0000

AUTOMATIC BURGER MACHNE

PROJECT TEAM

ENG. Yazan Haj-Hasan

ENG. Saleh Abuali

ENG. Omar Zaatar

PROJECT **OVERVIEW**

Oppertunity

Why we started this project?

First Machine

As Engineers, How we made our first machine?

Future work

How are we going to start our buisness?

Market Gap

Time-consuming manual machine

Pricey imported **Automatic Machines**

OPPERTUNITY

Customers needs

Restaurants and Butchershops are willing to pay for a relatively low cost, high quality Automatic Burger Machine

Automatic Burger Machine Design

Limitations: 1. Cost 2. Quality 3. Size 4. Noise

Work Principle

The Machine Parts Are Done !!

(Control System) **Processes: Feeding**

Control System Processes: Pressing & Conveyor Movement

Processes: Portion release and Discharging

Inputs: Magnet proximity sensors

Outputs:

Outputs:

Code:

Proirtized Labeled A Multiple control moods Controlable **Variables**

HMI Design:

SW2 DW2 SW0 SW1 Stop tant Cutter Production Rate Pieces Count Settings Reset

Control System

• working with 2 leading companies in our field.

Introduce us to reverse engineering.

Knowledge and experience in manufacturing

Blade:

Problem Solving Skills : Design Problems

Cutting piston Placement:

Problem Solving Skills : Run Problems

In-consistanc center of pressing:

Problem Solving Skills : Run manifacturing wrapping Plastic behavior

- The project team found it a very useful experience to them to implement a practical project in cooperation with the local market
 - Sometimes the design has to be modified to coop with what is available in the local market stock.
 - **Improve our Problem-Solving skills, and encourage us** to put more effort into the thinking and designing stage in the future
 - Real-life manufacturing will always face new problems that were not considered and have to be overcome

