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Effect of Applied Fields on The Magnetic Properties of Donor 

Impurity Confined in Parabolic GaAs Quantum Dot 

By 

Amal Jawdat DARAWSHEH 

Supervisor 

Prof. Mohammad Elsaid 

Abstract 

      Based on the effective mass approximation, the magnetic properties of 

parabolic GaAs quantum dot have been investigated in the presence of 

magnetic field, tilted electric field, in addition to Rashba Spin Orbit 

Interaction. The exact diagonalization method is used to solve the 

Hamiltonian of donor impurity confined in a Quantum Dot (QD) and to 

obtain the Eigen energies. The Binding energy of the donor impurity has 

been calculated as a function of various QD physical parameters. 

We have shown the dependence of the magnetic quantities like: 

magnetization (M) magnetic susceptibility (χ) and heat capacity (C𝜈) of the 

donor impurity in the QD on: both magnetic and external electric fields, 

confining frequency (  ), titled angle (θ), and temperature (T). 

Furthermore, the effects of Rashba Spin- Orbit Interaction term, as a key 

parameter in the field of Spintronics, on the magnetic properties has also 

been studied. 

The results reveal that the external electric field strength and its tilt angle, 

magnetic field, temperature, confining frequency, in addition to Rashba 

effect affect the magnetic properties of the QD, changing it from 



xiv 

diamagnetic to paramagnetic material. Also, the heat capacity of the QD is 

affected by those parameters. 

Our results are in very good quantitively agreement with the corresponding 

ones reported in the literature. 
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Chapter 1 

Introduction 

Technological development requires smaller and faster machines. So, 

Nanoscience became a rich field for researchers; to study the electronic, 

magnetic, optical and thermodynamic properties of low-dimensional 

Nanostructures. 

1.1 Nanostructures 

Low dimensional semiconductors or nanostructure semiconductors are 

those which have at least one dimension in nanoscale, Nanoscale means a 

range from 0 to 100 Nanometers (nm). Depending on the number of 

electrons that can move freely in dimensions, nanostructures are classified 

into three categories: 

1. Quantum Well (QW): in those heterostructures, electrons are trapped in 

one dimension, and free to move in two dimensions (2D). 

2. Quantum Well Wire (QWW): the electrons are free to move in one 

dimension and confined in the two other dimensions (1D). 

3. Quantum Dot (QD): electrons are confined in all three dimensions     

(0D) [1]. 
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The confinement phenomena change the density of states of the 

nanostructure [2] as shown in figure 1.1, and hence, the energy spectra are 

affected. 

1.2 QD Heterostructure 

In QD, since the electrons are trapped in the three spatial dimensions, the 

energy spectra are significantly affected, and shows a discrete behavior like 

the real atoms, so that they are called artificial atoms, Figure (1.2) shows 

the similarity of the electronic energy levels for both real atoms and 

 

Figure 1.1: Density of states for bulk materials (3D), QW (2D), QWW (1D). and QD(0D) [54]. 

QD. However, there is a unique and supreme advantage of QD over real 

atoms, that their energy levels can be modulated and manipulated by 

different methods [3], such as changing the size and shape of the QD, and 
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this occurs during fabrication processes. Fabrication of QD can be made by 

different methods, such as: Colloidal synthesis, lithography and epitaxial 

growth. Moreover, the properties of the QD can be altered by changing the 

temperature, pressure, applying magnetic or/ and electric fields. Because of 

this wide-broad possibility to change and design the properties of QD, they 

became a rich field for researchers to control their physical properties. QD 

open a new avenue in many technological applications such as: (QD 

LASER), memories, Single Electron Transistors (SET’s), solar cells, 

quantum computers and recently spintronics.  

 

 

 

 

 

 

Figure 1.2: Energy levels for natural atoms and ions (at the left), and energy levels for QD [55] 

In early 1980’s, the first QD were successfully made in laboratories. This 

initiates the investigation of the properties of this heterostructure, and how 

they are affected and changed under certain conditions. 
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1.3 Heterostructure and confinement potential 

In our research, the QD is made from Gallium Arsenide (GaAs) surrounded 

by Aluminum Gallium Arsenide(AlGaAs) semiconductor heterostructure 

[44]. 

GaAs is composed of gallium (Ga) and arsenic (As) which has a low direct 

bandgap, where AlGaAs is obtained by substituting some of Ga ions by Al 

ions which have the same number of valence electrons, with a higher band 

gap energy than GaAs. When Silicon (Si) is doped into the AlGaAs layer, 

they take place of some of As atoms, and since Si has four valence 

electrons while As has three; each silicon atom will release an electron as a 

free electron in the heterostructure. Those free electrons will move from 

AlGaAs layer (leaving holes) to the lower band gap of GaAs layer, where 

they will be trapped in the GaAs region. In this way, electrons will be free 

to move in the XY- plane, but its motion is quantized in the growth 

direction (Z- direction), it is then called 2D structure. In order to reduce the 

confinement, a negative voltage is applied using metal electrodes at the 

surface of the heterostructure, (Figure 1.3). 

The lateral confinement potential is taken to be parabolic, since this model 

is the best to describe this confinement in postulates of quantum 

mechanics. 

Figure (1.4) shows the confinement potential which is used to confine 

electrons in a QD. To demonstrate our QD Heterostructure, imagine an 
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Figure 1.3: Schematic representation of GaAs/AlGaAs [56]. 

electron in the XY- plane, at distance r from the origin, and an impurity 

located at distance d on the Z axis, with applying a uniform magnetic field 

directed at Z direction, in addition to a tilted electric field with angels θ and 

  as illustrated in Figure (1.5) with the presence of lateral confinement 

frequency   . 

The study of hydrogenic impurity in a QD is an important research issue in 

low-dimensional semiconductor systems; because the presence of impurity 

in nanostructure has a great influence on the electrons mobility, electronic, 

magnetic and optical properties [4]. 
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Figure 1.4: Confinement potential for QD [57] 

 

 

Figure 1.5: Tilted electric field. 

Moreover, Rashba Spin Orbit Interaction(RSOI) has a noticeable effect on 

the energy Eigen values of QD, and that is a main crucial part in the very 

recent emerging field called Spintronics, (Figure1.6 ) [5]. 
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Figure 1.6: Rashba Spin Orbit interaction in Spintronics [58].                                                             

1.4 Literature Review 

The effect of hydrogenic impurity in QD energy spectra has been stud- ied 

extensively many by researchers [6–14]. Most of the work examines 

shallow donor in spherical QD using numerical Finite Element Method 

(FEM) [15] or effective mass and variational techniques [16]. The presence 

of hydrogenic impurity in QD affects significantly spectral properties and 

the energy spectra. Addition of external parameters like: magnetic [17–20], 

electric fields [21–23], changing the pressure and temperature [24–28], the 

confinement potential [29, 30], and finally Spin-Orbit Interaction [31–33] 

can change the electronic, magnetic and thermal properties of the QD. 

Different theoretical methods had been used to solve the Hamiltonian of 

QD in the presence of the previously mentioned parameters. Most of the 

work examine shallow donor in spherical QD using numerical Finite       
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Ele-ment Method(FEM) [34, 35] or effective mass and variational 

techniques. 

H. Bahramiyan et al. used variational method to study the effects of hy-

drostatic pressure, temperature and impurity position on the donor binding 

energy of a pyramid QD [4]. R. Khordad et al. studied the binding energy 

of diamagnetic susceptibility of a zero-temperature quantum anti dot, using 

analytical method [36]. A. Vanitha et al. investigated the effects of 

magnetic field strength on donor impurity in QW using numerical 

calculations [37]. They have calculated the binding energy as a function of 

dot size for various impurity locations, different pressure and temperature. 

They have found that the binding energy increases when the pressure 

increases, and it enhances as the temperature decreases. Elsaid studied the 

effect of applied magnetic field on shallow donor impurity states in a 

parabolic QD using ( 
 

 
 ) expansion [38]. 

Zaiping Zing et al. studied the effect of the tilted electric fields on on- 

center donor impurity in cylindrical QD using Potential Morphing Method 

(PMM) [39]. A. Chafai et al. used variational method to study the impact 

of the strength of an external magnetic field on the binding energy of an on 

- center shallow donor inside a Nano dot [40]. 
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The combined effects of hydrostatic pressure and temperature on the 

binding energy of hydrogenic impurity on a spherical QD in the presence 

of the external electric field was solved by means of the perturbation ap- 

proach, using effective mass approximation [24, 41]. XIE Wen-Fang 

investigated the ground state properties of a two-dimensional, two electrons 

QD with a Gaussian confining potential under the influence of 

perpendicular magnetic field using numerical diagonalization [42]. 

Recently, the thermodynamic properties of a QD under the presence of 

Rashba spin orbit interaction and magnetic field have been studied by 

Sukirti Gumber et al. using perturbation method [43]. G. Rezaei et al. 

studied the simultaneous effects of external electric field and magnetic 

field, hydrostatic pressure and temperature on the binding energy of a hy-

drostatic donor impurity in a QD using numerical integration method [44]. 

F. Bzour et al. calculated the energy levels of GaAs parabolic QD under the 

combined effects of external pressure, temperature and magnetic field 

using exact diagonalization method [45].  

The magnetization (M) and magnetic susceptibility (χ) of a two-electrons 

parabolic QD in the presence of electron- electron and spin orbit 

interaction, had been studied by D. Sanjeev Kumar et al. [46]. M. M. Al 

Shorman et al. have examined the effect of magnetic field in addition to 
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electron-electron interaction in the thermodynamic properties of parabolic 

GaAs QD [47].  

In this research, we have studied the effects of the presence of uniform 

magnetic, tilted electric fields and RSOI on the energy spectra and 

thermodynamic properties of a QD with a hydrogenic impurity.  All the 

energy matrix elements are obtained in a closed analytical form. The exact 

diagonalization method is then implemented to diagonalize the matrix 

Hamiltonian and compute the QD energy spectra. 

Our results are explicitly shown in chapter 3. 

1.5 Research objectives 

In this study, we have four main objectives, which can be summarized as 

follows: 

1. Using exact diagonalization method to solve the Hamiltonian of donor 

impurity in a 2-D QD in the presence of uniform magnetic field (B with 

cyclotron frequency (ωc)) and tilted electric field ( F , θ), in addition to 

temperature (T), confining frequency (ω0), RSOI term (α). Then, the 

complete energy spectra will be calculated as a function of the QD physical 

parameters (ωc, F , θ, T, ω0 and α). 

2. Studying the dependency of QD magnetization on those physical 

parameters. 
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3. The computed magnetization values will be used to calculate the 

magnetic susceptibility as a function of QD parameters (ωc, F, θ, T,   ,   

and α). 

4. Finally, our results for the energy spectra will be used to demonstrate the 

behavior of QD’s heat capacity under the presence of electric field, and the 

effect of  RSOI. 

1.6 Organization of the Thesis 

The remainder of this thesis is organized as follows: 

Chapter 2: Theory: It displays the theoretical work we followed in our  

computation. 

Chapter 3: Results and Discussion: It displays our results and explains 

them. 

Chapter 4: Conclusion: It summarizes the conclusions of thesis, and also 

suggests some possible future work. 
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Chapter Two 

Theory 

This chapter consists of three main parts that includes the details of our 

calculations in order to reveal the theoretical concepts we followed in our 

work. The main parts are: 

1. QD Hamiltonian in presence of electric field, magnetic field, impurity 

in addition to (RSOI) term. 

2. Exact diagonalization method. 

3. The Magnetization, susceptibility and heat capacity of the QD. 

2.1 QD Hamiltonian 

The Hamiltonian of a QD in 2-D, is given by:  

 ̂   
 

   
                                                                                        (2.1)                                                                                                                                           

Where: 

 V (r) is the confinement potential, and m
*
 is the effective mass of the 

electron, and in our work, we considered the parabolic confinement     

where:  

   
 

 
      

                                                                                          (2.2) 

Where:  

   is the confinement frequency. 
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and  ⃗  is the kinetic momentum given by: 

 ⃗ =  
 

 
  ⃗                                                                                                   (2.3)   

Where:  

      is the reduced planks constant.                                                                                     

In our study we have considered several parameters that affect significantly 

the Hamiltonian of the QD. Those parameters are: 

1. Magnetic Field: its effect is included in the vector potential   , where: 

    
 

 
  ⃗⃗                                                                                                (2.4) 

Where   ⃗  is the strength of the magnetic field, r is the radial position of the 

electron. 

2. Presence of impurity, its effect appears as the new term in the 

Hamiltonian (  
  

  
 ), where e is the elementary charge of the electron, and 

  is the dielectric constant of the material (the dependence of m
*
 and   on 

temperature and pressure is illustrated in appendix A In addition to the   

effective Rydberg units (R
*
). 

3. Tilted electric field (Figure 1.5), its effect appears as a new term in the 

Hamiltonian given by: e F.r = -eFr sinθ cosφ . where F is the strength of 

the electric field, θ and φ are illustrated in Figure 1.5. Where r and φ are the 

two- dimensions in polar coordinate system, while θ is a tunable parameter 

that F makes with Z -direction. 
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4. Rashba Spin-Orbit Interaction(RSOI) term, it is represented as VR, 

where: 

        
  

  
 *   

 

 
 
 

  
  

     

  
+                                                              (2.5) 

V is the confinement potential, σz is the Pauli matrix, α is the coupling 

factor. 

So, the total 2D-QD Hamiltonian in (r,φ) polar coordinates is given by[31, 

44]:  

 ̂   
 

   
 ( ⃗   

 

 
   )

 
 

   

  
         + 

 

 
     

      

      
  

  
  *   

 

 
 
 

  
  

     

  
+                                                                     (2.6) 

where: c is the speed of light.  

The Hamiltonian using the symmetric gauge for A; where A=B (-y, x,0), 

can be expressed as: 

     
  

   
     

 

 
      

     
 

 
      

      
   

  
                               

+
 

 
        *

          
 

 
 +     *

          
 

 
 +                                      (2.7) 

Where s is the spin of the electron, and Lz is the angular momentum. 

which can be rewritten as: 

     
  

   
     

 

 
      [

  

 
   

    
  *  

          
 

 
+]   

   

  
 

              *
 

 
      

          
 

 
 +                                              (2.8) 
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and can be represented as: 

                                                                                                 (2.9) 

where: 

     
  

   
     

 

 
      [

  

 
   

    
  *  

          
 

 
+]               (2.10)  

And, 

     
   

  
               *

 

 
      

          
 

 
 +                     (2.11) 

where:  0 is the confinement frequency, and     is cyclotron frequency 

given by: 

     
  

   
                                                                                               (2.12) 

H0 is a harmonic oscillator type Hamiltonian with effective frequency ωeff. 

      
 

 
   

    
  *

        

 
+                                                              (2.13)  

with well-known Eigen functions     and eigenenergy spectra    ,  

Fock-Darwin states [48, 49], are given as:  

         
    

√  
     | |   

      

     
| |

                                          (2.14) 

And, 

         | |                                                                       (2.15) 
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where: 

n: is the radial quantum number, n=0,1,2,3, 4, …. 

m: is the magnetic quantum number, m=0, ±1, ±2, ±3, ±4, …  

  
| |

  is the associated Laguerre polynomials. 

 N: is the normalization constant given by:  

   √
      

     | |  
                                                                                                                                     (2.16)  

and, 

   √
        

 
                                                                                                                                         (2.17)  

The existence of the second part in the Hamiltonian in equation 2.9, makes 

the analytical solution unobtainable. So, we will apply Exact 

Diagonalization Method (EDM) as a powerful technique to solve the above 

Hamiltonian. 

2.2 Exact Diagonalization Method 

To obtain the energy spectra for the total Hamiltonian given in equation 2.9 

we have used EDM (see Appendix B), we need to construct a matrix 

Hamiltonian as: 

        = ⟨   | |      ⟩                                                                  (2.18) 

Then, diagonalize that matrix (        ) and extract the lowest eigenvalue 

using Mathematica package. A very important step was to 
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write           in the simplest closed form to reduce the execution time 

needed for the diagonalization process. 

The matrix terms of the Hamiltonian in equations 2.10 and 2.11 (using 

effective Rydberg units in our program) are obtained in a closed analytical 

form as given below: 

1.⟨   |  |      ⟩ =      | |                                          (2.19) 

2. ⟨   | *
 

 
      

        
 

 
+   |      ⟩   (

 

 
             

 )                                                  

(2.20) 

1. ⟨   |  
   

  
|     ⟩ =  

 

 
∫ ∫    

  

 

 

 

 

 
                               (2.21) 

To evaluate the radial part of the integral, we used the property of 

Laguerre’s polynomial relation [50]: 

∫             
       

        
 

 

 
                

    
    ∑

         

        

 
   (

 

 
)
 
∑

           

        

 
    (

 

 
)
 
         (2.22) 

So, the coulomb matrix term in equation 2.21 reads as, 

⟨   |  
   

  
|     ⟩  

  
 

 

 (  
 

 
)           

  

     
 ∑

        
 

 
  

        

 
   ∑

           
 

 
  

        

  

                 ( 2.23) 

4. The electric field energy contribution is: 

⟨   |            |      ⟩  

√        ∫ ∫    
  

 

 

 
                                                         (2.24)        
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To simplify equation ( 2.24) , we have followed the same steps as before, 

but here the integration over φ is not (2 ) anymore, because of the 

existence of (cosφ) and the integration is evaluated by rewriting               

(cosφ = 
        

 
). 

So, when applying the relation in equation 2.22 we had two terms, the first 

term with 
   

 
 multiplied by        and this shift    to   +1, so, a new 

selection rule will appear as (        ). And the other term 
    

 
 is 

multiplied by       , and this shift    to   -1, and so, another selection 

rule appears (        ).  

⟨   |            |     ⟩  

  
√       

 
 (

                 
  

     
 ∑

           

        

 
   ∑

              

        

  

    

 
                 

  

     
 ∑

           

        

 
   ∑

              

        

  

    )              (2.25) 

and now, after all that work, our      is ready, and we extracted our results 

for the energy eigenvalues, and used them to investigate the dependence of 

both magnetic (M and χ) and thermodynamic (  ) properties of our QD on 

several parameters ( B, F, θ and ω0, T and α). 

2.3 Magnetization of the QD 

The Magnetization is a description of how magnetic materials react to a 

magnetic field. and it can be calculated by taking the magnetic field first 

derivative of the mean energy of the QD [51]: 

    
 〈              〉

  
                                                                           (2.26) 
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where, 〈E (B, F, θ, ω0, T, α) 〉   is the statistical energy of the QD given by: 

〈               〉   
∑     

 
  

    
   

∑   
 

  
    

   

                                                      (2.27) 

The summation is taken over the energy spectrum of the QD. 

2.4 Susceptibility of the QD  

Magnetic Susceptibility indicates whether the material will be attracted to 

(+ χ ‘ paramagnetic’) or repelled out of (- χ ‘diamagnetic’) a magnetic field. 

χ is calculated from M by [46]: 

   
 〈              〉

  
                                                                               (2.28) 

2.5 Heat Capacity  

Heat capacity of a material is the amount of heat needed to raise that 

material’s temperature by one degree, and it can be calculated for QD by 

[52]: 

    
 〈              〉

  
                                                                              (2.29) 
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Chapter 3 

Results and Discussion 

In this chapter we will present our computed results for the effects of ap- 

plied fields and the Rashba Spin-Orbit Interaction coupling on the energy 

levels, magnetic and thermodynamic properties of the QD. 

This chapter is organized as follows: 

1. Convergency. 

2. Binding energy 

3. Statistical energy 

4. Magnetization and Susceptibility 

5. Heat Capacity 

The physical parameters for GaAs - QD material used in our work (at zero 

Kelvin, and zero pressure). 

1. Effective Rydberg (R*) = 5.694 meV 

2. Dielectric constant ( ) =12.655   , where    is the dielectric permittivity 

of free space. 

3. Effective mass of electron = 0.0669 m0, where mo is the mass of free 

electron. 
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3.1 Convergency 

The first step in our work is to ensure the convergency issue, to guarantee 

that our desired energy spectra are accurate. In our calculations, we have 

changed the number of basis, until we have obtained the convergent energy 

values as shown in tables 3.1, 3.2,     and 3.3.  

Our chosen basis was 72x72 (the angular quantum number m was taken to 

be (- 4   4) and the radial quantum number n (0   7)) where there was a 

stability in the values of the ground state energy as shown in Figure 3.1. 

 

TABLE 3.1: The values of the Ground state energy and the basis of the 

matrix, with changing angular quantum number m from -4   4 and 

the radial quantum number n is taken from 0   5 at   =3R*,  =2R*, 

F=5 R*,                      

No. of 

Ground state energy (meV) 

basis  

  

0 -14.9319 

18 -19.7069 

30 -20.1743 

42 -20.2128 

54 -20.2154 

66 -20.2155 

78 -20.2155 

90 -20.2155 
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TABLE 3.2: The values of the Ground state energy and the basis of the 

matrix, with changing angular quantum number m from -4   4 and 

the radial quantum number n is taken from 0   7, at   =3R*, 

  =2R*, F=5 R*,                      

No. of 

Ground state energy meV 

basis  

  

0 -15.65 

24 -20.2647 

40 -20.7079 

56 -20.7438 

72 -20.7461 

88 -20.7463 

104 -20.7463 

120 -20.7463 

After the convergency issue is fulfilled, the next step is to calculate the 

Binding energy. 

TABLE 3.3: The values of the Ground state energy and the basis of 

the matrix, with changing angular quantum number m from -4   4 

and the radial quantum number n is taken from 0   7, at   =2R*, 

  =2R*, F=5 R*,                      

No. of 

Ground state energy (meV) 

basis  

  

0 -16.9567 

24 -24.1065 

40 -25.6193 

56 -25.9671 

63 -26.0399 

72 -26.0522 

88 -26.076 

104 -26.0831 

120 -26.0852 

136 -26.0854 

152 -26.0858 

168 -26.0859 

184 -26.0859 
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Figure 3.1: Ground state Energy Vs No. of basis, with F= 4.8 R*,   = 2 R*,     = 2R*, T 

= 0.01 K, θ = 60 
0
,                      

3.2 Binding Energy 

In this section we present our computed results for binding energies of the 

donor impurity under several QD physical parameters. 

In Figure (3.2), we have plotted Binding energy against    for different 

values of   , the figure shows that the binding energy increases as    in- 

creases. This is expected behavior; due to the presence of a magnetic field 

which adds new confinement for the electron as can be seen from equation 

(2.13). In Figure (3.2), we have shown the dependence of the donor binding 

energy in the QD, on the magnetic field for various confinements,              

   = 4R
*
, 6R

*
, and 8R

*
, comparing the three plotted lines: when the 

confine-ment frequency increases, that means more binding of the donor 
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impurity (higher binding energy), and that appears clearly in the Figure 

(3.2). 

In addition, in Figure (3.3) we have examined the effect of electric field on 

the binding energy for different values of   . As shown in the figure; the 

binding energy decreases, as the electric field increases, and this is because 

the electric field tends to separate the electron, i.e.  it moves the electron 

away, increasing the distance between the electron and the nucleus 

decreasing the confinement and the Coulomb interaction, and hence 

decreasing the binding energy, the numerical results are presented in table 

(3.4). 

Figure (3.5) shows the change in binding energy due to the change of the 

tilted angle of the electric field. In that figure, as θ increases, the com-

ponent of electric field increases, having the same effect on the binding 

energy as increasing F, and the figure shows the dependence of the binding 

energy on the electric field. 

All the results shown in the figures mentioned above are with good quali-

tative agreement of the results of reported works in [23, 44]. 

Finally, to present the effect of RSOI; we have plotted the binding energy 

against    in the presence of RSOI in Figure (3.4) and table (3.5). As 

shown in the figure, the effect of RSOI appears at higher   , where the 

coupling decreases the binding energy. 
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The presence of spin down (-s) RSOI decreases the binding energy, and 

that because the negative sign that comes from the spin down decreases the 

effective frequency as shown in equation (2.13). 

TABLE 3.4: The binding energy for different values of electric field (F) 

and   ,   = 2R*,  T= .01 K, θ = 60 
0
,                    . 

F(R*) 

Binding energy meV  

(   = 6R*) 

Binding energy meV  

(   =8R*) 

0 43.058 47.814 

4 41.522 46.991 

8 37.554 44.716 

12 32.257 41.416 

16 26.462 37.513 

20 20.848 33.327 

24 16.085 29.1 

28 12.599 25.035 

32 10.286 21.314 

TABLE 3.5: Binding energy for different values of   , and 

with/without RSOI coupling, with F= 4 R*,   = 2 R*, T=.01 K, θ = 60 

0
,                    . 

   (R*) binding energy meV(α=0) binding energy meV (α= 20 meV.nm) 

0 1.747 1.747 

1.5 5.457 5.431 

2 12.635 10.814 

3.5 19.274 16.613 

3 24.145 21.125 

3.5 27.917 24.577 

4 31 27.238 

4.5 33.615 29.248 

5 35.896 30.603 

5.5 37.929 31.102 

6 39.773 30.284 
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Figure 3.2: Binding Energy Vs    for Different values of confinement frequency    = (8 R* 

for dotted line, 6R* for dashed line, 4 R* for solid line), with F= 4.8 R*, T = 0.01 K,  θ = 60 
0
, 

                   . 

Now, in the next two sections, our computed work for: Statistical energy, 

Magnetization, Susceptibility will be presented with the effect of: Electric 

field strength (F), Temperature(T), Confinement frequency (  ), Tilted 

angle (θ), presence of impurity, presence of RSOI and the strength of RSOI 

coupling, respectively. 

 

 

 

 

 

Figure 3.3: Binding Energy Vs electric field for different values of confinement frequency 

   = (8 R* for dotted line, 6R* for dashed line with   = 2 R*, T = 0.01 K, θ = 60 
0
, 

                    



27 

 

 

 

 

 

 

 

Figure 3.4: Binding Energy vs w0 with/without RSOI coupling dashed/ dotted, for F= 4.8 

R*,   = 2 R*, T = 0.01 K, θ = 60 
0
,                    . 

 

 

 

 

 

 

 

Figure 3.5: Binding Energy vs θ for different values of electric fields F = (2.6 R* for solid 

line, 5.2 R* for dashed line, 7.8 R* for dotted line), with   =2 R*, T = 0.01 K,    =2R*, 

                   . 
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3.3 Statistical Energy 

In order to obtain our desired results for the magnetic properties of the QD, 

we first computed the statistical energy as important quantity, from which 

we can derive all the thermodynamic quantities. defined in equation (2.27). 

The effect of electric field on the statistical energy is plotted in Figure 

(3.6). The figure shows that when the electric field strength gets higher, the 

statistical energy gets lower, because the electric field tries to separate the 

electron from the donor impurity, thereby, the binding energy gets lower, 

and so, the statistical energy decreases. 

In Figure (3.7), as the magnetic field increases, the statistical energy 

increases too, and that is due to the additional confinement of the electron 

by the magnetic field, and for different values of temperature, one can see 

from the figure that for higher temperature, the statistical energy is higher, 

and that is consistent with reference  [53]. 

The effect of    is presented In Figure (3.8), where we can figure out 

that    has more effect on the statistical energy when w0 is lower, while 

when 

 

 

 

 



29 

 

 

 

 

 

 

 

 

Figure 3.6: Statistical Energy against    for different values of F (F= 4.8 R* for solid line, = 7 

R* for dashed line),   = 2 R*, T = 0.01 K, θ = 60 
0
,                    . 

   is higher, the effect of    is minor, and in general, as w0 increases, the 

effective frequency      enhances the statistical energy. 

In addition, changing the tilted angle θ affects the energy values, as pre-

sented in Figure (3.9), as the angle θ increases, the strength of the electric 

field term increases also, which leads to quite large separation of the elec- 

tron from the donor impurity. In this case, the binding energy of the donor 

impurity decreases since the Coulomb attractive energy reduces, (Vc ~ e
2
/r) 

also, the presence of impurity shifts the energy values to higher levels, 

(Figure 3.10). 
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Figure 3.7: Statistical Energy against    for different values of T (T= .01 K for solid line, =10 

K for dashed line),   = 2 R*, F = 4.8 R*, θ = 60 
0
,                    . 

The presence of RSOI and the effect of strength of coupling is presented in 

Figures (3.11), and (3.12), respectively. RSOI coupling lowers the 

statistical energy. In the strong coupling case, the statistical energy values 

are lower than that of weak coupling for low values of   , while at higher 

   the situation is reversed. 

 

 

 

 

 

Figure 3.8: Statistical Energy against    for different values of    (   = 2 R* for solid line,      

= 2.5 R* for dashed line, = 1.5 R* for dot dashed), T= .01 K, F = 4.8 R*, θ = 60 
0
,   

                 . 
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Figure 3.9: Statistical Energy against    for different values of θ (θ =60 
0
 for solid line, =36

0
 

for thick line, = 0 for dot dashed line),   = 2 R*, F = 4.8 R*, T= .01K,   

                 . 

 

 

 

 

 

 

 

Figure 3.10: Statistical Energy against    with (dashed line)/without (solid line) impurity,   = 

2 R*, F = 4.8 K, θ = 60 
0
, T= .01 K,                    . 
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Figure 3.11: Statistical Energy against    with (dot dashed line)/without (solid line) RSOI,   = 

2 R*, F = 4.8 K, θ = 60 
0
, T= .01 K,                    . 

 

 

 

 

 

 

 

 

Figure 3.12: Statistical Energy against    with different values of RSOI coupling (α= 50 

meV.nm for dotted line, = 20 meV.nm for dashed line),   = 2 R*, F = 4.8 K,  θ = 60 
0
, T= .01 

K,                    . 
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3.4 Magnetization and Susceptibility 

In this section, our computed results for the M and χ for all the statistical 

energy figures presented in the previous section, are shown in the same 

order they appeared previously. 

The variation of M as a function of   at various values of F is shown in 

Figure (3.13). In both cases for F, as   increases, M decreases (or |M| 

increases) till    reaches critical value, then it starts to increase. This 

change means the transition from - χ (Diamagnetic material) into + χ 

(Paramagnetic material) as shown in Figure (3.14), this transition 

took place when F is low at lower   , while for high F, the peak in M 

occurs at higher   . For fixed values of   , the magnetization decreases as 

the electric field strength increases. This result is consistent with the donor 

energy be- haviour against the electric field shown previously. 

The change in the behavior of M is due to the electric field effect, which 

leads to the flipping in the sign of χ from  diamagnetic (- χ) to paramagnetic 

material (+ χ). 
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Figure 3.13: Magnetization vs    with different F values (F= 4.8R* for solid line, = 7 R* for 

dashed line) Different values of electric fields F = (2.6 R* for solid line, 5.2 R* for dashed line, 

7.8 R* for dotted line), with   =2 R*, T = 0.01 K, θ =60
0
                     . 

 

 

 

 

 

 

 

Figure 3.14: Susceptibility vs    with different F values (F= 4.8R* for solid line, = 7 R* for 

dashed line), with w0=2 R*, T = 0.01 K, θ =60 
0                    . 
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As a result, the electric field strength allows us to tune and control the 

magnetic type of the QD material. 

It is quite the same behavior of M and consequently of c that appears when 

M and χ are plotted against    as shown in Figures (3.15), and (3.16), 

where it is clear that for low temperature, the transition from decreasing M 

case (i.e. Diamagnetic region) to the increasing M case (paramagnetic 

region) occurs at low value of   , while the effect of T appears at higher T, 

where the transition occurs at higher   . 

 

 

 

 

 

 

 

 

 

Figure 3.15: Magnetization vs    with different T values (T= .01 K for solid line, = 10 K* for 

dashed line) with   =2 R*, F =4.8 R*, θ =60 
0
,                    . 
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Figure 3.16: Susceptibility vs    with different T values (T= .01 K for solid line, = 10 K* for 

dashed line) with   =2 R*, F =4.8 R*, θ =60 
0
,                    . 

At low magnetic field, the thermal energy is becoming more significant, 

and it enhances χ as the temperature increases. However, as the magnetic 

field increases, χ decreases with increasing temperature as expected. 

The effects of    on M and χ are presented in Figures (3.17), and (3.18) . 

The transition occurs more quickly for low confinement, while at higher 

confinement the transition gets slower, even disappears at higher values. 

For quite high magnetic field, (   >> 1.5 R
*
), χ is higher for higher values 

of     , due to the large confinement of the electron in the QD. 
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Figure 3.17: Magnetization vs    with different    values (  =2R* for solid line, = 2.5 R* for 

dashed line, = 1.5 R* for dot dashed) with T= .01 K, F =4.8 R*, θ =60 
0
, 

                   . 

 

 

 

 

 

 

 

 

Figure 3.18: Susceptibility vs   with different    values (   =2R* for solid line, = 2.5 R* for 

dashed line, = 1.5 R* for dot dashed) with T= .01 K, F =4.8 R*, θ =60 

0
,                    . 
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In Figures (3.19), and (3.20). The effect of θ is presented. Where increasing 

θ increases the resultant electric field. So, the behavior is similar to that in 

Figures (3.13), and (3.14). Noticing that in the absence of electric field      

(θ =0), the change in is smooth and with no peak and χ remains 

approximately constant in the diamagnetic regime. 

 

 

 

 

 

 

 

 

Figure 3.19: Magnetization vs   with different θ values (θ =60 
0
 for solid line, = 36 

0
for thick 

line, = 0
0
 for dot dashed) with T= .01 K, F =4.8 R*,    =2R*,                    . 

For quite high magnetic field range: (  : 1.5R
*
 - 4 R*), the χ  increases as 

the tilt angle (θ) increases. The increment in (θ) enhances the strength of 

the electric field, and thus, decreases the donor energy. In this case M 

decreases while χ increases.  
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Figure 3.20: Susceptibility vs    with different θ values (θ =60 
0
 for solid line, = 36 

0
 for thick 

line, = 0
0
 for dot dashed) with T = .01 K, F =4.8 R*,    =2R*,                    . 

Again, θ can control the sign of χ. 

In addition, we plotted M and χ against    in the presence and absence of 

impurity, and the results are presented in Figures (3.21), and (3.22)  

respictively. When the impurity exists, the M changes from decreasing into 

increasing (transition from diamagnetic regime to paramagnetic one at 

about   = 1.6 R*), but in the absence of impurity, M decreases until it 

reaches saturation at about    = 2.5 R* where χ became constant. 

The attractive Coulomb energy term due to the donor impurity, reduces the 
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Figure 3.21: Magnetization vs    with the presence/absence of impurity (solid/dashed) with T= 

.01 K, F =4.8 R*,    =2R*, θ = 60 
0
,                    . 

 

 

 

 

 

 

 

Figure 3.22: Susceptibility vs    with the presence/absence of impurity (solid/dashed) with T= 

.01 K, F = 4.8 R*,    = 2R*, θ = 60 
0
,                    . 
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energy of the electron in the QD, which results in reducing the magnetiza- 

tion of the QD, (Figure 3.21). 

The donor impurity decreases the magnetization as we explained in Figure 

(3.21), and in this case, the magnetic susceptibility enhances as the 

magnetic field increases. (Figure 3.22). 

We have also studied the effects of RSOI. The effects of the presence or 

ab- sence of RSOI on M and χ are displayed in Figures (3.23), and (3.24), 

respectively. Considering the strength of coupling; Figures (3.25) and 

(3.26)  show the effect of coupling strength on both M and χ. In weak 

coupling (α = 20 meV.nm) the transition from diamagnetic to paramagnetic 

occurs at low   while at higher coupling strength (α = 50 meV.nm) the 

transition occurs at    = 2R* and after that the effect of high coupling 

became dominant, since as shown in equation (2.8), the effect of RSOI 

appears in two places, one with    and the other with   . For spin up case, 

M enhances as αincreases. The α effect is clear in     and Lz terms given 

in equation (2.8). 

χ decreases as α increases. The Rashba effect leads to control greatly the χ 

of the QD material used in the Spintronics nano-devices, (Figure 3.24). 
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Figure 3.23: Magnetization vs    with the presence/absence of RSOI (solid/dot dashed) with 

T= .01 K, F =4.8 R*,    =2R*, θ = 60 
0
,                    . 

 

 

 

 

 

 

 

 

Figure 3.24: Susceptibility vs    with the presence/absence of RSOI (solid/dot dashed) with  

T= .01 K, F =4.8 R*,    =2R*, θ = 60 
0
,                    . 
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Figure (3.26) shows clearly the effect of changing the Rashba coupling 

strength on the χ of the QD- material. 

 

 

 

 

 

 

 

Figure 3.25: Magnetization vs    with different values of RSOI coupling strengths a (a= 20 

meV.nm for dashed line, = 50 meV.nm for dotted line) with T= .01 K, F =4.8 R* ,    =2R*, θ = 

60 
0
,                    . 

 

 

 

 

 

 

Figure 3.26: Magnetization vs    with different values of RSOI coupling strengths α (α= 

20 meV.nm for dashed line, = 50 meV.nm for dotted line) with T= .01 K, F =4.8 R*,    

=2R*, θ = 60 
0
,                    . 
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3.5 Heat Capacity 

The final step in our work was to calculate the heat capacity for different 

cases. 

The variation of heat capacity as a function of temperature for different 

values of F are shown in Figure (3.27). In this case, for high values of F, 

the heat capacity is large, but at certain T (about 90 K) there is intersection 

and a flip in the behavior, so at high T( T >90 K), the heat capacity is 

smaller for high electric fields. 

 

 

 

 

 

 

 

Figure 3.27: Heat Capacity against T with different values of F (F= 0 for solid line, = 2.8 R* 

for dotted line, = 4.8 R* for dashed line),    =2R*, wc= 2R* and θ = 60 
0
, 

                   . 
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As the electric field increases, the binding energy of the donor impurity 

decreases, and in this case, the heat capacity (C𝜈 = 
 〈 〉  

  
), decreases as 

shown in Figure (3.27). 

The effect of RSOI coupling is illustrated in Figure (3.28). 

First, as the temperature increases, the heat capacity increases more rapidly 

for (α= 50 meV.nm) than for (α = 20 meV. nm), then the increase became 

smooth giving rise to a peak (shoulder). This peak - like structure is known 

as Schottky anomaly of heat capacity [43]. 

RSOI sharpens the peak and makes it occur at lower temperature, and that 

is due to the fact that RSOI rises the degeneracy of states, and so, the en-

ergy spacing between levels became smaller, so, it is easier for the electron 

to be excited to the next higher available level. So, the peak for large a is at 

lower T than for smaller α. 

With the further increase in T, C𝜈 starts to increase almost linearly until it 

reaches saturation value of about 1.5 KBT. 

This steady increase in C𝜈 with T is due to the increase in the thermal 

energy of electrons, which makes more and more states available for 

thermal excitation. 
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Figure 3.28: Heat Capacity against T with different values of RSOI coupling strengths α (α= 20 

meV.nm for dashed line, = 50 meV.nm for dotted line) with F =4.8 R*,    =2R* and θ = 60 
0
, 

                   . 
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Chapter 4 

Conclusion and Future work 

In this study, the Hamiltonian of donor impurity in QD had been solved in 

the presence of magnetic field and tilted electric field, in addition to Rashba 

Spin Orbit Interaction effect (α and S), and parabolic confinement poten- 

tial, using exact diagonalization method. We have studied the dependence 

of the binding energy for our QD as a function of: tilted angle (θ), electric 

field strength (F), and confinement frequency (  ). Our results are in good 

agreement with reported works. 

Moreover, the statistical energy 〈 〉  spectra and then both Magnetization 

(M) and Susceptibility (χ) were computed as a function of our controllable 

parameters (T, F,   , α). It was found that increasing either F or α lowers 

the values of the statistical energy values, which in turn affects M, making 

it decreases at lower    and increases at higher    more rapidly, making 

transition from diamagnetic regime into paramagnetic one at lower value of 

  . Decreasing temperature diminishes 〈 〉, and the transition from 

diamagnetic to paramagnetic is more obvious and faster for lower 

temperature. But for high values of    the effect of those parameters is 

minor, where the influence of    will be dominant. 

As a final step, the influence of F and RSOI on the Heat Capacity (    ) had 

been Studied. It was found that with higher F and        is higher at low 

temperature, and the situation is reversed for higher values of temperature. 
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The investigation of magnetic properties and the Spin-Orbit Interaction 

terms are significant steps in the field of Spintronics. So, In the future, our 

plan is to continue these research efforts along this line of hot research 

topics. And we intend to study the effect of more parameters on the 

magnetic properties of the QD.  Entropy is another property that will be 

considered in the future. 
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Appendix A 

The pressure and temperature dependent electron effective mass 

and static dielectric constant and Rydberg Units 
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   Where    is the free electron mass,   
       is the pressure and 

temperature dependent energy band gap for GaAs quantum dots at Г point, 

 b= 1.26              and c = -3.77             .      

       The effective Rydberg in term of pressure and temperature is used as 

the energy unit. 

  
       

  

         
      

                                                                                                                  

Where   
       is the effective Bohr radius which given as: 

  
       

        

         
                                                                                                  

Finally, the effective Rydberg can be written as: 
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Appendix B 

Exact Diagonalization Method 

The main steps that were followed to diagonalize our Hamiltonian matrix 

element given in equation 2.8. 

First, considering the Known eigenvalue formula: 

 ̂   ⟩      ⟩                                                                                      (B.1) 

where: 

   ⟩  ∑      ⟩                                                                                 (B.2) 

where      as defined in equation 2.14 

Then, multiplying both sides of equation B.1 by   ⟨      | and using: 

⟨     | |   ⟩   ∑                                                                       (B.3) 

⟨     |   ⟩                                                                               (B.4) 

and, 

〈   〉  ⟨     | ̂|   ⟩                                                                       (B.5) 

We get: 

∑          ∑ ⟨     |   ⟩                                        (B.6) 
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The integral form of the previous equation is: 

    ∫   ̂    
 

  
                                                                        (B.7) 

Then diagonalizing matrix by: 

∑ [                     ]                                                  (B.8) 

Then, the secular characteristic equation is: 

   [                     ]                                                 (B.9) 
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 تأثيرات المجالين المغناطيسي والكهربائي عمى الخصائص المغناطيسية لنقطة كمية من
 زرنخيد الجاليوم المحصورة بجهد  قرطعي

 اعداد
 الدراوشةامال جودت نايف 
 اشراف

 أ.د.محمد السعيد
 الممخص

قمنا بدراسة تأثير المجالين المغناطيسي والكيربائي عمى الخصائص الحرارية لنقطة كمية من 
GaAs  .عن طريق حساب مستويات الطاقة ليذه النقطة باستخدام طريقة حساب قطرية المصفوفة

 وتم حساب طاقة الربط لمشائب وكيفية تغيرىا مع تغيير العوامل المتغيرة لمنقطة الكمية.

م استخدام مستويات الطاقة  في حساب التمغنط لمنقطة الكمية ودراسة تأثير كل من قوة المجال ت
الكيريائي ودرجة الحرارة وتردد القطع ووجود الشائب عمى كل من مستويات الطاقة والتمغنط 

 والنفاذية المغناطيسية والحرارة النوعية ليذه النقطة.

الرشبا المغزلي( عمى الخصائص المغناطيسية لمنقطة الكمية, بالاضافة الى ذلك, تم دراسة تأثير ) 
 حيث أن ليذا العامل دور ميم في عمم الالكترونيات المعتمدة عمى غزل الالكترون

“spintronics”. 

 وكانت النتيجة ان وجود المجال الكيربائي وتغيير زاوية ميلانو, المجال المغناطيسي, درجة الحرارة,
الى تأثير الرشبا  تؤثر  عمى الخصائص المغناطيسية لمنقطة الكمية,  فةبالإضاتردد الحصر, 

حيث تتغير الطبيعة المغناطيسية لممادة بتغيير قيم ىذه المتغيرات. كما أن الحرارة النوعية لمنقطة 
 الكمية تتأثر بتغيير قيم ىذه المتغيرات.

 نشورة سابقا.وكانت النتائج التي حصمنا عمييا متوافقة بشكل جيد مع نتائج م



 


