An-Najah National University

Faculty of Graduate Studies

Heat Capacity and Entropy of Donor Impurity in

Quantum Dot with Gaussian Confinement

By
Nehal Saeed Fathi Yahyah

Supervisor
Prof. Mohammad Elsaid
Co-Supervisor

Dr. Khaled Haiwi

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Physics, Faculty of Graduate Studies,
An-Najah National University, Nablus-Palestine.

2018



Heat Capacity and Entropy of Donor Impurity in

Quantum Dot with Gaussian Confinement

By
Nehal Saeed Fathi Yahyah

This Thesis was Defended Successfully on 7/ 6/ 2018 and approved by:

Defense Committee Members Signature
1. Prof. Mohammed Elsaid / Supervisor ~ eeeeeeeennen.
2. Dr. Khalid Iaiwi [ CO-SUpervisor e

3. Dr. Marwan |. Kawmi [/ External Examiner  .vevieeieiennnees

4. Prof. Sami M. Al-Jaber /Internal EXaminer .coiveiieeeeenens



Dedication

For my father and my mother and for my wonderful family for their love,

care and support.



v

Acknowledgments

All thanks to Allah, who give me health and knowledge to complete my
thesis. | would like to express my thanks to my supervisor and instructor
Prof. Mohammad Elsaid for his guidance, assistance, supervision and

contribution of valuable suggestions.

| can't forget to thank Dr. Khalid Ilaiwi for his help and experience
especially in Mathematica. Finally, | would like to thank all friends for

providing encouragement and support.



v
LAY

tolsie Jaad Al da gyl adie bl adsall Ul

Heat Capacity and Entropy of Donor Impurity in Quantum Dot with
Gaussian Confinement

all 5Ly g b el (alal) gags z s Ll Al oda ade ciladl L oL
o ale Cny o Anpn & il 0B (e pa ol Leie ea o JSS AL 238 oy 35 W

(oAl iy Bpadat g & 53 s

Declaration

The work provided in this thesis, unless otherwise referenced, is the
researcher's own work, and has not been submitted elsewhere for any other

degree or qualification.

Student's name: tqallal) Al
Signature: s gl

Date: t._ul."d\



VI
Table of Contents

No. Content page
Dedication Il
Acknowledgement Y/
Declaration V
List of Tables VIl
List of Figures VIl
List of Symbols and Abbreviations X
Abstract XI

Chapter One: Introduction 1

1.1 | Nanotechnology and Quantum Confinement Effect 1

1.2 | Quantum Hetrostructure and Quantum Dots 4

1.3 | Literature Survey 9

1.4 | Objectives 10

1.5 | Outlines of thesis 11

Chapter Two: Theory of impurity confined in 19
heterostructure

2.1 | The Hamiltonian of donor impurity in QD with 12
Gaussian potential

2.2 | Shifted 1/ N Eexpansion Method 13

2.3 | The Heat capacity(C,) and Entropy(S) 15

Chapter Three: Results and discussions 18

3.1 | Energy and binding energy of donor impurity 18

3.2. | Heat capacity (C,) and Entropy (S) of donor impurity 24

3.2.1 | Average Energy of the donor impurity 24
3.2 .2 | Heat capacity of the donor impurity 26
3.2.3 | Entropy (S) of the donor impurity 30
Chapter Four: Conclusions 34

References 36
Appendix 41

paaldl -




VIl
List of Tables

No. Table Captions Page
Table (3.1) | Eigen energy states in unit R, for 3D quantum
dot (spherical QD) and V, =400 Rp, radius 19

R=1/2a,




VI
List of Figures

No.

Figure Captions

Page

Figure (1.1)

Quantum confinement in nanostructure and
density of state as function of energy.

Figure (1.2)

Controlling the band gap by quantum dots
size.

Figure (1.3)

The structure of two-dimensional electron
confined in GaAs layer bounded to an off
donor impurity located in the AlGaAs layer.

Figure (1.4)

A sketch of forming 2DEG.

Figure (3.1)

Ground state energyE(1,0) in QD as
function of dot radius (R) for V,=
50R, ,N = 3D with impurity and without
impurity.

20

Figure (3.2)

Ground state energy levels E(1,0) in QD as
function of dot radius ( R ) for different
values of V; = 15R, 30Rp, 50R, , N = 3D.

21

Figure (3.3)

Ground state binding energy levels Ez(1,0)
in QD as function of dot radius ( R ) for
different values of
Vo = 15R, 30R, 50R, , N = 3D.

22

Figure (3.4)

Ground state donor energyE (1,0) as function
of potential well depth (V, )and R =
2ap for different values of dimension
= 2D,3D,4D .

23

Figure (3.5)

Ground state binding donor energyEz(1,0)
as function of potential well depth( V,) and
R = 2a,, for different values of dimension
N =2D,3D,4D .

23

Figure (3.6)

Average energy of QD as function of
temperature (T) with donor impurity and
without impurity at constant R = 2ap,V, =
100R,, N = 3D.

25

Figure (3.7)

3D Average binding energy of donor impurity
in QD as function of temperature ( T ) at
constant R = ZaD ’ VO = 100RD'

26

Figure (3.8)

Heat Capacity of QD (C,/Kj) as function of
temperature (T ) with donor impurity and
without impurity at constant R = 2ap ,V, =
100R,,N = 3D

27




IX

Figure (3.9)

Heat Capacity of donor impurity QD (C,/Kp)
as function of temperature (T) for different
values V, = 40R,, 60R,,100R,, at constant
R =2ap,N =3D

28

Figure (3.10)

Heat Capacity of donor impurity QD (C, /Kpg)

as function of temperature (T ) for different

values of R = 1.5ap, 2ap, 2.5ap at constant
Vo, = 100Rp, N =3D.

29

Figure (3.11)

Heat Capacity of donor impurity QD
(Cy/Kpg) as function of temperature (T) for
different values of N = 2D, 3D, 4D at
constant V, = 100Rp ,R = 2ap.

30

Figure (3.12)

Entropyof QD (S/Kg) as function of
temperature (T) with donor impurity and
without impurity at constant R = 2ap,V, =
50Rp ,N = 3D.

31

Figure (3.13)

Entropy of donor impurity in QD (S/Kg) as
function of temperature (T) for different
values of R = 1.5ap, 2ap, 2.5ap at constant
Vo, = 100Rp , N =3D.

32

Figure (3.14)

Entropy of donor impurity in QD (S/Kg) as
function of temperature ( T ) for different
values of V, =40Rp, 60Rp,100Rp at
constant R = 2.5a, N =3D

32

Figure (3.15)

Entropy of donor impurity in QD (S/Kjg) as
function of temperature (T )for different
values of N =2D,3D,4Dat constant
R = 2.5a,,V, = 100R,.

33




X
List of Symbols and Abbreviations

QD Quantum dot

3D Three dimension

2D Two dimension

1D One dimension

oD Zero dimension (quantum dot)
nm Nanometer

DOS The density of state

C, Heat capacity

S entropy

V(r) Confinement potential

Eg Binding energy

GaAs Gallium Arsenide

AlGaAs Aluminum Gallium Arsenide
e Charge of electron

m Mass of electron

m* Effective mass of electron

Wave function

Dimension

The dielectric constant of material

*

Effective Rydberg unit

Reduced Blank's constant

QD radius

position coordinate of the electron

orbital angular momentum.

an harmonic frequency parameter

Kelvin Degree

Temperature

SR T TSR =S

Principle quantum number

Radial quantum number

S
S




XI
Heat Capacity and Entropy of Donor Impurity in Quantum Dot with
Gaussian Confinement
By
Nehal Saeed Fathi yhayah
Supervisor
Prof. Mohammad Elsaid
Co-Supervisor
Dr. Khaled llaiwi

Abstract
In the present work, The ground state energy of shallow donor impurity in
GaAs/AlGaAs heterostructure with Gaussian potential using the shifted
1/N expansion method had been calculated. The effects of the impurity on
the ground state energy, the dot radius R, confining potential depth 1/, and
dimension N had been investigated. The impurity binding energy of the
ground state has been calculated as a function of dot radius R, confining
potential depth V, and dimension N. we had found that the impurity binding
energy of the ground state increases as confining potential depth 1
increases while it decreases as dot radius R and dimension N increases . In
addition, we had also computed the heat capacity C, and entropy S of
donor impurity in QD and investigated the dependence of these quantities
on dot radius R, confining potential depth 1, dimension N and temperature
T. the comparison shows that our results are in very good agreement with

the reported work.
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Chapter One
Introduction

1.1 Nanotechnology and Quantum Confinement Effect

Nano science is the study of phenomena and manipulation of materials at
atomic, molecular and macromolecular scales (quantum-scale), where

properties differ significantly from those at a larger scale.

Nanotechnology is the field of understanding and manipulation of matter
with at least one characteristic dimension measured in nanometers
(A nanometer is one-billionth of a meter: ten times the diameter of a
hydrogen atom) with novel size-dependent physical and chemical

properties.

The nanoscopic scale is the size at which fluctuations in the averaged
properties begin to have a significant effect on the behavior of a system

(due to the motion and behavior of individual particles).

The most popular term in the Nano world is quantum confinement effect
which is essentially due to changes in the atomic structure as a result of
direct influence of ultra-small length scale on the energy band structure [1].
Quantum confined structure is one in which the motion of the carriers
(electron and hole) are confined in one or more directions by potential

barriers.

As the size of particle decrease till we reach a nano scale (the decrease in

confining dimension) makes the energy levels discrete which means
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confine the motion of randomly moving electron to restrict its motion in
specific energy levels. The presence of many atoms in a bulk material
causes splitting of the electronic energy levels, giving continuous energy
bands separated by a forbidden zone. When the particle dimension of a
semiconductor near to and below the bulk semiconductor Bohr exciton
radius (the distance in an electron-hole pair) the continuous energy bands

of a bulk material collapse into discrete, atomic like energy levels.

Based on the confinement direction, a quantum confined structure will be

classified into:

1) Three-dimensional (3D) structure or bulk structure: No quantization of

the particle motion occurs, i.e., the particle is free.

2) Two-dimensional (2D) structure or quantum well: Quantization of the
particle motion occurs in one direction, while the particle is free to move in

the other two directions.

3) One-dimensional (1D) structure or quantum wire: Quantization occurs

in two directions, leading to free movement along only one direction.

4) Zero-dimensional (0OD) structure or quantum dot (sometimes called
“quantum box”, “nano Crystal”): Quantization occurs in all three

directions.

The confinement phenomena change significantly the density of states of
the system and the energy spectra. In solid-state and condensed matter

physics, the density of states (DOS) of a system describes the number of
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states per interval of energy at each energy level that are available to be
occupied by electrons. For QD the density of state shows a discrete
behavior unlike to the other confinements which have a continuous density

of state as shown in figure (1-1).

A

| I

/

Bulk Quantum well Quantum wire  Quantum dot
3D 2D 1D 0D
W N |_ w g
8 9 8 a
Energy Energy Energy

Figure (1-1): Quantum confinement in nanostructure and density of state as function of energy.

The properties of materials will be different at the nano scale for two
main reasons. First, nanomaterial's have a relatively larger surface area ,this
can make materials more chemically reactive, and affect their strength or
electrical properties. Second, quantum effects can begin to dominate the
behavior of matter at the nano scale affecting the optical, electrical and

magnetic behavior of materials.

The nanofabrication techniques allow us to control precisely both the size
and the shape of the low dimensional system. In the last few years there

was a rapid progress in the fabrication and processing of nanostructures.
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The nanotechnology will have major impacts on all aspects of the world,
and its ability to further improve daily life is limitless, nanotechnology
seems to hold the key into the future of the world. This technology has
allowed for specific properties such as strength, durability, reactivity,
conductance, and several other traits to be tailored towards each project of

interest [2, 3].

The applications and uses of nanomaterial in electronic and mechanical
devices, in optical and magnetic components, quantum computing, tissue
engineering, and other biotechnologies, with smallest features, widths well
below 100 nm, are the economically most important parts of the

nanotechnology nowadays and presumably in the near future.

1.2 Quantum Hetrostructure and Quantum Dots

Nano science is a very interesting and technologically relevant area of
condensed matter physics. With the development of modern technology it
Is now possible to produce zero dimensional (0 D) systems called quantum

dots (QDs).

Quantum dots(QDs) are the typical examples of ultra-small systems in the
areas of electronics and optoelectronics where the electrons are confined in

all three dimensions.

Quantum dot (QD) is a conducting island (semiconductor crystals) of a size
comparable to the Fermi wavelength (wavelength that correspond to

the highest occupied energy level of a material at absolute zero
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temperature). QDs are that usually ranging from (2 to 10) nanometers and

(10 to 50) atoms in diameter.

The electrons are confined in all three spatial dimensions using artificial
confining potentials. The number of electrons can be manipulated easily by
conventional nanofabrication methods.The number of electrons in atoms
can be tuned by ionization, while in QDs by changing the confinement

potential [ 4,5].

When we apply energy in the form of electric field or heat the electrons can
freely move within an area from a few nanometers to a few hundred of
nanometers (defined by the Bohr radius which represents the mean radius
of electron around the nucleus of hydrogen atom in its lowest energy level)
in a bulk semiconductor so the continuous conduction and valence energy
bands exist which are separated by an energy gap . Contrary, in a quantum
dot, discrete atomic like states with energies that are determined by the
quantum dot radius appear because the excitons (excited electron and an

associated hole) cannot move freely.

The effect of the strong electron confinement in a nano structure leads to a
small energy separation between the sub bands, increase the dipole
transition value, and achieve resonance condition [6]. This is very similar
to the famous particle-in-a-box and can be understood by the Heisenberg
Uncertainty Principle , the more spatially confined and localized a particle

becomes, the wider the range of its momentum/energy.
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QDs band gap can be controlled by its size. So we can engineer their
optical and electrical properties. Smaller QDs have large band gaps as

shown in figure (1-2).

Energy continuum Discrete energy levels
(bands)
—— r - 1
=
I
J

= = =

nglﬁ“\l

Energy

- [
-+ [

<@ - @
Size

semiconductor Quantum dot

(a) (b)
Figure (1-2): Controlling the band gap by quantum dots size.

New potential application in optoelectronics will be discovered by
changing in the electronic and optical properties of QDs which may be
controlled by an appropriate selection of the sample geometry and material
parameters so the size and shape of quantum dots can be experimentally
tuned over a wide range [10]. Therefore, quantum dots are sometimes
called artificial atoms [11]. Quantum dots have great potential for
applications in micro-electronic devices such as quantum dot lasers, solar

cells, single electron transistors and quantum computers [12, 13].
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The physics of shallow donor impurity states in QDs is an interesting
subject so many theoretical and experimental studies of impurity related
properties in low dimensional heterostructure have been reported in the last
decade . Because their presence can dramatically alter the performance of
QDs and their optical and transport (electrical) properties. The donor
impurity binding energy increasing continuously as the QD size decreases;

also it depends on the donor impurity position [8,9].

In this work we will focus on the heterostructure with impurity, where the
electron interacts with the impurity ion by Coulomb potential. The structure

of our system is sketched in figure (1.3).

)
>

AlGaAs

dI 00000 /

AlGaAs

Figure (1-3): The structure of two-dimensional electron confined in GaAs layer bounded to an

off donor impurity located in the AlGaAs layer.

The heterostructure in the ( x-y) plane with the impurity in the ( z ) axis at
the distance (0, 0, d), which include two AlGaAs layers separated by GaAs

layer, one of the AlGaAs layer doped with silicon donor impurity located at
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distance (d) along the growth axis in order to have free electrons in the

heterostructure (n- type AlGaAs).

The (n-AlGaAs) layer is the source of free electrons in the heterostructure
these free electrons move from AlGaAs layer with high band gap to lower
band gap GaAs layer. The electrons are trapped in the quantum well of
GaAs layer. In this way the 2D structure where the motion of the electrons
IS quantized along growth axis (z direction) while the electron is free to

move in (x-y) plane can be created as shown in figure (1-4).

P
=2
P]
S Si-doped undoped st
AlGaAs AlGaAs
N
z

Figure (1-4): A sketch of forming 2DEG.

The QDs can be fabricated by two different ways , the first one is made
by using lithography etching techniques of microchip manufacturing and
the second is molecular beam epitaxy which can be done by applying

chemical processes to get a QD from bulk material [7].



1.3 Literature survey

The binding energy of the hydrogenic impurity in the quantum dot is
extensively studied. Most of the theoretical works carried out on shallow
donors in spherical quantum dots employ variational approaches [14], or
alternatively, perturbation method limited to the strong confinement regime
[15], while the exact solution has been obtained for centered

impurities [16].

Zhu et al. solved the finite potential well for impurity in the center of
spherical quantum dot and obtained the exact solution by using the method
of series expansion [17, 18]. Bose et al. obtained the binding energy of a
shallow hydrogenic impurity in a spherical quantum dot with a parabolic
potential shape by perturbation method [32]. Using variational and
fractional-dimensional space approaches, Porras-Montenegro and Perez-
Merchancano and Oliveira et al. have calculated the binding energy for
shallow- donor impurities in rectangular quantum dots for both finite

and infinite potential confinement [19].

A computational scheme vyields to exact energies of a spherical
nanocrystallite with a shallow donor impurity located anywhere inside is
presented by Movilla and Planelles[20]. Gharaati and Khordad used a
modified Gaussian potential to calculate energy levels for spherical
quantum dot within effective mass approximation [21]. Boda et al.
investigated the Gaussian confinement of hydrogenic donor impurity by a

very simple variational wave function [22].
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The method of 1/N expansion has been developed, which was proposed
by Sukhatme and Imbo [23, 24] to calculate the spectra of an electron and a
donor in QD. Elsaid had studied the quantum dot Hamiltonian by this
method in different works [30, 31]. It is a powerful tool to solve
Schrodinger equation for spherical symmetric potentials and it is used in

different branches of theoretical physics.

The method is simple, and it gives accurate results of energy eigenvalues
calculations of the system without dealing with robust numerical
calculations or trail wave functions . The shifted 1/ N expansion surpasses
most approximation methods in its domain applicability and the accuracy
of its result while the 1/ N expansion method is applicable to the entire
range of the magnetic field strength, while the perturbation theory is

limited to a weak range only.

In this work, we shall apply the shifted 1 / N expansion method to
calculate the eigenenergies of donor impurity in QD with Gaussian

confinement.

1.4 Research objectives

The main aims of this research can be summarized as follows:

Firstly, The energy and binding energy spectrum of an electron donor
impurity in spherical QD related to the Gaussian potential will be
calculated by using the shifted 1/N expansion method. The obtained

results will be compared with previous studies. In addition the computed
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state energies will be calculated as a function of dot radius (R) and

confining potential depth (V,) and dimension (N).

Secondly, the effect of dimensionality on the state energy of the
quantum dot system will be investigated. The heat capacity (C,) and

entropy (S) as a thermal quantities of the QD system will be calculated.
1.5 Outlines of thesis

In this work, the heat capacity (C,) and entropy (S) of donor impurity in
QD system have been calculated as a thermodynamic quantities of the
system as a function of dot radius (R), confining potential depth (V,),
dimension (N) and temperature (T). Since, the eigenvalues of an electron
donor impurity in QD related to the Gaussian potential will be the starting
point to calculate the physical properties of the system, the shifted 1/
N expansion method has been used to solve QD Hamiltonian and obtain
the eigen energies. Second, the eigen energies spectra have been calculated
to display theoretically the behavior of the heat capacity (C,) and
entropy ( S) of the QD as function of dot radius ( R ), confining potential

depth (), dimension (N) and temperature (T).

The rest of thesis is organized as follows: Hamiltonian of donor impurity in
QD with Gaussian potential, the principle of the Shifted 1/N expansion
method and how to calculate the heat capacity ( C,) and entropy (S) of the
QD system from the mean energy expression are presented in chapter Il. In
chapter 11, the results of energy and heat capacity (C,) and entropy (S) of
our work have been displayed and discussed, while the final chapter

devoted for conclusions and future work.
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Chapter Two
Theory of Impurity Confined in Heterostructure

This chapter consists of three main parts: the Hamiltonian of donor
impurity in QD with Gaussian potential, Shifted 1/ N Expansion Method,
The Heat capacity(C,) and Entropy (S).

2.1 Hamiltonian of Donor Impurity in QD with Gaussian Potential

The standard Hamiltonian of an electron in the presence of a hydrogenic

donor located at the center of quantum dot can be written as follows:

A= -V2 ==+ V(r) (1)
where:

V (r): symmetric attractive Gaussian confinement potential , given by:
V(r) = =V, e "/ 2R (2)
with:

V,= potential well depth.

R = quantum dot radius ( the range of the confinement potential ).

r: electron position coordinate, r = (x,y) for the 2D andr = (x,y, z) for

the 3D.

Coulomb attractive interaction between the donor electron and the

hydrogenic nucleus is represented by second term in Hamiltonian.
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z = 0 When the donor impurity is absented and z = 1 as donor impurity

IS presented.

Gaussian confining potential can be treated as parabolic potential plus a
perturbation because the deviation of Gaussian confining from the

parabolic potential is small enough.
2.2 Shifted 1/N Expansion Method

The solution of donor impurity Hamiltonian , equation (1) , with Gaussian
potential , equation (2) , cannot be obtained in analytic closed form. In this
thesis, we intend to solve the Hamiltonian by using the shifted 1/N
expansion method. The radial part Schrodinger equation in N dimensional

space can be expressed as:

h? [ d? 1 L(I+N-2
[ (s + 2 2 - D) v ()] () = E () 3)
where:

m”* : Electron effective mass.
f : Planck Constant.
N : Number of spatial dimensions.

The term [(l+ N —2) A% is the eigenvalue of the square of the
N dimensional orbital angular momentum and [ = |m| where m is the
magnetic quantum number ( = 0,+1, %2, ......... ) which labels the QD

energy states.
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The first derivative term in N- dimensional Schrodinger equation, Eq.(3)

can be removed by appropriate substitution:

N-1

pr)=r 2 u(r) (4)
Equation ( 3) will take the following form :

h? d? k —1)(k —3) K2
T mdre 2o 8)751*:; ) +V(r) Ju() = Eu(r)  (5)

Where k=N + 21 —a, and a is suitable shift parameter that can be

determined later.

To calculate the energy eigenvalues, E(n, ), we will expand Schrodinger
equation in terms of parameter (k) and shift parameter ( a). The
complete mathematical steps that lead to the QD energy eigenvalues

expressions in terms of powers of 1/ k are given in Appendix.
The energy eigenvalues, E(n, 1), are given by:

En,) =Ey+E, +E, + E5 + -

Where the radial and principle qguantum numbers are related by:
n=n.+101+1

The shift parameter a can be determined by making the term E; vanishes

namely (E; = 0):

a=2-202n, +1)=2 (6)
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Where w is the an harmonic frequency parameter, which is given by

equation A4 in Appendix as:

dZ 1/2
Odrz ]

(7)

3+
dT‘O

The root r, for the corresponding value of w and corresponding QD state

is determined from the following relation:

N+2l-2+@2n,+1)|3+ (8)

dz V|2 3dV
2
dTZ ] [ ro dTO

dT'O

Having determined r, , all the energy eigen values can be computed.

The difference of the energy for that state in the absence of donor
atom (z = 0) and in its presence (z = 1) gives the binding energy of the
impurity in the QD. The computed energy spectra for different states and

various QD physical parameters are listed in Table (3-1).

A Mathematica computer code is written to produce the listed numerical
energy levels. The computed energies are used to study the
thermodynamics properties of donor impurity in QD such as the heat

capacity ( C, ) and entropy (S) .
2.3 The Heat Capacity ( C, ) and Entropy (S)

The heat capacity (C,,) is considered the most important thermal property

which describes the heat stored in the quantum dot system [25,26] .
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To calculate the heat capacity of the system we have evaluate the mean

energy from the statistical energy expression:

vt By e EINET 9
S ©

< E(T,Vy,R,N) > =

The summation is taken over the sufficient converging energy levels of the
QD . In the present work ,we have ensured the convergence of numerical
calculations which was found to be satisfied at i = 15 . The QD average
thermal energies or partition function are computed for different ranges of

temperature and confining potential strength.

Now the heat capacity can be calculated from equation (9) by taking the
temperature derivative of the mean energy:

d<E(T,Vo,R,N)>
aT

C,(T,Vy,R,N) = (10)

The entropy (S) indicates to the degree of disorder or randomness in the

system which can be calculated by equation:

d(K gT In<Z(T,Vo,R,N)>)

S(T, Vo, R,N) = s (11)
where:

i
< Z(T,Vy,R,N) > = Z e~ Ei/KgT (12)

j=1
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The dependence of the QD heat capacity ( C,,) and entropy (S) on the
QD physical parameters: temperature (T), confinement length (R), depth of

the confining potential (V,), dimension (N), will be shown in various plots.
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Chapter Three
Results and discussion

In this chapter we will show and discuss our computed results for
energy of hetero structure system made from (GAAs )material (dielectric
constant € = 12.74, effective Rydberg R, =5.825meV and the
effective mass of an electron m* = 0.067 m, at zero temperature and
pressure) with the impurity in the (z) axis at the distance (d) from electron
in GAAs layer. Which are essential input data to calculate the average
energy as a first step. Next, we compute the heat capacity (C,) and
entropy (S) by using the energies which we obtained. Diagram and tables
were used to illustrate the results. The results will be compared against

reported ones.
3.1 Energy and Binding energy of the donor impurity

Shifted 1/N expansion method is used to compute the energy states of
spherical quantum dot (3D) with confinement potentials .The eigen
energies of the donor impurity obtained by 1/N expansion method against
different computation methods are listed in table (3-1) for V, = 400 R,
and dot radius R = 1/v/2 ap.

The calculation are carried out to the third order correction of the shifted 1/
N expansion energy series. The analytic expression for the energies E(n, )
yield accurate results for a wide range values of (n, 1) in comparison with
all computational methods which solving Schrodinger equation by using

suitable trial wave function. However we observed a little deviation
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between Diagonalizing method and other reported work at table (3-1)

particularly at states (2f, 3d).

We had plotted the computed energy results of this work against the
radius of QD (R) for both impurity and without impurity in figure (3- 1).
The energy with impurity and without impurity have a similar dependence
on (R), the decreasing in QD radius (R) leads to increase the state energy of

the impurity monotonically.

The electron wave function is mainly distributed inside the well region of
the QD so the existence of impurity leads to increase the energy . The
coulomb interaction is highly large which means increasing in energy
when the impurity is at the center of the QD [33]. The impurity modifies
the energy levels of QDs and it affects their electronic and optical

properties.

Table (3-1): Eigen energy states in units R, for 3D quantum dot
(spherical QD) with impurity and V, =400 Rp , dot radius R =

1/V2 ap.
State | Diagonalizing | Numerov integration Hypervirial- Our work
[27] algorithm [27,28] Pade[29]
1s -341.895 -341.892 -341.8952 -341.895
1p -304.463 -304.463 -304.4628 -304.463
2s -269.644 -269.640 -269.6445 -269.644
1d -268.110 -268.111 -268.1107 -268.111
2p -234.446 -235.450 -235.4500 -235.451
1f -232.849 -232.895 -232.8753 -232.878
3s -203.983 -203.979 -203.9835 -203.997
2d -202.427 -202.431 -202.4313 -202.432
1g -198.700 -198.798 -198.7983 -198.798
3p -173.156 -173.244 -173.2443 -173.257
2f -167.797 -170.639 -170.6393 -170.640
4s -145.372 -145.373 -145.3779 -145.431
3d -145.741 -143.809 -143.8091 -143.821
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Figure 3- 1: Ground state energyE(1,0) in QD as function of dot radius (R) for V, =
50R, ,N = 3D with impurity and without impurity.

The effect of dot radius (R) and potential well depth (V,) on the ground
state energy E(1,0) ( 1s state ) and the binding energy Ez(1,0) is
represented on figures (3-2) and (3-3). The dependence of the confinement

of well depth (V,) is clear in these figures.

The donor binding energy increases as the potential well depth (V,)
increases which means confining the electron close to the donor regime. It
iIs shown that the binding energy Eg(1,0) increases until it reaches a
maximum value of the system stability as the dot radius (R) decreases. At

larger radius of QD the binding energy will not depend strongly on (V) .
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Figure (3-2): Ground state energy levels E(1,0) in QD as function of dot radius ( R) for
different values of Vo, = 15R, 30Rp, 50R, , N = 3D.

When the electron is confined in the (Z) direction the coulomb interaction
will be more sensitive to the lateral confinement potential ( negative
voltage due to the heterostructure of the QD which is applied to reduce
further confinement region) .Because the decrease in spatial confinement
between the electron and the donor impurity (small QD size ) the binding
energy Eg(1,0) becomes larger. The sharp decrease in binding
energy Eg(1,0) to a limiting value will happen for further reduction of dot
radius this is due to non-localized charge (In the limit R — 0 the ground
state energy goes to zero and as R —» o the ground state energy

approaches — V).
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Figure (3-3): Ground state binding energy levels E(1,0) in QD as function of dot radius (R )
for different values of V) = 15R, 30Rp, 50R, ,N = 3D.

The state energy of the impurity may become larger than the confining
potential when the dot radius (R) is further decreased. The Kkinetic energy
of the confined electron becomes larger by uncertainty principle and thus

increases the probability of the electron leaking outside the well.

The effect of reduction in dimensionality on ground state energy E(1,0)
and binding energy Ez(1,0) are shown in figures (3-4) and (3-5) which
show that the energy increases as dimension of the system decreases
( E(2D) > E(3D)) . The geometric dimension of the system affected on the
coulomb interaction intensity between the electron and impurity atom, as

the size of the system is reduced the coulomb interaction is promoted.
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Figure (3- 4): Ground state donor energyE(1,0) as function of potential well depth (V) and

R = 2a, for different values of dimension = 2D, 3D, 4D .
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Figure (3- 5): Ground state binding donor energyEz(1,0) as function of potential well depth(

Vy) and R = 2ay, for different values of dimension N = 2D,3D, 4D .
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3.2 Heat capacity(C,) and Entropy (S) of the donor impurity

In this section we will present our computed results for the heat capacity
( C, ) and entropy (S ) of donor impurity in QD confined by a Gaussian
potential. (C,) and (S) were calculated by using the computed average

energy of a confined electron in a QD as essential input data.
3.2 .1 Average Energy of the donor impurity

In figure (3-6) we had shown the behavior of average energy of QD with
and without donor impurity as function of temperature (T). We observe that
the average thermodynamic energy increases with increasing temperature
(T). The reason for this behavior is due to the significant increment in the

thermal and the confinement energy contributions.

The behavior of the average energy in QD depends on the density of states
because the energy levels are discrete. Consequently, the thermodynamic
properties will depend on the energy level distribution and temperature (T)

of the occupation probability of the states.

The donor impurity increases the average energy due to its negative

coulomb contribution.
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Figure (3-6): Average energy of QD as function of temperature (T) with donor impurity and
without impurity at constant R = 2ap ,V, = 100R,, N = 3D.

Figure (3-7) shows the effect of the temperature (T) on the average binding
energy of QD. Due to the enhancement of the electron spatial probability
density at low temperature (T) it is found that at low temperature (T) of 4K
the average binding energy is increased over that associated with

temperature (T) near room 300K.

At low temperatures the thermal energy of the system is less than the
coulomb interaction which means the increasing in the binding energy, but
as the temperature increasing than 20K the Kkinetic energy (more thermal
energy) will be more than the coulomb interaction and that leads to reduce
the binding energy. The maximum value of the binding energy approaches

to 3.625 R, at temperature equals 20K.
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Figure (3-7): 3D Average binding energy of donor impurity in QD as function of temperature
(T) at constant R = 2ap ,V, = 100R),.

3.2 .2 Heat capacity C,, of the donor impurity

Heat capacity (C,,) is a measurable physical quantity which means the ratio
of the heat energy absorbed by a substance (or removed from) to the
substance’s increase in temperature (T), in other words, it is the amount of
heat energy required to rise the temperature (T) of a body a specified
amount. Figure (3-8) shows the behavior of the heat capacity (C,) for
donor impurity QD versus the temperature (T). The monotonic increase in
the heat capacity (C,) with temperature (T) is expected but as the
temperature (T) is increased from absolute zero the heat capacity (C,)
suddenly increases and then decreases giving a peak-like structure. The
peak structure is the well-known Schottky anomaly of the heat capacity

(C,), typical for a system where only two states are importance at low
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temperature (T) because the thermal energy gained by electrons is enough

for only the lowest two levels.

The increase in heat capacity (C,) with temperature (T) can be attributed to
the increase in the thermal energy (Ey= KgT) for electrons which makes

more and more states available for thermal excitation.

However as the temperature (T) keeps increasing the heat capacity finally
saturates where all the energy levels are populated evenly (there no
substantial change).  The saturation value of the heat -capacity

(C,) approaches at room temperature (300K) is found to be about

0.825Kj.
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Figure (3-8): Heat Capacity of QD (C,/Kp) as function of temperature (T ) with donor
impurity and without impurity at constant R = 2ap ,Vy = 100R, ,N = 3D
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In figure (3-9) we had plotted the behavior of thermal heat capacity (C,,)
of donor impurity QD as function of temperature (T) for different values of
confinement potential depth ( V,) while keeping R unchanged . It is
important to note that increasing in (V) leads to an actual drop in the
magnitude of the heat capacity (C,). As increasing in (V) (more
confinement energy ) the excitation energies for the low-lying excited
states become large ,so the environments thermal energy will not excite the

system and that leads to a very low heat capacity (C,).
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Figure (3-9): Heat Capacity of donor impurity QD (C,/Kp) as function of temperature( T) for
different values V, = 40R,, 60R,100R, at constant R = 2a, ,N = 3D .

The heat capacity (C,) of donor impurity QD as function of
temperature( T) for different values of QD radius ( R) is presented in

figure (3-10). We can observe the heat capacity increases monotonically as
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R increases . The zero value of heat capacity below a certain critical dot
size may be because of the occurrence of the large sub bands energy
spacing at low R. Figure( 3-11 ) shows the dependence of the heat
capacity( C,) of donor impurity QD on the dimension( N) for fixed values
of (V, ) and ( R). We can see that heat capacity curves cross at the same
temperature point (known as crossing temperature ) which almost equals

170K (energy level crossing).
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Figure (3-10): Heat Capacity of donor impurity QD (C,/Kg) as function of temperature (T ) for
different values of R = 1.5a;, 2ap,2.5ap at constant V, = 100R,, N = 3D.
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Figure (3-11): Heat Capacity of donor impurity QD (C,,/Kg) as function of temperature( T) for
different values of N = 2D, 3D, 4D at constant V, = 100R, ,R = 2ap.

3.2.3 Entropy S of the donor impurity

Another important thermodynamics quantity we have studied is the entropy
(S) which is real physical quantity and is a definite function of the state of
the body. We have calculated the entropy(S) as function of temperature
(T) as shown in figure (3-12) with impurity and without impurity. The
increasing in entropy (S) of QD with increases the temperature (T) is
expected , at lower temperatures the behavior is qualitatively different as
compared to that at relatively higher temperatures, the entropy increases
monotonically at high value of temperatures but at low temperatures the
entropy increases quite rapidly. The thermal energy of electrons will bring
more and more disorder in the form of random motion so the entropy (S)

increases with temperature (T) increasing. At zero temperature (T) only the
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lowest energy level is occupied so the entropy (S) is zero and there is a
very little probability of a transition to a higher energy level. As the
temperature (T) increases there is an increase in entropy (S) and thus the

probability of a transition goes up.
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Figure (3-12): Entropy of QD (S/Kjg) as function of temperature (T) with donor impurity and
without impurity at constant R = 2ap ,V, = 50R, ,N = 3D.

The variation of entropy (S) with respect to the QD radius (R) at different
temperature (T) is shown in figure (3-13). The figure shows that the
entropy (S) increases as the QD radius ( R ) increases because the
increasing in radius will lead to the more ways there are to distribute the
atom in that size which means higher entropy (S). Figure (3-14) shows the
effect of the potential depth (V,) on the behavior of the curve of the
entropy (S) at different temperatures (T). The figure shows clearly the

change in the entropy (S) curves as we increase the confining Gaussian
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potential I/, . The Gaussian potential term (—Voe‘rz/ 2“32) increases greatly

the total energy state due to its large Gaussian energy confinement.
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Figure (3-13): Entropy of donor impurity in QD (S/Kg) as function of temperature (T) for
different values of R = 1.5ap, 2ap,2.5ap at constant V, = 100R,, N = 3D.

— — = V0=40 Rp =
-
_ V0=60 Rp .=
i V0=100 R, - 1
15 D > S 4
”~
7
7
’
’
s
& 10 y: 4
? /
7/
7/
L / .
05} / i
- 7/
/
7/
I 7/
P
00} 4 — — -
0 50 100 150 200 250 300
T(Kelven)

Figure (3-14) : Entropy of donor impurity in QD (S/Kg) as function of temperature (T) for
different values of V, = 40R,, 60R,100R, at constant R = 2.5a,, N = 3D.
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To emphasize The effect of dimension (N) on entropy (S) we had plotted
in figure( 3-15) the entropy S/Kgas function of temperature (T) but at

different values of dimension (N) .The entropy change is due to the

difference in spectral density of QD states.
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Figure (3-15): Entropy of donor impurity in QD (5/Kg) as function of temperature (T )for
different values of N = 2D ,3D ,4D at constant R = 2.5a, ,Vy = 100R), .
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Chapter four
Conclusion

We had solved the donor impurity in GaAs/AlGaAs QD with Gaussian
potential Hamiltonian using the shifted 1/N expansion method. We have
presented a calculation for the donor binding energies associated with the
ground state in two, three and four dimension. We have considered the
effects of impurity, dot radius (R ), confining potential depth (V,) and
dimension (N) on the ground state energy, the interplay of these effects
leads to a dependence of the binding energy on these factors .The computed
result shows that the impurity binding energies increase with the decrease
in dot size (R). Furthermore the binding energies increase with the increase
in potential depth (V/;). The results of this work show that the effects of the

V,, N, R on the binding energy of donor impurity should be considered.

According to the numerical results obtained in this work, we have shown
the shifted 1/N expansion method is very efficient and accurate in

calculating the energy spectrum of the donor impurity in QD.

The heat capacity (C,) and entropy (S) dependence on dot radius (R),
confining potential depth (V,), dimension (N) and temperature (T) of
GaAs/AlGaAs QD had been investigated. The investigations had shown
clearly that increasing temperature (T), dot radius (R) and dimension ( N )
enhance the heat capacity (C,) and entropy (S),while enhancing the
confining potential depth (V,) decrease the heat capacity (C,) and

entropy (S).
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In this work, the impurity presence, dot radius (R), confining
potential depth (V,), dimension (N) and temperature (T) effects on the
energy, binding energy, heat capacity ( C,), entropy (S) had been studied.
However, the electronic and thermodynamic properties of donor impurities
in quantum dot are very interesting issues in the future due to its potential
in the device applications. In addition the properties of the donor impurity
in heterostructure for full energy spectra are very important subject to be

studied.
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Appendix

The shifted 1/N expansion method consists in solving equation (5)
systematically in terms of the expansion parameter 1/k. The leading

contribution to the energy comes from the effective potential:

2
L (A1)

8m*r2 Q

Veff(r) =

Where Q is a constant which rescales the potential (in large k limit),
Q = k?. To obtain such an expansion it is necessary to remove linear parts
with respect to the coordinates in the potential. Therefore we develop the

potential around its minimum.

V(r) is assumed to be well behaved so that V, ¢¢(r) has minimum at r = 7,
and there are well-defined bound states. Q is then determined from the

following equation:

4m*ry3 L= p?Q (A2)

d‘)"o

In order to shift the origin of the coordinate to the position of the minimum

of the effective potential it is convenient to define a new variable x

1

X = i—i (r—ry) (A3)

By using the Taylor expansion around the effective potential minimum ry ,

respectively x = 0 we will define an oscillator potential :
1/2

h TO?
!3 + dVT °] (A4)

"
2m =

w =
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The energy eigenvalues are given by an expansion in powers of 1/k where
k = N+ 21l —a, N being the number of spatial dimensions and (a) so-

called shifted parameter.
The shift parameter is defined by equation:

a=2-20n, +1H=2 (A5)

For any value of the radial quantum number n,(n, =n—1[01—1) and for

any value of [ the energy E( n,, 1) is given by:

E(n) =Ey+E, +E, + Eg+ - (A6)
The binding energy Eg(n,l) in a given state is defined by
Eg(n,l) =Eg(n,Lw=0)—-Ezg(n,Lw=1)

where:

Eo = V(r) + (Q/(8+m" 7?)

Ey = (¢; * ¢3)/(8 % m")

E, = (E; + a;)/r?

Es =a,/(k*1r?)

where:

Q=(N+2x*¢—a)?

c=01-a)
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c;=02-a)

cz=3—a)

@ =n;*e, +3*ny,xe, —Cs *x (e,2+ 6%n; *xe; *e3 + Ny *e32)
ay, =t; +t, +thg

s = w!

The explicit forms of the previous parameters are given in the following
t; =t —cgx(ty, +t3+t, +ts + tg)

tip = €5 * (tg + tg + tyg +t11)

tie = —Cs5> * (ti3 + ti4 + tys)

With:

tij=ny*d, +3*n,*xd, +5*ng *dg
t,=n;*e,2+12xn,xe, xe,

ty =2xe; *xd; + 2 xng xe,?

ty, =6*n; *e; xds +30+*n, *xe; xds

ts =6xny *xe3xdy +2xn, *e3 *xd;

te =10 *xng xe5 * dg

tg =4*elxe, +36%xn; *xe xe, *e;
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tg = 8%y * e, * e3°
tio=24*n,*xe2*xe, +8xn,xe xe3xe,
ty; =12 *xng*e3? x e,

ti3 =8xe;3xe3+ 108 xn; * e % x e5?

ti = 48 % ny, * eq *x e3>

tis = 30 * ng * eg*

Where (s)(d’s) and (e’s) are parameters given as :
n, =1+2x*n,

n,=1+2%*n, +2x*n,?
ng=3+8xn,+6*n2+4x*n.3

ny =11+ 30 n, + 30 * 1,2

ns =21+59%n, +51+n,2+34%n,3

neg =13 +40*n, +42+n,%2 +28xn,3

n, =31+ 78 *n, + 78 * n,.2

ng = 57 + 189 * n, + 225 *n,.> + 150 * n,.3
ng = 31+ 109 xn, + 141 *n,.2 + 94 x n,.3

Cp,=2*xm" *w
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€1 = 61/\/C_4

e,= €,/¢y

es= €3/ ¢,

e,= €41¢,°

dy =61/ \[cq

dy, = 65/¢4

ds = 83/c,>/?

dy = 6,/C4°

ds = 85/c,>/”

de = 86/c4s’

Furthermore:

€1 =C/(2*m")

€, = =3 xCy/(4*m")

€3 = —1/(Z*m") + (r5 * der3(r)) /(6 * Q)
€4 = 5/(8xm?) + (15 * dery(r)) /(24 * Q)
61 = —cy xc3/(4*m")

8, =3*cy *xc3/(8*m)
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53 == Cz/m*

0, =—=5%cy/(4*m")

05 = =3/(4*m’) + (r; * ders5(r)) /(120 * Q)

86 = 7/(8*m”) + (15 * ders (1)) /(720 * Q)

Where:
aVv
dery(r) = I
d?v
derz (7") = W
d3Vv
der3 (7") = W
4y
der4(r) = W
%
ders(r) = s
dev
derg(r) = P
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