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Numerical Methods for solving Elliptic
Boundary value problems
By
Mithqal Ghalib Yousef Naji
Supervised by
Dr. Samir Matar

Abstract

Elliptic Partial Differential Equations of second order have been
studied using some numerical methods. This type of differential equations
has specific applications in physical and engineering models. In most
applications, first- order and second-order formulas are used for the
derivatives. In this work higher order formulas such as: seven-points and
nine-points formulas are used. Using these formulas will transform the
partial differential equation into finite difference equations. To solve the
resulting finite difference equations the following iterative methods have
been used: Jacobi method, Gauss-Seidel method, Successive Over-

Relaxation method (SOR) and Multigrid method.

In this thesis, we found that multigrid methods are the most efficient among
all other methods. The execution time for multigrid methods is of order

three while the other methods is of order five.
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Introduction



Introduction

The majority of the problems of physics and engineering fall
naturally into one of the following three physical categories: equilibrium

problems, eigenvalue problems and propagation problems.

Partial Differential Equations (PDEs), which are considered at the
heart of many mathematical models used in engineering and physics, has
given rise to extensive computations. Often the problems that one would
like to solve exceed the capacity of even the most powerful computers. On
the other hand, the time required is too large to all inclusion of advanced

mathematical models in the design process.

The solutions of PDEs are important in many fields of science and
engineering notably in electromagnetism, astronomy, and fluid dynamics,
because they describe the behavior of electric, gravitational and fluid
potential. Most of the PDEs that arise in mathematical models of physical
phenomena are difficult (if not impossible) to solve analytically, so we

have used numerical methods to approximate the solution.

Linear Second-Order Partial Differential Equations

The general form of a linear second order PDE in two-dimensions is:

2 2 2
aalj+bau +c§l;+da—u+e6—u+fu+g=0 (1.1)
x> oxoy oy ox oy

where a,b,c,d,e, f, and g are coefficients which may be constants, or

functions of the independent variables x and vy .
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This linear second order PDE in two independent variables can be

classified as one of three standard or canonical form which we identify as

hyperbolic, parabolic, or elliptic. The classifications of the PDEs are:

e Hyperbolic if b* -4ac>0
e Parabolic if b*—4ac=0

« Elliptic if b>—4ac <0

In this research, we compare different numerical methods for solving
linear elliptic boundary-value problems(bvps). We use several different

methods to solve the elliptic PDEs such as:

Successive Over- Relaxation (SOR), Jacobi method, Gauss-Seidel,and

Multigrid method.
1.1 Study Approach
The aim of this work is to:

study, analyze and develop some numerical methods for solving

elliptic partial differential equations with boundary conditions.

Also to investigate the most efficient method among the different

methods used.we used MATLAB as a computational tool.
1.2 Model Problem

Elliptic PDEs arise usually from equilibrium or steady-state
problems. A typical example of elliptic equation in two dimensions is the

well-known Helmholtz equation:
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o’u o

Ve a—y2+/1u = f(X,Y) (1.2)

Important special cases:

-when A=0, the above equation leads to Poisson’s equation which is:

o’u  o%u
—+—=f(X, 1.3
o oy (X, Y) (1.3)

-when A=0 and f =0 the above equation is called Laplace’s equation
which is:

2 2
ZX_‘3+2y_2:o (1.4)

If the solution u(x,y) is satisfying, Poisson's equation in a square region

S =1 (x,y)\a<x<b,a<y<b}
with boundary conditions u(x,y)=g(x,y) on oS,where 0Sis the

boundary of S.

Poisson’s equation summarizes the flow motion of incompressible
viscous fluid, and the inverse square law theories of electricity, magnetism
and gravity matter at points where the charged density pole strength or

mass density respectively is non-zero.

The solution to an electrostatic problem is straight forward for the case
in which the charge distribution is everywhere specified for them; the
potential and electric field are given directly as integrals over this charge

distribution.
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L dg (1.5)

C4ze, -1

where ¢ is the charge inside Gauss sureface.

g, 1s the permitivity of the air.

|r—r'| is the distance between the charge and the point.

\ \
E_ 1 I(r—r )dq
4re,

T (1.6)
First, we have the differential form of Gauss’s law:
Diverge E =Lp 1.7)

&y

Furthermore, in a purely electrostatic field, E may be expressed as the

negative gradient of the potential:

E=-gradu (1.8)

Combining equation (1.7) and (1.8) we obtain:

div (grad u) = -ip

0
It is convenient to think of div grad as a single differential operator

V.V or V?. Where V* is called Laplacian operator.

V=1, (1.9)

&g

and this is a Poisson’s equation.



6
The operator V* involves differentiation with respect to more than one

independent variable which may be solved once we know the functional

dependence of p(x, y), and the appropriate boundary conditions.

Poisson’s equation can be expressed in three dimensions as:

o’u o°'u du . :
Viu = = o ta T £ in rectangular coordinates or
X z &

1 0,6 ,0u 1 0
—)+

2
viu=— 2 —(sin@S—;)+ L _ou__pr0)

r2or or’ r’sind o0 r’sind 09> &,
(1.10)
in spherical coordinates, or
vy =10y, 10U ou_ pr0.2) (1.11)
ror or r-o00° oz &

in cylindrical coordinates.
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Finite Difference Discretization
of Elliptic Equation



2.1 Introduction

Many engineering applications involve boundary value problems that
require solving elliptic partial differential equations (PDEs). The

discretization of such boundary-value problems leads to linear system

Au=f, where u is the set of unknowns corresponding to the unknown

variables in the PDE and f is the set of discrete values of the known

function in the PDE.
Boundary conditions

For elliptic PDEs, there are given boundary conditions where in some
property of u is specified 6S. With either Laplace’s or Poisson’s equations,

we can define three types of boundary conditions.
Types of boundary conditions

The solution in an interior points of the region S depends on all the data given on

the boundary 0S . The conditions on this boundary are of three types:

oS

n
Fig. (2.1) Illustration of the region for Elliptic PDEs



(1) Dirichlet condition :U = g on 0S

1 (i1) Neumann condition :Z—u =V (X,y) on 0S
n

(ii1)) Robbin (mixed) condition :2—u+ ku = g on 0S
n

S

It is often the case that an elliptic boundary-value problem is specified by

boundary conditions that are of different parts of os.
Numerical Solution for Boundary- Value Problem

The methods that have been used are based on finite difference methods for

solving linear boundary value problems.

1) Define discrete mesh points within the domain S of boundary-value problems.
2) Replace derivatives in the given PDE by some finite differences.

3) Solve the system of linear equations at all mesh points.

Diagramatically, the above steps are shown:

System of linear

Discretization .
equations

Approximate
solution
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Approximate solution is determined at all mesh points simultaneously by

solving single system of linear equations.

Consider the elliptic boundary problem Eqs (1.4) with a square

domain:

S= {(x,y) :0<x <a,0<y< a} (2.1)

Define the mesh point as the points of intersection of the straight lines

x =ih,i=12.,n and y,=jk, j=12,.m,

h=2 and k=L
n m

Using Taylor's theorem, the second order central —difference

approximations to first and second derivatives at the interior mesh point

(i,)) are:
ou _u(i+ L, j)y—u(i-1,)) 2
(5_X)i’j = h + O(h ) (2.2.3)
a_u _u(i, j+1)—ud, j-1) )
(8y)ij = 7K +0(k") (2.2.b)
o’u.u(i+1j)—2u(, j)+ul-1,j) )
(axz)i,j = 2 +0(h%) (2.2.¢)
o’u ud, j+1)—2ud, j)+ud, j—1 5
2, - (i,j +1) ;izj) (.i-D , o)

(2.5.d)
(Lapidus, 1982)



B.j (1,j-1)

Fig.(2.2):Five-point scheme for Laplace equation.

Taking x =ih and vy, =jk the five points finite difference
approximation to the elliptic PDE at the interior mesh point (x.y;) Fig.
(2.2) 1s

3,,- U i +D|,j ui—l,.j +Ei,j U +Fi,jui+1,j +Hi,jui,j+1 =0

1=12..n 2.3)
j=12...m
where B, D, E;, F;, H,;and g, are known values. In the case of

Laplace's equation B,D,E,Fand H are 1, 1, -4, 1and 1 respectively.

Linear Systems:

Defining the vector u to be
: _ T
[ U Uy g3 U e Uy e Uy g e Uy g 2.4)

Where [ |7 denotes the transpose and imposes an ordering on the (M —1)’

unknown grid values. With this ordering, the totality of equations at

the (M —1)’ internal nodes of the unit square leads to the matrix equation

Au=b 2.5)

Where A is a matrix of order (M —1)* given by:



A= 12

B -1J 0
-J B -1
(2.6)
-J B -1
0 ~-J B

M : the number of interior points in each direction

with J the identity matrix of order (M —1) and B the following matrix of
order (M -1) given by

4 -1 Q.7)
-1 4 -1

-1 4 -1

The components of the vector b depend on the

boundary values ofg(x,y)at the grid points on the perimeter of the square

region and the equation .(Mitchell, 1980)
2.2 Difference Equations for Boundary Nodes

(a) Dirichlet conditions:

When u(x,y)=g(x,y) on the boundaryas. , the nodal values are

u,; = g(x,y;) on dS., also when the node (i, j) is adjacent to the boundary

then this node is either adjacent to one boundary node Fig (2.3.a) or
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adjacent to two boundary nodes (Fig.2.3.b).

i@ Hij
o s i@ Hij
L Ui, j+1 os
L/ L/
o o o 4
Di, Ui, Fi, cia
o o ol Utli i Uil Fii [0 (yiaa s
B o Eii ® ® PYVe Ui+1,j
Ui-1,j g : . Ei,j
Ui-1,j !
Bij e Uij-l £ Bij @ Uijl ‘
Fig.(2.3.a) Fig.(2.3.b)

In the first case let the boundary node be (i+1,j) then the difference

equation at the point (x;,y;)can be written as:

i Uija iU FE U+ H U, =00 - FU

2.8)

where u,, . 1s given (known value) by the boundary codition.

i+1,

In the second case when the node (i, j) is near the south-east corner of the
boundary of a square region. Let the two known boundary nodes be (i +1, j)

and (i,j—1)as in Fig. (2.3.b), then the finite difference equation for this

point is

F u

DU, +E U +H U, =090, - B U — FUi

2.9)

where u;, and vy are given by the boundary conditions.

i+1,]
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(b) Neuman condition:
When Z—l:] =V(x,Yy) is on the boundary, then in the five- point difference

scheme, three of the node lie on the boundary line, one inside the boundary

at (i—1,j) and the fifth at(i+1, j)as in Fig. (2.4).

--At/ Hij
Ui,j+1 as
e

L
. e .
.UDi_I;,j Ei,j./UI,J - Uit+d,]
Bi,j ’/Ui,j-l
Fig . (2.4)

To find the value of u(i+1,j), we use either the following forward

difference approximation namely:

Vix. v.)— Ui — Ui
(X, Y;) EEr—
(2.10)

which gives:

U, =U;+hvy; ,

i+1,]
or the central difference approximation (2.5.a)

Using Eq. (2.13) the finite difference equation (2.6) at (i, j) can be written

as:
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U +D U+ (B + R pu; +H U, =0 - RV h.

i i, j+1 iYL

B

i

(see figure (2.2)). (2.11)
Taking the central difference approximation Z—: , the five- point difference
equation at(i, j), Fig (2.4), can be written as:

B U +(D; +Fu_ +E u;+H U, ,=09,-2hF VvV, (2.12)

i-1,j i, 7, i+ i,jo,]

The totality of equations at the (M +1)* grid points of the square leads to the

matrix equation

Au = 2hG, 2.13)

Where A is a matrix of order (M +1)* given by:

2.14)

With | the identity matrix of order(M +1), and B matrix of order (M +1)

given by:

2.15)
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The vectors u and G ofeq's (2.12) are respectively given by:

: oo T
[Ug g Upp g3Ugqeee Uy y3eees Ug Uy gy ]

and

[2V5.0:V1 05 Vi 21,052V 03 Vo.1:0--:0,Vy 133V 11040V 52V Vi -V oo sV I
(Smith, 1978; Mitchel, 1969).

(¢) Robbin's conditions

The boundary conditions of the form (2.3) can be incorporated into the
difference equations for the boundary nodal points by an extension of

the methods outlined in the Dirichlet and Neuman problems (a) and (b).
(Smith, 1978; Mitchel, 1969).
2.3 Error Analysis

The following is an error analysis of five points difference approximation

to Laplace's equation over the region . S.

Consider the Dirichlet problem:

2 2
viu=2Y,9U 6 xy) onS (2.16.2)

ox> oy’

uxy)=g(xy), (xy) onds (2.16.b)

where S is defined by equation (2.4) and g is a known function.

Define the set of all interior mesh points in Sby S, . At the points of S,

we replace V’u(x,y) by the five-point difference approximation of

Laplace's equation, namely,
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+U,_ 4u U,
h2

+ U

i+1, ]

V20, (% y) = i 2.17)

where u,(x,y) is the computed solution . To bound the truncation error

|V, 2u, (%, y) = VZu(x,y) | forall (x,y)e S, ,

We use the Taylor's series expansions for the pointsu,,,; ,u_; U ;. >
and u;
2 3 4
U =usrhy L0 s 0u 1. ouxs hy) (2.18)
ox 2 ox° 6 ox 24 OX
2 3 4
o mu-hM LU 10U, 1, dux- .y (2.19)
i1 ox 2 ox° 6 ox 24 OX
Where 0< g <1.
Adding these two equations leads to
o'u 1, d'u(x+pn,y)
-2 L= —+—h'———=), . 2.2
|+l j U +U ( axz + 12 8)(4 )|,J ( 0)
Similarly, for u;;,, and u;, , we get that
2 4
U —2u vy = (h? OY L e TUC YA, 2.21)
. oy’ 12 oy 8
where 0<y<1.
Adding (2.23) and (2.24) we get:
h? 84u X+ o'u(x,y+
19,70, 00y) - Vu(xy) = 1 FUEE Y TUOY A, (2.22)

12 ox* oy*

Hence if u(x,y) has bounded derivatives of all order up to and including

the fourth in é =S uaS then for all (x,y)eS,,

2

h
|V, U, (X,Y) = Vu(x, y) | < oM (2.23)
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Where u(x,y) is the solution of problem (2.19) and

o'u(x,y) o*u(x,y)

o Py o I (2.24)

M, = max{max

(X,y)eS

To find abound for error in u,(x,y) which is called discretization error

e, we apply a Theorem (smith, 1978 ; p.223) which states that :

If V is any function defined on the set of mesh points s, in the square

region S (2.19) then

1
maxg |V | <max, |V |+Z(a2 +a’ ymaxg |Vh2 -V?|

Applying this theorem to the discretization error e,, we get:

1
maxg | e, [ < maxy |e, |+Z(a2 +a’ ymaxg |V, =V

but e,=0 on 8S, because u, +u=g on 8S, by Eq. (2.19.b).Hence, by

Eq.(2.26), we conclude that

max; |e, | s%(a2 +a’ )h’M,

Therefore u, converges to the exact solution u as h tends to

zero and the discretization error is proportional to h® (smith, 1978;

Whiteman, 1982).
Example:
Consider Laplace's equation

Uy + U, =0
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0:x=0
. . ... 0:x=1
On unit square with boundary conditions u(x,y) = 0 0 as shown
Yy =
l:y=1
below
T U=1
U=1
U=0 u=0 U=0 P

Y

Y

Define a discrete mesh in this domain, including boundaries with n=2,
1

1 .
h= 3 and k = 3 as shown on right above
Interior grid points where we will compute approximate solution are

given by:

(Xi9 y]) = (Ih?ky) ’ i9 J = 1523---7n

After replacing the derivatives by central difference approximation at each

interior mesh point we get the finite difference equation

ui-¢—1,j _Zui,j +ui—l,j ui,j+l _2ui,j + ui,j—l

h? h? =0

where v, ; approximates the true solution u(x;,y;) for i, j =1,

The point (x;,y;) is a boundary point if i,j=0 or i,j=3

The result is the following linear system:
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4u1,1 —Uy, —U, —U,—U, = 0

4“2,1 U, —Uy, U —U,, = 0
4u1,2 —Upy — Uy, U, —U 5 = 0

4u2,2 —U, U, —Uy, —U,; = 0

The above equations can be written in matrix form as:
Au=b

4 -1 -1 O

-1 4 0 -1
where A= U=

-1 0 4 -1

0 -1 -1 4

=

C c Cc
— v
() —
-
(@n
Il

Using Gaussian elimination with backward substitution or any direct

method, gives the exact solution:

u=[0.125 0.125 0375 0.375]
2.4 Rotated Five-Points Formula

Another type of discretization, so-called rotated discretization , can be
achieved by rotating the i - and j — plane axis clockwise by 45°. Thus , the

discretized form of Laplace’s equation at the mesh point (x,y;) with the

finite differences formula will lead to the rotated five points schemel as:
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(s,k

(s,k)’ (s,K)°
2

U, = U, +(sk)u, +(sku, +

RO
6 y 2 X7y

X

3
RO
2

(s,K)’
U —(S,K)°Uy —ZTU L+

X

U, = U, —(s,k)u, +(s,k)u, +

L N CL A CLo
6 y’? o) X7y 2 Xy

80", |, (00

2

(s:k)’ (s:;k)’
2

Uy = U, + (KU, —(s;k)u, +Tu . +

3 3 3
O CYS W U

6 y 2 X7y 2 Xy

2 2 3
U, = Uy —(s,k)u, —(s,k)u, + (S“;) u,+ (S“;) U +(8,k)°uyy —%u , =

3 3 3
O N O S CL

6 y 2 X7y 2 Xy

Now Laplace's equation can be written as:

U, +U, =, U +a,U, +a,u, +a,u, —au, =0

After we solve the above equations for a's we obtain
i o=, =0, =« _L
1 2 3 4 2k2 °
For the above case, we need only to define a new k' as:

\ k

“ o

so Laplace's equation can be written as:

Uy +U,, =(U, +U, +U; +u, —4u,)=0

2
u, +Tuy2 +(sK)u,, +Tu s+



u, = u(i, j)=%[u(i+1,j+1)

22

+u(i—1 j+D)+u(

L j-D+u(i+1, j—1)]

Now let's write the above equation in a vector matrix form:

U=50

U=300

Let's take (n=m=4)in

For node (1,1):u,, =
For node (2, 1):u,,
For node (3, 1):u,, =
For node (1, 2):u,,
For node (2, 2):u,, =
For node (3, 2):u,, =
For node (1, 3):u,, =

For node (2, 3):u,, =

1 3
= Z [U2,3 +Uy 5+ Uy, +1|'0,1

1
Z [u3,3 +U+U; + a1',1%

each direction

22+u02+u20+u00]

1
= Z[Us,z + Ul,z + u3,0 + ul,O]

42+u22+u40+u20]

2.3

2.2

1
Z [u4,3 + u2,3 + u4,1 4 qu] 2 1

24+u04+u22+u02]

4 U34+U14+U32+U12]

3.3

3.2

3.1
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1
For node (3,3):u,, = Z[uéh4 + Uy, Uy, +U,,]

4 0 0 0 -1 0 0 0 O]
0 4 0 -1 0 -1 0 0 O
0 0 4 0 -1 0 0 0 0O
0 -1 0 4 0 0 0 -1 0
A=|-1 0 -1 0 4 0 -1 0 -1},
0O -1 0 0 0 4 0 -1 0
0 0 0 0 -1 0 4 0 0
0 0 0 0 0 -1 0 4 0
0 0 0 0 -1 0 0 0 4

u= [ul,l u2,1 u3,l u1,2 u2,2 u2,3 u1,3 u2,3 US,S]T
b=[400 600 700 100 0 0 200 200 500]

the above system can be solved and the approximated solution will be:

u=[1375 1879808 2125 884615 15000 634615 87500 658654 1625[
2.5 A Seven-Point Formula

We begin this discussion by developing a series of seven point finite

difference approximations for the model elliptic PDE.

We consider the interior of S but ignore in the present, the boundary

conditions. The subscripts on u will be i and j respectively.

In a more general sense, we may desire a seven —point finite formula that

either uses u,and any sixth other points or has variable spacing throughout

or in some specific region of S.This can be done using Laplace’s equation

as an illustration, by setting

Uy U, =a U +a,u,+a Uy +a,u, +aUus+au,—a,u,
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Where the u,......,u are the values of U selected mesh points aroundU, and

......... ,a, are parameters to be determined by Taylor's

(s,k)° (s,k)’ (s, k)*
u, =[u, + (s, kyu , + ; uX2+ITuX3+ 124 U +...],
s, k)? s k)’ s, k)?
u3=[u0—(s3k)uyl+%uyz—%uy3+%uy4 ...... 1

(s,k)? (s,k)’ (s,k)*

u, =[u, —(s,k)u , + —=4——u_, - —2——Uu , + —2—"—U_, + ...
2 [ 0 ( 2 ) X X 6 X 24 X ]o
g — (s,k)’ (s,k)’ (s,k)*

u, =[u, = (s,ku, +“—uyz + 46 u+ ;4 Uy +..]

2 2
Us =[Uy +(ssku,, +(ssku, + (56 U. + (5:K)

2
U, +(5:k) Uy, +

3 3 3 3
(S LY .Y AN CS A
6 * 2 T2 e
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Us = [U, — (s¢k)u, —(sék)uyl +

Uyz +

UX2 +

(sk)* (ssk)’
2 2

3 3 3 3
(s;k)’u., _ (5k) u, _ (5 u,, —mu 2—ﬂu _—
X'y 6 X 2 Xy 6 Xy 6 y

Uy +U,, =Ug[—ap+a +a, +a; +a, +as +ag ]+

U, [, (5,K)—ax, (S,K) + s (SsK) — g (S K) ]+

Uy1 [ (S3k) +a, (S4k) + O (Ssk) — O (S6k)] +
"6 + Sk (810 (57T

[on(sK)” +a,(5,K)” +a5(S5K)” +ag(56k)° T+

c N‘<C

3

o (sK)’ — (S K) +a5(sK)’ +a(55K)” (k) 1+

Co\‘

3

Ll (S,K)° + 2, (5,K)° + 1 (5K) — ot (k)]

+%[a1 (5K)* +a, (5,K)* + s (sK)* +ax, (5.K)°]

+ %[0{3(53@4 +a,(s,K)* + as(ssk)* + g (sk)*]
a,+ta,+a +a,+tas+a,-a, =0
a, (s, k)y—a,(s,k)y+ as(ssk)—a,(s¢k) =0
—a,(S;k)+a,(s,k)+as(ssk)—a (ssk) =0
a,(5,K)? +a,(s,K) + a (sk)’ +a (s k) =2
o, (8:K)* + e, (5,K)” + as(s.K)* + a (s.K) =2

a,(s,k)’ - a, (8,K) + a5 (85k) — e (8,k)' = 0
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— a1y (5,K)" + a,(5,K)” + a5 (55K)" — g (5,k)* = 0

1 1 1 1 1 1 1 a, 0
0 (sk) —(sk) 0 0 (sK) —(5,K) a, 0
0 0 0~k (5K (5K —(5Kk @ 0
0 (sk)? (s,k)? 0 0 (5k)  (5k)’ a, =2
0 0 0 (5K (S,K)7 (sK)>  (sck)? a, 2
0 (sk)’ —(s,k° 0 0 (sk) —(sk)’ a; 0
0 0 0 —(5K) (5K (5K —(sk)’ a, 0

For regular region:

§=5,=8=5 =8=5=5=1

Let a,=r=1

o, =t=1

o, + o +oa, =400

a, +a; =100

a, +a, =100

o, +a, =100

o, +a; =100

When we solve the above equations, we obtain:
a,=38,00, =9 ,a, =99 ,a;, =99 ,a, =99 ,a, =a, =1

Uy +U, =99u, +99u, +99u; +99u, +us; +u, —398u, =0

1

uo:W(99u1+99u2+99u3+99u4+u5+u6)
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Let us write the above equation in a matrix form as:

Au=Db

1

For node (1, 1):u,, = ﬁ[%(uz,l + Uy + Uy + U )+ Uy, + U]

For node (2, 1):u,, = ﬁ [99(Us, +Uy, + Uy +Uy,) +Uy , + U]
1

For node (3, 1):u,, = E[99(u4’1 + Uy, Uy +Uy,) + Uy, + U]
1 1.4

For node (4, 1):u,, = 5[99@0 + Uy, + Uy +U,,) +Ug + U]
1

For node (1,2): u,, = ﬁ[%(uz,2 + Uy, + Uy, +U;3) + Uy, +Ug, ]

-
For node (2, 2):u,, = @Umﬁﬁl,z + Uy +Uy3)+ U5 +U ]

1
For node (3, 2):u,, = ﬁ[99(u4,2 +Uy, Uy +Uy )+ u41 +212,1]

1.1

U=100

2.4

2.3

2.2

2.1

3.4

3.3

3.2

3.1
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For node (4, 2):u,, = ﬁ[%(u0 + Uy, + Uy, U )+ U+ Uy ]
For node (1, 3):u, = ﬁ[%(uz,3 +Uy+ U, +U )+ Uy, +Ug]
For node (2, 3):u,, = 3—;8[99(u3,3 U5+ Uy, +Uy ) Uy, + U]
For node (3, 3):u,, = 3—;8[99(u4’3 + Uy 5+ Uy, + U )+ Uy, + Uy, ]
For node (4, 3):u,, = 3—;8[99(u373 + Uy + Uy, +U, )+ Uy +Us,]
For node (1, 4):u,, = ﬁ[%(uz’4 + Uy +U, 5 +Ug) + Uy + U]

For node (2, 4):u,, = %[99(%4 +Uy 5+ U, +Ug) + U +U, 5]
For node (3, 4):u, , = 3%[99(%4 +U,, +Uy 5 +Uy)+ Uy + U, 5]

For node (4, 4):u,, = %[99@0 + Uy, +U, 5 +Ug) + Uy +Uy 5]

(398 99 0 0 99 -1 0 0 O O O O O O 0 O
-99398-9%9 0 0 -9 -1 0 O O O O O O O O
0 -9398-9 0 0 -9 -1 0 O O O O O 0 O
0 0 -939¢%8 0 O O -9 0 0 0 0 0 0 0 O
-99 0 0 0 398-99 0 O -9 -1 0 O O O O O
-1 -9 0 0 -99398-99 0 O -9 -1 0 O O O O
0 -1 -9 0 0 -99398-9 0 0 -9 -1 0 0 0 O
Ae o 0 -1 -9 0 0 -9398 0 O O -9 0 0 0 O
o 0 0 0 -9 0 0 0 398-9 0 0 -9 -1 0 O
o 0 0 o0 -1 -9 0 0 -9 398-9 0 0 -9 -1 O
o o0 0 O O -1 -9 0 0 -9 398-99 0 0 -9 -1
o o0 o0 o0 O O -1 -9 0 0 -9398 0 0 0 -9
o o0 o0 O O O O 0 -9 0 0 0 398-9 0 O
o o0 o0 o0 O O O O -1 -9 0 0 -9 398 -9 0
o o0 o0 o0 O O O O 0 -1 -9 0 0 -9 398 -99
$ 0 0 0o 0 0 o0 o0 o0 0 O -1 -9 0 0 -9 398
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u= [ul,l u2,l u3,1 u4,1 u1,2 u2,2 u3,2 u4,2 u1,3 u2,3 u3,3 u4,3 u1,4 u2,4 u3,4 u4,4
b=[400 600 600 800 100 O O 400 100 O O 400 300 200 200 500]T

The above matrix can be written as:

A B 0
D A B, This is Tridiagonal Block Matrix.
0 B2 A

2.6 A Nine-points formula and Truncations Error

.® P E—

®
°® ® N ® °® " ¢
I o%.—o
Figure 2.4.a Figure 2.4.b

In this section, we develop higher-order nine-point approximations .

One approach is to use higher order approximation for U ,andU , .

We turn to the set of points shown in the figure above to drive this

approximation. We may follow our previous procedure and
estimate «,q,,...., and as,...c, in the form

4 8
Uy, + Uy, ==y + D ol + > o

For Laplace's equation. Substituting Taylor's series
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(sk,)’ (sk,)’ (sk,)*

u, =fu, +(sk,)u , + U, +——U ; +——U , + ...
1= [ug + (sky) X 5 y . o . 1
_ (sk,)? (sk,)’ (sk,)*

u, = [UO +(5k1)uy + ) Uyz + 5 Uy3 +Tuy4 +...]

(sk,)? (sk,)’ (sk,)*
u, =fu, = (s ku, + u,— u, + u, +...
3 [ 0 ( 1) X 2 X 6 X 24 X ]

(k) (s

_ (sk)’
u, =[u, —(sk)u, + u TUW +...]

2

y 6 y

2 2
Us = Uy + (K, )u, + (sk;)u, + (sk,) 0+ (sk,)

3
U +(SKy) Uy, + (Skg) u,+

X

3 3 3
CNNCS NC S
6 7 2 Y 2 v

Us = Uy — (3k;)u, + (sk;)u, + (Skzz) U+ (skzz) U~ (k) Uy - (sk,)’ .
(3k2)3 o+ (Sk2)3 0 (Sk2)3 y
6 y 2 X7y 2 Xy

X

. e

2 2 3
u, = U, +(sk,)u, —(sk,)u, + (Sk22) u,+ (Sk22) U, —(skz)zuXy —&u s —

X

(k) (k) Gk

P e T

2 2 3
Ug = U, —(sk,)u, —(sk)u, + (Sk22) u. -+ (sk;) u. +(sk,)’u,, —&uxg -
(sky) u,— (sky) u, —Mu )+
6 y 2 X7y 2 Xy

Collecting terms and solving for the «,. We obtain fork, =k, =k,

10 2
0[0=W, a1:a2=a3=a4=w,

1
a8=w.

o, =0a,=qa, =

(Lapidus, 1982; Pinder, 1982)
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Thus a forth-order approximation for Laplace's equation is given by:

1
U, = %[4(ul +U, +U; +U,)+ (U; +Us — U, + Ug)]

Let's write the above equation in a matrix form,

First, assume that n=5 in each direction and the function in each side

equals zero.

U=100
16 15 14 13
9 10 11 12 U=200
U=50
8 7 6 5
1 2 3 4
U=300

For node (1):u, = —[4(u, +U; +0+0) + (U, + 0— 0 +0)]

1
20
For node (2):u, =%[4(u3 +U, +U, +0) + (U, +U; —0+0)]
For node (3):u, = %[4(u4 +Ug +U, +0)+ (Us +U, —0+0)]

For node (4):u, :2i()[4(u5 +U; +0+0)+ (U, +0—0+0)]

For node (5):u; = 2LO[4(u12 +Ug +U, +0)+ (U, +0—u, +0)]
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For node (6):u, = %[4(% +Us +U, +Uy)+ (U, +U,—U, +U,)]
For node (7):u, =%[4(u10 +Ug +Ug +U_ )+ (U +Uy —U, +U,)]
For node (8):u, = 2L0[4(u7 +Uy +U, +0)+ (U, +0—-0+Uu,)]

For node (9):u, = 2L()[4(u10 +Uy +Ug +0)+ (U +0-0+U,)]

For node (10):u,, = 2L0[4(u11 + U5+ Uy +U,)+ (U, + U, —Ug +U,)]
For node (11):u,, = %[4(u12 +U, + U, +U)+ (U, +U, —U, +U)]
For node (12):u,, = %[4(u13 +Uy, +0+Us)+ (U, +0—Ug+0)]
For node (13):u,, :%[4(u12 +U, +0+0)+(0+0—-u, +0)]

For node (14):u,, =2L0[4(u13 +0+U;5+U, )+ (0+0-u,+U,)]
For node (15):u,; :2L()[4(u14 +0+U, +Uy)+(0+0-U,+U,,)]
For node (16):u,, =2i0[4(u15 +0+0+Uy)+(0+0-0+u,)]

The above linear equations can be written in a matrix form as:

Au =D>
u=[u u, U U, U; U U, Ug U Uy U, U, U U, Us U
b:[1700 1200 1200 2200 1200 0 0 200 200 0 0 1200 1700 600 600 60(]r
the above system can be solved and the approximated solution will be:

u=[l343 14561 15711 17471 13%9 10778 9015 7835 623 7428 9364 13083 12492 922 782 668]T
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2.7 The Laplace equation in polar coordinate

The Laplace equation in polar coordinate is written as:

Vu=2"2+_%2 4+ =0 (2.25)

Index notation in polar coordinate.

Let 1 and ] be the index in the r and 6 directions respectively, the finite

difference form of the Laplace equation is written as:

VZU — U(i—l, J)—2U(|,J)+U(|+1,J) + l u(i+13j)_u(i_19 J) +
Ar? I 2Ar
I ui, j—D=2u(i, j)+ud, j+1) ~0
— =

r AG?

The value at the node (i, j) can be computed from

_+—
Ar* r’A6 Ar? I 2Ar

_*_i U(i, J _1)+ U(i, J +1)
F2 AGZ

2{ 11 } (i)=Y =L D+ UL D) 1+l -ui -1, )




34

Chapter Three

Iterative Methods for Solving
Elliptic Equations
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3.1 Introduction

In chapter two we discussed alternative methods for approximating the
solution of linear elliptic equations, the finite difference method, using the
differential equation. Each of these methods gives rise to a system of linear
algebraic equations, which may be very large depending on the accuracy
needed. A two-dimensional problem may lead to a system of several
thousand unknowns, are common in real engineering situations. The
solution of each a system is a major problem in itself and has been the
subject of much detailed study. The most obvious property of the system is
that it is extremely sparse. Even when there are many thousand unknowns
each equation will involve one unknown and the unknowns at its
immediate neighbours. In this chapter, we deals with some iterative

methods.

3.2 Jacobi Iterative method:

Consider a linear system: Au=F

Take the matrix A and consider a split into:A=D-L-U, whereD is
diagonal and(-L) and(-U ) are the strictly lower and upper triangular parts
of A.

The linear system Au=F can be written as:
(D-L-U)x=F

Dx=(L+U)x+F

x=D"'(L+U)x+D"'F

Let R,=D"'(L+U) , R,=D'(D-A)=I1-D"'A

R, is called the error propagation or iteration matrix for Jacobi method.
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Then, the iteration is:
u(new) — RJU(OId) + D—IF

(ik) 2
(ui+1,j +Up, ;+U U )™ =h fi,j

ij-1

or ui(,ijl) _ ;

Error propagation matrix :

From the derivation:

x=D"'(L+U)x+D'F
x=R,+D"'F

The iteration is
U™ =RU"’+D'F
Subtracting eq's (3.3),(3.4)

x—u"™ =R x+D"'F-(Ru“” +D'F)

Hence:

X—u"™ =R x—R,u®

X — u(new) — RJ (X _ u(old))

Error propagation:

e™ =R, e R,=1-D"'A

3.1)

(3.2)

(3.3)



Example: A square grid is shown below for the

dimensional Laplace’s equation based on

Ub =40

37

solution of the two

the given boundary

12

22

32

Ua =10

11

21

31

conditions

ud =20

The nodes in a two- dimensional, steady-state conduction.

u'; =the value of the ujat the k"iteration

1 k-1 k-1
u®; :Z[ua +uy, T, Y ]

1 k-1 k-1
u®s = —u, +uy,“ P u," " ]
4
(k) 1 (k-1) (k-1)
Usi=—[Uu"a +Uut U 4 U, + Uy ]
4
(k) 1 (k-1) (k=1)
u 12=Z[ua+ub+u 2 +U" ]

| _ _
us, = Z[U(k Do+ u, + u s 4 u® ]

| R _
u®s = Z[U(k Dy +u, +u, +u* 5]

initial guess=> (k =0) Let u”; =0 for all nodes
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1¥ Iteration(k =1)

uy = %[ua +U% +uP2 +u,] = i[lo+ 0+0+20]=75
umm=iw”h+u@n+u@n+%]=%m+0+0+2m=5
w%l=%mmﬂ+u@n+u,+%]:im+0+0+2m=5
sz:iUg+uh+wmn+uwh]=%ﬂo+40+0+ﬂﬂ:125

1
uy = Z[u(o)u +U, +U P +u ] = %[0 +40+0+20]=10

1
us = Z[U(O)zz +U, +U, +UuV3] = %[0+40+ 0+20]=10

2" Iteration (k = 2)

1 1
M%I=Zwa+MW2+M”ﬂ+%]=zu0+U5+5+zm=1Lm5

1
u®, =Z[u“>n +U%P% +u®3 +uy] :iw.s +10+5+20]=10.625

1 1
u®s = —uy +usn +u, +ud]:Z[5+10 +0+20]=8.75

n

1
u® o, :Z[ua +u, +u®s +u(1)11]=%[10+40+10+7.5] =16.875
1 1
u®y :Z[U(D” +u, +uP3 +uy] 21[12'5+40+10+5] =16.875

1 1
u®s, =Z[u% +U, +U, +u(”31]:Z[IO+4O+O+5]=13.75
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Gauss-Seidel method:

Consider the linear system Ax =b One reason for slow convergence
of Jacobi's method is that it doesn’t make use of the latest information
available. Gauss-Siedel method remedies this by using each new

component of solution as soon as it has been computed.

Using the same notation as before, Gauss-Siedel method corresponds
to splitting M =D +L, and N =-U and can be written in matrix terms as:

Ax=Db

A=D-L-U

(D-L)-U)x=b

(D-L)x™ =Ux" +b

XT=(D-L)"'x*+(D-L)"'b
k+ k

XD =T x®+C,

where T,: 1s the Gauss-Seidel iteration matrix

Cg : constant vector

If we apply Gauss-Siedel method to solve the system of finite

difference equations for Poisson’s equation, we get:

Ui = i(U.“(ﬂ) +UXD LUk +UR  —h?f(, ) (3-4)

i-1,] i,j-1 i+1,] i,j+1

Thus, we gain the average solution values at four surrounding grid
points, the method uses the most recent values while Jacobi method uses
values from the previous iteration. Gauss-Siedel method doesn’t always

converge, but it is guaranteed to converge under conditions that are often
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satisfied in practice, and are weaker than those for Jacobi’s method (e.g., if

matrix is symmetric and positive definite).

Although Gauss-Siedel converges more rapidly than Jacobi, it is still

not efficient for huge linear systems.
3.4 Successive Over - Relaxation:

Convergence rate of Gauss-Siedel can be accelerated by successive
over — relaxation (SOR), which in effect uses step to next Gauss-Siedel

iterate as search direction, but with a fixed search parameter denoted by

(w) .

Starting withx", first compute next iterate that would be given by

Gauss-Siedel, x*!

2 gS

instead of taking next iterate to be:

K+l _ (K) (k+1) (K)
XTT =X+ o(Xe = X)

(3.5)

(k+1)

— (k)
= (1-@)X™ + axy

where wis fixed relaxation parameter chosen to accelerate convergence
which weighs average of current iterate and next Gauss-Siedel iterates.

o >1 gives over- relaxation, and o <1 gives under- relaxation and o =1

gives Gauss-Siedel method.

The method converges for O0<w<2 and diverges otherwise. In
general the optimal choice of @ is not easy task and it is subject to theory
of special classes of matrices. If p, is the spectral radius of the Jacobi
iteration (so that its square is the spectral radius of the Gauss-Siedel

iteration), then the optimal choice for o is given by:

o=—"2 (3.6)

1+w/1—p2jac
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For this optimal choice, the spectral radius for (SOR) is

B P jac )2 3.7)

How do we choose wfor a problem whose answer is not known

analytically?

This 1s just the weak point of SOR! The advantages of SOR are

obtained only in a fairly narrow window around the correct value of w.

It is better to take o slightly too large, rather than slightly too small,

but best to get the optimal value..

For reference purposes, we give the value of p,. for our model

problem on a rectangular (nXm) grid, allowing the possibility that h =k :

2
T h T
COS T + ( kj COS mi
p ja(; = (3.8)

ne)

Using the same notation as before, SOR method corresponds to splitting

M:lD+L, N:(l—ljD—a)
@ w

And can be written (see Smith, 1978; Mitchell, 1980). in matrix terms as:

XKD = KO 4 (D™ (b — Lx®*D —Ux® ) — x®)

= (D + L) (1- ®)D - oU)Xx™ + (D + wL) b

If we apply SOR method to solve the system of finite difference equations

for Laplace's equation, we get:

newu(, j) = (1-w) *u(, ) +0.25* o(u(i +1, ) + newu(i —1, j)+u(i.j + 1)+ newu(, j — 1)).
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A necessary and sufficient condition for the convergence of iterative

methods:

Each of three iterative methods described above can be written as:
e (3.9)

where G 1is iteration matrix and ¢ a column vector of known values.

This equation was derived from the original equation by rearranging them

into the form:

X=Gx+C 3.10)

1.e., the unique solution of the m linear equations Ax = f is the solution of

equation (3.11). The error e in the nth approximation to the exact
solution is defined by e™ =x-x™ so it follows by the substraction of

equation (3.10) from equation (3.11) that
e _ Ge(M
Therefore
e =Ge"" =G =....=GMe?” (3.11)

The sequence of iterative values x©,x®,...x™,.. will converge to x as n

tends to infinity if

lim, ,,G™ =0.

Assume now that the matrix G of order m has m linearly independent

eigenvectors v s =1(1)m. then these eigenvectors can be used as a basis for

our m-dimensional vector space and the arbitrary error vector e with its
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m components, can be expressed uniquely as a linear combination of them,

namely,
m_N
e =>"cy,
s—1
where the c, are scalars. Hence

m
e =Ge® =) cy,.
s=1

But Gv, = Ay, by the definition of an eigenvalue, where 4, is the eigenvalue

corresponding to v,. Hence

m
M _
eV =) cAV,.
1
. . m
Similarly, e™ =>"cAV,.
1

Therefore e™ will tend to the null vector as n tends to infinity, for

arbitrary e , if and only if | A |<1for all s. In other words, the iteration
will converge for arbitrary x” if and only if the spectral radius p(G) of

G is less than one .

As a corollary to this result a sufficient condition for convergence is that

| G |<1.To prove this we have that Gv, = Av,. Hence
1 GV 1=l AV (= A | 1] g -

But for any matrix norm that is compatible with a vector norm|| v, |,
GV G 1w |l -

Therefore [ A LTV ISEG TV I,

So A G, s=10m.
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It follows from this that a sufficient condition for convergence is that

|G |<1 . It is not a necessary condition because the norm of G can exceed

one even when p(G) < 1.

3.5 Multigrid Method

Accuracy constraint on the numerical solutions of boundary value
problems defined on large domains leads to huge systems of equations.
Direct solvers are not efficient for such systems. Classical iterative methods
also are not efficient. Multigrid methods are relatively new and they are
very efficient. Multigrid methods accelerate iterative solvers. Historically,
it was developed for elliptic problems which is mathematically well

understood, but it is now used in many other situations.

[terative methods start with an initial approximation for the solution
to the differential equations. In each iteration, the difference between the

approximate solution and the exact solution supposed to be smaller.

One can analyze this difference or error into components of different
wavelength, for example, by using Fourier analysis. In general, the error
will have components of many different wavelengths: there will be short

wavelength error components and long wavelength error components.

Algorithms like Jacobi or Gauss-Seidel are local because the new
value for the solution at any lattice site depends only on the value of the
previous iterate at neighboring points. Such local algorithms are more

efficient in reducing short wavelength error components.
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The basic idea behind multigrid methods is to reduce long wavelength

error components by updating blocks of grid points.
3.5.1 Multigrid method for Poisson’s equation in 2-D:
With small change in notation, poisson’s equation in

2-D can be written as:

o’'u  ou
W‘Fy: f(xy), (3.12)
Where the unknown solution u(x,y) 1s determined by the given source

term f(x,y) ina close region. Let’s consider a square domain

0<x and y<1 with homogenous Dirichlet boundary condition u=0 on

the perimeter of the square. The equation is discretized on a grid with L+2

lattice points. i.e., L interior points and 2 boundary points, in the xand

y directions. At any interior point, the approximation solution obeys

1
u..:Z(u U+ U U — D) 3.13)

i,j i+1,] i-1,j

The algorithm uses a succession of lattice or grid. The number of

different grids is called the number of multigrid levels (I). The number of
interior lattice points in the x and y directions is taken to be 2' , so that

L=2'+2,, and the lattice spacing h = ﬁ ,L is close in this manner so

that the downward multigrid iteration can construct a sequence of coarser

lattice with
2 52 5 520 =

interior points in the xand y directions.
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Suppose that u(x,y)is the approximate solution at any stage in the

calculation, and u,_,(x,y)1s the exact solution which we are trying to find,

the multigrid algorithm uses the following definitions:

1) The correction

u (3.14)

V = Uggaet —

is the function which must be added to the approximate solution to give

the exact solution.
2) The residual or defect is defined as:
r=viu+f 3.15)
Notice that the correction and the residual are related by the equation:
Vv = (Vlu

+ )= (Vu+ f)y=-r (3.16)

exact

This equation has exactly the same form as Poisson’s equation with (v),
playing the role of unknown function and (r ) playing the role of

known source function.
3.5.2 Simple V-Cycle Algorithm

The simplest multigrid algorithm is based on a two-grid improvement

scheme namely:
* A fine grid with L =2'+2points in each direction, and

* A coarse grid with L =2'"" + 2 points.
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Fine

coarse V-cycle

We need to be able to move from one grid to another, i.e., any given

function on the lattice, we need to be able to:
» restrict the function from fine to coarse, and
* prolongate or interpolate the function from coarse to fine.

Given these definitions, the multigrid V -cycle can be defined recursively

as follows:

 If 1=0there is only one interior point, so solve exactly (or iteratively but

exactly more accurate) for

2
U, = (Up, +U,, +U,,+U, —h"f )/4..

 Otherwise, calculate the current L=2"'+2

* Perform a few pre-smoothing iterations using a local algorithm such as
Gauss-Seidel. The idea is to damp or reduce the short wavelength errors in

the solution.

e Estimate the correction v=u__. —uas follows:

exact

o Compute the residual
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1
r

ij = F(u

+Uu

i+, i Ui U —4u )+ fi,j, (3.17)

e Restrict the residual r — R to the coarser grid.

e Set the coarser grid correction V = 0and improve it recursively.
o Prolongate the correction V — v onto the finer grid.

* Correct u > u+v

 Perform a few post-smoothing Gauss-Seidel (i ) iterations and return the

improved u.

How does this recursive algorithm scale with L? The pre-smoothing and
post-smoothing Jacobi or Gauss-Seidel iterations are the most time

consuming parts of the calculation. Recall that a single Jacobi or Gauss-

Seidel iteration scales likeO(L*). The operations must be carried out on the

sequence of grids with
2! 52 52 s 20 =1

interior lattice points in each direction. The total number of operations is of

order

il 1 4,
L anozzn sgL )

Thus the multigrid V -cycle scales like O(L?).i.e., linearly with the number

of lattice points N.
3.5.3 Restricting the Residual to a coarser Lattice

The coarser lattice with spacing H = 2his constructed. A simple
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algorithm for restricting the residual to the coarser lattice is to set its value
to the average of the values on the four surrounding lattice points (cell-

centered coarsening):

+ Iri,j+1 + ri+1,j+1)7i =2l _1: J =2J-1. (3-18)

i+1, ]

1
Ri,j :Z(ri’j +r.

3.5.4 Prolongation of the Correction to the Fine Lattice
Having restricted the residual to the coarser lattice with spacing
H =2h, we need to solve the equation
VAV = -R(X,Y),
With the initial guessV (x,y) = 0. This is done by two-grid iteration
V =twoGrid(H,V,R).

The output must now be interpolated or prorogated to the finer lattice.

The simplest procedure is to copy the value ofV, ;on the coarse lattice to

the 4 neighboring cell points on the finer lattice:

Vi =Vierj = Vienja =Viju =Vigl =21-11=2J -1 (3.19)
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Chapter Four

Computational Results
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4.1 Introduction

In this chapter Laplace’s equation was treated, and it is solved by

using some different methods.

Laplace’s equation in two dimensions can be written as:

Uy, +U, =0

S={(xy)|0<x<a0<y<b} ,
u(x,y) = g(x,y) on oS

The above equation can be written after discretization as:

U, +U  +u . +u . —hf(,j)
Ui’j _ 1j 1] N 14 -1 (4.1)

For example if we have a unit square S={(x,y)|0<x<1,0<y<I1} with

Drichlet’s boundary condition

U(O, y): fza U(la y): f4'

U(x,0)=f, and U(x,]) = f..
4.2 Numerical Algorithm

Jacobi Method (JM):

Input: end points a,b,c.d, integer m, and n , tolerance TOL, maximum

number of iteration (k), f,, f,, f,, f,
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Output: Approximation U, ; for eachi=1,..,n-1 ,and j=1,..m-1
Make initial guess for U'”;; at all interior points
Step 1 set h=1/(n),
X=(0:n)*h,
y=(0:n)*h,

SetU,; =0,

Step2 for i=1,..,n
Set U(L,n) = feval(f,,h*(i—1),0)
Set U(n,i) = feval(f,,h*(i-1),0)

Stop

Step3 for j=1,.,n
Set U(i,1) = feval(f,,h*(i—1),0)
Set U(i,n) = feval(f,,h*(i—1),0)
Stop

Step4 set U, =U
Set k max =n"3

Set TOL=1e-4
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Step5 setfor k =1,..,k max
Set frac_diff =0

Step 6 setfori=2,.n-1
Set for j=2,n-1

1

Set U, = Uiﬂj(kﬂ) = Z[U Y +UNL +UN o +U ki,j-l]

Set frac_diff = frac_diff +abs (U, (i, j)-U(i, j))
Stop

Stop

step7 set change(k)= frac dift/(n-2)"2
set ifrem(k,100) <1
Stop
Step 8 set if change (k) <TOL
Set break
Stop.
See the Matlab code in appendix (B.1)

Gauss Seidel (GSM):

Input: end points a,b,c,d ,integer m,and n,tolerance TOL, maximum

number of iteration(k), f, f,, f,, f,



54

Output: Approximation U, ; for eachi=1,..,n-1 ,and j=1,..m-1
Make initial guess for U”;; at all interior points
Step 1 set h=1/(n),
X=(0:n)*h,
y=(0:n)*h,

setU,; =0,

step2  for i=1,.,n
set U(L,n) = feval(f,h*(i—1),0)
set U(n,i) = feval(f,,h*(i—1),0)

stop

step3  for j=1,.,n
set U(i,1) = feval(f,,h*(i—1),0)
set U(i,n)= feval(f,,h*(i-1),0)
stop
step4  set U, =U
set k max =n"3

set TOL=1e-4
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step5 setfor k =1,...,.k max
set frac diff =0
step 6 setfori=2,.,n-1
set for j=2,n-1

K 1
set U, = U-’-( = :Z[Ukm,j U +US 5+ U0

set frac diff = frac_diff +abs(U,(, j)-U(i, j))
stop

stop

step7 set change(k)= frac dift/(n-2)"2
set if rem(k,100) <1
stop
step 8 set if change(k) < TOL
set break
stop.
See the Matlab code in appendix (B.2)

Successive Over-Relaxaion Mehod(SORM)

1. Make initial guess for U, ; at all interior points (I,))
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2. Define ascalar w(0<w<?2).
3. Apply equation ( 4.1) to all interior points (i,j) and call it U’ ;.
4. U, =wUi +(1-wU s
5. Stop if prescribed convergence threshold is reached
6. U, =U"";
7. Go to step 2.
See the Matlab code in appendix (B.3)
Multigrid Method (MGM):

Input:charge(q), the number of multigrid levels |

Set the number of interior lattice in x and y to be 2'

Set N=2'+2
Set h:L
(N)

Define u = twogrid(level, h,u, )

1. If I =0 ,there is only one interior point, so solve exactly for:

Uy, = (U, +Us, +U,, +U,; +h*f,,)/4.

2. Calculate the current N =2' +2

3. Estimate the correction v=u__. —u as follows:

exact

- Compute the residual r = V’u+ f

- Restrict the residual r — R to a coarse grid.
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- Set the coarse grid correction V = 0.

-Improve the correction recursively V =twogrid(l —1,2h,V,R).
- Prolongate the correction V — v onto the fine grid.

4. Correct u > u+v

Set r=zeros(N,N)

Set for i=2,....N

Set for j=2,...,N
r(i,j)=(u(i+1,j)+u(i-1,))+u(i,j+1)+u(i,j-1)-4*u(i,j))/h"2+1(i,))
stop

stop

set i=2(I-1), j=2(J-1)

1
R, = Z[ri,j 0+t hjal

Set M =20 12

Set R=zeros(M,M)

Set for [=2,....M

Set for J=2,... . MSet R(IL))=(r(i,j)+ r(i+1,j)+ r(Lj+1)+r(i+1,j+1)/4
Stop

Stop.

See the Matlab code in appendix (B.4)
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Now, let's begin with constant boundaries
f, =100, f, =50 and n=m=10

f, =300, f, =200.

Method (JM):

300
250

200

Fractional Change

1 1 1 1 1 1
1] 20 40 5] a0 100 120 140 180 180 200
[teration Mumber
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Method (GSM):

10”

10}

10° |

1070}

107}

Jou3g

10°}

10°L

10°

90 100

80

60 70

50
lteration Number

20 30 40

10
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Method SORM:

_\
D-
T

—
[
(=]
T

Fractional Change

—
[
ia
T

EN

—
[
T

10 L L L
0 ] 10 15 20 25
[teration Murnber

Assume that the boundaries are function with respect to x and y.
f1:y49 f2:y4_6*y2+1 and n=m=10

fo=x',f,=x"—6%x>+1.
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Method JM:

10",

o
o
—

@
o
—

abuey) [euonoeid

v
o
—

10°

20 30 40 50 60 70
Iteration Number

10
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Method GSM:

10",

107}

30 35 40

25

20
Iteration Number

15

10
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Method SORM:

abuey) reuonoel

10°

18

12 14 16

10

Iteration Number
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If we use the rotated five points Stencil (RFPS)

For the same conditions we get:

Fractional Change

1] 2 4 5] g 10 12 14 16
[teration Mumber
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Method MGM:

Multigrid Level 1: Pre-Smooth lteration 8 difference between u and residual

i R
) o

— —

afiueys |euojael]

1

iy
=
=

L
[ ]
=

[teration Mumber
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If we use nine-points approximation for the above conditions, we obtain:

10

107} 1

Error

10°1 1

10 | .

10 I I I I I I I I
0 2 4 6 8 10 12 14 16 18

lteration Number
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4.3 Poisson Equation
In this section Poisson's equation was treated.
o Consider Poisson's equation:
Uy, +U,, = -2
S={(Xy)|0<x<20<y<2} ,
with boundary conditions as shown

u=0

u=0
2 u=0

u=1

The above equation can be written as:

u(i, i) =%<u(i+1,j>+u(i—1,j>+u(i,j+1>+u(i,j—1))%
for node (1):1+u, —4u, +u2+0+%=0

for node(2):1+uy, —4u2+u3+0+%:0
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1
for node(3): u, +u, —4u, +u4+0+5:0
1
for node(4):u3+u3—4u4+0+0+5:0
for node(S):1+1—4u5+u3+u3+%=0

The above equations can be written as a matrix form:

Au=b

3
-4 2 0 0 0] -3 [u, |
1 -4 1 0 0 2 u,
where A=| 0 -4 1 11|,b= _?1 ,u=|u,
0 0 2 -4 0 A u,
0 0 2 0 -4 2 uy |

=2

L2 ]

When the above work is done, we obtain:

[0.737]
0.723
u=|0.658
0.454
10954

When numerical methods are used to solve the above problems we get:
The number of iteration for Jacobi method is=16

norm_inf error for Jacobi method 1s=0.0001680128

The solution by Jacobi method is:

0.9538
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0.4538

0.6577

0.7236

0.7368
The number of iteration for Gauss Seidel method is=9
norm_inf error for Gauss Seidel method 1s=0.0001462412
The solution by Gauss Seidel method is:

0.9538

0.4538

0.6578

0.7236

0.7368
w =1.1920
The number of iteration for SOR method is=5
norm_inf error for SORmethod 1s=0.0001347322
The solution by SOR method is:

0.9539

0.4538

0.6580



0.7237

0.7369

The solution of u(x,y) is

0 0.4539

0 0.6579

0 0.7237

0 0.7368

0 0.7237

0 0.6579

0 0.4539

0.6579

0.9539

1.0000

1.0000

1.0000

0.9539

0.6579

0.7237

1.0000

1.0000

1.0000

1.0000

1.0000

0.7237

0.7368

1.0000

1.0000

1.0000

1.0000

1.0000

0.7368

o Helmholtz Equation
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0.7237

1.0000

1.0000

1.0000

1.0000

1.0000

0.7237

Consider Helmholtz equation:

0.6579

0.9539

1.0000

1.0000

1.0000

0.9539

0.6579

0.4539

0.6579

0.7237

0.7368

0.7237

0.6579

0.4539

.5 .5
Uy +U,, —12.57°u = 257 s1n(§ 7T X) sm(E 7Y)

in regular region s = {x,y |

0<x,y<04}

subject to the Dirichlet boundary condition:

ux,y)=0 on os
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To compare numerical solution with exact solution, the exact is:

ux,y) = sin(%;r X)Sin(gﬂ' Yy)

35 @ C
3 ) D C ) ¢ )
25 D, C C S C
2 C O e O
15 C C C
1 B N C ) e O
5 k\ C C C
0 5 1 0.15 2 25 3 35 4

The above equation can be written as:
udi, j—D+u—1,j)—(4-0.12572")u(, j)+u@i+1, j)+ud, j+1)

=-257° sin(gﬂxi)sin(gﬂ y)

Let r=—4-0.12572

We can write the above equation in a matrix form as:

Au=b



where A= I B I

o

I
O ==

-
- - O

2577 sin(2.57,)sin(2.57y;, ]
-2571° sin(2.57,)sin(2.57y,,
-2571° sin(2.57%;)sin(2.57y,
— 2577 sin(2.57,)sin(2.57y,)
b =| —2577sin(2.57%, sin(2.57y,)
— 2577 sin(2.57; ) sin(2.57y, )
— 257 sin(2.57%,)sin(2.57y,)
— 257 sin(2.57x,)sin(2.57y, )
= 2577 sin(2.57x;)sin(2.57y;) |

see the Matlab code for this problem in appendix (B.9)
when the above system is solved, we get:
norm_inf error for Jacobi method is =0.00007

The number of iteration for Jacobi method 1s =33

0 0.1465 0.2706 0.3536 0.3827 0.3536 0.2706 0.1465 0
0 0.2706 0.5000 0.6533 0.7072 0.6533 0.5000 0.2706 0

0 03536 0.6533 0.8536 0.9239 0.8536 0.6533 0.3536



0 0.3827

0 0.3536

0 0.2706

0 0.1465

0.7072

0.6533

0.5000

0.2706

0.9239

0.8536

0.6533

0.3536

1.0001

0.9239

0.7072

0.3827

73

0.9239

0.8536

0.6533

0.3536

0.7072

0.6533

0.5000

0.2706

0.3827

0.3536

0.2706

0.1465

norm_inf error for Gauss Seidel method is =0.00238

The number of iteration for Gauss Seidel method 1s =17

0 0.1485

0 0.2734

0 0.3561

0 03844

0.2734

0.5036

0.6563

0.7093

0.3561

0.6563

0.8564

0.9289

0.3844

0.7093

0.9289

1.0058

0.3543

0.6566

0.8585

0.9295

0.2719

0.5031

0.6573

0.7116

0.1474

0.2723

0.3558

0.3851
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0 03543 0.6566 0.8585 0.9295 0.8589 0.6574 0.3558 O

0 02719 0.5031 0.6573 0.7116 0.6574 0.5032 0.2723 0

0 0.1474 0.2723 0.3558 0.3851 0.3558 0.2723 0.1474 O

w= 14795
norm_inf error for sorl method 1s =0.00580

The number of iteration for SOR method 1s =10

0 0.1485 0.2734 03561 0.3844 0.3543 0.2719 0.1474 O
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0 0.2734 0.5036 0.6563 0.7093 0.6566 0.5031 0.2723 0

0 03561 0.6563 0.8564 0.9289 0.8585 0.6573 0.3558 O

0 03844 0.7093 0.9289 1.0058 0.9295 0.7116 0.3851 O

0 03543 0.6566 0.8585 0.9295 0.8589 0.6574 0.3558 O

0 02719 0.5031 0.6573 0.7116 0.6574 0.5032 0.2723 0

0 0.1474 0.2723 0.3558 0.3851 0.3558 0.2723 0.1474 O

0 0 0 0 0 0 0 0 0 0 0

10° .

-1

5 10 .
b ]
3 ]
o ]
c |
©
e |
(@)
©
c |
§e]
g
I 10 ]

10’3 | | | | |

0 100 200 300 400 500 600

Iteration Number

If h=k= 0.02 we get:
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10° ;

I

A
o
—

a
o
—

losabuey) euonorelid

@
o
—

10°

1000 2000 3000 4000 5000 6000 7000 8000

0

lteration Number
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Finally, consider the problem by using Neuman condition:
Let's solve Laplace's equation

+u, =0

U yy

The boundaries shown in the figure below:

ou
— =X
on

kﬁ ou _ X+y
4 ‘5 an - (2)1/2
1 2 3

u=4

Laplace's equation can be written as:
u(, j—D+u(-1,j—4ud, j)+u@+1 jH+ud, j+)=0
For node (1):-4u, +u, +u, =-8
For node(2): u, —4u, +u, +u, = —4
For node(3): u,-4u,+C, +C, =4
To find C, and C, by using central difference formula:

a_G-Y, = C1:u2+2ha—u
OX 2h OX
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u_G -4 C2=4+2ka—u
a 2k oy
C1+C2=u2+2ha—u+4+2ka—u
OX
for: h=k=0.1

:u2+2h(8_u+8_u)+4
ox oy

ou _ X+y
an (2)1/2
_ou,a
ox oy
X+
:u2+2h((2)—1/{)+4
3+.1
=Uu, + 2(1)(W) +4

=U, +4.0565685
U, — 4U, + U, +4.0565685 = —4
—4u, +2u, = -8.0565685
for node(4): u, —4u, +u, +C, =4
to find C,, we use the same procedure then:
C, =u, +0.02
2u, —4u, +uy; =-4.02
for node (5):u, +u, +-4u, +C,+C, =0

C,+C,=u, +u, +0.0565685
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u, +u, +—4u; +u, +u, =-0.0565685

The above equations can be written as a matrix form:

Au =b
-4 1 0 0| -8 ]
1 -4 1 1 —4
where A=| 0 2 -4 0 [, b=|-8.0565685
2 0 -4 1 -4.02
0 2 4] | —0.0565685 |

see the Matlab code in appendix (B.10)
If we solve the above system by using numerical methods we obtain:
The solution by matrix

4.0078

4.0147

4.0215

4.0163

4.0297
The number of iteration for jacobi method is=100
norm of error for jacobi method 1s=0.0000000001
The solution by Jacobi's Method is

4.0078
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4.0147

4.0215
4.0163
4.0297
the number of iteration for Gauss Seidel method i1s=50
norm of error for Gauss Seidel method 1s=0.0000000002
The solution by Gauss Seidel Method is
4.0078
4.0147
4.0215
4.0163
4.0297
o =1.5279
The number of iteration for SOR method 1s=35
norm of error for SOR method 1s=0.0000000005
The solution by SOR Method is
4.0078

4.0147
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4.0215

4.0163

4.0297
The solution of u(x,y) is=

4.0000 4.0163 4.0297 0 0

4.0000 4.0078 4.0147 4.0215 0

4.0000 4.0000 4.0000 4.0000 4.0000
4.4 Laplace's equation in Polar Coordinate

Now, let's deal with Laplace equation in a polar coordinate
o’u

Jla 12
r or r’ 06*

o’u

Viu =
or

Let i and j be the index in the r and 6 directions respectively, the finite

difference form of the Laplace equation is written as:

Vi = ui—1,j))—2u(i, j)+u(+1,j) +lu(i+1,j)—u(i—1,j) n

Ar? r 2Ar
LU(i,j—1)_2U(i,j)+U(i,j+1) :0
r’ AG?

The value at the node (i, j) can be computed from
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{ }“(',J) “Lp+ui+bp, Lu+lj-ui-1j)
o Ar® i 2Ar
+L“(' j=D+ud, j+1)

AG?

A semicircular plate with a radius of 1 has the straight boundary held at 0
while the curve boundary is held at 100. Find u(r, 0) with the grid given in
Figure

6,1 100 along the
curve boundary

11 25 35 45 55 65
0 along the straight boundary

The nodes in a two dimensional, polar coordinate system.
See the Matlab code for this problem in appendix (B.11)

# Of 1teration =46

2.4986e+001 2.3284e+001 1.8232e+001 1.0139e+001 0

4.8038e+001 4.5534e+001 3.7450e+001 2.2370e+001 0
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6.8366e+001 6.6121e+001 5.8055e+001 3.9163e+001 0

8.5659e+001 8.4422e+001 7.9457e+001 6.3678e+001 0

1.0000e+002 1.0000e+002 1.0000e+002 1.0000e+002 1.0000e+002
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4.5 Conclusion and Results

Various numerical methods namely: Jacobi, Gauss-Seidel, SOR,
Multigrid have been studied in order to compare the efficiency of these
methods. It is desirable to develop the rapid method to obtain the accurate
solutions, since the systems of equations are becoming large and many

computer resources are needed.

From the above work, we see that multigrid method is the fastest. On

other hand, the running time for multigrid methods is of order three

(i.e.O(n’) ), while the other methods is of order five (i.e.O(n’) ).

So , multigrid method is superior to other methods, because it speeds

up the convergence of relaxation method. Multigrid method is known as

the procedure which takes only O(n) operations
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Appendix
Programs

This part contains some programs used to solve Laplace's equation in different

conditions

B.1

Parent routine for Method JM in case one

% Programme to solve Laplace™s equation on the unit square
% using the Jacobi®s method

Clear; help Jacobi;

-
I

input("Enter the number of grid points on each side-");

>
Il

1/(n - 1):

X = (0:n-1)*h;

y = (0:n-1)*h;
u = zeros(n);
u x0 = iInput("Enter the potential at x=0 -7);

u(l,:) = u_x0;

u x1 = input("Enter the potential at x=1 -7);

u(n,:) = u_x1;

input("Enter the potential at y=0 -7);

u_yo
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u(:,1) = u_yo0;

u yl = input("Enter the potential at y=1 -7);

u(:,n) =u vyl;

ul = u;

k_max = n"3;

tolerance = 1.e-04;

for k = 1:k max

frac _diff = O;
for 1 = 2:n-1
for J = 2:n-1

ul(i,j) = 0.25*(u(i+1,3) + u(i-1,3) +u(i,j+1) +u(i,j-1));

frac_diff = frac_diff + absul(i,j)-u(i,j));

end

end

u = ul;

change(k) = frac_diff/(n-2)"2;

if rem(k,100) < 1

fprintf("Fractional difference 1i1s %g after %g

steps\n- ,change(k),k);



87

end

if change(k) < tolerance

break;

end

end

mesh(u) ;

pause;

semi logy(change);

xlabel (" Iteration Number®);ylabel("Fractional Change®);

B .2 Parent routine for Method GSM case one

% gseidel - Programme to solve Laplace"s equation on the

unit square

% using the Gauss Seidel method

clear; help gseidel;

n = input("Enter the number of grid points on each side -

")

h =1/(n - 1);

X = (0:n-1)*h;



<
1

c
1

u_xo0

u(l,:)

c

X
=
1

u(n,:)

u_yo

u(:,1)

uyl =

u(:,n)

newu =

(O:
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n-1)*h;

zeros(n);

input("Enter the potential at x=0 -7);

= phi_x0;

input("Enter the potential at x=1 -");

= u_x1;

input("Enter the potential at y=0 -7);

=u_y0;

input("Enter the potential at y=1 -7);

= u_yl;

u,

k max = n"3;

tolerance = 1.e-04;

for k =

1:k _max

frac diff = 0O;

for i = 2:n-1
for j = 2:n-1
newu(i,j) = 0.25*Cu(i+1,j)

newu(i,j-1));

+ newu(i-1,j)

+u(i,j+1)

+
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frac _diff = frac_diff + abs(nhewu(i,j)-u(i,j));
end
end
u = newu;
change(k) = frac diff/(n-2)"2;
ifT rem(k,100) < 1

fprintf("Fractional difference is %g after %g

steps\n* ,change(k),k);
end
if change(k) < tolerance
break;
end

end

mesh(u) ;
pause;
semi logy(change);

xlabel (" Iteration Number®);ylabel("Fractional Change®);
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B .3 Parent routine for Method SORM case one

% sor - Programme to solve Laplace®s equation on the unit

square

% using the Successive Overrelaxation method

format ;

clear; help sor;

n = input("Enter the number of grid points on each side -
")
h=1/(n - 1);

X = (0:n-1)*h;

y = (0:n-1)*h;
omega = 2/(1 + sin(pi/n));

u = zeros(n);

u_x0 input("Enter the potential at x=0 -7);

u(l,:) = u_x0;

u x1 input("Enter the potential at x=1 -7);

u(n,:) = u x1;

u_yo input("Enter the potential at y=0 -7);

u(:,1) = u_yo0;
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u_ yl = input("Enter the potential at y=1 -7);

u(:,n) = u yl;

newu = u,

k_ max = n"3;

tolerance = 1.e-04;

for k = 1:k max

frac _diff = O;

for i = 2:n-1

for J = 2:n-1

newu(i,j) = (1 - omega)*u(i,j)
+0.25*omega*(u(i+1,j) + newu(i-1,j) +u(i,j+1) + newu(i,]j-

1)):;

frac_diff = frac_diff + abs(newu(i,j)-u(i,j));

end

end

u= newu,;

change(k) = frac_diff/(n-2)"2;

ifT rem(k,100) < 1

fprintf("Fractional difference 1i1s %g after %g

steps\n* ,change(k),k);
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end

if change(k) < tolerance

break;

end

end

mesh(u) ;

pause;

semi logy(change);

xlabel (" Iteration Number®);ylabel("Fractional Change®);

B .4 Parent routine for Method JM case two

% sor - Programme to solve Laplace®s equation on the unit

square

% using the Successive Overrelaxation method

format ;

clear; help sor;

n = 1nput("Enter the number of grid points on each side -
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X = (0:n-1)*h;

y = (0:n-1)*h;
omega = 2/(1 + sin(pi/n));

u = zeros(n);

u_x0 input("Enter the potential at x=0 -");

u(l,:) = u_x0;

c

X

=
1

input("Enter the potential at x=1 -7);

u(n,:) = u_x1;

u_yo input("Enter the potential at y=0 -");

u(:,1) = u_yo0;

u_vyl input("Enter the potential at y=1 -7);
u(z,n) = u_yl;
newu = u;
k max = n"3;
tolerance = 1.e-04;
for k = 1:k max
frac diff = 0;

for 1 = 2:n-1

for j = 2:n-1
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newu(i,j) = (1 - omega)*u(i,j)
+0.25*omega*(u(i+1, )+ newu(i-1,p)+u(i,j+1) + newu(i,j-1));

frac _diff = frac_diff + abs(nhewu(i,j)-u(i,j));
end
end
u= newu;
change(k) = frac_diff/(n-2)"2;
if rem(k,100) < 1

fprintf("Fractional difference 1is %g after %g
steps\n* ,change(k),k);

end

iT change(k) < tolerance
break;

end

end

mesh(u) ;
pause;

semilogy(change);
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xlabel (" Iteration Number®);ylabel("Fractional Change®);

B .5 Parent routine for Method GSM case two

% gseidel - Programme to solve Laplace®s equation on the

unit square

% using the Gauss Seidel method

format;

clear; help gseidel;

n= input("Enter the number of grid points on each side -");

f1 = inline("y™4+0*x");

2 = inline("y™4-6*y"2+1+0*Xx");
3 = inline("0*y+x™M4");

T4 = inline("O0*y+x™M-6*x"2+1%);
h =1/ - 1);

x = (0:n-1)*h;

y = (0:n-1)*h;

c
Il

zeros(n);

for 1=1:n

ul(l,1)=feval(f1,h*(i1-1),0);
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ul(n, 1)=feval (f2,h*(i1-1),0);

end

for i=1:n

ul(i,1)=Ffeval (f3,h*(i1-1),0);

ul(i,n)=feval (f4,h*(i1-1),0);

end

k max = n"3;

tolerance = 1.e-04;

for k = 1:k max

Il
(@)

changesum

for 1 = 2:n-1

I
N
5
AR

for j

%ul(i,j)=0.25*(u(i+1,§)+ul(i-1,3)+u(i,j+1) + ul(i,j-1));

ul(i, j)=0.25*(ul(i-1,j-1)+ul(i-+ul(i+1, j+1)+ul(i+1,j-1));

changesum =changesum + abs(ul(i,j)-u(i,j)):;

end

end
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u = ul;

change(k) =changesum /(n-2)"2;

if rem(k,100) < 1

fprintfF("Error is %g after %g

steps\n* ,change(k),k);

end

iT change(k) < tolerance

break;

end

end

mesh(u);

pause;

semi logy(change);

xlabel (" Iteration Number®);ylabel("Error™);

B .6 Parent routine for Method SORM case two

% sor - Programme to solve Laplace®s equation on the unit

square
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% using the Successive Overrelaxation method

format ;

clear; help sor;

n= input("Enter the number of grid points on each side -");

1l = inline("y™4+0*x");
2 = inline("y™4-6*y"2+1+0*x");
3 = inline("0*y+x™M4*");
4 = inline("0*y+x™M-6*x"2+1%);

h =1/(n - 1);

X
I

(0:n-1)*h;

y = (0:n-1)*h;
omega = 2/(1 + sin(pi/n));

u = zeros(n);

for i=1:n

u(l,1)=feval(fl,h*(i-1),0);

u(n,1)=Ffeval (f2,h*(i-1),0);

end

for 1=1:n
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u(i,1)=Ffeval (f3,h*(i-1),0);

u(i,n)=Feval (f4,h*(i-1),0);
end
newu = u;
k_ max = n"3;
tolerance = 1.e-04;
for k = 1:k_max

frac _diff = O;

for 1 = 2:n-1

for j = 2:n-1

newu(i,j) = (1 - omega)*u(i,j) +
0.25*omega*(u(i,j+1)+newu(i-1,j) + u(i-1,j) + newu(i,j-1));

% newu(i,j) = (@ - omega)*u(i,j) +
0.25*omega*(newu(i+1, j+1) + newu(i-1,j-1) + newu(i-1,j+1) +
newu(i+1l,j-1));

frac diff = frac diff + abs(newu(i,j)-u(i,j));
end
end
u= newu;

change(k) = frac_diff/(n-2)"2;
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ifT rem(k,100) < 1

fprintf("Fractional difference 1is %g after %g

steps\n* ,change(k),k);

end

if change(k) < tolerance

break;

end

end

mesh(u) ;

pause;

semilogy(change);

xlabel (" Iteration Number®);ylabel("Fractional Change®);

B.7

function multigrid

S

o multigrid.m

% solves the two dimensional Poisson equation

X

b dr2phi/Zdx”2 + d~2phi/Zdy*2 = - rho(x,y)

% phi = 0 on the boundaries of a unit square
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% using a simple multigrid method

clear all; help multigrid;

1 = inline("yy™4+0*xx");

2 = inline("yy™M-6*yy™2+1+0*xx");

3 = inline("0*yy+xx™4*");

T4 = Inline(CO*yy+xxN4-6*xx"2+1%);

levels = input("Enter number of multigrid levels: ");

N = 2™levels + 2; % lattice points iIn

x and y

disp(sprintf(“Using a %1 x %1 square lattice®, N, N));

h = 1/(N-1); % lattice spacing

% set charge density rho(x,y)

rho = zeros(N,N);
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disp(sprintf("To add charge number %i at lattice site

X,y", nqQ));

q = input("Enter charge g or hit RETURN to contine: ");

if 1sempty(q), break, end

user_entry = input("Enter lattice coordinates [x y]: );

iT length(user_entry) ==

x = user_entry(1);
y = user_entry(2);
end

rho(x,y) = q / h"2;

ng = nqg + 1;

end

phi = zeros(N,N); % potential array

n=N;

h =1/(n - 1);

xx = (0:n-1)*h;
yy = (0:n-1)*h;
for i1=1:n

phi (1, 1)=feval (f1l,h*(i-1),0);
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phi(n, i)=Ffeval (f2,h*(i-1),0);

end

for i=1:n

phi(i,1)=Ffeval (f3,h*(i-1),0);

phi(i,n)=Feval (f4,h*(i-1),0);

end

figure;

[phi] = twogrid(levels, h, phi, rho); % start multigrid

iteration

plotphi(phi, sprintf("Multigrid Iteration With %i Levels

Done®, levels));

uex = exact(N,h);

% figure;

% plotphi(uex,sprintf("Multigrid lteration exact"));

function [u] = twogrid (level, h, u, )

% recursive 1mplementation of the simple multigrid

algorithm

it level == % solve exactly

u(2,2) = 0.25 * (u(3,2) + u(l,2) + u(2,3) + u(2,1) ...



104

+ h™2 * £(2,2));

return

end

N = 2Mlevel + 2;

ngs = 3; % number of Gauss-

Seidel steps

for n = 1:ngs % pre-smoothing GS

steps
u = GaussSeidel(N, h, u, );

msg = sprintf("Multigrid Level %i: Pre-Smooth Iteration

%", level, n);

figure;

plotphi(u, msg);

r = zeros(N,N);

r¢i,j) = (u(i+l,j) + u(i-1,3) + u(i,j+1) + u(i,j-1) - ...
4 *u(i,j)) / h2 + £(i.j);
end

end
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figure;

msg = sprintf("Multigrid Level %i: Pre-Smooth lteration

%i difference between u and residual®, level, n);
plotphi(u-r,msg);
% pause

msg = sprintf(“residual after %i i1teration and %i level

iIsr", n, level);

disp(msg);

end
% Find the residual

% restrict residual to coarser grid

M = 2~(level-1) + 2;
R = zeros(M,M);
for I = 2:M-1

for J = 2:M-1

2*(1-1);

) = 2*Q3-1);

(=
1

R(1,J) = (r(1,3) + r(i+1,3) + r(i,j+1) + r(i+l,j+1)) / 4;



106

end

end

% set V on coarse grid to zero and call twogrid

recursively

V = zeros(M,M);

[V] = twogrid(level-1, 2*h, V, R);

% prolongate V to the finer grid using simple injection

v = zeros(N,N);

for 1 2:M-1

for J = 2:M-1

2*(1-1);

J = 27Q-1);

v(@,j) = Vv(,J);

v(i+l,j) = V(l,3);
v(i,j+1) = V(l,J);
v(i+l,j+1) = V(l,J);

end

end

% apply correction to u
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end

for n = 1:ngs % post-smoothing GS
steps

u = GaussSeidel(N, h, u, );

msg sprintf("Multigrid Level %i -

Iteration %i*, level, n);

Post-Smooth

figure;
plotphi(u, msg);
end

function u = GaussSeidel (N, h, u, )

% Gauss-Seidel relaxation step with checkerboard updating

for color = 0:1 % red lattice
black lattice

for 1 = 2:N-1
for j = 2:N-1

if mod(i+j,2) == color



108

u(i,j) = 0.25 * (u(i+1,j5) + u(i-1,3) + u(i,j+1) +

+ h"2 * £(1,3));

end

end

end

% u

end

function plotphi (phi, msg)

% plot solution wusing 3-D mesh plot with contours

underneath

meshc(phi);

xlabel ("x");

ylabel("y");

zlabel ("phi(X,y)");

title(mnsg);

pause(1l);

B.8 Matlab code for Poisson®s equation/chapter four

format short
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L1=2;

L2=2;

Uot=0;

dy=L2/N;

dx=L1/N;

U=ones(2*N+1,2*N+1);

As[-4 0200;0-4200;211-410;001-41;000 2 -4];

b=[-5/2;-1/2;-1/2;-3/2;-3/2];

X=1nv(A)*b;

disp("“the solution by iInverse matrix®)

disp(X);

for i=1:1:2*N+1

U(l,i)=0;

U(2*N+1,i)=0;

U(i,1)=0;

UQi,2*N+1)=0;
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end

for i1=1:1:3

U(2,2*N+1-i)=X(i+1,1);

U(2*N,2*N+1-1)=X(i+1,1);

end

for 1=3:1:5

U2, 1)=X(1,1);

UC2*N, 1)=X(i,1);

UQi,2)=X(i,1);

U2*N+2-i,2)=X(i,1);

end

for 1=2:1:4

U(2*N,2*N+2-1)=X(i,1);

UCi, 2*N)=X(i,1);

end

for i1=3:1:5

Ui, 2*N)=X(i,1);

U2*N+2-i ,2*N)=X(i,1);

end
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for 1=2:1:3

Ui, 1)=X(N-1,1);

U*N+2-i , 1)=X(N-i,1);

UQi , 2*N+2-1)=X(N-i , 1) ;

UQ2*N+2-i , 2*N+2-1)=X(N-i , 1)

end

L=zeros(N+1,N+1);

UU=zeros(N+1,N+1);

D=zeros(N+1,N+1);

for i=1:1:N+1

for jJ=1:1:N+1

it 1==)

D@, 3)=AC1,]);

elseif i<j

VU@L 5)=A,]);

elseif i>]

L(1,3)=AC1,]);

end

end
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end

Xjc=ones(N+1,1);

Xnew=zeros(N+1,1);

c=0;

while c~=15

c=c+1;

Xnew(1,1)=(5/2+2*Xjc(3,1))/4;

Xnew(2,1)=(1/2+2*Xjc(3,1))/4;

Xnew(3,1)=(1/2+Xjc(1,D)+Xjc(2,1)+Xjc(4,1))/4;

Xnew(4,1)=(37/2+Xjc(3,1)+Xjc(5,1))/4;

Xnew(5,1)=(3/2+2*Xjc(4,1))/4;

Xjc=Xnew;

end

errjc=norm(Xjc(:)-X(:),infF); %norm error

disp(sprintf("number of 1iteration for Jacobi method

is=%.0F",c))

disp(sprintf("norm_inf error for Jacobi method

1s=%.10F" ,errjc))
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disp("The solution by Jacobi method i1s*")

disp(Xjc)

c=0;

Xoldjc=zeros(N+1,1);

Xjcm=zeros(N+1,1);

while c~=16

c=c+1;

Xjem=(inv(D)*b)-((inv(D))*((L+UU)*Xoldjc));

Xoldjc=Xjcm;

end

errjcm=norm(Xjcm(:)-X(:),inf); %norm error

disp(sprintf("number of 1iteration for Jacobi method

1s=%.0Ff",c))

disp(sprintf(*norm_inf error for Jacobi method

1s=%.10F" ,errjcm))

disp("The solution by Jacobi method i1s")

disp(Xjcm)



Xgs=ones(N+1,1);

c=0;

while c~=8

c=c+1;

Xgs(1,1)=(5/2+2*Xgs(3,1))/4;

Xgs(2,1)=(1/72+2*Xgs(3,1))/4;

Xgs(3,1)=(1/2+Xgs(1,1)+Xgs(2,1)+Xgs(4,1))/4;

Xgs(4,1)=(3/2+Xgs(3,1)+Xgs(5,1))/4;

Xgs(5,1)=(3/2+2*Xgs(4,1))/4;

end

errgs=norm(Xgs(:)-X(:),inf); %norm error

disp(sprintf("number of iteration for Gauss Seidel method

1s=%.0Ff",c))

disp(sprintf("norm_inf error for Gauss Seidel method

1s=%.10F" ,errgs))

disp("The solution by Gauss Seidel method is%)

disp(Xgs)



disp(F--—--——— e ")
Ypm——— Gauss Seidel method by LUD matrix-----
c=0;

Xoldgs=zeros(N+1,1);

Xgsm=zeros(N+1,1);

while c~=9

c=c+1;

Xgsm=(inv(L+D)*b)-((inv(L+D))*UU*Xoldgs);

Xoldgs=Xgsm;

end

errgsm=norm(Xgsm(:)-X(:),inf); %norm error

disp(sprintf("number of iteration for Gauss Seidel method

1s=%.0Ff",c))

disp(sprintf("norm_inf error for Gauss Seidel method

1s=%.10f" ,errgsm))

disp("The solution by Gauss Seidel method i1s")

disp(Xgsm)
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Xsor=ones(N+1,1);

c=0;

w=2/(1+sin(pi*dx))+.192

while c~=5

c=c+1;

Xsor(1,1)=(1-w)*Xsor(1,1)+(w*(6/2+2*Xsor(3,1)))/4;

Xsor(2,1)=(1-w)*Xsor(2,1)+(w*(1/2+2*Xsor(3,1)))/4;

Xsor(3,1)=(1-
w)*Xsor(3,1)+(w*(1/2+Xsor(1,1)+Xsor(2,1)+Xsor(4,1)))/4;

Xsor(4,1)=(1-
w)*Xsor(4,1)+(w*(3/2+Xsor(3,1)+Xsor(5,1)))/4;

Xsor(5,1)=(1-w)*Xsor(5,1)+(w*(3/2+2*Xsor(4,1)))/4;

end

errsor=norm(Xsor(:)-X(:),inf); %norm error

disp(sprintf(*number of iteration for SOR method
1s=%.0Ff",c))

disp(sprintf("norm_inf error for SORmethod

1s=%.10F" ,errsor))

disp("The solution by SOR method is®)

disp(Xsor)



disp(*The solution of U(X,y) is¥)

disp(U)

%**********************************************************

B.9 Matlab code for Helmholtz equation/Chapter Four

format short;

h=_05;

k=.05;

L1=.4;

L2=.4;

Ux0=0;

UxL=0;

UOy=0;

ULy=0;

n=L1/h;

U=zeros(n+1,n+1);

for 1=1:1:n+1

U(l,1)=Ux0;

u(n, 1)=UxL;
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U(i,1)=U0y;

U(i,n)=ULy;

end

a=n-1:;% the number of unknown elements

x=h;

xy=zeros(a,l);

for 1=1:1:a

xy(i,1)=x;

X=x+h;

end

A=zeros(a*a,a*a);

for 1=1:1:a*a

ACi, 1)=-4+(-12.5*(pir2)*(h"2));

end

for 1=1:1:(n-2)*a

A(i,i1+a)=1;

A(at+i,1)=1;

end

for 1=1:1:a-1



119

end

for m=1:1:a-2

for N=1:1:a-2

it m==N

for 1=1:1:a-1

A(m*a+i,m*a+i+1)=1;

A(mn*a+i+1l,m*a+i)=1;

end

end

end

end

for i=1:1:a-1

A((m-2)*a+i,(m-2)*a+i+1)=1;

A((m-2)*a+i+1,(m-2)*a+1)=1;

end

A;

L=zeros(a*a,a*a);
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UU=zeros(a*a,a*a);

D=zeros(a*a,a*a);

for i=1:1:a*a

for j=1:1:a*a

if i==j

D@, 3)=AC1,]);

elseitT i<j

VU@L 5)=A0,]);

elseif i>]

L@, 3)=AC,));

end

end

end

b=zeros(a*a,1);

for i=1:1:n-1

b(i,1)=(-
25* (pi~2)*sin(2.5*(pi)*xy (i, 1))*sin(2.5*(pi)*xy(1,1)))*(h" 2
)-U(L,1+1);

end
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for m=1:1:a-2

for i=1:1:n-1

b(m*a+i,1)=(-
25*(pin2)*sin(2.5*(pi)*xy(i,1))*sin(2.5*(pi)*xy(m+1,1)))*(h

end

end

for i=1:1:n-1

b(a*a-a+i,1)=(-
25*(pin2)*sin(2.5*(pi)*xy(i,1))*sin(2.5*(pi)*xy(1,1)))*(h"2
)-U(n,i+1);

end

X=inv(A)*b;

r=0;

for i=2:1:n

for jJ=2:1:n

U@, D=X(r+g-1),1);

end

r=r+n-1;

end
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Uex=zeros(n+l,n+1);

y=0;

for i=1:1:n+1

x=0;

for jJ=1:1:n+1

Uex(1,J)=sIn(2.5*p1*x)*sin(2.5*pi*y);

X=x+h;

end

y=y+K;

end

err_iter_inv=norm(U(:)-Uex(:),In¥f)

disp("The exact solution i1s7)

disp(Uex)

disp(sprintf("norm_inf error for invers matrix method 1is

=0%.5F" ,err_iter_inv))

disp("The solution by invers matrix Is")

disp(U)
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Ujc=zeros(n+1,n+1);
c=0;
R=4+((12.5*(pi~2)*(h"2))):
%while c~=33
% c=c+1;
k_max = (nN)"3;

1.e-04;

tolerance

for k = 1:k max
frac diff = 0O;
for 1=2:1:a+l

for j=2:1:a+l

Unew(d, J)=((25*(pi™2)*sin(2.5*pi*xy(J-
1,1))*sin(2.5*pi*xy(1-1,1)))*(h~2))+Ujc(i-1,j)+Ujc(1,J-
D+Ujc(i, j+1)+Ujc(i+1,3))/R;

frac_diff=frac_diff+abs(Ujc(i,J)-Uex(i,}));

end

end

Ujc(2:a+l,2:a+1)=Unew(2:a+1,2:a+1);

change(k) = frac_diff/(n-2)"2;
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ifT rem(k,100) < 1

fprintf("Fractional difference 1is %g after %g

steps\n* ,change(k),k);

end

if change(k) < tolerance

break;

end

mesh(Ujc);

pause;

semilogy(change);

xlabel (" Iteration Number®);ylabel("Fractional Changejc®);

% err_iter_jc=norm(Ujc(:)-Uex(:),inf);

%end

disp(sprintf("norm_inf error for jacobi method is

=%.5F",err_iter_jc))

%disp(sprintf("number of iteration for jacobi method 1is

=%.0F",c))

%disp(Ujc)



%disp(F——-——-——— e ")
N e e L e et jacobi method LUD matrix---------—---
c=0;

Ujcm=zeros(n+1,n+1);

Xoldjc=zeros(a*a,l);

xjcm=zeros(a*a,l);

while c~=33

c=c+1;

Xjem=Cinv(D)*b)-((inv(D))*((L+UU)*Xoldjc));

Xoldjc=Xjcm;

end

r=0;

for 1=2:1:n
for J=2:1:n

Usem(i, J)=Xjem(r+(J-1),1);

end

r=r+n-1;

end
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err_iter_jcm=norm(Ujcm(:)-Uex(:z),inf);

disp(sprintf("norm_inf error for  jacobi method is

=%.5F",err_iter_jcm))

disp(sprintf("number of iteration for jacobi method 1is

=%.0F",c))

disp("The solution by jacobi matrix method 1s%)

disp(Ujcm)
disp("-——--————————m ")
Y- Gauss Seidel method------—--------————-

Ugs=zeros(n+1,n+1);

%c=0;

R=4+((12.5*(pi"2)*(h"2)));

%Wwhile c~=17

%c=c+1;

k max = (n)"3;

tolerance 1.e-04;
for k = 1:k max

frac _diff = O;
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for 1=2:1:a+l

for j=2:1:a+l

Ugs(i,J)=(((25*(pin2)*sin(2.5*pi*xy(-
1,1))*sin(2.5*pi*xy(i-1,1)))*(h"2))+Ugs(i-1,j)+Ugs(i,j-
1)+Ugs(i,j+1)+Ugs(i+1,j))/R;

frac_diff=frac_diff+abs(Ugs(i,j)-Uex(i,}));

end

end

change(k) = frac_diff/(n-2)"2;

if rem(k,100) < 1

fprintf("Fractional difference 1i1s %g after

steps\n- ,change(k),k);

end

if change(k) < tolerance

break;

end

end

Ugs

mesh(Ugs);

pause;

%g
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semilogy(change);

xlabel (" Iteration Number®);ylabel("Fractional Changegs®);

%err_iter_gs=norm(Ugs(:)-Uex(:),inf);

%end

%disp(sprintf("norm_inf error for Gauss Seidel method 1is

=%.5F" ,err_iter_gs))

%disp(sprintf("number of iteration for Gauss Seidel method

iIs =%.0f",c))

%disp(Ugs)

%disp(F - D)
e et Gauss Seidel method by LUD
matrix-----

c=0;

Ugsm=zeros(n+1,n+1);

Xoldgs=zeros(a*a,1);

Xgsm=zeros(a*a,l);

while c~=17

c=c+1;

Xgsm=(inv(L+D)*b)-((inv(L+D))*UU*Xoldgs);

Xoldgs=Xgsm;
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end

r=0;

for i=2:1:n

for jJ=2:1:n

Ugsm(i,J)=Xgsm(r+(J-1),1);

end

r=r+n-1;

end

err_iter_gsm=norm(Ugsm(:)-Uex(:),inf);

disp(sprintf("norm_inf error for Gauss Seidel method 1is

=%.5F" ,err_iter_gsm))

disp(sprintf("number of iteration for Gauss Seidel method

iIs =%.0f",c))

disp("The solution by Gauss Seidel matrix method is¥)

disp(Ugsm)

Usor=zeros(n+1,n+1);

c=0;
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w=2/(1+sin(pi*h))-.25

R=4+((12.5*(pi"2)*(h"2)));

k max = (a+1)"3;

tolerance = 1.e-04;

for k = 1:k max

frac _diff = O;

for 1=2:1:a+l

for j=2:1:a+l

Usor (i, J)=(w*(((25*(piN2)*sin(2.5*pi*xy(J -
1,1)))*sin(2.5*pi*xy(i-1,1))*(h"2))/R))+((1-
w)*Usor (i, j))+(w*(Usor(i-

1,j)+Usor(i+l,j)+Usor(i,j+1)+Usor(i,j-1)))/R;

frac_diff=frac_diff+abs(Usor(i,j)-Uex(i,}));

end

end

change(k) = frac_diff/(a+1-2)"2;

if rem(k,100) < 1

fprintf("Fractional difference 1i1s %g after

steps\n- ,change(k),k);

end

%hg
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iT change(k) < tolerance

break;

end

end

Usor

mesh(Usor) ;

pause;

semi logy(change);

xlabel (" Iteration Number®);ylabel("Fractional Changesor®);

B.10 Matlab code for irregular region/Chapter Four

format short e;

N1=4;

N2=2;

L1=.4;

L2=.2;

h=L1/N1;

k=L2/N2;

U=zeros(N2+1,N1+1);

A=E[-41010;1 -4101;02-400;200-41;020 2 -4];
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b=[-8;-4;-8.0565685;-4.02;-0.0565685] ;

disp("The solution by matrix”®)

X=inv(A)*b;

disp(X);

U3, 1)=4;

end

for i=1:1:N2+1

UQi,1)=4;

end

for 1=2:1:N1

U2, i)=X(i-1,1):

end

for i=2:1:N1-1

UL, )=X(i+2,1);
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L=zeros(N1+1,N1+1);

UU=zeros(N1+1,N1+1);

D=zeros(N1+1,N1+1);

for i=1:1:N1+1

for J=1:1:N1+1

if i==j

D, 3)=AC1,]);

elseif i<j

VU@L 5)=A,]);

elseif i>j

L(1,3)=AC1,]);

end

end

Xjc=ones(N1+1,1);

Xnew=zeros(N1+1,1);

c=0;

while c~=100
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c=c+1;

Xnew(1,1)=(-b(1,1)+Xjc(2,1)+Xjc(4,1))/4;

Xnew(2,1)=(-b(2,1)+Xjc(1,1)+Xjc(3,1)+Xjc(5,1))/4;

Xnew(3,1)=(-b(3,1)+2*Xjc(2,1))/4;

Xnew(4,1)=(-b(4,1)+2*Xj3c(1,1)+Xj3c(5,1))/4;

Xnew(5,1)=(-b(5,1)+2*Xjc(2,1)+2*Xjc(4,1))/4;

Xjc=Xnew;

end

err_iter_jc=norm(Xjc(:)-X(:),infF);

disp(sprintf(® number of iteration for jacobi method

is=%.0F",c))

disp(sprintf(*norm of error for jJacobi method

1s=%.10f" ,err_iter_jc))

disp("The solution by jacobi Method i1s%)

disp(Xjc)

Xoldjc=zeros(N1+1,1);

Xjcm=zeros(N1+1,1);
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while c~=100
c=c+1;
Xjem=Cinv(D)*b)-((inv(D))*((L+UU)*Xoldjc));
Xoldjc=Xjcm;

end

err_iter_jcm=norm(Xjcm(:)-X(:),inf);

disp(sprintf(" number of iteration for jacobi method

1s=%.0f",c))

disp(sprintf(*norm of error for jacobi method

1s=%.10F" ,err_iter_jcm))
disp("The solution by jacobi Method i1s®)

disp(Xjcm)

Xgs=ones(N1+1,1);

c=0;

while c~=50
c=c+1;

Xgs(1,1)=(-b(1,1)+Xgs(2,1)+Xgs(4,1))/4;
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Xgs(2,1)=(-b(2,1)+Xgs(1,1)+Xgs(3,1)+Xgs(5,1))/4;

Xgs(3,1)=(-b(3,1)+2*Xgs(2,1))/4;

Xgs(4,1)=(-b(4,1)+2*Xgs(1,1)+Xgs(5,1))/4;

Xgs(5,1)=(-b(5,1)+2*Xgs(2,1)+2*Xgs(4,1))/4;

end

err_iter_gs=norm(Xgs(:)-X(:),inf);

disp(sprintf(" number of iteration for Gauss Seidel method

1s=%.0f",c))

disp(sprintf("norm of error for Gauss Seidel method

1s=%.10F" ,err_iter_gs))

disp("The solution by Gauss Seidel Method i1s")

disp(Xgs)

Xoldgs=zeros(N1+1,1);

Xgsm=zeros(N1+1,1);

while c~=50

c=c+1;

Xgsm=(inv(L+D)*b)-((inv(L+D))*UU*Xoldgs);
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Xoldgs=Xgsm;

end

err_iter_gsm=norm(Xgsm(:)-X(:),infF);

disp(sprintf(®" number of iteration for Gauss Seidel method

is=%.0f",c))

disp(sprintf("norm of error TfTor Gauss Seidel method

1s=%.10F" ,err_iter_gsm))

disp("The solution by Gauss Seidel Method is”)

disp(Xgsm)

Xsor=ones(N1+1,1);

c=0;

w=2/(1+sin(pi*h))

while c~=35

c=c+1;

Xsor(1,1)=(1-w)*Xsor(1,1)+(w*(-
b(1,1)+Xsor(2,1)+Xsor(4,1)))/4;
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Xsor(2,1)=(1-w)*Xsor(2,1)+(w*(-
b(2,1)+Xsor(1,1)+Xsor(3,1)+Xsor(5,1)))/4;

Xsor(3,1)=(1-w)*Xsor(3,1)+(w*(-b(3,1)+2*Xsor(2,1)))/4;

Xsor(4,1)=(1-w)*Xsor(4,1)+(w*(-
b(4,1)+2*Xsor(1,1)+Xsor(5,1)))/4;

Xsor(5,1)=(1-w)*Xsor(5,1)+(w*(-
b(5,1)+2*Xsor(2,1)+2*Xsor(4,1)))/4;

end

err_iter_sor=norm(Xsor(:)-X(:),infF);

disp(sprintf(* number of iteration for SOR method
1s=%.0f",c))

disp(sprintf(*norm of error for SOR method

1s=%.10F" ,err_iter_sor))

disp("The solution by SOR Method is®)

disp(Xsor)

disp("The solution of U(X,y) 1s=7)

disp(U)

B.11 Parent routine for Laplace"s Eq. in polar

u=zeros(6,5);



139
r=[1 .2 .4 .6 .8 1];

rs=r.>*r;

s=pi/8;

w=_.2;

SS=S*s;

wS=w*w;

s1=2*(1/ws+1.0./(ss*rs));

u(6,:)=100;

for k=1:100

changesum =0;

ueval=u;

for 1=2:5

T=(u(i-1,1)+u(i+1,1))/ws+u(i+1,1)-u(i-
1,1))/2*w*r(i));

u(i,D)=(T+2*u(i1,2)/(rs(i)*ss))/s1(i);

end

for 1=2:5

for j=2:4



140
T=(u(-1,+u(i+1,3))/ws+(u(i+l,j)-u(i-
1.3))/(2*w*r(i));

u(i, D=(T+u(@,j-1)+u(, j+1))/(rs(i)*ss))/sl(i);

changesum=changesum+abs(ueval-u);

end

end

1T max(abs(ueval-u))<.001,break,end

end

fprintf("# of iteration =%g\n-,k)

disp("u =");disp(u)

end

mesh(u);

pause;

semilogy

xlable(" Iteration Number *);ylable("Error®);
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