powers  of  1/  ̅ are given in Appendix. 

The energy eigenvalues,       , are given by: 

                     

Where the radial and principle quantum numbers are related by: 

                                 

The shift parameter   can be determined by making the term    vanishes 

namely (      : 

            
   

 
                                                                                       ) 
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 Where   is the an harmonic frequency parameter, which is given by 

equation A4 in Appendix as: 

  
 

   [  
  

   

    
  
   

]

   

                                                                              (7)                

The root    for the corresponding value of    and corresponding QD state 

is determined from the following relation: 

              [  
  

   

    
  
   

]

 

 

 [
     

   
   

  ]

 

 

                                                       

Having determined    , all the energy eigen values can be computed. 

The difference of the energy for that state in the absence of donor 

atom       and in its presence (       gives the binding energy of the 

impurity in the QD. The computed energy spectra for different states and 

various QD physical parameters are listed in Table (3-1). 

A Mathematica computer code  is written to produce the listed numerical 

energy levels. The computed energies are used to study the 

thermodynamics properties of donor impurity in QD such as the heat 

capacity        and entropy       

2.3 The Heat Capacity         and Entropy        

The heat capacity      is considered the most important thermal property 

which describes the heat stored in the  quantum dot system [25,26] .  
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To calculate the heat capacity of the system we have evaluate the mean 

energy from the statistical energy expression: 

               
∑      

        
   

∑  
        

   

                                                                    

The summation is taken over the sufficient converging energy levels of the 

QD . In the present work ,we have ensured the convergence of numerical 

calculations which was found to be satisfied at       . The QD average 

thermal energies or partition function are computed for different ranges of 

temperature and confining potential strength. 

Now the heat capacity can be calculated from  equation (9) by taking  the 

temperature derivative of the mean energy: 

             
              

  
                                                                            

The entropy ( ) indicates to the degree of disorder or randomness in the 

system which can be calculated by equation:  

 

            
                     

  
                                                                  

where: 

               ∑          
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    The dependence of the QD heat capacity (    ) and entropy ( ) on the 

QD physical parameters: temperature (T), confinement length ( ), depth of 

the confining potential (  ), dimension ( ), will be shown in various plots. 
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Chapter Three 

Results and discussion 

 In this chapter we will show and discuss our computed results for 

energy of hetero structure system made from (GAAs )material (dielectric 

constant           , effective Rydberg              and the 

effective mass of an electron             at zero temperature and 

pressure) with the impurity in the (z) axis at the distance (d) from electron 

in GAAs layer. Which are essential input data to calculate the average 

energy as a first step. Next, we compute the heat capacity        and 

entropy     by using the energies which we obtained. Diagram and tables 

were used to illustrate the results. The results will be compared  against 

reported ones.   

3.1 Energy and Binding energy of the donor impurity 

    Shifted     expansion method is used to compute the  energy states of 

spherical quantum dot (3D)  with  confinement potentials .The eigen 

energies of the donor impurity obtained by      expansion method against 

different computation methods are listed in table (3-1) for           

and dot radius     √    .  

The calculation are carried out to the third order correction of the shifted   

  expansion energy series. The analytic expression for the energies        

yield accurate results for a wide range values of     ) in comparison with 

all computational methods which solving Schrodinger equation by using 

suitable trial wave function. However we observed a little deviation 
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between Diagonalizing method and other reported work at table (3-1) 

particularly at states (2f, 3d). 

  We had plotted the computed energy results of this work against the 

radius of QD (R) for both impurity and without impurity in figure (3- 1). 

The energy with impurity and without impurity have a similar dependence 

on (R), the decreasing in QD radius (R) leads to increase the state energy of 

the impurity monotonically. 

The electron wave function is mainly distributed inside the well region of 

the QD so the existence of impurity leads to increase the energy . The 

coulomb interaction is highly large which means increasing  in energy  

when the impurity is at the center of the QD [33]. The impurity modifies 

the energy levels of QDs and it affects their electronic and optical 

properties. 

Table (3-1): Eigen energy states in units     for 3D quantum dot  

(spherical QD)  with impurity and            , dot radius   

  √    .  
State Diagonalizing 

[27] 

Numerov integration 

algorithm [27,28] 

Hypervirial-

Pade[29] 

Our work 

1s -341.895 -341.892 -341.8952 -341.895 

1p -304.463 -304.463 -304.4628 -304.463 

2s -269.644 -269.640 -269.6445 -269.644 

1d -268.110 -268.111 -268.1107 -268.111 

2p -234.446 -235.450 -235.4500 -235.451 

1f -232.849 -232.895 -232.8753 -232.878 

3s -203.983 -203.979 -203.9835 -203.997 

2d -202.427 -202.431 -202.4313 -202.432 

1g -198.700 -198.798 -198.7983 -198.798 

3p -173.156 -173.244 -173.2443 -173.257 

2f -167.797 -170.639 -170.6393 -170.640 

4s -145.372 -145.373 -145.3779 -145.431 

3d -145.741 -143.809 -143.8091 -143.821 
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Figure 3- 1: Ground state energy       in QD  as function of dot radius     for    

                 impurity and without impurity. 

The effect  of dot radius     and potential well depth        on the ground 

state energy E(1,0) ( 1s state ) and the binding energy          is 

represented on figures (3-2) and (3-3). The dependence of the confinement 

of well depth      is clear in these figures. 

The donor binding energy increases as the potential well depth       

increases which means confining the electron close to the donor regime. It 

is shown that the binding energy         increases until it reaches a 

maximum value of the system stability as the dot radius (   decreases. At 

larger radius of QD the binding energy will not depend strongly on       .  
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Figure (3-2): Ground state energy levels E(1,0) in QD as function of dot radius   ( R ) for 

different values of                         . 

When the electron is confined in the (Z) direction the coulomb interaction 

will be more sensitive to the lateral confinement potential ( negative 

voltage due to the heterostructure of the QD which is applied  to reduce 

further confinement region) .Because the decrease in spatial confinement 

between the electron and the donor impurity (small QD size ) the binding 

energy          becomes larger. The sharp decrease in binding 

energy         to a limiting value will happen for further reduction of dot 

radius  this is due to non-localized charge (In the limit     the ground 

state energy goes to zero and as       the ground state energy 

approaches      ). 
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Figure (3-3): Ground state  binding energy levels   (1,0) in QD as function of dot radius ( R ) 

for different values of                         . 

  The state energy of the impurity may become larger than the confining 

potential when the dot radius (   is further decreased. The kinetic energy 

of the confined electron becomes larger by uncertainty principle and thus 

increases the probability of the electron leaking outside the well.  

The effect of reduction in dimensionality on ground state energy        

and binding energy          are shown in figures (3-4) and (3-5) which 

show that the energy increases as dimension of the system decreases            

( E(2D) > E(3D)) . The geometric dimension of the system affected on the 

coulomb interaction intensity between the electron and impurity atom, as 

the size of the system is reduced the coulomb interaction is promoted. 
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Figure (3- 4): Ground state donor energy       as function of potential well depth (  ) and 

       for different values of dimension           . 

 

Figure (3- 5): Ground state  binding donor energy        as function of potential well depth(  

     and       for different values of dimension            . 

 

N 4

N 3

N 2

0 10 20 30 40 50

50

40

30

20

10

0

V0 RD

E
R

D

N 4

N 3

N 2

0 10 20 30 40 50

0

2

4

6

V0 RD

E
B

R
D



24 

 
 

3.2 Heat capacity     and Entropy ( ) of the donor impurity 

     In this section we will present our computed results for the heat capacity 

(    ) and entropy       of donor impurity in QD confined by a Gaussian 

potential.                 were calculated by using the computed average 

energy of a confined electron in a QD as essential input data. 

3.2 .1 Average Energy of the donor impurity 

 In figure (3-6) we had shown the behavior of average energy of QD with 

and without donor impurity as function of temperature (T). We observe that 

the average thermodynamic energy increases with increasing temperature 

(T). The reason for this behavior is due to the significant increment in the 

thermal and the confinement energy contributions. 

The behavior of the average energy in QD depends on the density of states 

because the energy levels are discrete. Consequently, the thermodynamic 

properties will depend on the energy level distribution and temperature (T) 

of the occupation probability of the states.  

The donor impurity increases the average energy due to its negative 

coulomb contribution. 
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Figure (3-6): Average energy of QD as function of temperature (T) with donor impurity and 

without impurity at constant                        

Figure (3-7) shows the effect of the temperature (T) on the average binding 

energy of QD. Due to the enhancement of the electron spatial probability 

density at low temperature (T) it is found that at low temperature (T) of 4K 

the average binding energy is increased over that associated with 

temperature (T) near room 300K. 

At low temperatures the thermal energy of the system is less than the 

coulomb interaction which means the increasing in the binding energy, but 

as the temperature increasing than 20K the kinetic energy (more thermal 

energy) will be more than the coulomb interaction and that leads to reduce 

the binding energy. The maximum value of the binding energy approaches 

to 3.625    at temperature equals 20K. 
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Figure (3-7): 3D Average binding energy of donor impurity in QD as function of temperature 

(T) at constant                  

3.2 .2 Heat capacity      of the donor impurity 

Heat capacity (    is a measurable physical quantity which means the ratio 

of the heat energy absorbed by a substance (or removed from) to the 

substance’s increase in temperature (T), in other words, it is the amount of 

heat energy required to rise the temperature (T) of a body a specified 

amount. Figure (3-8) shows the behavior of the heat capacity       for 

donor impurity QD versus the temperature (T).  The monotonic increase in 

the heat capacity       with temperature (T) is expected but as the 

temperature (T) is increased from absolute zero the heat capacity        

suddenly increases and then decreases giving a peak-like structure. The 

peak structure is the well-known Schottky anomaly of the heat capacity 
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temperature (T) because the thermal energy gained by electrons is enough 

for only the lowest two levels. 

The increase in heat capacity      with temperature (T) can be attributed to 

the increase in the thermal energy (Eth= KBT) for electrons which makes 

more and more states available for thermal excitation. 

However as the temperature (T) keeps increasing the heat capacity finally 

saturates where all the energy levels are populated evenly (there no 

substantial change).  The saturation value of the heat capacity 

                at room temperature (300K) is found to be about 

0.825  . 

 

 

Figure (3-8):  Heat Capacity of QD (    ⁄ ) as function of temperature (T ) with donor 

impurity and without impurity at constant                       
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  In figure (3-9) we had  plotted the behavior of  thermal heat capacity      

of donor impurity QD as function of temperature (T) for different values of 

confinement potential depth (      while keeping    unchanged . It is 

important to note that increasing in         leads to an actual drop in the 

magnitude of  the heat capacity (     . As increasing in          (more 

confinement energy ) the excitation energies for the low-lying excited 

states become large ,so the environments thermal energy will not excite the 

system  and that leads to a very low heat capacity         

 

 

Figure (3-9):  Heat Capacity of donor impurity QD (    ⁄ ) as function of temperature( T) for 

different values                      at constant               

     The heat capacity      of donor impurity QD as function of  

temperature( T) for different values  of  QD radius (  )  is  presented in 

figure (3-10). We can observe the heat capacity increases monotonically as 
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  increases . The zero value of heat capacity below a certain critical dot 

size may be because of the occurrence of the large  sub bands energy 

spacing at low  . Figure( 3-11 ) shows the dependence of the heat 

capacity(   ) of donor impurity QD  on the dimension(    for fixed values 

of (      and ( R). We can see that  heat capacity curves cross  at the same 

temperature point (known as crossing temperature ) which almost equals 

170K (energy level crossing). 

 

 

Figure (3-10): Heat Capacity of donor impurity QD (    ⁄ ) as function of temperature (T ) for 

different values of                      at constant                  
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Figure (3-11): Heat Capacity of donor impurity QD (    ⁄ ) as function of temperature( T) for 

different                       at constant                  

3.2.3 Entropy    of the donor impurity 

Another important thermodynamics quantity we have studied is the entropy 

    which is real physical quantity and is a definite function of the state of 

the body.  We have calculated the entropy    as function of temperature 

(T) as shown in figure (3-12) with impurity and without impurity. The 

increasing in  entropy (    of QD with increases the temperature (T) is 

expected , at lower temperatures  the behavior is qualitatively different as 

compared to that at relatively higher temperatures, the entropy increases  

monotonically at high value of  temperatures but at low temperatures the 

entropy increases quite rapidly. The thermal energy of electrons will bring 

more and more disorder in the form of random motion so the entropy (    

increases with temperature (T) increasing. At zero temperature (T) only the 
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lowest energy level is occupied so the entropy (    is  zero and there is a 

very little probability of a transition to a higher energy level. As the 

temperature (T) increases there is an increase in entropy (     and thus the 

probability of a transition goes up. 

 

Figure (3-12):  Entropy   of QD (   ⁄ ) as function of temperature (T) with donor impurity and 

without impurity at constant                        

 The variation of entropy (    with respect to the QD radius ( ) at different 

temperature (T) is shown in figure (3-13). The figure shows that the 

entropy (   increases as the QD radius (   ) increases because the 

increasing in radius will lead to the more ways there are to distribute the 

atom in that size which means higher entropy (  . Figure (3-14) shows the 

effect of the potential depth       on the behavior of the curve of the 

entropy     at different temperatures (T). The figure shows clearly the 

change in the entropy (S) curves as we increase the confining Gaussian 
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potential    . The Gaussian potential term (-   
      ⁄   increases greatly 

the total energy state due to its large Gaussian energy confinement. 

 

Figure (3-13): Entropy of donor impurity in QD (   ⁄ ) as function of temperature (T) for 

different values of                      at constant                 

 

Figure (3-14) : Entropy of donor impurity in  QD (   ⁄ ) as function of temperature (T) for 

different values of                        at constant                
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To emphasize The effect  of dimension (    on entropy     we had  plotted 

in figure( 3-15) the entropy     ⁄ as function of temperature (T) but at 

different values of  dimension (   .The entropy change is due to the 

difference in spectral density of QD states. 

 

Figure (3-15): Entropy of donor impurity in  QD (   ⁄ ) as function of temperature (T )for 

different values of               at constant                      
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Chapter four 

Conclusion 

We had solved the donor impurity in GaAs/AlGaAs QD with Gaussian 

potential Hamiltonian using the shifted     expansion method. We have 

presented a calculation for the donor binding energies associated with the 

ground state in two, three and four dimension. We have considered the 

effects of impurity, dot radius     ), confining potential depth      and 

dimension ( ) on the ground state energy, the interplay of these effects 

leads to a dependence of the binding energy on these factors .The computed 

result shows that the impurity binding energies increase with the decrease 

in dot size   ). Furthermore the binding energies increase with the increase 

in potential depth (  ). The results of this work show that the effects of the  

       on the binding energy of donor impurity should be considered.  

According to the numerical results obtained in this work, we have shown 

the shifted     expansion method is very efficient and accurate in 

calculating the energy spectrum of the donor impurity in QD. 

The heat capacity      and entropy     dependence on dot radius ( ), 

confining potential depth (   , dimension     and temperature (T) of 

GaAs/AlGaAs QD had been investigated. The investigations had shown 

clearly that increasing temperature (T), dot radius ( ) and dimension       

enhance the heat capacity       and entropy    ,while enhancing the 

confining potential depth (    decrease the heat capacity      and 

entropy   ).  
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In this work, the impurity presence, dot radius ( ), confining 

potential depth (  ), dimension (    and temperature (T) effects on the 

energy, binding energy, heat capacity      , entropy      had been studied. 

However, the electronic and thermodynamic properties of donor impurities 

in quantum dot are very interesting issues in the future due to its potential 

in the device applications. In addition the properties of the donor impurity 

in heterostructure for full energy spectra are very important subject to be 

studied.  
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Appendix 

The shifted       expansion method consists in solving equation (5) 

systematically in terms of the expansion parameter    ̅. The leading 

contribution to the energy comes from the effective potential: 

        
   

     
 

    

 
                                                                            (A1) 

Where   is a constant which rescales the potential (in large  ̅ limit), 

   ̅ . To obtain such an expansion it is necessary to remove linear parts 

with respect to the coordinates in the potential. Therefore we develop the 

potential around its minimum. 

     is assumed to be well behaved so that         has minimum at      

and there are well-defined bound states.   is then determined from the 

following equation: 

     
   

   
=                                                                                           (A2) 

In order to shift the origin of the coordinate to the position of the minimum 

of the effective potential it is convenient to define a new variable   

  
 ̅
 
 

  
                                                                                               (A3) 

By using the Taylor  expansion around the effective potential minimum    , 

respectively      we will define an oscillator potential : 

  
 

   [  
  

   
   
  
   

]

   

                                                                             (A4) 
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The energy eigenvalues are given by an expansion in powers of    ̅ where 

 ̅        ,   being the number of spatial dimensions and     so-

called shifted parameter. 

The shift parameter is defined by equation: 

            
   

 
                                                                            (A5) 

For any value of the radial quantum number              and for 

any value of    the energy          is given by: 

                                                                              (A6) 

The binding energy          in a given state is defined by  

                                 

where: 

                   ⁄  

                ⁄  

            ⁄  

       ̅     ⁄  

where: 
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The explicit forms of the previous parameters are given in the following 
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Where (           and       are parameters given as : 
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 لشوائب مانحة في نقاط كمية والمحصورة بجهد غاوس والعشوائية السعة الحرارية
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 نهال سعيد يحيى
 إشراف
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 د. خالد عميوي

 الممخص

الضحمة في نقاط كمية   المستوى الأرضي لمشوائب المانحةفي العمل الحالي, تم حساب طاقة 
 لمستوى الأرضيطاقة ا قمنا بدراسة اعتماد وقد مفكوكباستخدام طريقة ال  والمحصورة بجيد جاوس

حساب طاقة  تم قدو قطر النقطة وعمق الجيد المحصور والبعد  , ونصفعمى كل من الشوائب
نصف قطر النقطة وعمق الجيد المحصور والبعد بدلالة لمستوى الارضي في االربط لمشوائب 

لمستوى الارضي تزداد بزيادة عمق الجيد المحصور بينما تقل في اوجدنا ان طاقة الربط لمشوائب 
وائية الحرارية والعش ةقمنا بحساب السع كالى ذل بزيادة نصف قطر النقطة والبعد. بالإضافة

اعتماد ىذه الكميات عمى نصف قطر النقطة  وعمق  دراسة مع  يةلمشوائب المانحة في نقاط كم
وأظيرت المقارنات توافق كبير بين نتائجنا مع نتائج أعمال أخرى الجيد المحصور والبعد والحرارة. 

 منشورة.
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