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Abstract

In this thesis, reliability concepts, measures of reliability and static

models have been studied. Also, comparisons between exponential and

logistic distributions have been discussed.

We used two methods; dynamic programming and heuristic approach
to maximize the reliability of an electronic device systems, where the
optimum structure of components and units of the assumed system have

been determined.

Examples are given to show the optimum structure of the system with

[

the maximum reliability and minimum cost.

Comparison between dynamic programming and heuristic approach
shows that the dynamic programming results are better than the results

obtained by the heuristic approach.

Finally, our objective is to characterize marginal cost and minimize
cost capacity plans for a typical service delivery system. Results indicate

that marginal costs are convex with respect to reliability of service, while
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changes in the demand distribution’s variability may impact optimal
capacity by either increasing or decreasing required capacity.

Two demand distributions are assumed: uniform and logistic distributions.
The results show that the logistic demand distribution gives an optimum

criterions which are more realistic. Also, the optimum capacity using

logistic is greater under the condition %> 0.5.

542641
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Introduction

Reliability

Reliability is a word with many different meanings. A reliable person
is one who has the abilities to do certain tasks according to a speciﬁed
standard. A similar meaning is given when the word is applied to a piece of

equipment, namely the ability of that equipment to fulfill what is required

from it. The original use of the word reliability was purely qualitative but as
used today, reliability is always a quantitative concept.

Reliability engineering helps to ensure the success of spacé missions,
maintain the national security, deliver a steady supply of electric power,
provide a reliable transportation, and so on. “Reliability is fherefore an
important concepts in the design of engineering systems. Reliability may be
defined as the probability that an item or a piece of equipment will carry out

its specified function satisfactorily for the state period when used under the

"

designed conditions™.

The application of reliability concepts to electric power generation
goes back to the 1930’s. However, World War II is generally regarded as

the beginning of the reliability field, when the Germans introduced the

reliability concepts to improve their V-1 and V-2 rockets.
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2
During the period between 1945-1950, the United States Navy, Air force,

and Army conducted various studies on the failure of electronic equipments,

equipment repair and maintance costs, etc. As a result of this effort, in

1950, the Department of Defense formed committee on re]iability, which
later became known as the advisory group on the reliability of Elgctronic
Equipment (AGREE). This group published a report in 1957 that led to
specifications for the reliability of military electronic equipments.
Furthermore because of the awareness of the reliability problem in the
United States, the early 1950°s witnessed the appearance of the Institute of
Electrical, and Electronic Engineers.  Transaction on Reliability and
proceeding of the National Symposium on Reliability and Quality control.

Since 1950s thousands of publications have appeared in this field.

Reliability of an equipment is related to the life time (time of
successful operation before failure) of the equipment under specified
conditions. It follows that the life time to failure T of an equipment is a non-
negative random variable. The corresponding distribution function and
probability density function of T which denoted by F(t) and f{t) respectively.

With this set up we can define the reliability R(t), of an equipment at time t
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under specific conditions to be the “orobability that the equipment was

working without failure in the interval [0,t) symbolically™.

R() = pI'>1)=1-F(@).
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Chapter (1)

Design Reliability

1.1 Introduction

This chapter is concerned with the development of fundamental
definitions, and concepts for reliability. Any reliability analysis of a system
must be based on precisely defined concepts. Since it is reacﬁly accepted
that a population of supposedly identical systems, operating under similar
conditions fail at different points in time, it follows that a failuré
phenomenon can only be described in probability terms. These concept's
provide the basis for quantifying the reliability of a system. The basic

definitions are presented in Sec. 1.2.

Section 1.3 is concemed with reliability measures. In section 1.4 we
make comparison between exponential function and logistic function. In
section 1.5 we use methods to demonstrate reliability analysis. We

represent the series, parallel, and complex system reliability models..
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In section 1.6 we represent the method used to calculate teliability. There

are two methods used to calculate the reliability, the heuristic and the

dynamic programming methods.

1.2 Selected Terms:

Various terms are specific to the field of reliability engineering. Some
of the most common terms are as follows:
1. Rciiability

The probability that an item will perform its specified function
satisfactorily for the stated period when used under the designed condition is
called reliability. [6]
2. Ilazard rate:

The rate of change of the number of failed parts divided by the

number of survived parts at time t is called Hazard rate. [6,7]

3. Frailure:

The inability of an item to operate within the initially stated guidelines

is called failure.[9,10]

4. Active redundancy:

The term indicated that all redundant items are operating

simultaneously is called active redundancy.[9]
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S. Parallel system:

A system that is not considered to have failed unless all components

have failed.[7,9]

6. Series System: .

In a series system all subsystems must operate successfully if the

system is to function.

1.3 Reliability Measures:

1.3.1 Time - dependent Reliability:

The probability of failure as a function of time can be defined by
pr<t)=Fu), 120 1.1

where T is a random variable denoting the failure time.F(t) is the probability

that the system will fail by time t. F(t) is a failure distribution function.
We can write

Rtr) is the time dependent reliability distribution function.
£ is the failure density function for the item.

t: is time.

Rey =1 - F(oy = 1- j F(x)dx 1.2
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or R = Tf(x)a’x 1.3
—jZ(x)dx ’
or R(t) = e* - 1.4

where Z(x) is the hazard rate, on the time dependent failure rate, of the item

1.3.2 The Expected Life:

The expected life [8] is defined as
E() = j {f(0)dt 1.5
A useful alternate form is;

E() =TR(r)dr | 1.6

Another method for determing the expected life
E() = lim R(s) 1.7

where s is Laplace transform variable.

R(s) is Laplace transform of the reliability function.
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1.3.3 Hazard Rate:
The hazard rate [8,10] of an item or system may be obtained by using

either of the following two relationships:

2(0y=20 SO 1.8
R 1-1(0)

or
-1 |d

20)=75 b}a(r)} 1.9

1.4  The Reliability, Hazard function, and Expected life for

exponential, and logistic distribution functions.

1.4.1  Exponential Distribution:

The probability density function of exponential distribution is given

T 150,450
f)=+

0 otherwise
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The exponential distribution is widely used in reliability. For this

distribution, we merely compute equations 1.2, 1.5 and 1.8.

ii.

ii.

IX0)

Reliability function:

R(t) = p(I'>1) = j F(x)dx=e?

The graph is shown in Fig. 1.1

Hazard function denoted by Z(¥)

1—’:

,A

JO_ 1 1

R ;‘ IERY .
[

Z(1) =

The graph is shown in Fig. 1.2

Mean time to failure: denoted by MITF

MTTF Rt = j dt =2

ol—‘R

Some authors called (M17F ) as an Expected life and is denoted by

The graph is shown in Fig. (1.3).
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Fig. (1.1)
Z(1) Reliability
LS
A
= {
Fig. (1.2)
MTTF IMazard function
s
>

Fig. (1.3)
Mean time to failure
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1.4.2 Logistic Distribution:

The probability density function of logistic or sech square density

function is given by:

f a “Six-a)
,_ea
a - —0<X <0
1 -;(—1“1)
+e
o =i
S(5,4,0) = 1 , ‘
0 Jothewise a =_’r\/=
3

For this distribution, we merely reduce equations 1.2, 1.5 and 1.8.

1. Reliability function of R(t)

Ry = P(I>1) = T F(x¥)dx
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o

e}—“*“
R(t) = -
—{r-4)
l+e”
See Fig. (1.4)
il. Hazard function: Z(¢)
a =-1) e
. —e° —(r-1})
! e’
2y = Lo e .
R(1) { '—“(:—1)} [ w(r-z)}
l+e® I+e”
aloc a

See Fig. (1.5)

iii.  Mean time to failure: denoted by MTTF
MITF = [R()dr= J'_L—dx
[i]

Integrate by substitution we will have
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—-J r: du

MITE = —|—
a | u
- P Zx-a) ~
= —O-—lnu], = " Tfl+ee }
a a
4]

Therefore:

If A is very large,

2x
w11l = Zines =Zel4 =4
cr a o

See Fig. (1.6)

1.5 Static Reliability Models (Steady State):

1.5.1 Series Structure

LY

The simplest and perhaps the most common structure in Reliability

analysis is the series configuration.

In the series case the functional operation of the system depends on

the proper operation of all system components. [7]

The reliability block diagram for series system is shown in Fig. 1.7.
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RO
1 4
=
Fig. (1.4)
Reliability
Z()
/
a |
a
a 5
at
ogll+e”
= 1
Fig. (1.5)
Hazard function
MTTF

o Yan
—In| I +e”
a

Fig. (1.6)
Mean time to failure

v
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. unit unit unit
input ——=> 1 2 > —% output

Fig. (1.7): Series Reliability Structure

The probability of the system success 1s denoted by Pss, and because

they are independent events it becomes:

Pss = p(x,,x;, . %,)

= pln)p(x,) - p(x,)

The reliability of the system in series; denoted by Rss is given by

Rss = JIR

Assume that all components have the same reliability; R, then the

reliability of the system is:
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Rss = R°

1.5.2 Parallel — Systems :

In many systems several signal paths perform the same operation at
{he same time. If the system structure is operated such that one or more
paths will allow the remaining path or paths to perform properly, the

system can be represented by a parallel model. The reliability block

diagram for a parallel system is shown in Fig. (1.8).

unit
1

unit
2

input ———————— > outpu

unit
n

Fig. (1.8) Parallel reliability structure

The reliability of the system in parallel is denoted by Rsp, and the

cquivalent parallel component reliability fs:

"

Ryp = 1- 7Z;(1—R,)

where

R is called the reliability of component iattimetfor i=1,2, ..., n.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



17

Assume that all components have identical reliabilities, R then the

equivalent parallel component reliabilities are:
Rsp =1-(1-R)"

1.5.3 Parallel and Series Combination:

In this section we can either provide redundant components [10],
which gives a system block diagram as show in Fig. (1.9). The equivalent

reliability for a parallel banks is the reliability of the j™ component, R, is:

R = 1-7(-R), j=1.2,....n
e=1

_ I R U [ S A B ) . ‘

input —— T—> —>  outpu
i i i
: i E

—1m [ —1m [ iy m

| 2 n

Fig. (1.9) Series-Parallel System
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Then the equivalent of the reliabilities of the components are in series, are

Rs-p = 7’il' R,

JE

Assume that all units have the same reliability R then the equivalent

reliability of the system is:

Rsp  =(-(1-R)")"

A second arrangement is shown in Figure (1.10), where the banks of series

system are parallel.

1 ' > > n [
2 —> 1 > 2 1 n
input = , —————— output
i
i
m 20> S n [

Fig. (1.10) Parallel- Series System
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The equivalent reliability for each parallel path is:

j=12,....n

Thus, the system reliability is:

Rp-s :1—7%(1 —Rj.)

i=1

Assume that all components have the same reliability, R, then the

reliability of the system is:
Rp-s =(1-(1-R")"

1.5.4 Complex Systems:

Certain design configurations of complex failure modes may produce
systems in which pure parallel or series configurations are not appropriate
[15]. As an example consider the system shown in Fig. (1.11). In this
system the failure of the subsystem E drops out both E, D and E, C paths.
We don’t have a pure parallel arrangement. Several ways to handle such
situation have been proposed. The extensive calculations required'by this
method can be simpliﬁed by the use of computers to evaluate aii

combinations.
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input output

I

A/

Fig. (1.11) Complex System Structure

1.6 Mecthods to Calculate Reliability:
1.6.1. Meuristic Method:

Many techniques have been applied to obtain the solution of
optimization problems, however, several heuristic approaches are very

attractive for solving the redundancy allocation problems. .

In this section, the Sharma and Venkateswaran approach [15]
developed an intuitive procedure  for allocating redundancy among

subsystem. The sequential steps involved in solving the problem are as

follows:

Step 1: Assignh x; = | for j = 1,2, ..... . N, because this is (casada
system) there must be at least one component in each stage and

the system should not violate any constraints.
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2.3 Design of a system for maximum reliability:

Reliability of a component or of a system of components is simply ils
probability of survival. Systems are classified as either scries or parallel. A
series system is one that survives only if all its components survive, a
parallel system survives if any one of its components survives.

With constraints, say on cost or configuration, then is a limit to the
number of system that could be included in parallel. Thus in practice the
attainable reliability has an upper bound. The next examples show how to

use dynamic programming to design a constrained system for maximum

»

reliability.

Examples 2.3.1

We want to design a device consisting of three main components
arranged in series. Reliability may be improved by putting them paralleled
on each component. Each component should include no more than three
units in parallel. The total money allowed for this device is $11,000.

The data for reliability R, and cost C, for a unit on the ith component are

shawn in table 2.1. Costs are given is dollars and time is not a factor,

reliabilities of units remain essentially constant.
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Let m;, i=1,2,3 denote the number of units 1, to be put in parallel on the ith
component, We determine my,m,,m; so that total reliability of the system is

maximized without exceeding the total money available,

Table (2.1): Reliability and cost per unit

Unit 1 Unit 2 Unit 3

R] C] R2 CZ R3 C3

05 2 107 3006 |

A present system is shown in Figure 2.1. Here we choose one unit in

*

component one, two units in component two, and three units in component

three.
Component ] Component 2 Component 3
C=3 C=1
O O

=2 R=.5

. /‘\ R=0.7 /\
input U u output

R=0.5
() ()
N ./

Figure (2.1) A non optimal, $ 11,000 system
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The reliability of the systemn is:
R,=[1- (- R)HI- 70~ B M= 7 (1=R,5)]
= [1-0.5]. [1 - (1-0.7)(1-0.7) [1-(1-0.6)(1-0.6)(1-0.6)]

=0.5x0.91 x0.936 =0.42588.

The cost of this system is $ 11,000 and three units are the maximum to be

included in any components.
So the constraints are achieved. We can change the number of units in each

component to m;=2, my=1 and m;=2 we reduce the cost to $9,000, but we

yield a reliability 0.441. We seek, the optimal such system subject to the
constraints. |

Costs are additive convenient for references in Table 2.2. It shows the
relibility and cost of component consisting of m; units. Here R, is the
‘reliability of component consisting of m; wnits, and Cgn, unit is the
corresponding cost of the component. The results in table 2.3 come from
preliminary calculation of reliability and the cost of all possible paraltel

systems could be components in the final system.

Let Ry (Ci) denote the reliability of the i th component as a function

of a cost Cimi.
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Let x; be capital allocated to all 1 components and let f(x,) be the reliability
of the system of i components. Then the states used in dynamic

programming are represented by x;, while the components are the stages in

f

the problem. Thus  f(x) max [Rym (Cim))] and

BSCpmy $X)

£(x,)=max [Rn2,(Cm) fi1(x, —Cm i = 2.3 if 7 is allocated to two components
one and two, then Cam; is the cost for component two, and the cost for

component one is 7-Canz.

Thus f,(7) is the maximum two-component system reliability. These

calculations appear in Tables 2.3, 2.4, and 2.5.

From table 2.5 the optimal reliability is 0.5145, occurring with m; = 2, this

leaves 11 - 2 = 9 for the first and second component.

Table (2.2) Reliability and cost of Parallel Components

ni; Rimi Cimi Ram2 Camz Ram3 Csma

3 | 0.875 6 (0973 9 0.936 3
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Table 2.4 shows that the optimal m; is 1, the cost of the unit in component
two is 3, this leaves 9-3 = 6 unit of capital for component one, and from

table 2.3 the optimal m, is 3 units. The result optimal system is shown in

Figure 2.2.
Table (2.3) One-Component System
m; =1 my =2 m=3

Xt [ Rim=0.5 | Cim=2 | Rim=0.75 [ Cyi=4 | Ry =0.875 | Cimi=6 | m* | fi*(xy)
_ : : : - —
1 - - - - .

2 0.5 - - 1 05
3 0.5 - - I 0.5
4 0.5 0.75 - 2 0.75
5 0.5 0.75 - 2 0.75
6 05 075 - 0.875 3 | 0875
7 0.5 0.75 0.875 3 0.875
8 0.5 0.75 0.875 3 | 0875
9 0.5 0.75 | 0.875 3 | 0875
10 0.5 0.75 0.875 3 | 0875
11 0.5 0.75 0.875 3 0.875
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Table (2.4) Two-Component System

m;= m;=2 nm; =13

Xt | Ram=0.7 | Cona=3 | Rypa=091 | Ciu=6 [ Rim=00.973 | C;y=9 | ma* | £>*(x2)
0 - - - - -

1 - - - - -

2 - - - -

3 - - -

4 - - - . -

5 (0.7)(0.5)=0.35 - - 1] 035

6 (0.7)0.5)=0.35 - - 1 0.35

7 | (0.7)(0.75)=0.525 - - 1 | 0525

8 [ (0.7)(0.75)=0.525 (0.91)(0.5)=0.455 - 1 | 0525

9 | (0.7)(0.875)=0.6125 (0.913(0.5)=0.455 - 1 0.6125
10 | (0.7)(0.875)=0.6125 | (0.91)(0.75)=0.6825 - 2 0.6825
1 | (0.7)(0.875)=0.6125 | (0.91)(0.75)=0.6825 | (0.973)(0.5)=04865 | 2 | 0.6825

Table (2.5) Three-Component System
m;=1 nm=2 m:=3

X1 | Rus=0.6 | Cims=1 | R3n3=0.84 | Cy,5=2 R3m=0.936 | Cii=3 | my* | G¥(xy)
0 - - - - -

1 - - - - .

2 - - - -

3 - - -

4 - - - - -

5 - - - - -

6 (0.6)(0.35)=0.21 - - 1 | 021
7 (0.6)(0.35)=0.21 (0.84)(0.35)=0.294 - 2 [ 029
8 (0.6)(0.525)=0.315 (0.84){0.35)=0.294 {0.936)(0.35)=0.3276 3 (03276
9 (0.6)(0.525)=0.315 (0.84X0.525)=0.441 (0.936)(0.35)=0.3276 2 0.44]
10 | {0.6)(0.6125)=0.3675 (0.84)(0.525)=0.441 | (0.936)(0.525)=0.4914 | 3 | 04914
1T [ (0.6)(0.6825)=0.4095 | (0.84)(0.6125)=0.5145 | (0.936)(0.525)=0.4914 | 2 | 0.5145
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Component 1 Component 2 Component 3
C=2
O
R=0.5
=1
- 7N\
m m C=3 U R 0.6
input — N/ [  output
o/ -
R=05 C=1
R=0.7 ()
. p—y
R=0.6

C=2

7\

U reos

Fig.(2.2) The optimal solution for example 2.3.1

The optimal system attainable for 11,000 with maximum reliablity of

0.5145.

Example 2.3.2

We want to design a device consisting of three main components
arranged in series. Reliability may be improved by installing parallel units
on eéch component. Each component may include no more than four units
in parallel. The total capital available for the device is $20,000. Data for

reliability R; and Cost C: for a unit on the ith component are given in Table
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2.6. Costs are in thousands of dollars, and time 1s not a factor reliabilities of

units remain essentially constant.

Table (2.6): Reliability and cost per unit

Unit 1 Unit 2 Unit 3

R] C1 Rz C2 R3 C3

05 2 |07 3106 I

Let m; denote the number of units i=1,2,3;4 to put'in parallel on the ith
component. We need to determine m;,m;, and m;z so that total reliability of
the system is maximized without exceeding the total available capital.

We are assuming that costs are additive, then table 2.7 beco:ﬁes

* convenient for reference. It shows that reliabilities and costs of components
consisting of m; units. Here R, is the reliability each ith component
consisting of: m; units, and Ci, is the corresponding cost of each component.
The result in table 2.7 come from preliminary calculations of reliability ‘and

cost of all possible parallel systems that could be the components in final

system.
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Table (2.7) Reliability and cost of I'arallel Components

i=1 i=2 i=3

LY
m | Rimi Cim1 | Rz Cmm2| Rana  GCims

1 0.5 2 0.7 3 0.6 1
2 0.75 4 0.91 6 0.84 2
3 | 0.875 6 0973 9 0.936 3

4 (09375 8 |[09919 12 1099744 4

Let R..{Cy denote the reliability of the ith component as a function of
the cost C,. that is allocated to it. Let x; be the capital allocated to all i

components and let f(x,) be the reliability of the system of i components.

Then the stage used in dynamic programiming can be represented by x; while

the components are the stages in the problem.

T]ll‘s _f;(xl) = max [R[,.,](C]ml)]

mi

0sC =X

Iml 1

and

5= max [Rm(Cpdfia = C)]  i=2,3,4
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The calculations appear in Tables 2.8, 2.9 and 2.10. From table 2.10 we see
that the optimal reliability is 0.8537, occurring with m3 = 3, This leaves 17

units of capital for the other three components.

Table 2.9 shows that the optimal m, is three, the cost of one unit in

component 2 is 3, this leaves 8 units of capital for component 1.

Table (2.8) One-Component System

o m=1 m;=2 " my=3 m=4

N Rimi=0.5 | Cimi=? | R1.=0.75 I Cimi=d | Rymi=0.875 l Cimi=6 | Rimi=0937% I Com=g | m' | &0

0 - - - - - -

1 - - - - - -

2 0.5 - - - 1 0.5
3 0.5 - - - | 0.5
4 05 0.75 - - 2 0.73
5 0.5 0.75 - - 2 0.75
6 0.5 0.75 0.875 - 3 | 0875
7 0.5 0.75 0.875 - 3 | 0875
8 0.5 0.75 0.875 0.9375 4 09375
9 0.5 0.75 0.875 0.9375 4 | 0.9375
10 0.5 0.75 0.875 0.9373 4 | 0.9375
11 05 0.75 0.875 0.9375 4 109375
12 0.5 0.75 0.875 0.9375 4 10,9375
13 0.5 0.75 0.875 0.9375 4 | 0.9375
14 0.5 0.75 0.875 0.9375 4 |0.9375
15 0.5 0.75 0.875 0.9375 4 | 0.9375
16 0.5 0.75 0.875 0.9375 4 109375
17 0.5 0.75 0.875 0.9375 4 109375
18 0.5 0.75 0.875 0.9375 4 109375
19 0.5 0.75 0.875 0.9375 4 |0.9375
20 0.5 0.75 0.875 0.9375 4 |0.9375
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Table (2.9) Two-Component System

my=1 m;=2 ny=3 my=4
x Ryus™0.7 | Crori=3 | Rowa=09 | Cimi=6 1y =0973 | Com=? | Nym=9919 [ Com2 | m' | ST
0 . . - . - .
1 . . - . - .
2 . - .
3 - . . .
4 - . . - -
5 (0.5)X).7)=0.35 - - - 1 0.5
6 (0.5)).1=0.35 . - - 1 0.5
7 (0.75X0.7)=525 - . 1 0.525
8 (0.75X0.7)=525 {091X0.5)-0.455 - - 1 0.525
g | (0.7%0.875)=0.6125 {091X0.5)=0.455 - 1 0.6125
10 | 0 70.875)=06125 | (0.91)0.75)=0.6825 - 2 06828
11 (0.7%0.9375)=6562 | (0.91X0.75)"(.6865 (0.973)(0.5) 4865 . 2 0.6825
12 | 0.7(0.9375)=.6562 | (0.91)0.875)=0.79625 £0.973%0.5)~.4%65 - 2 1.7965
13 (0.7X0.9375)=.6562 (0.91X0.875)=0.79625 (0.973%0.75)=.7297 . 2 0.79625
14 | (0.7%09375)=6562 | (0.91)(.9375)=8531 (0.973)0.75)=.7297 (0.5X.9919)-.4959 2 0.853
15 {0.7%0.9375)=.6562 (0.91).9375)=.8531 (0.875)(.973)=.8513 (0.5).9919)~.4959 2 0.8531
16 | (0.7)0.9375)=6562 | (0.91X.9375)=.8531 (0.875).973)-.8513 (0.75X.9919)=7439 2 0.853)
17 | (0.7X0.9375)=.6562 | (0.91X.9375)= 8531 (.973).9175)-0.9121 (0.75).9919)=.7439 3 09121
18 | (0.700.9375)=6562 | (0.91).9375)= 8531 (9731.9375)-0.9121 (0.875)(.9919)-.8679 3 917
19 | (0.7%09375)=6562 | (0.91).9375) 853 (97)(.9375) 09121 (0.875X.9919) R6TY 3 9121
20 | (0.7X0.9375)=6562 | (0.91).9375)=8531 (973X.9375)=0.9121 (0.875).9919)~.8679 3 982
Table (2.10) Three-Component System
ms=1 ny=2 my=3 my=4
) Rym=0.6 | Com=l | Roms=084 ] Com=2 | Rims=336 I Cp=3 | Rpur=09744 | €pmt m | s
0 - - . - .
1 - . . - . .
2 - - . . -
3 - - - - .
4 . . . - . .
5 - - - . .
6 {0.6)(.35)=0.21 . - - 1 0.21
7 (0.6X.35)=0.21 (0.84).35)=294 - - 2 294
8 (0.6X.525)=215 (0.84).35)=.294 (.936)0.35)~.3276 - 3 A276
9 (0.6){.525)=.315 (0.84)(.525)=378 {.936)0.35)=.3276 (9744)0.35)~.3410 2 0378
10 { (0.6X.6125)=.3675 (0.84).525)=.378 (936)(.525)=.4914 (.9744X0.35)=.3410 3 4914
11 | (0.6).6125)=3675 (0.84X.525)=378 (936)X.525)-.4914 (.9744).525)=.5115 4 SHs
12 | (0.6X.9375)=.5625 (0.84).525)=378 (.936X.6125)=.5733 (9744)X.525)=.5115 4 5733
13 | (0.6X.9375)=.5625 (0.84)(.525)=.378 {.936) 6825)=.6338 (5744).6125)=.5968 3 633R
14 | (0.6X.9375)=.5625 (0.34)(.525)=378 (936)(.6825)=.6338 (.9744)(.6825)=.6650 2 GRRS
15 (0.6X.9375)=.5625 (0.84).525)=378 (.936X.796)=.7452 ((9744).6825)=.6650 3 .7452
16 | (0.6X.9375)=5625 (0.84).525)=378 (.936).796)=7452 (9744).79625)=T758 | 4 7758
17 | (0.6).9375)=.5625 {0.84)(.525)=378 (.936)(.8531)=.7985 (9744).79625)=7758 | 3 719858
18 (0.6)(.9375)=.5623 (0.84)(.525)=378 (93G6)(.8531)=7985 (9744 8531)=.8312 4 A12
19 (0.6)X.9375)=.5625 (0.84).525)=.378 (.936X.8531)=7985 (.9744)Y.8511)=.8312 4 R312
20 {0.6).9375)=.5625 (0.84).525)=378 {.936X.9121)=.8337 (.9744).8511)-.8312 3 R337

542641
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Table 2.8 shows that the optimal m, is 4. The resulting optimal system is

shown in Figure 2.2.

The solution suggested by Figure 2.3 is the optimal system attainable for

$20,000, with maximum reliability of 0.8537.

Component 1 Component 2 Component 3
C=2
=1 -1
N\ £
U s

R=0.7

—= outpul

input —

N 7N

W, Y,

Figure (2.3) The optimal solution for example 2.3.2

@
O

2.4 A heuristic Approach: Sharma and venkateswarn’s

approach
‘ In addition to the general assumptions made for the system reliability

optimization problems of N-stage in series with xj redundant components at

stage j, the unreliability of one component at the jth stage, Q;j=1,2,3, ....N

shauld be small enough (<0.5) so that
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N
Q, = 1—{5(1 -Q;)
can be approximated by

0,=3.07

=1

where Qs is the system unreliability. Therefore the system reliability

problem subject to non-linear cost constraints can be formulated as minimize

N
0,=2.0; (9)
subject to
N
Y8, (x)<d, i=12,...4 ..(10)
i=

where g;(x;) is the recourse i consumed in stage j, and b; is the available
resource for constraint i.

The objective is to reduce Qs in successive steps. The procedure at
each step is to add one redundant component to the stage with the highest
Q¥ in eq. (9.), if constraints in eq.(10) are not violated. Therefore, the
constraints become active only in the neighborhood of the boundary of the
feasible region. The sequential steps involved in solving the problems are as

follows:

Step 1. Assignxj =1 forj=1,2, ... ,N. Because this is a cascade system,
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tllere must be at least on¢ component in cach stage and the system should

not violate any constraints.

Step 2. Find the stage which is the most unreliable. Add a redundant

component to that stage.

Step 3. Check the constraints:

a. If any constraint is violated, go to step 4.
b. If no constraint has been violated, go to step 2.
c. If constraint is exactly satisfied, stop. The current x;’s are then the

optimum configuration of the system.

Step 4. Remove the redundant component added 1n step 2. The resulting

number is the optimum allocation for that stage. Remove this stape from

further consideration.

Step 5. If all stages have been removed from consideration, the current X;’s

are the optimum configuration of the system otherwise go to step 2.

The general algorithm can be found in Appendix. As an application

of this algorithm we give the following two examples.

Solution of example 2.3.1 by using Sharma and Venkateswam,s Methods.

we d

Reliability may be improved by installing parallel units on each component.

re to design a device of three main components arranged in series.
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Each component may include no more than three units in parallel. The total
capital available for the device is $11,000 Data for the reliability R; and a
cost ¢, for a unit in the component is given in Table 2.1. Costs are in

thousands of dollars, time is not a factor, reliabilities remain esscntially

constant.

We need to maximize the reliability in the total capital available is
$11,000.
Minimize

Q.=2.0/

j=t

Subject to
3

>CX, <b
j=

where Q; is the system unreliability
Ci 1:s the cost for a unit on the j th component
X; is number of units in component j.

0, =(1-R)’

where R; denote the reliability of j component.

Q; denote the unreliability of j component.
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A three-stage problem with a linear constraints. The objective of the

3
problem is to maximize R, :JZ:[I—(I—R},)"*] can be approximated by
s

minimize Qs =(1~R)" + (1-R)" + (1-R,)"®

where (/-R)", (I-Ry" and (1-Ry)™ are stage unreliability and are represented

by O; O , and O respectively.

The basic allocation (1,1,1) is assigned to the system. The stage

unreliabilities under this configuration are (0.5, 0.3, 0.4) the recourse

consumed is 11, and no constraint violated. Since stage one is the most

unreliability i.e. Q = 0.5. We add one redundancy to this stage to form the

new system configuration (2,1,1). 1f we look at Table 2.11 we see that stage

3 {s the highest unreliability. We add one redundancy to this stage o form a

. . . ¥
new system configuration (2,1,2), and the consume resource 1s 9. Since Q;

is the highest unreliability if we add one redundancy to this stage constraint

is violate. We removed from Qz\ to Q|\. Q.\ is the highest unreliability. So

a redundancy component may be added to stage 1 to form a new system

configuration (3,1,2) [step 2] we obtain the result presented in Table 2.11

The optimum result for the system is (3,1,2) with the system reliability 1s

0.5145.
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Table (2.11) Results of Example 2.3.1 by Sharma and Venkateswarn’s

Method
Number of components in Stage unreliability Constraint
stage

X1 Xz X3 Q; | Q2| Qb g(x)

1 1 I 0.5 03 04 )

2 1 1 0.25 03 047 8

2 1 2 025 03° 0.16 9

2 2 2 - - - 12°

2 1 2 025¢ 03" 0.16 9

3 1 2 0.0625 03" 0.16 11

a This is the stage to which a redundant components is to be added

b This indicates that the stage has been removed from further

consideration.

c The constraint is violated.

Solution of example 2.3.2 by using Sharma and Venkateswarn’s

methods.

We want to design a device consisting of three main components

arranged in series. Reliability may be improved by putting them in

paralleled on each component should include no more than four units i

parallel. The total capital available for the device is $20,000. Data for

reliability R; and cost C, for a unit in the i th component are given in Table -
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7.6. Cost are in thousand doliar, and time is not a factor and religbilities arc

constant.

We use Sharma and Venkateswarn’s method to maximize the

reliability in the total capital available is $20,000.

3
Maximize R, =71'| H-{-R)"]
fos
- - ] 3
Minimize Qs = 2.0}’
' i=1
subjected to

g=iC,Xj <b

=l
where Q; is the system unreliability
C; is the cost for a unit on the j th component

Xjis number of units in j th component.

”

O

where Rj denote the reliability of j component

(I-R)Y

Qj‘ denote the unreliability of j component

The basic allocation (1,1,1) 1s again assigned at each stage for this

system. The stage unreliabilities under this configuration are (0.5,0.3,0.4).

The resource consume is 20, costs units and no constraint violated. Since

stage 1 has the highest unreliability. i.e. Qi=0.5, we add one redundancy to
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this stage to form a nmew system configuration (2,1,1), and check the

resource limits, Using the algorithm we obtain the results which are

summarized in Table 2.12. The last row of table 2.12 shows the resources

20 units are consumed with the allocation of redundancies {(4,3,3). The

system of unreliability after calculating unreliability is 0.1462. Hence the

system reliability is 0.8537.

Therefore the optimum configuration for the system is (4,3,3).

Tgble (2.12) Results of Example 2.3.2 by Sharma and Venkateswarn’s

Method
Number of components in Stage unreliability Constraint
stage

X1 X2 X3 Q" Q’; Qs g(x)
1 1 1 0.5° 0.3 04 6
21 1 0.25 0.3 0.4° 8
2 1 2 0.25 0.3 0.16 9
2 2 2 0.25° 0.09 0.16 12
3 2 2 0.0625 0.09  0.1¢° 14
3 2 3 0.0625 0.09* 0.0256 15
3 3 3 0.0625° 0.0081 0.0256 18
4 3 3 0.0036 0.0081 0.0256 20
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This is the stage to which a redundant components is to be added

This indicates that the stage has been removed from further

consideration.

The constraint 1s violated.
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Chapter (3)

A service Delivery System with Costs Constraint

3.1 Introduction:

During the | eighties the nature of industry was considered
monopolistic. But during the nineties the competition policy was followed.
Close s.cruting of scale and scope economics within postal services together
with other industries vested with statutory monopoly, revealed many existing
They do not exhibit

operational components within these industries.

sufficient economics to merit monopoly status.

If competitive entry is allowed or not, this is connected with many factors

related to the nature of monopoly. Inefficient entry can destroy the industry,

and no one will courage it.

The traditional pricing policies have been investigated in detail, while
the explicit impact upon optimnal policies was not examined as well.
The impact of reliability is investigated by Borinico (1992). Where:
1. the reliability constraint is appended to the standard formulation.

ii.  reliability of service both costs and demand for service.
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The general form for reliability constraint is

EHXpr2yrnz) <o 1=12,..,n [I]
where
E{H;} represents the required relationship between the
i.  reliability level vector (r).
1i. aggregate demand vector (X).
where p is the price vector as given

iii.  yis the local operating variables.

iv  zrepresents a state of a world governed by some common knowledge

distribution.

. In solving the constrained welfare maximization problem, the

following general results obtain:

~price:  First best prices involve equaling price to reliability constrained

marginal cost. The following result for reliability constrained marginal cost

for service 1 obtains.

L LA,
MC, = + 1
&K, S &,

where:

C:  represents the expected cost function.
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Aj;  represents the lagrange multiplier associated with the j th reliability
constraint
Reliability: The expected marginal benefits of increasing reliability should
be equated to marginal cost of doing so. [1]
Capacity: Optimal capacities are chosen so as to minimize total expected

cost subject to the set of reliability constraints. [1]

Minimize:
CX.(pr.2).yr)
subject to : E{Hi(X(p,r.2).y.1.2) <0 i=1,2,..n

The purpose of this chapter is to characterize marginal costs and minimum

cost capacity plans for a typical service delivery system.

3.2 Mathematical Structurc: [1]

In this section we discuss well known example about postal services.
This postal system which is provided by one service where the price for that
service (p), and the amount of regular capacity (Q) must be decided upon
prior to witnessing demand. The number of arrival £¥) which happened at

the beginning of the period are covered by cumulative distribution function

F) < po(X<h).
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In this system there are two kinds of units processed (blunit) and
unprocessed. The unprocessed units must utilize over time or other form of
penalty technology ($ Blunit). |

A reliability constrain for this time sensitive is assumed to take the
following forms.

The expected quantity of arrivals requiring penalty technology must
be less than or equal to a prespecilied percentage (1-r) of the expeceted
volume of the arrivals of this period.

Small postal facilities employ particular types of technology in
processing different forms of preferential mail such as over night express
mail.

In general mail is received at the beginning of the tour. For the over
night express mail to reach its destination on the time it must be processed in
a critical window in the tour in which it arrives if not it must be expedited at

additional cost.

For the remainder of this chapter, we give the following definitions
apply:
©: Installed regular capacity, set in advance.

X: Demand for service in a prescribed period, governed by cdl

F(k)=pX<h).
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c=  Total cost associated with aparticular realization of demand,

c=c(Q,X).
C= Total expected cost function, C = E{c(Q,X)},
b= Average cost of processing one unit utilizing regular capacity.
B= Average per unit penalty technology processing cost, B=b(1+p).
p= over time (or penalty technology) premium, the mark up over normal
costs to process one unit not processed utilizing regular capacily
»= the reliability of the system, is given.

We define the following function which is important to the determine

the objective function

bQ = represent the direct, cost per unit of regular capacity, scheduled prior
to witnessing demand X.

B(X-Q)" = represents deferred service and the penalty cost for units which

must be processed using penalty technology.

The objective function is given by:

C(O.X) = E{c(Q.X)} = E0Q + BX-O)').

The following reliability constraint ensures adequate capacity to meel
aprespecified percentage of expected demand:

HQ.X) = E{(X-Q)" -(I-)X} < 0

we can write 1t as:

CE(X-Q) <(I-D)ERX) = (1) p
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The cost minimization formula is given by minimize

C(Q.%) = E(bQ+BX-Q)"} ..(2)
subject to:
E{X-O)" < (1-DEX) = (1-1) p, .. (3)

when we solve this model we conclude C(Q.X), and H¢Q.X) are convex. The
problem Eqs. (2) and (3) has the pleasant structure of minimizing a convex
objective function C(Q..X) over a convex region. And we note that:
1. C(0.X) is un bounded from above.
2. C(0,X) is bounded from below and C(Q,.X) > 0.
3. C(0,X) approaches infinity as Q approaches infinity.
We define the lagrangian:
LOEXAY = CQX) + AHQX
Where
A= represent the Lagrange multiplier for H(Q.X)

The first order conditions of the lagrangian given by:

Z(0x)- ac(é%x) + xaHgé’X) ~0 ()
H(Q,X) <0 ...(5)
AH(QX) = 0

A >0

If Eq.(3) is inactive at Q*, then A will be zero.
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If Eq.(3) is active then A will be positive we note that H(Q,X) is non

increasing in Q which implies that -&—iso .
4 i

If we use the fact A 2 0 and Eq.(4) this implies % <0 at optimum.

=l

If we apply Eq(4) to Eq(2) and (3) we obtained

aL(a%X) - %E{bQ FB(X-Q)}+ 7‘%

%:bw%E(X—Q)* ...(6)
2 Znlx-of - =

:%E(X—Q)*—O :B—aQ—E(X—Q)* A7)

IF we substitute eq.(6) and eq.(7) in eq.(4) we get

%=b+B—Q—E(X—Q)* +1'Q‘E(X“Q)*

&l o0
if we choose A =0

‘%zb_'r(gjux):o ..(8)

where

-0 '
T= 56E(X -Q)

T=Pr(X=Q) .-(9)
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We find the optimal capacity for problem Eqs.(2) and (3) is then
determined by solving Eqs.(5) and (8).

In order to solve for optimal price, reliability constrained marginal
cost must be determined. Utilizing Eq. (1), together with first partials from
Eqs. (2) and (3) we obtain
MC = T(B + ) -(1-1) 4 .(10)

We can apply the result fo an illustrative example in the following

section.

3.3 Implementation of the Model:

In this section we consider two particular demand distributions, the
uniform and the logistic distribution, both distributions are bounded on [Lu].
First we study the uniform distribution.

T=Pr(X=Q)

We substitute the uniform distribution in eq.(9) we get:

T=P(X =M= =
( Q) gu—l u-1 w—1

“de X ]":u—Q (1)
0

then we substitute eq. (11) into eq. (8) we get the unconstrained solution:

QX _ 7+ a)=0
2¢)

L]

b=T{(B+1)=— ‘?(ma)

n—
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Suppose (A =0) we get
b(u-l) = B(u-Q)

. b
Q =H—E(u—1) .(12)

Q":= represents optimal capacity for the unconstrained problem Fiq. (2)

if b -»B, then Q—/

we conclude that the capacity should approach the minimum demand level
as over time costs approach regular time cost

Also, we conclude from eq. (12), the optimal capacity always lies between /

and u as long as b < B.

In other words, the optimal capacity must be lies in feasible range of

demand values.

We substitute eq. (12) into eq.(3) and solving as equality yiclds the
implied reliability obtained when the unconstrained sotution applies

bzﬁl—f)
B +1)

n=1-

Note that increases in B relative to b increase the implied reliability, as
increased overtime cost would require greater capacity, which would the
increase system’s reliability, .

Solving eq.(3) as an equality, noting that the optimal capacity must be non-

negative, the following we obtain the following:
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b u-1)
- (13
B (u+1) (13)

-biz(l—r)(" +I)

B? (u-l)
b (e +1)
B A -9

“substitute eq.(14) in eq. (12) we get

Q*_:=u— (1 wr)E:: ig(u—l)

S = vy =) 09)

It :’[emains to determine reliability constrained marginal cost, in which
op{imal prices are embodied.

We; substitute of eq.(11) and eq.(12) into eq.(10) eventually yields the
folllowing result:

MC = T(B+ ) -(I-1)A

mc =225+ 2)-(1-r0

i—
substitute A = 0 we get

u—QB
y-—1

MCo=

substitute eq.(11) in the last equatjon we get

. (,, _’L("'__’)J
MCO= B B

T |
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w1+ bu-1)

= B B'—'b
-1

we then find the constrained marginal cost by first solving for A:

substitute eq. (12) in €q.(8) we obtain:

substitute the regular capacity “Q” in the last equation we get:

Bu 1) B

A=—r7
u—ﬁr—Jﬁ—rMu—an+l”

b —1)

= B
JA=r@ =D +D

then substitute eq. (17) into eq.(10) we will have
MCy = T(B+A)-(1-1) A
= TB+TA-(l-r)l

= TB+ (T- (I-1)A

_ bl 1)
-—-TB+(T—(1—}){\[(1—:')("—’)(” +’)“B]

substitute eq. (11) in the last eq. We get

u-0p (u=0 b=
+[u—1 ¢ )(J(T—"X”_’X"”) BD

_.(16)

(17)
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_k-n + ,[(1 - =D+ .B+l:lf -u+ \/(1——7-5(37:1—)(” +1) ol r')] .[ bu-0

1—1 w—1 \J"(I — P =D 4 1)

=q(l—rXu+lef—l)-B+( Luid(l_r)}(‘/( b(u - 1) ),B)

‘ u—1 n-—1 t—rXu—1Yu+1
(1—r)b(u-—l) +B(1—I')

) é_ Ja —r)u—1I\u +1)

Mé‘,:b{l— J'—ri_—"—}w@-r) ...(18)

4+l

we conclude that MC, converges to MC, as r approaches ry, and it is convex
for Vr > ;. We conclude for this case that the marginal cost declines, and
then increases as r — 1. The shape of marginal cost illustrated in Fig. 3.1.

We conclude that the marginal cost is convex but not symmetric about the

midpoint —r'—g—l- Furthermore as reliability approachs unity, marginal cost

provides a close approximation to that which would be obtained from

solving deterministic problem.

For comparative purposes consider the logistic distributjon bounded
over the same interval as the wniform distribution, namely [{2]. This
distribution is specified by the following:

-2{x-6)

fx)=2-= ..(19)
a

R 2
-—(x-4)
|:l+e o }

¥
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Utilizing eq. (19) to evaluate eq.(9) yields:

d I .20
14+e @ 1+e

Marginal Cost

Mce,=b )

4 1.0

Fig. 3.1 Margina] cost

Relinbilily
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substitute eq.(20) into eq.(8) the upconstrained solution to eq.(19) and eq.(3)

&L b— T(B+21)

oQ

b=T(B+2)

Q'=gln(—§ -1)+0 ...(21)

To determine the unconstrained marginal cost, substitute eq. (20) into
eq.(10) yield

ycé——al———(3+,1)—(1 -~
1+e°(Q-6)

setting A = 0 we get. 5426&1
1

MCp=——— B=TB=b ..(22)

—(p-8)
. 1+e”
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Canstrained marginal cost is found by first solving for A. Ultilizing eq. (4)

we obtain the following:

1

Zig-0)
o

(B+2)

AX0)_y r(gra)=b -
éQ [4

B+A= be;{q_a)

A=bes - B (23)

Substitute eq.(23) in eq. (10) we will have

MC = T(B+)- (1 -Dh

2{p-0) 2{g-4) 2(o-0)
= a] Bibes -B|-(t-r). per B b bem -~ B
e;(@'g)

" MC,=b-(1 —r{be;m_g]—B} 24y

Consider now the comparison between optimal capacity for the uniform and
logistic distribution. Both distribution have the same means and limits, but
variance of uniform distribution is greater than logistic distribution.

To compare eq.(12) and eq.(21), consider the unconstrained problem

Eq.(2). If %< 05 then the amount of required capacity for the uniform

distribution exceeds the required capacity for the logistic distribution over
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the same interval but if %> 05, then the required capacity for the logistic

distribution, exceeds the required capacity for the uniform over [/,#].

A graphical representation of the above is provided in Figure 3.2.

This relationship has intuitive appeal when noting that for cases where the
penalty cost is very large relative to the regular time cost, a higher variance

gives greater levels of installed capacity.

34 Conclusion
| This chapter deals with a basic model which characterizes the cost of
mipimization frame work for service such as postal services.
The results:
1. | Marginal cost curve is convex
2. Increaéing the demand distributions variance, while fixing the mean,
may either increase or decrease required capacity.
3. The explicit effect of changing in variance is a function of regular, and

over time costs associated with delivery service.
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Conclusion

This thesis presents a basic model which characterizgs the cqst
minimization frame work for a service provider offering deferred servicé,
such as a postal service. |
Wg make comparison between optimal capacity for the uniform and logistic
dis_tribulions. While both distributions are bounded by the samé limits, and
po“sses identical means, the variance for the uniform distributiQn is greater
than logistic. Marginal cost are convex with respect to reliability of service.
Increasmg7 the demand distribution’s variance while fixing the mean inay
: elther increase or decrease required capacity. The explicit elfect of this
ch.;«mge in variance is a function of regular and over time costs ([;) associaled
with the delivery service.

This thesis also provides one such approach by developing a theoretical
uniderpinning for marginal cost determination.

W;a deal with dynamic programming to maximize reliability of the system,
an:_d yield an exact optimal solution. Dynamic programming used to solve
variety problems. We try to apply this procedure for the case:of complex

systems, we found that it could be extended for such system without
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difficulties, and we recommended the next research for the interrelated

students toward such systems.
Finally, Heuristic procedure applied to obtain the solution of optimization

problems. We present in this thesis the Sharma and Venkateswamn

approach.

We present two exampl}es, and found maxunum reliahility in the

available cost using two methods.

A comparison is made between Dynamic programming and Heuristic

Approach, where both give the same results.
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Appendix

The following heuristic algorithm and the computer program are to

maximize the reliability and minimize the cost.

Algorithm

G{ven: number of units n, cost (C;) and reliability () for each unit and
the available cost moﬁey (b).

Fi#ld: maximum {Q, where Q, =1 - R*’ i=12,..,n} Find its location

—p |

SMAX = (max. g, )Y

Add: add one unit where Q) is maximum.
g, +1

Ré:peat: t;ntil total cost > available cost.

Remove : the component where total cost > available cost.

Ré:peat: until total cost > available cost.
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AR AR AR
/7
/{Simulation For Heuristic Approach.
//Implemented by Mr. Saleh Afaneh.

//

//*******************
import java.util.*:
import java.io.*;
import java.lang.*:
class reliab(

public static boolean finished=false;
public static int mNum = 0 :// no machine yet..

-public static String Tmp= new String{):

public static String nam= new String():
public static Integer st= new Integer(0):
public static Float rel= new Float(0)}:
public static Float pri= new Float(0};

public static Vector namV= new Vector():
public static Vector stV= new Vector();
pulilic static Vector relV= new Vector():
public static Vector priv= new Vector(};

puﬁlic static float Sum;
public static Float money= new Float(0);

puﬁlic static char[] end = new char[l];

public static InputStreamReader is=new

InputStreamReader (System.in);
public static BufferedReader br=new quferedReader (is};

public static void main(String[] args){
try|

System.out.println("\n\tThis is Simple Simulation For
Heuristic Approach. ");

System.out.println("\t\tImplemented by Mr. Saleh Afaneh.

do{
Heuristic():

mNum = 0 ;

Tmp= new String{):

nam= new String{);

st= new Integer(0};
rel= new Float(0);

pri= new Float(0);

namV= new Vector():
stV= new Vector():

relV= new Vector({};
priv= new vector():
Sum=0;

************1\-***-k*********************************

*****************************************

\n");
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money= new Float (0);
end = new char[l}];

namV.removeBRllElements ()
stV.removeAllElements{);
relV.removeAllElements ()
priV.removeAllElements();

Tmp=new String{(br.readLine(}):
System.out.print ("\nTry again (Y/N): 7?");
br.read{end):

}while(end[0)=='Y'{|| end[0)=="y");
}Jcatch(Exception Exp) {System.out.println(Exp.getMessage());]}

}//end of main..

public static void Heuristic(}{
try{.
System.out.println("Input values for machine specifications :\n");

do{
Trmp=new String(br.readLine());

System.out.print ("Machine Name : ");
nam=new String(br.readLine());
"namV.addElement (nam) ;

st = new Integer(1):
stV.addElement (st);

do { i
System.out.print ("Machine Reliability (between 0 and 1) :
rel=new Fleoat(br.readLine{)};

}while(!(rel.floatValue()>0 && rel.floatValue()<1l)):;

");

rel = new Float(l-rel.fleocatvalue()}:
rel rnd (rel.fleocatValue()):

relv.addElement (rel);

System.out.print ("Machine Price : ");
pri=new Float(br.readLine());
priv.addElement (pri};

mNuym++;

System.out.print ("\nMore Machines (Y/N): ?");
br.read(end):

if(end[0]=="Y'|| end[0]=="y")
finished=true;
else

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Sy
Sy

w
Tm

Sy
mo

if

!!n)
el

L]

68

finished=false;

stem.in.read();
stem.in.read(}:

hile{finished}):
p=new String{br.readLine()):

stem.out.print ("Enter the value of available money :"):
ney=new Float (br.readLine()};

(money.floatValue()<calcSum())
System.out.println("\n Can not buy machine(s) with your money

se|
prntHead () ;
print (1);
print(2):
print (3)7

while (buyMachine ()){
int ix =maxUnRel();
Float tempRel= new

Float(((Float)relV.elementAt(ix)).floatValue()):

).l

1y*(

stV.setElementAt {
new Integer(((Integer)stV.elementAt(ix)).intValue() + 1)

f1x}

relV.setElementAt (
rnd {(new Float(((Float)relV.elementAt(ix)).floatValue()

((Float)relV.elementAt(ix)).floatValue()
ocatValue())

*

P 1x) s

if(money.floatValue()<calCSum())
{
relV.setElementAt (tempRel, ix)?
stV.setElementAt (
new Integer((((Integer)stv.elementAt(ix)).intValue()

-1))

rix)r'
print(1}):
print(4);
print(3);
}

elsel

}

print(1);
print(2);
print (3);

}//end while..

}//end else..
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result ()

}catch(Exception ex)

{

System.out.println(ex.getMessaqe());

}//end of function Heuristic

public static float calcsum () {

float sm=0;
for{int s=0;s<mNum;s++)

sm=sm+(Math.abs(((Integer)stv.element
((Float)priV.elementAt

At(s)).intValue()) *
(s)).floatValue());

return sm;
}//end of function calacSum

public static boolean buyMachine(){

float diff= money.floatValue()— calcsum({};

for{int n=0; n<mNum; n+t)
if(diff >= ((Floét)priV.elementAt(n)).floatValue() )

return truey

return false;
}//end of functien buyMachine
public static int maxUnRel () (

float temp=0;
int idx=0;

for(int r=0; r<mNum; r++)

r)).floatValue() > temp &&

if{((Float)relV.elementAt(
(r)).intValue() > 0

((Integer)stV.elementAt

temp:((Float)relv.elementAt(r)).floatValue();

idx=r;
}

return idx;
}// end of function maxUnRel

prntHead(){

public static void
LANAN AN AN bl

System.out.println(

***********\n“) ;

x+x*x%xx* Solution

for(int l=0;l<mNum;l++){
System.out.print((String)namV.elementAt(l)+"\t");

}

for{int l=0}l<mNum;l++){
System.out.print("Q'“+(l+l)+“\t");

)

All Ri . .
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System.out.println("g(x)\n");
}// end of function prntHead

public static void print (int cYy
switch(C) {

for {(int 1=0; l<mNum; 1++)

case 1
System.out.print(

h.abs(((Integer)stV.elementAt(l)).intValue())+"\t");

break;
for (int 1=0; 1<mNum; 1++)

System.out.print(
((Float)relV.elementAt(l)).floatValue()+"\t");

break;
System.out.println(calcSum());

break:
for (int 1=0;1<mNum;1l++)

System.out.print("——-"+"\t“);
break;

Mat

case 2

case 3

case 4

}//end switch
y//end of function print

public static Flecat rnd(float £1}{

(Math.round(fl*lOOO));
£1/1000;

£l
fl

!

return new Float{f£l):
1//end of function rnd
public static void result ()

System.out.println(“\n\t\t\t*********** Result***********\n"):

System.out.println("You can buy the following machines :\n "};

for (int r=0; r<mNum; r++)

{

SYStem.Out.print("** "y ;

System.out.print(Math.abs(((Integer)stV.elementAt(r)).intValue())+

1" ")'.
System.out.print("(
System.out.println(" machine(s)

"+namV.elementAt(r).toString()+" y"):

-IT):

v )
System.out.pri

machines is @ ")#
System.out.print(rnd(money.floatValue()—calcSum()).floatValue());

system.out.println(” $"):
}//end of function result..

nt ("\nThe remaining money after buying these

}// end of class reliab..
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Example : 1

“This is Simple Simulation For Heuristic Approach

Jmplemented by Mr. Saleh Afanch
+ Input valucs for machine specifications
Maéhine Name : x1
Machine Reliability (between 0 and 1): 0.5
Machine Price : 2000
More Machines (Y/N):? y
Machine Name : x2

Machine Reliability (between 0 and 1):0.7
Machine Price ; 3000

More Machines (Y/N)Y:7y

Machine Name : X3

Machine Reliability (between O and 1):0.6
Machine Price : 1000

More Machines (Y/N):7y

Enter the value of available money :11000

More Machines (Y/N).7 n
Enter the value of available moncy 111000

kdhbekErbk Solufion FAREHIEEEEE

1 x 3 Q1 Q2 Q3 gx

05 03 04 60000
025 03 04 8000.0

- - ——  9000.0

(R SRS
[ e e
B OB B e

hERREEERRAR ]| FERARRERERRE

You can buy the following machincs:

**+3 ( x1 ) machine(s).
#*1 ( x2) machine(s).
*+) ( x3 ) machine(s).

The remaining moncy after buying these machines is : 0.0§

025 0.3 0.16 90000

0.063 03 0.16 110000
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