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Abstract

The complex scalar field is treated as a constrained system using the
Hamilton-Jacobi approach. The reduced phase space Hamiltonian density
is obtained without introducing Lagrange multipliers and without any
additional gauge fixing condition. The quantization of this system is also
discussed.
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approach, path integral quantization, reparametrization invariant theories,
quantization of complex field systems.

adla

o 2sSha (silala 44 Hla aladinly Baie a2t A S Hall Jlaall adai dallas 215

@ia_gzsw;_jj@\ﬁ‘ya&wMQJQM\‘;ﬁUﬁ\”_‘H\L,\;d)_.a;j\
Lﬁ)h&d\ﬁ.«iﬂ\&ﬂ)ﬁae\mﬁm\)ﬂ c&ﬁaﬂ;:‘\“\)dﬁﬁmﬁ\} :\:\;)\;LJ)J

1. Introduction

There are some famous theories of parameterization which can be
described as invariant. Einstein's theory of gravitation, relativistic point
particle and relativistic string theories are good examples. The first
systematic study of mechanical systems including field theories with
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constraints was done by Dirac (Dirac, 1964), (Dirac, 1950, p.129). He
showed that the algebra of poisson bracket determines a division of
constraints into two classes: first- class constraints that have vanishing
poisson's brackets with all other constraints and second-class constraints
that have non-vanishing poisson's brackets. The presence of constraints
in such theories makes one be careful when applying Dirac's method,
especially when first-class constraints arise since the first class
constraints are generators of gauge transformations which lead to the
gauge freedom. In other words the equations of motion are still
degenerate and depend on the functional arbitrariness. Recently the
Hamilton-Jacobi (Guler, 1992, p.1389), (Guler, 1992, p.1143), (Rabi, &
Guler,. 1992, p.3513), (Muslih, 1998, p.277) method has been developed
to investigate constrained systems. In this method, the distinguish
between the first and second class constraints is not necessary. The
equations of motion are written as a total differential equation in many
variables, which require the investigation of the integrability conditions.
In other words the integrability conditions may lead to new constraints
Moreover, it is shown that the gauge fixing, which is an essential
procedure to study singular systems by Dirac's method, is not necessary
if the Hamilton-Jacobi method is used. The aim of this paper is to
analyze field systems as singular systems by using the Hamilton-Jacobi
method and by considering that the reparametrization invariant theories
have vanishing Hamiltonians. Besides, we discuss the quantization of this
system using the canonical path integral quantization (Muslih, 2000, p7),
(Muslih, 2000, p. 203), (Muslih, 2000, p. 2495), (Muslih, 2002, p.1),
(Muslih, 2002, p. 919), (Muslih, & et.al. 2004, p. 119).

The plan of this paper is the following: A brief information of the
Hamilton- Jacobi method is given in section 2. In section 3 the
parameterization invariant field theory is treated as a constrained system
using the Hamilton-Jacobi method. In section 4 the Hamilton-Jacobi
analysis for the time "t" as an evolution parameter is given. In section 5
we obtain the path integral quantization by using the canonical path
integral formulation. In section 6 conclusions are presented.
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2. The Hamilton-Jacobi method

In this section we will briefly review the Hamilton-Jacobi method
(Guler, 1992, p. 1389), (Guler, 1992, p. 1143), (Rabi, & Guler, 1992,
3513), (Muslih, 1998, p. 277) for studying the constrained systems.
Consider a system with n degrees of freedom. It may have r primary
constraints, in this case the canonical formulation gives the set of
Hamilton-Jacobi partial differential equation (HIPDE) (Guler, 1992, p.
1389), (Guler, 1992, p. 1143), (Muslih, & Guler, 1995, p. 307).

1 & &
H,) X5 8,,—,— |=0
/et a,f=0n-r+1.,n.a=1..n-r, (1)
ag, X,
where
H, =H, (258, 7) + 7, (2)

and H,is the canonical Hamiltonian. The equations of motion is

obtained as a total differential equation in many variable as follows:
(Guler, 1992, p. 1389), (Guler, 1992, p. 1143)

OoH' MH oH'
dg, =Pedy dr =-Tedy dr =-Pedy u=1..r, G
¢a 5ﬂ,'a ZU{ 72- 5¢a Z ﬂ-ﬂ 5 p Z,L ILl ()
dz=(-H, + 7, Teydy )
or

a

where z=S(y,,4,) and H represent the variations of H with respect
X

to X.

The set of equations (3),(4) is integrable if and only if (Guler, 1992,
p. 1143) , (Muslih, & Guler, 1995, p. 307)

dH, =0, ©)
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dH' =0, u=1..,r. ©)

If conditions (5) and (6) are not satisfied identically, one considers
them as a new constraint and again tests the consistency conditions.
Thus, repeating this procedure, one may obtain a set of conditions.
Hence, the canonical formulation leads us to obtain the set of canonical
phase- space coordinates ¢, and 7, as a function of y,, besides the

canonical action integral is obtained in term of the canonical coordinates.
The Hamiltonian H, can be interpreted as the infinitesimal generators of

the canonical transformation given by parameters y,. In this case, the

path integral representation may be written as (Muslih, 2000, p7),
(Muslih, 2000, p. 203), (Muslih, 2000, p. 2495), (Muslih, 2002, p.1),
(Muslih, 2002, p. 919), (Muslih, & et.al. 2004, p. 119)

‘ ‘ P _ X a_| ,
D(#ss 2> $0-0.) = [ (DI HOZ ) expli{ [(H,, +7,— ) xdlz, }1. (7)
bu Za 7a

One should notice that the integral (7) is an integration over the
canonical phase space coordinates ¢, and 7,

3. A treatment of complex scalar field as constrained system

Let us consider a complex scalar field described by the Lagrangian
density

£=0,0"0,4-10'¢—Ao'9)". (8)

Here ¢ and ¢ are functions of X 4> 4=0,123and t is a function of

independent parameter 7. The action integral for this system may be
written as

_,_ _‘_
S[gg'1 =[x 2L L gy agey) ©
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Since £ is a regular Lagrangian density, parameterize the time

t— 7 withr = % > 0, then the action integral (9) may be written as

S[¢.¢'1= [dxdez,, (10)
where the singular Lagrangian density £, is given by

_,000¢" _Vgve' idd A4e')

i or Ot : :
T T T

c (11)

The generalized momenta conjugated to the generalized coordinate
are defined as

o, _.o¢

— — N 12
=50 P (12)
o(—~
or
pte Ok _ .09 (13)
o’ ot
o(—
ot
a[, ) a a T + + +
m= e @ L vy ieh - gy (14)
ot or Ot
Using (12) and (13), the equation (14) can be rewritten as
w =" + VeV + usdp" + A(p8") 1=, (15)
Hence, the primary constraint is
H = +H, =0, (16)
where
Ho=nx' +VV '+ uidp" + 2(pg")*. (17)
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Besides the canonical Hamiltonian H _is defined as
o0¢ og’ ot
H =|d’X[-£, +7—+7" ——+7,—]=0, 18
e R S e b P (18)
calculations show that H_ is identically zero.

Now the set of Hamilton-Jacobi partial differential equations
(HJPDE) is expressed as

H.=n"+H. =0, 7’ =§:O, (19)
ot
': = as
H,=nm+H, =0, ”t:&:()- (20)

The equations of motion are obtained as a total differential equation
in many variables as follow

SH O,

d¢ = 5; dr+ o dt = 7' dt, (21)
dg’ =§Z§dr+gﬁ dt = zdt, (22)
dz =— 5;;; dr — 5;;; dt = ¢" + 249" + V4 'V341dt, (23)
dr’ =- ‘;Z dr — ‘;;[;' dt = {u p+220p" +VgVie'ldt, (24)
dnt:—ag;dr—(s}[t' dt = 0. (25)

To check whether the set of equations (21-25) is integrable or not, we
have to consider the total variation of the constraints. Since

dH, =dz, +dH, =0, (26)
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vanishes identically, the set of equations is integrable and the canonical
phase-space coordinates ¢,¢", 7, 7" are obtained in terms of t.

4. Hamilton-Jacobi Analysis for the time '"t" as an evolution
parameter

In this section, we shall investigate the model (8), by treating the

time "t" as an evolution parameter. The Lagrangian for this model is
given by

0p 0" 04 04

L=—— T — 2 pp — A(Pp" ). 27
ot ox ax M g9 —APg') 27
The generalized canonical momenta are calculated as follows:
t
_ oL _9 (28)
o) &
ot
gt 0L 09 (29)
o¢’ ot
o(——
ot
The canonical Hamiltonian is calculated as
I, =7r' VIS + igh! + B (30)
The Hamilton-Jacobi partial differential equation is
H,=nm, +H, =0, ﬂtI%IO. (31)

Besides, the equation of motion is the same as the once obtained in
equations (21-25). The equivalence between (31) and (20), shows that by
using the Hamilton-Jacobi method we obtain the canonical Hamiltonian
H , for the complex scalar field in a gauge independent manner.
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5 Path integral quantization method

To obtain the path integral quantization for this system, we can use
the canonical path integral formulation. Making use of (4), the canonical
action integral is calculated as
O,
—]

Sig.¢'1= I Horm el

T

d° xdt. (32)
Then the path integral for the complex scalar field system is given as

G, L TH,
(Outjs|In) = [T dgdg"dzdr" explif[ [, +r Laal ] (33)

One should notice that the integral (33) is an integration over the

canonical phase space coordinates ¢,¢", 7, 7" .

6 Conclusion

Reparametrization invariant theories have a vanishing canonical
Hamiltonian (Gitman & Tyutin, 1990), (Gavrilo, & Gitman, 1993, p. 57)
and enforce there dynamics through constraints. To obtain the correct
physical Hamiltonian and the correct equations of motion by using
Dirac's method (Dirac, 1950, p. 129) one has to impose gauge fixing of
the form t— f(t)=0. Such gauge fixing is not always an easy task.
While, in the Hamilton-Jacobi method treatment of this system, there is
no need to introduce Lagrange multipliers to the Hamiltonian H_as well
as no need to use any gauge fixing condition. On the other hand, the path
integral for the system is obtained as an integration over the canonical
phase space coordinates ¢,¢", 7, 7"
conditions.

without using any gauge fixing
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