An-Najah National University

Faculty of Graduate Studies

BEST APPROXIMATION
AND BEST CO - APPROXIMATION
IN CONE - NORMED SPACE

By

Fedaa Sameer Yousef Murshed

Supervisor
Dr. Abdallah A. Hakawati

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Mathematics, Faculty of Graduate Studies, An-
Najah National University, Nablus, Palestine.

2017



BEST APPROXIMATION
AND BEST CO - APPROXIMATION
IN CONE - NORMED SPACE

By

Fedaa Sameer Yousef Murshed

This thesis was defended successfully on 18/05/2017 and approved by:

Defense committee Members Signature

— Dr. Abdallah A. Hakawati / Supervisor — iiiviiiiiniininen

— Dr. Amenah Affanah / External Examiner — .veeveiirrveneceens

— Dr. Mohammad AbuEideh / Internal Examiner  ...cccevvvvvvnneees



11
Dedication

Every challenging work needs self-efforts as well as guidance of
elders especially those who were very close to our heart.

My humble effort | dedicate to my sweet and loving husband,
daughter, parents, sisters & brother. Whose affection, love, encouragement
and prays of day and night make me able to get such success and honor.

Along with all hard working and respected Teachers especially

Dr. Abdallah A. Hakawati.



v
Acknowledgment

oadly cllaSin) o gaele e IS ST il ) 13 Gla) e ) uled Sy W
oLy dnaiy o iy Al e caydl (0 SISl ae ol (g (<50
25l o (e 4y coda il L8l Lagliadid dilie dial 5)5i€N5 5ue saf dana g0

Aagdll Lagilladlag Logale (10

Aleslly 2galls e Tolay ab ol Jpuly allgy gallyy il ong) G Jsmane Sally
ol b Sy Slaaly S8l aues ) ailly KAl asly WS LAY o3a dacY
costal (e osly (3 agal) e Auilagll Lol daals 3 Llell il 30 3 bzl



Y
BIBCM
10 gind) Jaad A Al ) dadia oL} 4ad galf L)

BEST APPROXIMATION
AND BEST CO - APPROXIMATION
IN CONE - NORMED SPACE

44| B HLEY) G e £l cualall S Ctuu.hbu\ :\jl.u)l\ edmd\:ﬂct"_\w\uui_a )3\
M}i%%)d%id#dﬁweﬂgengﬁcﬁi}i ‘dSS‘UL..n‘)I\uAUB 6.3‘))1.4:.93

A iy gl Apalat dsuge 4 (o0

Declaration

The work provided in this thesis, unless otherwise referenced, is the
researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student’s name: s lal) an)
Signature: s &8 53l

Date: sl



Vi
Table of Content

D=0 [ oL [ ] o 1SR Il
ACKNOWIEAGMENT ...t v
Table OF CONLENt ... e Vi
ADSITACE ... VIl
INEFOTUCTION ... 1
ChAPLEr ONE.....ciie et ee s 5
PrEIIMINAITES. ... eeeteciie ittt r e nee e 5
1.1 IMELIIC SPACE ..veeivieciie ettt ettt e et e e e ae e te e saeesaneanee s 5
Y ot (0 ] - (o TSP 6
1.3 Normed and Banach SPacCe.........cccvevveiieiie i 7
T o T T PR PRS 9
1.5 Cone metric space and Cone - Normed SPace .........cccvevevvevvreiveeneeenne 12
(@8 T o1 (=] G I SRR 18
Best Approximation & Best Co-Approximation In Normed Space............ 18
2.1 Best Approximation In Normed SPace..........cccocveveevieiiesieesee e, 18
2. 2Best Co — Approximation in Normed SPace. ........ccccvcvevveeiveerieesieesnnenn, 24
(O80T o1 (=] g I ] £ PSSP 30
Best Approximation In Cone-Normed Space ........ccccccevveveeviesiiesie e 30
T8 A [ 11 oo [ Tod o] o I SRRSO 30
3.3 Proximinal additivity in cone — normed SPacesS .........ccccevvevveerveerieesnnnnn, 39
(@8 T o1 (=] ol 0T | RSP 46
Best Co — Approximation In Cone-Normed Space.........c.cccoeevcveeiveeenenne, 46
I 1 (oo [N o1 (o o S RSTS 46
4.2 CO-ProXIMINAL ....ccvveiieiiecie e 49
(@70 3T 0151 o] o RSO R USSR 52
RETEIENCES ... 53



VI
BEST APPROXIMATION
AND BEST CO - APPROXIMATION IN CONE - NORMED SPACE
By
Fedaa Sameer Yousef Murshed
Supervisor
Dr. Abdallah A. Hakawati

Abstract
In this thesis, the concept of Best Approximation and Best Co-

Approximation in cone — normed spaces are studied.

We noticed similarities between Best Approximation and Best Co—

Approximation in cone—normed spaces.
We obtained new results among which, we proved that:

1. We can apply Best Approximation and Best Co-
Approximation theorems in normed space to cone-normed
space.

2. Best Co-Approximation in cone-normed space is a counter

copy of Best Approximation in cone-normed space.

The concept of Proximinal additivity and ¢-Summand in cone—
normed space are introduced. Also we have answered some questions about

them.



Introduction

The theory of Best Approximation is an important topic in functional

analysis.

The meaning of Best Approximation for a given point x, and a given
set G in a cone-normed space (X, I . lc), is the existence of a point goin G

which is closest to x among all points of G, that is:
Ix—golc<lIx—-glVgEeGQG.

The meaning of Best Co-Approximation for a given point x, and a
given set G in a cone-normed space (X, I . I¢) is a point goin G which is

nearest to g of all points of G from x, that is:
lgo-glc<Ix—-glVgeGQG.

In our study, for x € X we will denote by P.s(X) the set of all elements

go €G, that are best approximation.
.e Pic(X) ={goeG:Ix—golc.<Ix-glVge G}

And R¢s(x) for the set of all elements goeG that are best co-

proximation.

1.6 Rec(X) ={90€G:lgo-gl.<Ix—-glvVgeG}.

If Pca(x)£0 then G is called a proximinal set and if Pcg(x) is a singelton
then G is called Chebychev.

If Rea(x)#0 then G is called a co-proximinal set and if Reg(X) is a

singelton then G is called co- Chebychev set.
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The problem of Best Approximation began in 1853 by P. L

Chebychev, and the problem of Best Co-Approximation began in 1972 by

Franchetti and Furi.

This thesis consists of four chapters; each chapter is divided into
sections and contains: definitions, theorems, corollaries, lemmas and other

results. At the end we list all references used in our work.

In chapter one, we introduced basic definitions and concepts which

will be needed in the next chapters.

We defined metric, vector space, normed and Banach space, cone,
cone metric space and cone-normed space. Despite other orthogonalities, we

referred to Birkhoff orthogonality, which will be used in next chapters.
Finally, we basically answered two questions in this chapter:

QL. Is every metric coming from a norm?

Q2. Is every cone-metric coming from a cone-normed?

Chapter two has two purposes: First, we studied Best Approximation
in normed space and proximinal set. Second, we studied another kind of Best
Approximation (Best Co-Approximation) in normed space and co-

proximinal set.

In chapter three we answered the questions:
Q1. What do we mean by Best Approximation in cone -normed linear
spaces?
Q2. When do we mean by G is a co-proximinal set in X?
Q3. What do we mean by proximinal additivity and by ¢.-Summand in cone

— Banach space?
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Q4. Does G being (a %-Summandof a Banach space X) imply that G is

proximinal, Chebychev and proximinally additivite in X?

In chapter four, we defined the concept of Best Co-Approximation in
cone-normed linear spaces and co-proximinal set, and we applied theorems
in section 2.2 to them.

This thesis is wished to become a ground for more researches &
studies about Best Approximation & Best Co-Approximation in cone-

normed spaces.



Chapter One

Preliminaries
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Chapter One

Preliminaries

This chapter contains some basic definitions, theorems and results about
metric spaces, vector spaces, Normed and Banach spaces, cone, cone metric

spaces and cone-normed spaces which we will use in the next chapter.

1.1 Metric space:
Definition 1.1.1 [1,p4]:

Let X be any nonempty set. A metric on X is a mapping d : X x X —- R
which Satisfies the following axioms: For all x ,y, z € X:

i. d(x,y)>0.

ii. d(x,y)=0ifandonly ifx =vy.

. d(x,y) =d(y, x).

iv. d(x,y)<d(x, z)+d(z,y).

The pair (X, d) is called a metric space.

Definition 1.1.2 [1,p4]: (Distances between sets and distances between

points and sets)

Let (X, d) be a metric space and let A , B two be non-empty subsets of X:
1. The distance between a point x € X, and the set A is defined as:

d(x,A)=inf{d(x,y):y €A}

2. The distance between the sets A,B denoted by d(A,B) is defined as:

d(AB) =inf{d(x,y): x€e A,y e B}

Definition 1.1.3 [13,p331]: (strictly convex)
A subset G of a linear space X is convex if, forall g: , 9. € G

017 g2, the points { Bgi1 + (1 -B) 92 : 0 <B< 1 } are interior points of G.



Theorem 1.1.4 [1,p6]:

Let G be a nonempty subspace of a metric space X. Then:
. d(x +y,G) =d(x,G) for every x € Xand y € G.

ii. d(ox,G) = lal d(x,G) for every x € X and a € R.

. dx+y,G) <d(x,G) + d(y,G) for every x and y in X,

1.2 Vector space:

Definition 1.2.1 [2,p1]:

Let K=R or C. A vector space over K, is a set X together with two functions,
+ : X x X — X, called vector addition, and - : K x X — X, called scalar

multiplication that satisfy the following:

1. VXy, X2, X3€ X, X1 + (X2 + X3) = (X1 + X2) + Xa.

2. 3 an element, denoted by O (called the zero vector) such that for all
XEX,X+0=0+x=xX.

3. VX € X, there exists an element, denoted by —x, such that
X+ (—x)=(=x)+x=0.

4, V¥V X1, Xo0In X, X1 + X2 = X2 + X1.

5. VvxeX,1-x=X

6. VXeEXandalla,BeEK,a (B x)=(ap) - x.

7. VXeXandalla,BEK,(a+P) x=a -x+p"x

8

VX, %€ Xandallo € K, o (X1 + X)) =0 X1+ a- Xy



1.3 Normed and Banach space:

Normed space:

Definition 1.3.1 [2,p3]:

Let X be a vector space over R or C. A norm on X is a function
I+ 1:X — [0, +c0) such that:

1. Forallx e X, Ixl>0. (Positive definiteness)

2. IfxeX,thenIxl=0iffx=0.

3. Foralla € Ror Cand forall x € X, laxl = |o/IxI.

4, Forallx,ye X,Ix+yl<IxIl+Ilyl.(Triangle inequality)

A normed space is a vector space equipped with a norm.

If X,y € X then the number | x — y | is the distance between x and y.
Thus | x I=1 x — 0 Il is the distance of x from the zero vector in X.
Theorem 1.3.2 [1,p6,7]:

We can define the distance function d(x,y)=lIx -y .

1. Every normed space is a metric space with respect to the metric

dx,y)=Ix-yl.

To see this:

VX,y,zZeX

a. dix,y)=0ifflx-yl=0iffx—y=0iffx =vy.
b. dx,y)=Ix-yl =l-(y—x)I=-11ly-xI
ly-x1I=d(y, x).

c. dx,y)=lx-yl =Ix-z+z-yl

IX—z+z-ylI<Ix-zl+lz-yl=d(x,z)+d(z,Yy).
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2. Forall x,yinanormedspace X, IxI-lyllI<Ix—yl.

Question: Is every metric coming from a norm?

Answer: No.

To prove, let X be a vector space over field K(R or C).

Anorml.l: X - K.

Satisfies the condition:

laxl=lallxl. Va€eKandxeX.Sothe metric

d: X x X — Kdefined as:

d(x,y)=Ix—y I must satisfy:
dlox,ay)=lox—oayl=lallx—yl=laldx,y)

VvV a€Kandx,ye X. Butthis property is not satisfied by general metrics.
For example, let d be the discrete metric,
d(x,y)=1ifx#y,d(x,y)=0ifx=y.

We want to examine the conditions of a metric:

1. d(x,y)=0iffx=y.

2. d(x,y)>0.

3. d(x,y)=d(y,x).

4. d(x,y) <d(x, z) +d(z, y).

So, this is a metric but there exists no norm which induces it.
(Because l ox —ay Il #lallx—y . For example take a = 2 then for
X£Y,12x=2yl=1butl2lIx—-yl =2).

Then d is not coming from a norm.

Definition 1.3.3 [1,p15]: (Birkhoff orthogonality)

Two vectors x and y in a normed linear space are said to be Birkhoff
orthogonal if | x | <1 x +a y I for all scalar a.

Symbolically, x 1g yifand only if I x | <l x + a y I for all scalar o.



Banach space:

In a normed space, we have the notation of distance between vectors so we
can define convergent sequences and Cauchy sequences.

Definitions 1.3.4 [2, p7,8]:

1. Let (Xn)nen be a sequence in X and let x € X. The sequence (Xn)nen
converge to x if Ve > 0, 3 M € N such that for all n € N satisfying n > M,
Ixn—x1<e€.

This means that:

(a sequence (xn) in X is said to be convergent if and only if there exists an

X € X such that lim ||x,, —x || =0).
n—-oo

2. The sequence (Xn)nen is called a Cauchy sequence if Ve> 0,3 M € N
such that for all m, n € N satisfying m, n > M, Ixyn — xpl <€
3. Every convergent sequence is a Cauchy sequence, since V € > 0,
IXm — Xnl < Ixm — xI + Ix — x5l .
< €/2 + €/2 =e for sufficiently large m and n.
4. A normed space (X, I-1) is called complete if every Cauchy sequence is
convergent.
Definition 1.3.6 [2 ,p8]:
A Banach space (over R or C) is a complete normed vector space.
In other words:
A normed space (X, I.I) is called a Banach space if every Cauchy sequence

in X is convergent in X.

1.4 Cone:
Definition 1.4.1 [3,p1468]:

Let E be a real Banach space with norm I.I and P a subset of E. P is called

aconeinE if;
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1. Pisclosed, nonempty, and P # {0}.

2. Ifa,beR,a,b>0,x,y € Pthenax + by eP.
3. IfxePand —x € Rthenx =0.

Example 1.4.2:
LetE=R?andP={(w,z):w=>0,2z>0} The set P is acone in E.
Definition 1.4.3 [3,p 1469]:

Let P be a cone in a real Banach space E. We define:

1. A partial ordering < with respect to Ron Eby x <y iffy— X € P.
2. X<y ifx<ybutx#y.
3. X Ky ify—x e PO(this is the interior of P).

(x <y is pronounced: x is way behind y)

Type of cones:

Definition 1.4.4 [3,p1469]:

The cone P is called normal if 3k > 0s .tk e R.
vx,y € E.0<x < y then Ixl <k lyl.

The smallest k is called the normal constant of P.
Remark 1.4.5 [7,p68]:

The normal constant of a normal cone P must be > 1.
Proof:

Suppose that E is a Banach space and P is normal cone with K < 1
Take x € P, x #0 and a real number e s .t 0 <g < 1, where K< (1-¢).
Then, (1-¢) x < x.
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but (1-¢) | x | > Kl x I, which is a contradiction with the definition of the

cone normal constant.
Example 1.4.6 [7,p68]:
Let E = C[0,1] with norm | f1=1fl,+ I f'l, (C[0,1] as a set is the space

of all real — valued function on [0,1] with continues derivatives).

Where | f'l, = max {f(x): x€ [0,1] }and I f I, = max{f "(x): x € [0, 1]}, and

consider the cone P={fe€ E : f>0}. This cone is non — normal.
To see this:
For each k > 1, put f(x) =x and g (x) = x?.
Then0< g<f,
| fI=max {x:x € [0, 1]} + max { 1: xe [0,1] }
=1+1=2

| g | =max {x*: x€ [0,1]} + max { 2k x**1: x € [0,1] }
=1+2k

Ifl=2,and I gl=2k+ 1. Sincek I f1 <1 gl, kis nota normal constant of

P and hence P is a non - normal cone.
Definition 1.4.7 [3,p1469]:

The cone P is called regular if every increasing sequence in E, which is

bounded above in E is convergent.
In other words:

If {xn} is sequence s.t X; <x, <x3<....<xp<....<y forsomey € E, then3

XEEs tlx,—xIl-=0whenn - oo.



12
Equivalently, the cone P is called regular iff every decreasing sequence

which is bounded below in E is convergent.
Definition 1.4.8: [5,p2]

A cone P in a real Banach space E is called minihedral if sup {Xx, y} exists

forevery x,y € E.
Definition 1.4.9:[5,p740]

P is called strongly minihedral if every set which is bounded above has a

supremum.
Example 1.4.10: [12]

Let E=Cg[0,1], P={g€EE:g(®)>0},andlgl=lgl+l g .
Letf(x) =sinx and g(x)=cos x. Both fand g arein E.

but h =sup {f, g }¢ C2[0,1] ,since h is not differentiable at %.

So, P is not minihedral.
Definitions 1.4.11 :[5,p740]

1. The norm | . I is called monotonicif VX, Yy EE,0<x<y= IxI<lyl.
2. The norm | . I is called semi-monotonic if VX, y € E, 3 k >0, such that

O0<x<y=IxI<klyl

1.5 Cone metric space and Cone - Normed space:

Cone metric space:

We will always suppose that E is a Banach space, P is a cone in E with P%

@ and <is the partial ordering with respect to P.



13
Definition 1.5.1: [3,p1469]:

Let X be a nonempty set, and suppose the mapping d.: X x X - E
Satisfies:

de(x,y)>0V Xx,y€eX,0vectorinE.
de(x,y) =0iff x =y.
de(X,y)=de(y ,X) VX,y € X
Cde(x,y)<de(X,2)+de(z,y) VX,y,ZE X,

BN e

Then d. is called a cone metric on X, and (X,d.) is called a cone metric space.
Example 1.5.2 [8, p1638]:
LetE=R?andP={(x,y):x>0,y>0}

X=Randd;: Xx X - Edefinedas: do(x,y)={Ix—y!,alx—yl} where
a > 0 is a constant then (X ,d;) is a cone metric space.

Definition 1.5.3 [ 3,p1470]:

Let ( X, d.) be a cone metric space. let (x,) be a sequence in Xand x € X..
IfvseEwiths >» 03I Ns.tvn>N,dX,,X) < sthen (x,)is said to
converge to X with limit x.

We denote that by:

lim x,, =X

n—->oco

Or xp,»x (n—- o).

Lemma 1.5.4 [3,p1470]:

Let ( X, dc) be a cone metric space and let P be is a normal cone with normal
constant k. Let (x,) be a sequence in X. If ( x,) converge to x and (Xn)

convergetoythenx =y .

That is, a limit of (x,) is unique.
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Proof:

Foranyse Ewiths >0, INs.tvn>N,d(X,,X) «<sand
de( Xn, Y) K< 5.

we have: do(x , y)< de( Xn, X) + de( Xn, Y) <2s.

hence I do(x , y) I < 2k sl .

since s is arbitrary, dc(x , y) = 0 therefore x = y.

Definition 1.5.5[ 3 ,p1470 ]:

Let (X, dc) be a cone metric space. Let (x,) be a sequence in X and x € X.
IfvseEwiths>03aNs.tvn, m>N,d.(Xn, Xn) < sthen(x,) is called

a Cauchy sequence in X .

Consequently, let ( X, dc ) be a cone metric space, P a normal cone with
normal constant k and (x,)be a convergent sequence in X. Then (x,) is

Cauchy.
Proof:
We need to prove that every convergent sequence is Cauchy.

Letse Ewiths>» 03I Ns.tvn, m>N,d: (X, X) < s/2and de( Xm , X)
< s/2 , hence de(Xn ,Xm) < de( Xn, X) + de( Xm , X) < .

therefore {x,} is called Cauchy sequence in X.

If every Cauchy sequence is convergent in X, then X is called a complete

cone metric Space
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Cone - Normed space:

Definition 1.5.6[ 5,741]:

Let E be a real Banach space ordered by the strongly minihedral cone R, then
a cone normed space is an ordered pair (X, | . I) where X a real vector space
and

I lc: X— E. such that:

A Ixlc20vxeX.

B. Ixl.=0iff x=0.

C. Irxle=IrlxlvreRandallxe X,

D. Ix+yl<Ixl+Hyl.VXyeX.

Example 1.5.7: [7,69]:

LetE=X=R2P={(x,y):x>0,y>0} cR?, andl(x,y)l.= (a

|xI,Blyl)a>0,B>0then (X,I.l)is cone - normed space over R?.

Proposition 1.5.8 [ 6,p6]:

We observe that every cone normed space is cone metric space.
Specifically, take the cone metric do( x, y) =1 X -y I.

To see this:

VXxy,zeX

1. de(x,y)=0ifflx -yl iffx—y=0iffx=y.

2. dex,y)=Ilx-yle =l-(y—=x)lc=-1lly-xl. by (C)

Iy -xlc=dc(y, X) .

3. de(x,y) =lx-yle =lx-z+z-yl.by (D)
IX—z+z-ylc<Ix-zlc+lz-ylc=dc(X,2)+ de(z,Y).

The following example shows that cone metric spaces are not necessarily
cone - normed linear space.

Take X={0,1} and define the cone metric d. on the set X as follows:
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LetE=R.

de: XxX —E.

de(X,y)=1ifx#y,dc( X,y ) =0if x=y.

We want to examine E the condition of cone metric

1. de(x,y)=0if x=y.

2. de(x,y)>0.

3. de(Xx,y)=de(y,x).

4. de(X,y) <dc(X, 2) +dc(z,Y) .

So, this is a cone metric but there exist no cone — norm which induces this
distance. (Because l ax —ay lc £l a | I x —y I, for example take o =2 then
12x =2y lc=1butl2llx—-yl. =2).

Then, cone metric is not coming from a cone - normed.

Definitions 1.5.9 [5,p 741]:

In a cone normed space (X, I.Ic) over (E , B, I.I') the sequence {xn} is said
to be:

1. Convergent if 3x € X s.t vs € E with s >> 0, 3 ng € N such that vV n > n,,
I Xp- x Ic<< 5.

2. Cauchy if for each s >>0 3 ng € N s.t for m, n > no we have | Xn- Xmlc<<s.

Definitions 1.5.10 [5, 741]:
A cone normed space (X, I.I¢) is called a cone Banach space if every Cauchy

sequence in X is convergent in X.
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Chapter Two
Best Approximation & Best Co-Approximation

In Normed Space
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Chapter Two

Best Approximation & Best Co-Approximation In

Normed Space
In this chapter we focus on what we mean by Best approximation in a normed

space and best co- approximation in normed space. This new concept is
employed to improve various characterizations of closest elements and

Chebyshev sets.

2.1 Best Approximation In Normed space

Definition 2.1.1.[9,p15]

Let G be a nonempty subset of a normed linear space (X, I.I).

An element go€ G is called a best approximation from G if for every g € G,
we have [ x -gol <Ix—gl.

The set of all such elements go€ G which are best approximation is denoted
by Ps(Xx). Thus

Po(X) ={0oeG : I x —gol <l x—g | for all geG.}

Hence P¢ defines a mapping from X into the power set of G and is called the

metric projection on G.

Remark 2.1.2[9,p15]
The set Pg(x) of all best approximation can be written as:
Ps(X) ={0o€ G : I x — gol =d(x,G)},

where d(x,G)= inf {Ix—gl:ge G }.

Theorem 2.1.3. [9,p16]
Let G be a subspace of a normed space X, then:
If X € G, then Pg(x) ={x} .
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Proof:

Let x € G, Then d(x, x) = 0, (from the definition of metric space) and so
d(x,G) = 0 Hence,
Po(x) ={y € G: [lx —yll = d(x,G)} = {y € G:[[x —yll = 0} = {x}.
(Ix—y|l=0 iffx-y=0thenx=vy) .
Theorem 2.1.4 [9,p16]:
Let X be a normed space, Xe X, and let G be a subspace of X, then Pg(x) is
a convex set.
Proof:
Let 9 be the distance from x to G. The statement holds if Pg(X) is empty or
has just one point. Now suppose that y , z € Ps(x) such that y # z.
Sollx—yll=llx—zll =9
For 0<B<1, letw=py+(1-p)z, then:
lIx —wll = lIx = (By + (1 = B)zl

=[x =By — (1 = B)z + Px — Bx|

=IB&-y)+ @ -B)x—2)ll

< Bllx =yl +(1-B) lIx — zl|

=B9+(1-p) 9
=B9+19-pB9
=9
Therefore [|x —w|| <9 ......... (D
Now, w € G, since G is subspace ,s09 < |[|x —w]|...... (2)

From (1) and (2) we get that |[|x —w|| =9 , sow € Pg(X)

Since y,z € Pg(x) were arbitrary, Pg(X) is convex.

Theorem 2.1.5[9,p17] :

Let G be a subspace of a normed space X, then for xeX, Pg(X) is a bounded

set.
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Proof:

Let go€Ps(X).
lgol=1go—x+x1.
<lgo—xI+IxI.
<Ixl+Ixl since0€eG.
=2 Ixl.
Then Pg(X) is bounded.
Theorem 2.1.6 [9,p18] :
Let G be a subspace of a normed space X. For x € X:
1. If z € Pg(X) then oz € Pg(ax)for any scalar o .
2. If z € Pg(x) then z+g € Pg(x+g) for any ge G .
Proof:
For (1):
We need to prove that | ax —az | <l ox —g .
Suppose z € Pg(x) and let ge G be arbitrary.
lox —gl=lal I x-(1/0)g I >lallx—z =1 oax —az|.
Thus 0z € Pg(ax).
For (2):
Weneed to provethat I x +g-(z+g)I<Ix+g-g'l forall g'€ G.
ifge Gwehavelx +g-g I>Ix—zl=Ix+g-(z+g)l.
Then z + g € Pg(X+Q) .
Notation 2.1.7[1,p21]:
For a subset G of X, put
P (0) ={xe X:Ixl=d(x,G)} ={x€X:IxI<Ix-glV geG}.
Theorem 2.1.8[1,p21]:
Let X be a normed linear space and G be a subspace of X, Then:
1. go€ Ps(x) if and only if (x - go) Ls G.
2. go€ Pg(x) ifand only if (x-go) EPs(0) VX €EX.



21
Proof:

For (1)
(=) Suppose go € Ps(X).

we need to prove that foe o€ R.I x - 9ol <1 (x-go) +ag |

(by definition 1.3.3).

Since go € Pg(X) this means that | x - gol <l x-g: 1.,V 1€ G.
But then for any fixed g € G and o €R, putting g1 = go- ag, we have so
IX-gol<Ix-(go- ag)l.

Then | x - goll <1 (x-go) +ag I.

Therefore (X - go) Ls G.

(<) suppose (X -go)Ls G.

We need to prove that | x - gol <l x—g I, for all geG.

Then for all « € R and g,€G we have,

X - ol <l x-go+agal .

Let g € G be arbitrary and fixed . Take g1 =1/ o (go — Q)

in the foregoing inequality to get: Ix-gol<lx—gl.

Therefore go€ Ps(X) .
For (2):
go€ Ps(X) if and only if x - goLg G (by (1))

this means that ||X - gol <l x - go +agl. for all scalar a and geG.
But this holds if and only if x - go€ P15 (0)

(by definition of P~ (0); since G is a subspace).

We can summarize this theorem as the following remark.
Remark 2.1.9:

Let X be a normed linear space and G be a subspace of X, Then
go€ Ps(x) iff x - goePc (0) iff X-gols G.
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Corollary 2.1.10[1,p21]:

Let X be a normed linear space and G be a subspace of X. Then:

i. X €P1s (0) implies that ax €P (0),Va € R.

ii. Xx €P (0) if and only if 0 € Pg(X).

Proof:

For (i):

Let x € P15 (0), then x Lg G (By remark 2.1.9)

sothat, || xI<IxtyglVvye€EeR.
then Va €ER loax I <l ax + ayg |,
we have, | ax | <l ax + pg | where p = ay.

This implies that ax 1g g Vg € G.

Therefore, ax Lg G then ax € P (0).

For (ii):

The proof of this part comes directly from theorem 2.1.8.

By taking go = 0.

0 € Pg(x) iff x-0€ P (0).

Theorem 2.1.11[1,p22]:

Let G be a subspace of a normed linear space X.

Then Pg(x) = G N (x- P (0) ) for x #0.

Proof:

Suppose that go € G N (x - P15 (0) ) if and only if go€ G, andge€ (X - P
(0)), such that go = x - g*, where g*€Ps (0), and g* = X - go€P*s (0) if and
only if go€ Ps(X) (By theorem 2.1.8)

Therefore, Pg(x) = Gn (x - P15 (0) ).

Definition 2.1.12 [1,p20]:

Let X be a normed linear space, if each element x € X has a unique best

approximation in G, then G is called a Chebyshev set of X.
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In other words, G is a Chebyshev set iff Pg(X) is a singleton for each x € X.
Definition 2.1.13: [9,p19]:

If Pc(x) contains at least one element, then the set G is called Proximinal in X.
In other words, if Pg(X) # @ for all xe G then G is called Proximinal in X.
Theorem 2.1.14. [9,p21] .

For a linear subspace G of normed linear space X, the following statements
are equivalent:

(1) G is Proximinal in X,

Q) X=G+Pi(0)={g+x:g€ G;xePi0)}.

Proof:

1) =2

If G is the Proximinal then go€Pgs(X) iff (X - go) € P™s (0) when goe G and
X € X (by theorem 2.1.8)

Now, X = go + (X - go) EG + P15 (0),

[since go € G and X - go€ P (0].

Hence X = G + P (0).

(2) = (1)

Let X=G+Pl(0)={g+x:9€G,x€eP (0}

and let x € X. Then x = go + Y, for some go€ G, and some y €P; (0).

then y € P15(0), and so ,0 € Pg(y).(by corollary 2.1.10)

But y = X - go, SO Ps(y)= Ps(X - go), this implies that 0 €Ps(X - go),
thenforallge G, Ix-go-01<Ix-go-gl.

and so, | x -go I <I1x-(go+g) I forall g € G, Butgo + g € G, then
Ix-gol<Ix-gil ,Vg1=0go+g €GC.

This means that go€ Pg(X).

Therefore G is Proximinal in X .
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Definition 2.1.15:

1. Pewy(X+yY)={Yo€G+y:Ix+y-yol<Ix+y—-(g+y)l,
Vv g+ye G+y}.

2. Pog (0x)={v0€0aG :lox—Yyol<lox-ag)l,V ag€ aG }.

The next theorem is going to be needed to prove theorem 2.1.17.

Theorem 2.1.16. [1,p22]:

Let G be a nonempty subset of a normed linear space X: Then

I. Pow(X +Yy)=Ps(x)+y forevery x,y € X.

I. Pyc(ox) = aPg(X) for every x € X and o €R.

Theorem 2.1.17 [1,p23]

Let G be a nonempty subset of a normed space X: Then

I. Gis Proximinal in X iff G + y is Proximinal in X for any giveny € X.
ii. G is Proximinal in X iff aG is Proximinal in X for any scalar a.
Proof:

I. G is Proximinal in X iff Pg(x) # @ iff Pe(x) +y # @ iff Pey(x +y) #0
Iff G +y is Proximinal in X. [By theorem 2.1.16].

ii. G is Proximinal in X iff Pg(x) # @ , iff aPg(x) #@iff Pyc(ox) # @

iff aG is Proximinal in X. [By theorem 2.1.16)].

Now we present another kind of approximation.

2. 2 Best Co — Approximation in Normed space.

Definition 2.2.1 [1,p45].

Let G be a nonempty subset of a normed linear space X.

An element go € G is called a best co- approximations from G if for every

geG,lg-gl<l x-gl.
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Remark 2.2.2 [1,p45]:

The set Rg(x) of all best co —approximation from G can be written as:
Ro(X) ={0oe G:lgo-gl<|| x-gl forall g€ G}.
Example 2.2.3: [ 1 ,p52]
Suppose X = R?withnorm | (x ,y ) I=Ix1+1y/,
andG={(x,y):x>0,y>0} ,as asubsetof X, then (0, 1) € Rs(-1,1).
Proof:
Forany (91,02 € G.
Wehavel (0,1)-(01,92) 1=1(-91, 1-g2) I =1-gal + 1 1-Qal
=g1+11-g2 < 11+g;l +11-g2|
=[-(1+gy) ! +11-02
=1(-1,1) —(91.92)!.
This implies that | (0, 1) - (01,92) I<1(-1,1) —(g1,02)l. For all 91,0, € G
Then go=(0, 1) eRs(X) .
Theorem 2.2.4 [1,p51]:
Let X be a normed space, X € X, and let G be a subspace of X, then Rg(X) is
a convex set.
Proof:
Lety, WeERg(X)andy#Zwand 0< f<1.m=By+(1-8)w.
lg-ylI<||x-gl ,forallgeG.
lg-wl<||x-gl,forall g €G.
lg-ml=lg-By+(1-B)wl.
=lg-fy+w—-Lpwl.
—lg-By+w-pw+pg-pgl.
=1p@-y)+QA-p) (@-wl.
< Blg-y)I+A-B)I(g-w)l.
<BIX-g) I+ (1-B)I(x-g)l .
=BIx—g) Il H(x—-g)I-Blx—g)l.
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—Ix-gl.

Thenlg- miI< Ix-gl .

Then m eRg(X) .

Therefore, Rg(X) is convex.

Notation 2.2.5 [1 ,p 52]

For a subset G of X, put

Ris (0)={xeX:ilgl<lx-glVv geG}={xeX:G lgx}.
Theorem 2.2.6. [1,p 48 , 52]

Let G be a subspace of a normed linear space X. Then for all x € X:
1. g€ Ra(X) iff G Lg (X - Qo) .

2. go€ Ro(x) iff (x —go) ER:c (0).

Proof:

For (1):

(=) Suppose go € Rs(x) we need to prove that | gl <l g+ a(X-go) ||
forall g € Gand forall a € R with a #0 .

(because this definition of Birkhoff orthogonality).

Since go€ Ra(x) then I go—g1l<Ix—g:l,V geG.
Putg: =go— (1/a) g wheng € G and Va € R where a # 0.

Therefore,

I (Ue)g|] < ||X-0go+ (/) g|| (multiply by o)
lgl<lg+a(x-go)l.

Thus, g 1s (X - go) and so G Lg (X - Qo).

(&) Let G Lg (X - Qo) Then for all a € R and g1 € G we have
lgl<lgita(x-go)l.

Let g € G .By putting g1 = go - gand a =1, it follows that
lg—gol<Ix—-gl.

Therefore go € Ra(X).
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For (2):

go€ Re(X) Iff G Lg (X - 9o) by (1)

thismean | gl <lg+ o (X-go)l.

by definition of Rs (0) then (X — go) ER™ s (0).

This theorem now reads as:

Corollary 2.2.7:

Let G be a subspace of a normed linear space X. Then for all x € X,go€ Rs(X)
iff G Lg (X - go) iff (x—go) ER™s (0)

Corollary 2.2.8: [1 ,p 53]

Let X be a normed linear space X and G be a subspace of X.

Then Re(X) =G N(X-R%:(0)).

Proof:

Suppose that go€ GN (X - R (0) ) iff go€ G,and go€ (X - R (0)) such that
Jo = X — ¢, where g€R%s (0) and g = x - goER*s (0) iff go€ Ro(X) (by
theorem 2.2.6)

Therefore, Rg(X) =GN (X - R (0)) .

Definition 2.2.9. [1,p46]:

Let X be a normed linear space, if each element x € X has a unique best

co —approximation in G, then G is called a Co-chebyshev set of X.

In other words, G is a co-Chebyshev set iff Rg(x) is a singleton For each

X € X.

Definition 2.2.10. [1,p46]

If for every x € X, Rg(X) contains at least one element, then the subset G of
the normed space X is called co — proximinal in X.

In other words, if for every x € X, Rg(X) # @ then G is called co — proximinal
in X.
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Definition 2.2.11: [1 ,p46]

1. Roy(X+Y)={0€EG+y:lgo—(g+y)I<Ix+y—-(g+y)l
forallg+ye G +vy}.

2. Ruyg(ax) ={goe G:lgo-gl<lox-gl forall g € G}.

Proposition 2.2.12 [1,p46]

Let G be a subspace of a normed linear space X, then:

1. Rewy(X +y) =Rg(X) +y forevery x,y € X.

2. Rys(ax) = aRg(x) for any scalara, and every x € X.

Corollary 2.2.13 [1,p 46]

Let G be a subspace of a normed linear space X. Then:

1. G is co — proximinal in X iff G + y is co — proximinal in X for every y
eX.

2. G is co— proximinal in X iff aG is co — proximinal in X for any scalara.
Proof:

For (1):

G is co — proximinal in X iff Rg(x) #@ iff Rg(x) + y+ @ iff Rewy(x +y) 10 .
(by proposition 2.2.12)

Hence, G + y is co — proximinal in X.

For (2):

G is co — proximinal in X iff Rg(x) # @ iff aRa(x) 0 iff Ryc(ox) 0

(by proposition 2.2.12)

Hence, aG is co — proximinal in X.
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Chapter Three

Best Approximation In Cone-Normed Space

In this chapter we will discuss best approximation in Cone-Normed
Space, where we will propose a definition for best approximation in this new
setting. We'll also define the Proximity and Chebychevness for Cone-
Normed Space, and implant all the theorems of section 2.1in Cone-Normed
Space. We will also define Proximinal additivity and ¢.-Summands of cone-

Banach spaces and apply some results.

3.1 Introduction:

Definition 3.1.1 [10,p104]:

Let (X, I.Ic) be a cone —normed space, G a nonempty set in X, and x € X.

We say that go € G is a best approximation of x if Ix - gole < Ix - glc,V g € G.
We denote the set of best approximation in G by Pcg(X).

Definition 3.1.2 [10,p104]:

For x € X, we define the cone distance as:

de(x,G) = inf { Ix-gl¢: g € G}

Remark 3.1.3:

The set Pcc(Xx) can be written as:

Pee(X)={g0€G: Ix-golc = dc(X,G)}.

(In this chapter, G is assumed to be a subspace of a cone — normed space

(X, Llo).
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Theorem 3.1.4 [10.p107]:

Let G be a subspace of a cone — normed space X. Then:
If X € G, then Pcg(x) = {x}.
Proof:

Let x €G,then d¢(X,x) = 0 (from the definition of cone — metric space, and so
de(x,G) = 0.

Hence,Pc(X) = { YEG: Ix - ylc =dc(X,G)} ={ Y EG : Ix - yl. = 0}
and Ix - ylc =0 iffx—y =0 iff x = .

S0,Pec(X) ={ Yy €G : Ix - yl. = 0}= {Xx}.

Theorem 3.1.5: [10,p107]:

Let (X, I.Ic) be a cone — normed space and let G be a subspace of X, then

P.s(X) is a convex set.
Proof:
Let 9 be the distance from x to G, so
9 = dc(x,G).
The statement holds if Pg(X) is empty or is a singleton.
Now suppose that y,z € P.s(x) and y#z.
For 0<B <1, let w = By+(1-B)z.
Then Ix-wle= Ix-(By+(1-B)z)+ Bx-Bxl;
= |x-By -(1-B)z+Px-Bxl

=1 (x-y)+(1-p)(x-2)l
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<BIx-ylc+(1-B)Ix-zlc

=po+(1-B) 9
=0.
Since G is a subspace, w € G, this implies that9< Ix - wl. because
dc(x,G) =inf { Ix - wl.: w G }.
Therefore Ix - wlc=9.
Theorem 3.1.6: [10.p108]:

Let G be a subspace of a cone — normed space X. Then for x € X, the set
Pcs(X) is bounded.

Proof:
Let go EPcc(X).
I golle=1 go— x + xl¢
<I'go—=x lc+1Ixl¢
<I0-xIl.+Ixl. ,since OeG.
=21xl.
Thus P(X) is bounded.
Theorem 3.1.7:
Let G be a subspace of cone —normed space X. For xeX.
Then:

1. If z € Pg(x) then az € Pcg(ax) for any scalar o.

2. If z € Pes(X) then z+g €P.s(x+g) for all g € G.
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Proof:

For (1):

lox - gl = lal | x — (1/a)gle > lal Ix - zlc = lox - azlfor all g € G.

Thus az € Pgs(0X) .

For (2):

Ifg'eGwehavelx +g—g'l.>Ix -zl =Ix + g — (z+g) lc.

Then z+g € P.s(x+g) for all g' € G.

The next definition has been again quoted from Birkhoff orthogonality.
Definition 3.1.8:

Let ( X, I.l¢) be a cone — normed space, G a subspace of X, and x € X. We

say that x is Birkhoff orthogonal to G iff

Ix lc < Ix+ agle for all scalars o and all g €G .

Symbolically, (x Lg°G) iff I x Ic < | x+ aglc for all scalar a€ Rand all g € G
Notation 3.1.9:

For a subset G of X, put

P1(0) = { x€ X : Ixlc = de(x,G) } ={ x€ X : Ixlc < Ix - gl ,V g €G}
Theorem 3.1.10:

Let (X, I.lc) be a cone —normed space, G be a subspace of X, then

1. Jo€E PC(;(X)iff (X-go)_l_BcG.
2. Qo€ Pcs(X)iff (X-go)EP_ch(O).
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Proof:

For (1):

(=) Suppose go€ Pcs(X) ,put gi1=go - ag. For any fixed g € G and a €R,
since go€ Pcs(X) and g:€ G, I x — gole < I x — g1l and so

IXx —Qolc < Ix — (go— a g)l¢

Then Ix — gole< I( x—go ) + aglc

Therefore (X - go ) Lg°G.

(&) Let (X - go)Le°G. Then for all o € R and g;€ G.

we have I x — golc <1 x—go + agile

Let g € G be arbitrary and fixed.

Take g1 = 1/a (go — Q).

I x —golc<lIx—go +a(l/a(go—9)l.

Then Ix — golc < I x — gle.

Therefore go € Pes(X).

For (2):

9o€ Pec(X) iff X-goL g°G. This means that Ix — golc < | x — got+ aglc by (1).
Thus x-go€P1.s(0) ( by definition of P.(0), since G is a subspace).

Theorem 3.1. 10 can now be stated as:
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Fact 3.1.11:

Let (X,I.Ic) be a cone —normed space, G be a subspace of X, then go € Pcc(X) iff
X-go€Pcc(0) iff X - goLe°G.

Corollary 3.1.12:
Let (X, I.Ic) be acone —normed space, G subspace of X, then:

1. If x € P1(0) then ax € P1s(0). (Va ER).

2. X €P1g(0) iff 0 € Pes(X) .

Proof:

For (1):

Let x € P1s(0) then x Lg G (by Fact 3.1.11)

So that Ix I <Ix+yglVy€ER

thenV a € R lox I <la x +ay gl

let v = ay, then we have lox I < la x +v glc,Vv € R, this implies that

ax L g9 VgeG.

Thereforeox L g°G and so ax €P(0) .
For (2):

0 € Pes(X) iff x €Pg(0)

then x € P15(0) (by Fact3.1.11)

taking go = 0 gives the conclusion.
Theorem 3.1.13:

Let G be a subspace of a cone — normed space X and P.c(X) be the set of all
best approximation, then for x # 0, Pes(X) = G N (X — P(0)) .
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Proof:

J €GN (X-Pig(0))iff go€ Gandgoe (X—Pig(0)iffgo€ G and
go= X — g, for some g € P1(0) iff go € G and § = X - go€P1:c(0) iff
Jo € Pc(X) (by theorem 3.1.10)

therefore Peg(X) = G N ( X — P1(0) ).

Definition 3.1.14[10,p104]:

If each x € X has a unique best approximation in a G then G is called
a Chebychev set .

In other words, G is called a Chebychev set iff Pcg(X) is a singleton.
3.2 Proximinal Set

Definition 3.2.1 [10,p104]:

If Pcs(X) contains at least one element, then the subset G is called

a proximinal set in X.

In other words, if Pcs(x)#@, then G called a proximinal in X.
Theorem 3.2.2:

For a subspace G of a cone —normed space X, the following statements are

equivalent:

1. G is a proximinal.
2. X=G+Pls0)={g+x:9 € G,xeP's(0)}.
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Proof:

(1) = (2) Suppose that G is a proximinal

Let X € X, go € G and go€ Pcc(X) then (x —go ) €P1c(0) (by theorem 3.1.10)
Now X = go + X — goEG + P15(0) (since go € G, X —go €EP:s(0))
Hence X = G + P1(0).

Q)= (1) LetX=G+ P'c(0)={g+x:9 € G, x€ePg(0)}and let

X€E X thenx=go+Y, forgo€ Gandy € P1g(0) i.e y € P1(0) and so

0 ePcs(y) (by corollary 3.1.12)

But y =X - goS0 Pcs(Y) = Pes(X — go) which implies that 0 € Pes(X — Qo).
Now, Vg € G,

IXx —go- Ol <l x—go - glc and so

IXx — golc< I Xx—(gotg)l.vg € G.

But go+g € G then Ix —golc<Ilx—-gilcVg 1= gotg € G.

Definitions 3.2.3:

1. Powy(X+y )={Vo€G+y:Ix+y—-Yolc<Ix+y-(g+y)le,
Vg+yeG+y L
2. Poeg (ax)={Yy0€0G :lox—Yyolc<lox—agl, Vge G}

Theorem 3.2.4:
Let G be a nonempty subspace of a cone —hormed space X, then:

1. Pewy(X+y )=Pie(X)+y,VX,y€EX.
2. Peag (ax)=0aPs(X) VXEX anda ER..
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Proof:

For (1)

Yo EPwwy(X+Yy)iffyoeG+yandIx+y—Vyolc<Ix+y—-(g+y)l.vg+
yeG+y iffyo—yeGandlx+(y—-yo)lc<Ix —gl., VvV ge Giff yo—
Y € Pea(X) iff yo€Ps(X) +y.

Therefore Peg +y(X +y) = Pea(X) + .

For (2)

Yo € Poeg (ax ) iff yo€EaGand lox —yolc<lox-ag I. ,VgEG
ifflal I x =2 yole < lal Ix-g I,V g€ G iff ~yo € G and

lal I x == Yole < lol Ix - g le iff 2 yo EPc(X) iff yo Eat Pea(X) .
Therefore, Py (0x ) = a Pea(X).

Theorem 3.2.5:

Let G be a nonempty subspace of a cone —normed space X, then:

1. Gisaproximinal in X iff G +y is a proximinal in X for any giveny € X.

2. G isaproximinal in X iff aG is a proximinal in X for any scalar o.
Proof:

For (1):

G is aproximinal in X iff Peg(x) # @ for all x € X iff Peo(x) +y # 0 iff
Peg +y(X +Y) # @ (by theorem 3.2.4) iff G +y is aproximinal in X.

For (2):

G is aproximinal in X iff Pg(x) # @ iff aPcc(x) # @ iff
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Peog (0x ) # @ (by theorem 3.2.4)

iff aG is a proximinal in X.

3.3 Proximinal additivity in cone — normed spaces:

Definition 3.3.1:

let X be a cone -Banach space, and G be a nonempty subspace of X.
the space G is said to be proximinally additivite in X if:

21€ Pes(X1) and z2€ Peg(X2) imply that z; + z,€ Peg(X1+X2)

(V X1, X26X) .

Example 3.3.2:

Let X =R 2 P =[0,0). Set G = { (x, 0) : x € R } with the Euclidean norm.
If X.= (d ,e) then Pcs(x1) ={(d,0)}i.e z;=(d ,0).

And if x,= (f,g) then Pcs(x2) = { (f,0)} i.e o= (f,0).

But X;+x, = (d+f ,e+Q) , s0 Ps(X1tX2) = {(d+f,0)} .i.e

(d+1,0) = z; +2,.

Therefore, G is proximinal additivity.

Definition 3.3.3:

Let X be a cone - Banach space and G proximinal in X, then any map which
associates with each element of X one of its best approximation in G is called

aproximity map.
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Theorem 3.3.4:

let X be a cone - Banach space, and G be a c-Chebychev subspace of X.

There exists a linear proximity map iff G is proximinally additivite in X.
Proof:
=)

Let F be a linear proximity map F : X = G . F(x) = z where z is the unique
best c—approximation of x in G. We need to prove that G is proximinally

additivite in X. Let z1€ Pcg(X1) and z2€ Pcg(X2).

We show that z; + 2 € Pes(X1+X2). Now, z; + Z5 € F(X1) + F(X2)

= F (X1 + X2) € Peo(X11X2).
Therefore G is proximinally additivite in X.
(=)

Assume that G is proximinally additivite in X. Define F : X -G such that
F(X) € Pcs(X), since G is a Chebychev.

Now, we need to prove that F is linear.

1. F (Xl) + F(Xz) = F(Xl + X2) .
2. F(ax)=a.F(x)

Let X1, Xo€X , we show that F (X1) + F (X2) = F (X1 + X2).
Now , F(X1) € Pes(X1) and F(x2) € Pea(X2).

Since G is proximinally additivite in X, then

F (X1) + F (X2) € Peo(X1+X2).

Also F (X1 + X2 ) € Pes(X1+X2) since G is Chebychev. Then



FX)+F ) =F(Xs+X2) eeeniian..n. (1)

Let x € X , a scalar and F(X) is the unique elements in Pg(X) .
Then a. F(X) € Pcs(a X) (by theorem 3.1.7).

and F(ox) € Pes(0x).

Since G is Chebychev,

F(@x) = a. F(X) weveeerennnnnn. (2)

By (1) And (2) Fis a linear.

Theorem 3.3.5:

Let X be a cone - Banach space and G be a nonempty subspace in X.

If G is proximinally additivite in X, then P1(0) is proximinally additivite
in X.

Proof:

Suppose that G is proximinally additivite in X so, Let P.c(0) =G
If 01€ Pcs(X1) and g2€ Pca(X2) then gi + g2€ Pea(Xa+X2)V X1, X26X.
Now , let z; €Pcg(x1) and z2€ Pcg(X2) .

we need to show that : z; + z,€ Pc(X1 + X2) .

letz=x— g wherex eX,geG.

therefore x;— z; € Peg(X1) and Xz — 22€ Pe(X2) .

Since G is proximinally additivite in X then

X1 + X2 — ( 21+ Z2) € Pea(X1+X2) which implies that z; + Z2€Pc(X1 + X2) .
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3.4 ¢- Summands:

Definition 3.4.1:
Let E be a Banach space and P is a cone in E.

A function ¢; : P—PR is called a cone - modulus function if the following are

satisfied:

1. ¢ is continuous at zero and strictly increasing.

2. %(0)=0.

3. % is subaddditive i.e ¢(x+y)<%(X)+%%(y)VX,y€P.

Definition 3.4.2:

let X be a cone - Banach space, and G be a nonempty subspace X, G is called

a ¢c- Summand if 3 bounded projection.
F:X->GstVXEeX,

b o(Ix Ig) = o (IF(x)l) + ¥ (Ix - F(x) lo).

Where ¢ is a cone - modulus function.

Remarks 3.4.3:

I. If Gisa¢- Summand of a cone - Banach space X then G is proximinal.
ii. If Gisa¢- Summand of a cone - Banach space X then G is Chebychev.
ii. If G is a ¢.- Summand of a cone - Banach space X then G is proximinally
additivite in X.

Proof:
For (i):
letF: X-> Gstvx eX,Vge G we have:

b (Ix-gle) =% (I1F(X-g) Ic) + ¢ (I(x-g) - F(x-g) Ic)
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= ¢ (1 F(x) - F(g) I ) + & (I x-g- F(X)—F(g) I).

=0 (IF(X) - g) Io ) + & (I(x- F(x) I ).
> ¢ (Ix - F(x) ).

bo(Ix-gle) >4 (Ix-Fx)lg) .......... (*)
Since ¢; L exists and strictly increasing.

Multiply (*) by *to get that Ix- g I > Ix - F(x) I .

I.e F(X) €Pcs(X). Then G is proximinal.

For (ii):
Assume that G is a ¢- Summand of X, so V x € X, F(x) €P.s(x) by (i)
Now suppose that m €G is another closet element to x:
relx-mle=Ix-FX)l;........ (*)

But x —m € E, so:

t(x-mle) =¢(IF(X-m)le)+¢(I(x—m)-F(x-m)l).

¢ (IF(X) - m) I ) + ¢ (I x-m — F(x) - m I,).

¢ (IF(X) -m) le) +¢ (1x - F(x) Ic).
By (*) we conclude that ¢ (I F(x) - m) I ) = 0.

I x-m - Ix - F(x) I = 0.

o (Ix-ml)—¢(Ix - Fx) I )= 0

Since ¢. 1 exists and strictly increasing.

Multiply (*) by ¢ to getl F(x) - m) I = ¢ (0).
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I F(x) - m) I = 0.

Hence m = F(Xx).
Since x and m were arbitrary, G is Chebychev.
For (iii):

Let z;€ Pcs(X1)and z2€ Pcs(X2). Since G is a ¢- Summand of X, then Ja
bounded projection F : X— G s .t F(X) is the unique Best approximation of x
in G, V xeX by (i) and (ii).

F (X) € Pes(X) and z =F (X) .
So, z; = F (x1) and z; = F(Xxy).
21+ 2, =F (x1) +F(X2) =F (X1+X2) since F is linear.

This implies that z1 + z2€Pcs(X1+ X2). Then G is proximinally additivite in X.
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Chapter Four

Best Co - Approximation In Cone-Normed Space
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Chapter Four
Best Co — Approximation In Cone-Normed Space

In this chapter we will discuss best co- approximation in Cone-
Normed Space and the set of closest relatives in normed spaces and we will

apply some theorems in section 3.2 on cone-normed space.

4.1 Introduction:

Definition 4.1.1:
Let G be a nonempty subset of a cone - normed linear space X.
An element go € G is called a best co-approximation from Gif for every g € G,
lgo-gle<I x-gl.
The set of all such elements gowhich is called a set of best co-approximation
is denoted by R¢s(X).
Remark 4.1.2:
The set Res(X) of all best co — approximation from G can be written as:
Rea(X) ={goe G :l go- gl <|| x - gl forall g € G}.
Example 4.1.3:
Suppose X = R?and E=R, with cone -normed I (x , y ) l.=1x |+ 1y
AndG={(x,y):x>0,y>0} , G issubset of X then
(0,1) € Re(-1,1).
Proof:
Forany (91,02 € G.
Wehavel (0,1)-(91,02) lc=1(- g1, 1-02) lc =1-gal + 1 1-gal .
=01 +11-g2l <11+ g1l +11-gal.
= I-(1+ 91) ,(1-G2)le -
=1(-1,1)—(91,92)l.
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This imply that 1 (0, 1) - (91,92) lc <I(-1,1) —(01,92)l..

Thengo=(0,1) ER(X) .
Theorem 4.1.4:
Let ( X, I.l¢) be a cone — normed space, x € X, and let G be a subspace of X,
then R¢s(X) is a convex set.
Proof:
Lety, WE R(X)andy#wand 0< f<1.m=Fy+(1-B)w.
lg-ylc<||x-gl ,forallgeG.
lg-wl.<||x-gl.,forallgeG.
lg- mlc=lg-By+(1-B)Wl.
=lg-By+w-—-pBwl.
=lg-By+w-pw+pg-Bgl.
=1B@-y)+(1-B) (@-wW)le.
< BIG-y) It (L -B) 1 (g-W) .
<BIx—g)l+@-B)I(x-9)l .
=BIx—g) I+ (x—g) I - BI(X - g) I .
=Ix-gl.
Thenlg- mil. < Ix—glc.
Then m eRs(X) .
Therefore, Res(X) is convex.
Notation 4.1.5:
For a subset G of X such that X is cone - normed, put
Ric (0)={xe X:| gl <Ix-glV geG}.
Theorem 4.1.6:
Let G be a subspace of a cone - normed linear space X. for all x € X.
Then:
1. go€ Res(X) Iff G Lg® (X - Qo) .
2. go€ Rea(X) iff (X —go) ER:c (0).
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Proof:

For (1):
=)

Suppose go € Res(X). We need to prove that | g I <l g+ a (X - go) ||c
(because this is the definition of Birkhoff orthogonality).

Let geG:for a eRand a #0 ,put g1 =go— 1/ a g.
Since go€ Rea(x) then Igo—gilc<|| X—01lc.

putg: =go—1/ag wheng € GandVa € Rwherea #0 .
Therefore,

11/ agle<|[X-go+ 1/ ag|. (multiple by )

lgle<lg+a(X-go) |l
Thus, g Lg (X - go) and so G Lg°(X - Qo).

(=)

Let G Lg° (X - Qo) .

Then for all « € R and g; € G we have

I g1 le <1 gyta(x - go) lc .

Letg € G, by putting g1 = go - g and o = 1, it follows that
lg—golc<||x—gle.

Therefore go € Rea(X).

For (2):

9o€ Rea(X) 1ff G Lg® (X - go) by (2)
thismeansthat I g lc <l g+ a (X - go) ||c -
by definition of G then (x — go) ERcc (0) .

This theorem can be written as:
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Fact4.1.7:

Let G be a subspace of a cone - normed linear space X. for all x € X.
Then:

go€ Rea(X) ifand only if G Lg® (X - go) if and only if

(X—go) € R (0) .

Corollary 4.1.8:

Let (X, I.Ic) be acone - normed linear space X, and G a subspace of X.
then Rea(X) = G N( X —R* (0)).

Proof:

go€ G N (X - R (0)) iff go€ G and go€ (X - R (0)), so one has:

Jo = X — g, where g€Rs (0) and g= x - go€R s (0) iff go€ Rea(X) (by
theorem 4.1.6)

Therefore, Reg(X) =GN (X - R (0)) .

Definition 4.1.9:

Let X be a cone - normed linear space, if each element x € X has a unique
best co-approximation in G, then G is called a co-Chebyshev subset of X.

In other words, G is a co-Chebyshev set iff Rcg(X) is a singleton.

4.2 Co-proximinal:

Definition 4.2.1:

If for every x € X, R¢s(X) contains at least one element, then the subset G of
the cone - normed space X is called

Cco - proximinal.

In other words, if for every x € X, Res(X) # @ then G is called

a co-proximinal.
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Definition 4.2.2:

1. Row(X +Y) ={g€e Gty :lgo—(g+y) L<|[x+y—-(g+y)l
forall g +y € G+y}.

2. Regg(oaX) ={goe G :l go-glc <[ ax - gl. forall g € G}.
Proposition 4.2.3:

Let G be a subspace of a cone - normed linear space X, then:

1. Ree+y(X +Y) =Rea(X) +y forevery x, y € X,

2. Reug(ax) = aRes(Xx) for any scalar a, and every x € X.

Proof:

For (1)

JoERw+y(x +y) iff I go—(g+y) k< x+y—(g+y)le
Vg+y€eGty iffl(go—y)—g l.<||x—g l.,VgeGIiff

go — YER(X) 1ff goER(X) +V.

Therefore, Reg+y(X +Y) = Rea(X) + Y.

For (2)

Jo ERc(ox) iffl go - g I < || ox - g I, Vg € G iff
I2go--gle<|IX-2gl.V9 € Giff I2go—g1lc <[ X- gl

V01 =20 EG iff 2go€ Rea(X) this implies that go€ aRcc(X).
Therefore, Re.c(ax) = aRcs(X) for any scalar a.

Corollary 4.2.4:

Let G be a subspace of a cone - normed linear space X. Then:

1. Gisaco - proximinal iff G +y is a co - proximinal for every y eX.
2. Gisaco - proximinal iff aG is a co - proximinal for any scalar a.
Proof:

For (1):

G is a co - proximinal iff Reg(x) #@ iff Reg(x) +y # @ iff Regy(x +y) 40 .
(by proposition 4.2.3)
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Hence, G + y is a co - proximinal.

For (2):

G is a co - proximinal iff Reg(x) #@ Iff aRcs(x) #0 Iff Reag(ax) 10
(by proposition 4.2.3)

Hence, aG is a co - proximinal.

Example 4.2.5:

Suppose X = R?withnorm | (x,y) le=Ix1+1yl.
AndG={(x,y):x>0,y>01},Gis subset of X then

1. (0,1) € R (-1,1) but (0,1) €Pcs (-1,1) .

2. (0,0) ¢Rec (-1,1) but (0,0) P (-1,1) .

Number (1) showed in example 2.2.3 and example 3.1.4

Now, we will show number (2)

Proof:

Forany (g:,92) € G.

We have | (0,0)-(91,92) I=l (- 91, -G2) le =1 -gal + | -gal
=01+ 02< 2+ g1 +0> =2+ 21-0>.
=1+g; +1 - Q2.
=1-(1+g1) | +11-0gJl .
= 1-(1+ g1) ,(1-g2)le .
=1(-1,1) —(91,82)l.

Then 1 (0,0)-(091,92) lc> 1(-1,1) (91,92l

This implies that (0,0) €Rcc (-1,1) .

We see that in our observed occasions, best co- approximation in cone-

normed space is a counter copy of best approximation in cone-normed space.
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Conclusion
In this thesis, we were able to apply the theorems of Best Approximation and
Best co-approximation of normed-space on cone normed space.
We also found that a good number of major results on Best Approximation
and Best Co-Approximation in normed spaces are transformed, word for
word, to the theory of Best Approximation and Best Co-Approximation on

cone normed Spaces.
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