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Abstract 

In the last few years no other class of material of semiconductors has 

attracted so much scientific and commercial attention like the group III-

nitrides( AlN, BN, and InN). The increasing interest is due to its 

extraordinary physical properties, which can be used in many new 

electronic and optoelectronic devices. The AlN is stable to very high 

temperatures in inert atmospheres. Another stable material  in inert and 

reducing atmospheres is BN. It is a very good electrical insulator. It offers 

very high thermal conductivity and good thermal shock resistance. InN has 

attracted considerable attention due to the repeated observation of an 

effective band gap in the range around 0.7 eV by optical techniques, this 

smaller band gap value would extend the possible emission range of 

optoelectronic devices based on III-nitrides from the deep-UV down to the 

near-IR region.  

Very prominent examples are the short wavelength Light emitting 

diodes (LED s) and laser diodes, which take advantage of the wide band 

gap of AlN.  InN also has been expected to be a suitable material for 

electronic devices such as high mobility transistors due to its small 

effective mass.  

The effect of pressure on the electronic properties of (AlN, BN, and 

InN) are  investigated using both experimental and theoretical methods. In 
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this study, we carry out all-electron full potential linearized-augmented 

plane waves (FP-LAPW)  (which is included in  a computer code 

WIEN2K) approach within the density functional theory (DFT) in the local 

density approximation (LDA), and the generalized gradient approximation 

(GGA) for the exchange correlations functional, which used to calculate 

ground-state energies, the lattice parameters, the bulk modulus and its 

derivatives, transition pressure and the band structures. The equation of 

state of wurtzite (WZ), zincblende(ZB) and rocksalt(RS) structures for 

(AlN, BN, and InN) compounds have been calculated.   

In this study, the most important results are: 

1. The present calculations agree very well with available experimental 

data and other theoretical calculations. 

2. AlN  compound behaves  as an insulator in (WZ, ZB, and RS) 

structures. 

3. BN compound behaves as a semiconductor for RS and ZB in LDA 

calculation and an insulator for RS and ZB in GGA calculation. 

4. InN compound behaves as a semimetal in (WZ, ZB, and RS) 

structures. 

5. The energy band gap for (WZ, RS, and ZB ) structures of AlN are 

found to be  (4.42, 4.032, 2.7) eV respectively,  using  LDA method, 

and (4.17, 4.34, 3.275) eV respectively, using  GGA method. 
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6. The energy band gap for (ZB and RS) structures of BN are found to 

be  (4.36, 2.193) eV respectively, using  LDA method, and (4.43, 

1.71) eV respectively, using  GGA method. 

7. The energy band gap for (WZ, RS, and ZB ) structures of InN are 

found to be  ( -0.264, 0.0838, -0.3896) eV respectively, using  LDA 

method, and (-0.3643, -0.277, -0.5136) eV respectively, using  GGA 

method. 

8. For AlN the transition pressure from wurtzite to rocksalt was found 

to be (10) GPa  and from zincblende to rocksalt was found to be 

(4.64) GPa using GGA method, while the transition pressure from 

wurtzite to rocksalt was found to be 9.3 GPa and from zincblende to 

rocksalt was found to be 3 GPa using LDA method. 

9. For InN the transition pressure from wurtzite to rocksalt was found 

to be 16.6 GPa and from zincblende to rocksalt was found to be 18.5 

GPa using GGA method. 

10. The transition pressure for BN compound from zincblende to 

rocksalt was found to be 500 GPa using GGA method.  
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Chapter 1 

Introduction 

Today, semiconductor materials constitute basic building blocks of 

emitters and receivers in cellular, satellite, and fiberglass communication. 

One important class of semiconductor material is the III-nitrides such as 

BN, AlN, and InN. These semiconductor materials have also received 

considerable attention for their device applications in blue and ultraviolet 

wavelengths [1, 2, 3]. Recently, the successful fabrication of the blue light 

III-nitrides semiconductor laser was first demonstrated by Nakamura [4]. 

The vast majority of research on III- nitrides has been focused on the 

wurtzite crystal phase, because the sapphire substrates tend to transfer their 

hexagonal symmetry to the nitride films grown on them [2]. However, 

interest in zincblende nitrides has been growing recently.  

The dependence of photoluminescence on pressure is very useful in 

the understanding of electronic energy band structure and structural 

properties in semiconductors. The effect of pressure on the electronic 

properties of III nitride compounds can be investigated experimentally in 

many ways[2]. The technical development of epitaxial growth at the end of 

the last century has provided the possibility for researchers to fabricate 

synthetic materials with expected compositions and structures. On the other 

hand, theoretical and technical developments in density-functional theory 

(DFT) and pseudopotential calculations in recent decades have provided 

researchers with powerful methods for predicting electronic and energetic 

properties as revealed by novel experimental techniques. This has 
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stimulated extensive computational studies on high-pressure behavior of 

various semiconductors [2].  

The electronic properties of the zincblende and wurtzite group III- 

nitride compound semiconductors (AlN, GaN, and InN) were studied 

within the empirical pseudopotential approach [5]. Using ionic model 

potentials and the static dielectric screening function derived by Levine and 

Louie [6], the cationic and anionic model potential parameters were 

obtained from zincblende AlN, GaN, and InN experimental data. By using 

the concept of transferable model potentials, Levine and Louie also, 

calculated the band structure of group-III nitrides in zincblende and 

wurtzite phase using the same ionic model potential parameters[6]. Self-

consistent linear muffin-tin-orbital band-structure calculations were used to 

investigate the optical and structural properties of III-nitrides 

semiconducting under hydrostatic pressure[7]. The pressure behavior of the 

energy band structures was discussed in the context of the postulated 

chemical trends in III-nitrides semiconductors. The total-energy 

calculations suggested that most of  the nitrides under pressure transform to 

the semiconducting rocksalt phase. It was found that the transition 

pressures are 21.6 GPa, 16.6 GPa, and 850 GPa for InN, AlN, and BN, 

respectively. Experimental values that agree well with this have been found 

for the  three compounds [7]. 

Indium nitride (InN) is a small band gap semiconductor material 

which has potential application in solar cells and high speed electronics. 
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The band gap of InN has now been established to be between 0.65 and 0.7 

eV depending on temperature [8,9]. The effective electron mass (m*) of 

InN is between 0.04mo and 0.07 mo, which is the smallest effective electron 

mass among the nitrides but perhaps also of all semiconductors[10].  

Recently, InN has attracted considerable attention due to its potential 

applications, which are suggested because of its superior transport 

properties on one side, and the seemingly conflicting results of various 

investigations, on the other side. The most important results were the 

repeated observations of an effective band gap of about 0.7 eV by optical 

techniques, in contrast to the value of 1.9 eV established for the last 20 

years[11]. The growth of InN is very difficult due to the low dissociation 

temperature and the extremely high equilibrium vapor pressure of nitrogen. 

Nevertheless, in the last four years, considerable progress has been made to 

grow epitaxial hexagonal InN films by molecular beam epitaxial (MBE) 

and metal organic vapor phase epitaxy (MOVPE) [12, 13]. It was found 

that the hexagonal wurtzite phase with space group P63mc is the 

thermodynamically stable under ambient conditions, also, successful 

growth by MBE has been reported for cubic InN crystallizing in zinc-

blende (ZB) structure with space group F43m [14,15]. Theoretical studies 

based on total-energy calculations clearly predict a first-order phase 

transformation from the wurtzite into the rock salt (RS) structure with 

space group Fm3m under hydrostatic pressure [16]. Theoretical studies of 

the atomic structures, in particular the lattice constants, were usually based 
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on the density functional theory (DFT) [17]. They give a unique picture if 

the In 4d electrons are included in the calculations. Deviations arise mainly 

from the treatment of exchange and correlation (XC) within the local 

density approximation (LDA) or the generalized gradient approximation 

(GGA). Other small deviations are due to the treatment of the electron-ion 

interaction and the expansion of wave functions in a certain basis set. Much 

more confusing are the results of various theoretical studies. It is well 

known that the density functional theory in (LDA) or (GGA), which is 

widely used in modern band-structure calculations, severely underestimates 

the fundamental gaps and transition energies of semiconductors and 

insulators. For InN the DFT-LDA and DFT-GGA calculations usually give 

rise to negative energy gaps between 0.0 and -0.3 eV for wurtzite and 

somewhat more negative values for zinc blende if the In 4d electrons are 

taken into account [15].  

Aluminum nitride (AlN) has a hexagonal crystal structure called the 

wurtzite crystal structure (WZ), that has an extremely wide band gap (6.2 

eV) semiconductor material. Also, it has a potential application for deep 

ultraviolet optoelectronics. Aluminum nitride is a mostly covalently bonded 

material. The space group for this structure is P63mc [18]. 

It was found that AlN is stable at very high temperatures in inert 

atmospheres . It refers to a gaseous mixture that contains little or no oxygen 

and primarily consists of non-reactive gases or gases that have a high 

thresholdbefore they react. Nitrogen, argon, helium, and carbon dioxide are 
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common components of inert gas mixtures [18]. Currently, there is much 

research into developing light-emitting diodes to operate in the ultraviolet 

using the gallium nitride based semiconductors and alloy aluminum 

gallium nitride, wavelengths as short as 250 nm have been reported. In 

May 2006 an inefficient light emitting diode (LED) emission at 210 nm 

was reported[18]. The large band gap for AlN allows a wavelength of 

around 200 nm to be achieved, in principle. Therefore, AlN is the best 

material for constructing devices for the ultra violet region[19]. AlN, which 

has partially ionic and partially covalent chemical bonds, is an important 

coordinated III-nitrides compound. It has a high melting point, a high 

thermal conductivity, and a large bulk modulus. At ambient condition, AlN 

is generally reported to be no polymorphous, crystallizes in the wurtzite 

structure[24]. The cubic zincblende (ZB) form has also been theoretically 

reported to be metastable [19]. 

Besides important practical applications, AlN is also a unique 

semiconductor compound for fundamental studies. In contrast to all the 

other II VI and III V binary semiconductors, AlN in the zinc-blende 

structure has a larger band gap than that in the wurtzite structure. AlN is 

also the only WZ semiconductor compound that has been predicted to have 

a negative crystal field splitting at the top of valence band [20]. 

Confirmation of these predictions are important because the negative 

crystal field splitting can lead to unusual optical properties of AlN than 

other wurtzite semiconductors such as GaN [21]. The band structure and 

optical properties of AlN is very limited. For example, the detailed band 
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structure parameters near the G point of AlN are still unclear. The band gap 

was determined in the past only by optical absorption and transmission 

measurements with energy values scattered around 6.3 eV at liquid helium 

temperatures [22]. The band structure parameters of AlN, including the 

effective masses of electrons and holes as well as the character and splitting 

at the valence band edge are not yet well understood. Fundamental optical 

transitions including the band-to-band and excitonic transitions have not 

been well investigated. It is, therefore, of fundamental and technological 

importance to fill in the unknowns for AlN [23].  

AlN is suitable for high-temperature electronics and opto-electronic 

applications. It was characterized by high temperature stability (melting 

temperature 3000 C), high elastic stiffness and good  thermal conductivity. 

AlN crystallizes in the WZ structure (WZ-AlN) is the only III nitrides 

based Al semiconductor compound with a direct band gap. The zincblende 

structure form has been theoretically reported to be metastable [24,25], and 

only the calculated lattice parameter a = 4.37   is available

 

[26].   

Both WZ-AlN and ZB-AlN have been the subject of extensive 

theoretical studies ranging from the semi-empirical to the first-principles 

methods within the density functional theory (DFT) framework using both 

pseudopotential and all-electron approaches[27,28].  

Boron nitride (BN) is a binary chemical compound, consisting of 

equal numbers of boron and nitrogen atoms. Cubic boron nitride is an 

electrical insulator but an excellent conductor of heat. This diamond-like 
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polymorph, known as cubic boron nitride, is widely used as an abrasive for 

industrial tools. Its usefulness arises from its insolubility in iron, nickel, 

and related alloys at high temperatures, whereas diamond is soluble in 

these metals to give carbides. Like diamond, cubic BN has good thermal 

conductivity, caused by phonons. In contact with oxygen at high 

temperatures, BN forms a passivation layer of boron oxide. Boron nitride 

binds well with metals, due to formation of interlayers of metal borides or 

nitrides. Materials with cubic boron nitride crystals are often used in the 

tool bits of cutting tools. For grinding applications, softer binders (e.g, 

resin, porous ceramics, and soft metals) are used. Ceramic binders can be 

used as well [29]. 

Ab initio is a computational chemistry methods based on quantum 

chemistry. It indicates that the calculations of structural energies 

calculation is from first principles and that no empirical data is used [30]. 

Also, it indicates that cubic BN (ZB-BN) is the most stable structure at 

ambient conditions while the other structures are local energy minima with 

large energy barriers separating them[31]. These large energy barriers are 

responsible for the metastability of the other crystal structures. Despite the 

theoretical indication that (ZB-BN) is the most stable structure at ambient 

conditions, it is very difficult to grow high quality (ZB-BN) crystals. The 

hexagonal BN (WZ-BN) is the most common synthesized product. In fact, 

it was accepted for a long time that (WZ-BN) is the most stable structure at 

ambient conditions. But more recent experimental investigations and ab 

initio calculations affirm that (ZB-BN) is the most stable structure [32]. 
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    As mentioned earlier, there are some conflicts  in the obtained results for 

AlN, InN, and BN compounds. The motivation beyond this study is to give 

a better understanding for the structural parameters, band structure and 

transition pressure for these compounds.    

To obtain the goal of this study, the Full-Potential Linearized 

Augmented Plane Wave method as implemented by WIEN2K code (which 

is based on the density functional theory in the local density approximation 

and generalized gradient approximation is used). This method is an 

efficient and accurate approach for studying various properties of 

condensed matter system. So the aim of this study is to: 

1) calculate the structural parameters (lattice parameters a, bulk 

modulus B and its deritive B`) for ZB, RS phases of AlN, InN, and 

BN compounds; and WZ phase of AlN and InN compounds. 

2) determine the equation of state of all previous phases for AlN, BN 

and InN compounds, by calculating the total energy at different 

volumes and fitting the calculated values to the Murnaghan's 

equation of state (EOS). 

3) determine the transition pressure from ZB to RS for BN, WZ to ZB 

and WZ to RS for AlN and InN compounds. 
4) determine the band structure of these phases for AlN, BN and InN 

compounds.  

The present thesis is divided into four chapters. Chapter two presents 
the density functional theory, Kohn Sham equation, local density 
approximation, and generalized gradient approximation. Chapter three 
presents the computational details. Finally, chapter four presents the results 
and conclusions. 
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Chapter 2 

Methodology 

2.1 Density Functional Theory  

Physics and chemistry use a theory called Density functional theory (DFT) 

,which is a quantum mechanical theory, to examine the electronic structure 

of many body systems, especially,  atoms, molecules and the condensed 

phases. DFT is one of the most common and flexible technique obtainable 

in condensed matter physics, computational physics, and computational 

chemistry [33], due to its capability to deal with large numbers of electrons 

with complete precision [34].  

 Time-dependent density-functional theory (TDDFT) is the 

generalization of ground-state DFT to include time-dependent external 

potentials on electrons, and its formal validity was set up with the Runge-

Gross theorem [35]. The analogous  connection between time-dependent 

densities and time-dependent potentials for a given preliminary state guides 

to the time-dependent Kohn-Sham system, which is a set of no interacting 

presumptive electrons moving in a time-dependent Kohn-Sham potentials. 

TDDFT has been applied to many problems in atomic, molecular and solid-

state systems, including optical response, dynamic polarizabilities and 

hyperpolarizabilities, excitation energies, species in intense laser fields and 

highly energetic collisions [36].  

The principle of DFT is to illustrate an interconnecting system of 

fermions by means of its density and not by its many-body wave function 

[37]. While DFT chiefly gives a good explanation and portrayal of ground 

state qualities. Practical applications of DFT rely on rough calculations for 
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the so-called exchange-correlation probability. The exchange-correlation 

probability portrays the influences of the Pauli principle and the Coulomb 

possibility beyond a pure electrostatic interaction of the electrons. The 

precise exchange-correlation probability gives a solution of the many-body 

problem precisely, which is obviously not possible in solids [37].  

In spite of the fact that density functional theory has its theoretical 

roots in the Thomas-Fermi model, it was put on a solid hypothetical 

foundation by the two Hohenberg-Kohn theorems (H-K) [38]. The original 

H-K theorems held only for non-degenerate ground states in the absence of 

a magnetic field, although they have since been generalized to include them 

[39].  

The ground state properties of a many-electron system are 

exclusively decided by an electron density that depends only on 3 spatial 

coordinates, this is shown in the first H-K theorem. It puts down the base 

work for reducing the many-body problem of N electrons with 3N spatial 

coordinates to only 3 spatial coordinates, by the use of functional of the 

electron density. This theorem can be expanded to the time-dependent 

sphere to build up time-dependent density functional theory, which can be 

applied to portray stimulated conditions. The second H-K theorem defines 

an energy functional for the system and gives evidences to prove that the 

proper ground state electron density reduces this energy functional [33]. 

The intractable many-body problem of interacting electrons in a 

static external potential, within the framework of Kohn-Sham DFT(KS-

DFT),  is reduced to a tractable problem of non-interacting electrons 
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moving in an effectual potential. The effective potential contains the 

external potential and the effects of the Coulomb interactions between the 

electrons, e.g., the exchange and correlation interactions. Modeling the 

latter two interactions becomes the difficulty within KS DFT. The simplest 

rough calculation is the local-density approximation (LDA), which depends 

on  precise exchange energy for a uniform electron gas, which can be 

obtained from the Thomas-Fermi model, and from fits to the correlation 

energy for a uniform electron gas.  

Hohenberg and Kohn [38] were the first to formulate the special 

place of DFT in 1964 which becomes directly clear from the fundaments, 

Here a derivation of DFT and its formula. 

The nuclei of the treated molecules or clusters ,as usual in many-

body electronic structure calculations, are seen as fixed (the Born-

Oppenheimer approximation), generating a static external potential V in 

which the electrons are moving. A stationary electronic state is then 

portrayed by a wave function )....,,( 1 Nrr satisfying the many-electron 

Schr dinger equation: 

ErrUrV
m

h
UVTII

N

i

N

ji
jiii

N

i

),()(
2

2
2

   (2-1) 

where H

 

is the electronic molecular Hamiltonian, is the number 

of electrons, T is the -electron kinetic energy, 

 

is the -electron 

potential energy from the external field, and U is the electron-electron 

interaction energy for the -electron system. The operators and U are 
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so-called universal operators as they are alike for any system, while 

 
is 

system dependent, i.e. non-universal. The differentiation between having 

separate single-particle problems and the much more complex many-

particle problem stems  from the interaction term U . 

The many-body Schr dinger equations solved by many complicated 

technique based on the extension of the wave function in Slater 

determinants. While the easiest  one is the Hartree-Fock technique, more 

sophisticated techniques are usually classified as post-Hartree-Fock 

techniques. However, the problem with these techniques is the vast 

computational effort, which makes it almost unfeasible to apply them 

competently to larger, more complicated  systems. 

Here DFT offers an attractive substitute, being much more adaptable 

as it provides a way to systematically map the many-body problem, 

withU , onto a single-body problem withoutU . In DFT the key 

changeable is the particle density )(rn , which for a normalized is given 

by: 

),....,(),....,(....)( 2121
*3

2
3

1
3

NNN rrrrrrrdrdrdNrn  (2-2) 

     This relation can be reversed, that is to say, for a given ground-state 

density )(0 rn

 

it is principally potential, to work out the equivalent 

ground-state wave function ),...,( 10 Nrr . That is to say, 0 is a sole 
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functional of 0n , 00 n

 
and as a result the ground-state 

expectation value of an observable  is also a functional of 0n 

000 nOnnO

       

(2-3)  

In particular, the ground-state energy is a functional of 0n 

0000 nUVTnnEE              (2-4) 

000000 nUnnVnnTn      (2-5)  

000 nUnVnT                       (2-6) 

where the contribution of the external 00 nVn

 

potential can be written clearly in terms of the ground-state density 0n 

rdrnrVnV 3
00 )()(                            (2-7) 

More commonly, the contribution of the external potential V

 

can 

be written clearly in terms of the density n, 

rdrnrVnV 3)()(                               (2-8)  

 As mentioned above , the functional nT and nU  are called 

universal functional, whereas nV is called a non-universal functional, 

as it relies on the system under study. Having a definite system, i.e., having  

specified V , one then has to reduce the functional 
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rdrnrVnUnTnE 3)()(                     (2-9)  

In regards  to )( rn , taking  for granted one has got dependable 

terms for  )(nT and )(nU . A successful reduction  of the energy 

functional will produce  the ground-state density n0 and thus all other 

ground-state observables. 

The Lagrangian technique of undetermined multipliers[39]can be 

applied to solve the variation problems of minimizing the energy functional 

)(nE . First, one takes into accounts  an energy functional that doesn't 

clearly have an electron-electron interaction energy term, 

nVTnnE sssss

     

        (2-10) 

where 

 

indicates the non-interacting kinetic energy and sV

  

is an external 

effectual potential in which the particles are moving. clearly, if  sV is 

)()( rnrns selected  to be 

)( Ss TTUVV

       

        (2-11) 

Consequently, one can solve the so-called Kohn-Sham equations of 

this assisting non-interacting system, 

)()()(
2

2
2

rrrV
m iiis

    

        (2-12) 

which produces the i orbital that reproduce the density )(rn

 

of the 

authentic  many-body system 
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        (2-13) 

The effective single-particle potential can be written in more detail 

as 

)(
)(

)()( 3
2

rnVrd
rr

rne
rVrV sXC

s
s

  

        (2-14) 

where the second term stands for the so-called Hartree expression 

portraying  the electron-electron Coulomb repulsion, while the last 

expression 

 

is called the exchange-correlation possibility. Here, 

 

has  all the many-particle interactions. Since the Hartree expression and 

 

rely on )(rn , which relies  on the i , which in turn relies  on sV , the 

problem of solving the Kohn-Sham equation has to be done in a self-

consistent way. One typically begins with an first guess for )(rn , then 

works out the equivalent sV

  

and solves the Kohn-Sham equations for the 

i  [33].  

To conclude , techniques in DFT are complex  and different, but can 

roughly be partitioned  into three categories [40]: 

 

Techniques that apply  a local density rough calculation (LDA). The 

LDA is decided  exclusively and based on the qualities  of the electron 

density. The significant supposition of this approximation is that, for a 

molecule with many electrons in a gaseous state, the density is 

consistent throughout the molecule. This is not the case for molecules, 

where the electron density is decidedly not consistent.  This 

approximation does, however, work well with electronic band 
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structures of solids, which illustrates  the scope of energies in which 

electrons are allowed  or not allowed . Outside of these applications, 

however, LDA's are not very acceptable. 

 

Techniques that unite the electron density calculations with a gradient 

correction factor. A gradient in mathematics is a function that measures 

the rate of change of some property. In this case, the gradient seems to 

explain the non-uniformity of the electron density, and as such is 

known as gradient-corrected. Another expression for this is non-local. 

 

Techniques that are a mixture of a HF approximation to the exchange 

energy and a DFT approximation to the exchange energy, all united 

with a functional that has electron correlation. These Techniques  are 

known as hybrid techniques  , and are now the most common and 

popular DFT techniques  used in practically. 

2.2 Kohn Sham Equations         

A set of eigen value equations within  density functional theory (DFT) 

are called Kohn Sham equations. As mentioned above , DFT tries  to 

minimize  a many-body problem for the N particle wave function 

),...,( 10 Nrr to one in terms of the charge density )(rn which relies  on 

3 variables, using the Hohenberg-Kohn theorems[41]. The total energy E of 

the system as a functional of the charge density can be written as : 

nEnVdrrnrVnTnE xcHext )()()()(          (2-15) 

where T is the kinetic energy of the system, Vext is an external 

potential acting on the system, and  
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2
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        (2-16) 

Is the Hartree energy and Exc is the exchange-correlation energy. 

The straight forward application of this formula has two barriers: 

First, the exchange-correlation energy Exc is not known precisely, 

and second, the kinetic term must be created in terms of the charge density. 

As was first suggested by Kohn and Sham, the charge density n(r) can be 

written as the sum of the squares of a set of orthonormal wave functions  

i (r):      

N

i
i rrn

2
)()(

  

        (2-17) 

The unit of charge density n(r) is (c/m3). 

Equation (2-17) represents the  solution to the Schr dinger equation

 

for N 

non-interacting electrons moving in an effectual potential )(rVeff 

)()()()(
2

2
2

rrrVr
m iiieffi

   

        (2-18) 

where the effectual potential is defined to be 

n

xc
exteff

nE
rd

rr

rn
erVrV

)(
)()( 2  

        (2-19) 

These three equations form the Kohn-Sham orbital equations in their 

standard form. This system is then solved iteratively, until self-consistency 

is approached. Note that the eigen values i have no physical meaning, only 
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the total sum, which matches the energy of the entire system E through the 

equation[42]: 

drrn
rn

nE
nEnVE xc

xcH

N

i
i )(

)(

 

        (2-20) 

Schematic representation of the self-consistent loop for solution of the 

Kohn-Sham equations. Generally speaking  one must repeat  two such 

circles  at once for the two spins, with the potential for each spin relying  

upon the density of both spins [43].         

Figure (2.1): Flow chart of solving the self-consistent Kohn-Sham equation 
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Practically, there are several distinct ways in which Kohn-Sham 

theory can be applied depending on what is being examined. In solid state 

calculations, the local density approximations are still commonly used 

along with plane wave basis sets, as an electron gas approach is more 

suitable for electrons delocalized through an infinite solid. In molecular 

calculations, however, more complicated functional are needed, and a huge 

variety of exchange-correlation functional have been developed for 

chemical applications. Some of these are incompatible with the uniform 

electron gas approximation, however, they must reduce to LDA in the 

electron gas limit. For molecular applications, in particular for hybrid 

functional, Kohn-Sham DFT techniques are usually applied just like 

Hartree-Fock itself [44]. 

The main difficulty with DFT is that the precise functional for 

exchange and correlation are not identified except for the free electron gas. 

However, rough calculations exist which allow the calculation of certain 

physical amounts rather precisely. In physics the most widely used 

approximation is the local-density approximation (LDA). 

2.3 Local Density Approximation 

One of the efficient rough calculation techniques for working out  the 

exchange-correlation term in the density functional theory (DFT) is the 

local density approximation (LDA). LDA has widely been applied to 

portray a variety of close-ranged exchange-correlation interactions of, for 

instance , covalent bonding systems. However, LDA has serious limitation 
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that this approximation cannot provide estimation to   the long-ranged 

exchange-correlation interaction, as typified by the Van der Waals (VdW) 

interaction. The VdW interaction is one of the long-ranged electronic 

interactions which mainly add to the first stage of the material reactions 

such as the chemical reaction, crystal growth and physical absorption. To 

assess the VdW interaction, many efforts have been devoted to develop 

useful calculating recipes for the non-local exchange-correlation term [45].  

Kohn and Sham applied LDA approximation to DFT [41]. The 

Hohenberg-Kohn theorem states that the energy of the ground state of a 

system of electrons is a functional of the electronic density, especially, the 

exchange and correlation (XC) energy is also a functional of the density 

(this energy can be seen as the quantum part of the electron-electron 

interaction). This XC functional is not identified accurately and must be 

approximated [38]. LDA is the simplest approximation for this functional, 

it is local in the sense that the electron exchange and correlation energy at 

any point in space is a function of the electron density at that point only. 

The XC functional is the total of a correlation functional and an 

exchange functional: 

cxxc EEE

      

                  (2-21) 

LDA uses the exchange for the uniform electron gas of a density 

equal to the density at the point where the exchange is to be assessed: 
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In SI units,   )(rn

 

is the electron density per unit volume at the 

point  r ; and e   is the charge of an electron [46]. 

While  looking for the ways out to the system of Schr dinger equation:                 
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                  (2-23) 

It is found that all amounts  are represented as functional of the 

electronic xc )(r charge density. The significant point that makes this 

system easier to solve (or more accurately, needs less computation) than, 

for instance  the Hartree-Fock equations, is that the efficient possibility is 

local. Therefore there is no more complication added in solving 

Schr dinger equation than there is in the Hartree approximation. Of course, 

this is only true if the exchange-correlation energy can be portrayed  as a 

function of the local charge density. A technique of doing so is known as 

the local density approximation (LDA) [41]. As mentioned above  in LDA, 

the exchange-correlation energy of an electronic system is built  by taking 

for granted that the exchange-correlation energy for each  electron at a 

point r

 

in the electron gas is equal to the exchange-correlation energy for 

each electron in a identical electron gas that has the same electron density 

at the point r . It follows that: 

drnnnE xcxc )r())r(()r(

 

         (2-24) 



22        

so that  

  

        (2-25) 

with  

))r(())r(( hom nn xcxc

 

          (2-26) 

Where ))r((hom nxc

 

is exchange-correlation energy in identical 

electron gas. Equation (2-26) is the supposition that the exchange-

correlation energy is purely local. Several parameterizations for 

))r((hom nxc exist, but the most commonly used is that of Perdew and 

Zunger [47]. This parameterisation is based on the quantum Monte Carlo 

calculations of Ceperley and Alder [48] on homogeneous electron gases at 

various densities. The parameterization uses interpolation formulas to link 

these precise outcomes for the exchange and correlation energy at many 

dissimilar densities.  

Adjustment to the exchange-correlation energy because of the in- 

homogeneities in the electronic charge density about r are overlooked, in 

LDA,. Therefore, it may at first seem somewhat surprising that such 

calculations are so successful, when taking into account this inexact nature 
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of the approximation. This can be to some extent ascribed to the fact that 

LDA gives the accurate sum rule to the exchange-correlation hole. That is, 

there is a total electronic charge of one electron excluded from the vicinity 

of the electron at r . Endeavors to improve on LDA, such as gradient 

extensions to correct for in- homogeneities do not seem to show any 

enhancement in results got by the simple LDA. One of the reasons for this 

failure is that the sum rule is not obeyed by the exchange-correlation hole.  

The contributions of electron-electron interactions in N-electron 

systems are shown briefly in Figure (2.2). It demonstrates the conditional 

electron probability distributions )(rn of N-1 electrons around an electron 

with given spin located at r = 0.  

All electrons are dealt with as independent, in the Hartree 

approximation [49], Figure (2-2a), therefore is structureless. Figure (2-2b) 

stands for the Hartree-Fock approximation where the N-electron wave 

function reflects the Pauli exclusion principle. Around the electron at r = 0. 

The exchange hole can be seen where the density of spins equal to that of 

the central electron is reduced. Electrons with opposite spins are 

unchanged. In the LDA (Figure (2-2c)), where spin states are degenerate, 

each sort of electron sees the same exchange-correlation hole (the sum rule 

being demonstrated where the size of the hole is one electron).  

Figure (2-2d) shows electron-electron interaction for non-degenerate 

spin systems (the local spin density approximation (LSDA). It can be seen 

that the spin degenerate LDA is basically the average of the LSDA.  
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Figure (2.2): Summary of the electron-electron interactions (excluding coulomb 
effects) in (a) the Hartree approximation, (b) the Hartree-Fock approximation, 
(c) the local density approximation and (d) the local spin density approximation 
which allows for different interactions for like-unlike spins. 

GGA's approximation has minimized  the LDA errors of atomization 

energies of standard set of small molecules. This enhanced precision has 

made DFT an important element of quantum chemistry. 



25        

2.4 Generalized Gradient Approximation (GGA) 

The local spin density (LSD) approximation has been the basis of 

electronic structure calculations in solid-state physics for many years [41]. 

This rough calculation may be written as:  

)r(),r()r(),( 3 nnnrdnnE unif
xc

LSD
xc

 

        (2-27) 

),( nnunif
xc exchange-correlation energy for each  particle of a uniform 

electron gas [50]. The LSD exchange-correlation energies are inadequately 

negative (by about 10%) for almost all atoms, molecules, and solids. The 

LSD is a dependable, moderate-accuracy approximation. For many solid-

state objectives , the LSD level of precision is adequate, but LSD is not 

precise enough of most chemical applications, which need the deter-

mination of energy diversities with substantial accuracy. Hence the 

disinterest of the quantum chemistry community toward density functional 

techniques until recently[51]. New gradient-corrected functional of the 

form:                   

),),r(),r((],[ 3 nnnnfrdnnEGGA
xc         (2-28) 

where f are functionals  for different energies of the same system. 

These functionals  may be partitioned   into two wide categories : locally 

based functional, whose construction starts from the uniform electron gas, 

and "semi empirical" functional, which has one or more parameters fitted to 
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a particular finite system, which have minimized  LSD atomization energy 

errors by about a factor of 5[52]. The generalized gradient approximation 

(GGA) has attracted much attention for its abstract simplicity and moderate  

computational workloads. at present, two GGA functional, one suggested  

by Becke and Perdew (BP)] and one suggested  more recently by Perdew 

and Wang (PW), are the most popular ones in the literature [53]. Many 

calculations assessing the accuracy of the GGA have been reported and 

commonly demonstrate that the GGA substantially corrects the LDA error 

in the cohesive energies of molecules and solids[54]. Generalized  gradient 

approximations (GGA s) to the exchange-correlation (XC) energy in 

density-functional theory, are at present receiving increasing  attention as a 

straightforward substitute to improve over the local-density approximation 

(LDA) in ab initio total-energy calculations [50]. In a variety of fields , the 

GGA provided evidence to be more suitable than the LDA: 

(1) Binding energies of molecules and solids became  more precise, 

correcting the trend of the LDA to over binding [55].  

(2) Activation energy obstacles, e.g., for the dissociate adsorption of H 2 

on metal and semiconductor surfaces, are in distinctly better 

accordance with experiment. Reaction and activation energies for a 

variety of chemical reactions give the same enhancement  [56]. 

(3) The relative constancy of structural phases seems to be anticipated  

more realistically for magnetic and  for nonmagnetic materials ,too 

[57].  
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Bulk structural qualities  are often not developed  within the GGA. 

While the lattice parameters always rise in comparison with  the LDA, a 

closer agreement with experimental data is reported for alkali metals, 3 d 

metals, and some 4d metals. However, an overestimation of up to several 

percent is found for 5d metals and common semiconductors, their bulk 

moduli accordingly turning out to be too small (typically by 25%)[58].  

2.5 The full-potential linearized augmented-plane wave technique 

The full-potential linearized augmented-plane wave (FP-LAPW) 

technique is well known to allow most precise calculation of the electronic 

structure and magnetic qualities of crystals and surfaces. The application  

of atomic forces has greatly maximized  its applicability, but it is still 

commonly supposed that FP-LAPW computations need considerable 

higher computational effort in comparison with  the pseudopotential plane 

wave (PPW) based techniques [59]. 

FP-LAPW has recently showed important progress. For example, 

researchers habitually work out magnetism and nuclear quantities (for 

example, isomer shifts, hyperfine fields, electric field gradients, and core 

level shifts) [60]. Also, forces and molecular dynamics have been applied , 

and recent optimizations have decreased  the CPU time of FP-LAPW 

calculations significantly [59]. Nevertheless, because the computational 

expense and memory requirements are still fairly high, FP-LAPW 

implementations are suitable only to fairly complicated systems. One 

successful implementation of the FP-LAPW technique is the program 
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package WIEN2K, a code enhanced by Blaha, Schwarz and coworkers 

[61]. It has been successfully implemented to a various scope of difficulties 

such as electric field gradients [62] and systems such as high-temperature 

superconductors, minerals [63], surfaces of transition metals [64], or anti- 

ferromagnetic oxides [65] and even molecules [66]. Reducing the total 

energy of a system by comforting the atomic counterparts for complicated 

systems became potential by the application of atomic forces, and even 

molecular dynamics became possible. So far the main disadvantage of the 

FP-LAPW-technique in comparison with the pseudopotential plane-wave 

(PPW) [67] method has been its higher computational expense. This may 

be largely because of an inconsistency in optimization efforts spent on both 

techniques, and so we have investigated the FP-LAPW technique from a 

computational arithmetical viewpoint. 

Lately, the development of the Augmented Plane Wave (APW) 

techniques from Slater's APW, to LAPW and the new APW+lo was 

portrayed by Schwarz et al[68].  

One of the most precise techniques for performing electronic 

structure calculations for crystals is the full potential linearized augmented 

plane wave FP-LAPW technique. It is based on the density functional 

theory for the handling of exchange and correlation and uses (for example, 

the local spin density approximation) (LSDA). Effects, for valence states 

relativistic ,can be incorporated either in a scalar relativistic handling or 
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with the second dissimilarity technique including spin-orbit coupling. Core 

states are treated fully relativistically.  

The FP- LAPW technique ,which is Like most ``energy-band 

techniques ,is a process for solving the Kohn-Sham equations for the 

ground state density, total energy, and (Kohn-Sham) eigen values (energy 

bands) of a many-electron system by presenting  a basis set which is 

particularly modified to the problem.   

Figure (2.3): Partitioning of the unit cell into atomic spheres (I) and an interstitial 
region (II) 

This alteration is achieved by partitioning the unit cell into (I) non-

overlapping atomic circles (centered at the atomic sites) and (II) an 

interstitial region, that s to say, a region between two spaces. In the two 

sorts of regions diverse basis sets are used: 

 

Inside atomic sphere t of radius Rt a linear combination of radial 

functions times spherical harmonics Ylm(r) is used 

lm
lmlllmlllmkn YEuBEuA )r()],r(),r([

  

        (2-29) 
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where ),( 11 Eru is the (at the origin) normal way out of the radial 

Schr dinger equation for energy 1E and the spherical part of the potential 

inside sphere, ),( lErlu is the energy derived of 1u taken at the similar 

energy. A linear mixture of these two functions comprise the linearization 

of the radial function; the coefficients lmA and lmB are  functions of 

nk decided  by requiring that this root function  
l

u goes with the equivalent 

basis function of the interstitial region; lu

 

and are achieved by numerical 

integration of the radial Schr dinger equation on a radial mesh inside the 

sphere.          

 

(II) in the interstitial zone  a plane wave extension is applied  

rik
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n
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e
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                  (2-30) 

 

where nnn kkkk , are the mutual lattice vectors and k is the wave 

vector inside the first Brillouin zone . Each plane wave is increased by 

an atomic-like function in every atomic sphere. 

The solutions to the Kohn-Sham equations are extended in this joint 

basis set of LAPW's according to the linear dissimilarity technique 

n
nknCk

        

        (2-31) 

and the coefficients nc are decided  by the Rayleigh-Ritz variation rule. 

The union of this basis set is controlled by a disconnected 
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parameter 96maxKR mt , where  mtR is the smallest atomic sphere 

radius in the unit cell and maxK is the magnitude of the largest K  vector. 

Additional ( nK independent) basis functions can be added to 

improve upon the linearization and to make possible a reliable treatment of 

semi core and valence states in one energy window .They are called "local 

orbitals" and consist of a linear combination of 2 radial functions at 2 

dissimilar energies and one energy derivative:    

)()],r(),r())r([ ,2,1,1 rYEuCEuBEuA lmlllmlllmlllm
LO
lm

 

     (2-32) 

The coefficients lmA , lmB , and lmC , are decided  by the necessities 

that 
LO

should be regularized and has zero value and slope at the sphere 

border. 

The FP- LAPW technique ,in its general form ,extends  the potential 

in the following form  
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        (2-33) 

And the charge densities analogously. Thus no form of rough 

calculations are made, a process often called the "full- potential " 

technique. 
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The "muffin-tin" rough calculation applied in early band calculations 

matches to keeping only the L= 0 and M=0 component in the initial idiom 

of final equation. and only the K=0 constituent in the second. This process 

matches to take the spherical rate inside the spheres and the volume rate in 

the interstitial region. 

The entire energy is calculated according to Weinert et al [69]. 

The forces at the atoms are worked out according to Yu et al [70]. 

The Fermi energy and the weights of each band state can be worked 

out using an adapted tetrahedron (having four surfaces) technique [71].      
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CHAPTER 3 

Computational Details 

3.1 Wurtzite Structure (WZ) 

The wurtzite structure WZ has a hexagonal unit cell with two lattice 

parameters a and c in ratio c/a =1.633. This structure is composed of two 

hexagonal closed-packed (hcp) sub lattices.  

The primitive unit cell of the WZ structure is shown in Figure (3.1), 

while its conventional unit cell is shown in Figure (3.2). The conventional 

unit cell of WZ structure has a hcp lattice with two basis: Al, B or In atom 

at (a/3, 2a/3,0) and N atom at (a/3, 2a/3, u), where u is called the 

dimensionless cell internal structure parameter and a is the lattice 

parameters. The wurzite structure space group is p63mc.      

Figure (3.1): The primitive unit cell of AIN in wurtzite structure     
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Figure (3.2): The conventional unit cell of AIN in the wurtzite structure  

3.2 Rocksalt Structure (RS)  

In rocksalt (RS) structure the anions form a face-centered cubic (fcc) 

lattice where open sites are occupied by cations. The space group for the 

rocksalt structure is Fm3m. The primitive unit cell of the RS structure is 

shown in Figure (3.3), while its conventional unit cell is shown in Figure 

(3.4). The coordinate of Al, B, or In atom is (0a, 0a, 0a) and the N atom at 

(a/2, a/2, a/2).      

Figure (3.3): The primitive unit cell of AIN in rocksalt structure  
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Figure (3.4): Te conventional unit cell of AIN in the rocksalt structure  

3.3 Zincblende Structure (ZB) 

In semiconductors the most ambient-pressure structure is the 

Zincblende (ZB) structure. ZB structure is cubic with space group F43m. 

The Zincblende structure is also basically just an fcc lattice with two atoms 

at each lattice site. One atom centered at the lattice site itself and another 

atom offset from the lattice site by a/4 along all axes[72]. The primitive 

unit cell of the ZB structure is shown in Figure (3.5), while its conventional 

unit cell is shown in Figure (3.6).      

Figure (3.5): The primitive unit cell of AIN in zincblende structure   
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Figure (3.6): Te conventional unit cell of AIN in the zincblende structure  

3.4 The Computational Details  

In our calculations, we use the full-potential linearized augmented 

plane wave method (FP-LAPW) within the local density approximation 

(LDA) and the generalized gradient approximation (GGA) as implemented 

by WEIN2K code [73]. The FP-LAPW method is used to calculate the 

electronic and structural properties of AlN, BN, and InN in the Wurtzite, 

Zincblende, and Rocksalt phases. 

As mentioned before the crystal structure of the ZB and RS phases 

can be defined by the lattice parameter a. The wurtzite structure, however 

is hexagonal structure, which depends on three structure parameters : a, c 

and internal parameter, u. To determine the equilibrium geometry of 

wurzite phase we follow the following steps. In the first step the optimum 

value of u is determined by calculating total energies of c/a ratio. Then the 

equilibrium value and bulk modulus were determined by calculating the 

total energies for a set of volumes and fitting these to the Murnaghan's 
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equation of state [74]. The next step is calculating the total energies for 6 

different values of c/a. After this step we find the minimum energy by 

fitting the resulting values to a parabola. Fixing the optimum value of a and 

c/a, we vary the parameter u and find the new total energy. Finally, with c/a 

and u fixed at their optimized value, we vary a and calculate the total 

energy at 6 different volumes, which we fit again by the Murnaghan's 

equation of state. 

Before we start these calculations on WEIN2K code, a well known 

compound TiC is practiced. Inserting the lattice parameter a, the muffin-tin 

(MT) radius RMT, and the atom's positions. We obtained structural 

parameters (bulk modulus B, the derivative of bulk modulus to pressure B` 

and the energy E). We got results similar to published ones.  

In our calculations we take the L-expansion of the non spherical 

potential and charge density Lmax to be 12, according to convergent test, 

which shows that this value is the suitable one in our calculations, as shown 

in Figure 3.10. 

Table (3.1): L- expansion of the non spherical potential and energy 
using GGA and LDA approximations for RS-AlN. 

L Energy (Rydberg) 
(GGA) 

Energy (Rydberg) 
(LDA) 

4 595.3579 592.83169 
6 595.3394 592.82991 
8 595.3379 592.82979 
10 595.3378 592.82978 
12 595.3378 592.82978 
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Figure (3.7): The convergent test using GGA approximation for RS-AlN.       

Figure (3.8): The convergent test using LDA approximation for RS-AlN. 

For AlN compound the muffin-tin radius RMT in ZB, RS, and WZ 

structure are taken to be 1.9   and 1.5  

 

for Al and N, respectively, in 

GGA calculation ; whereas the RMT are taken to be 1.6   and 1.6   for Al 

and N, respectively in LDA calculation. It is found that in the MT spheres, 

the L-expansion of the nonspherical potential and charge density was 

carried out up to Lmax = 12. In order to achieve energy eingenvalue 

convergence, it is expanded the basis function up to RMTKMAX = 10 (where 
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KMAX is the maximum modulus for the reciprocal lattice vector, and RMT is 

the average radius of the MT spheres), equivalent to approximately 1400 

and 300 basis functions per atom for WZ and cubic phases, respectively. 

The k integration over the Brillouin zone is performed up to a 4 × 4 × 4 

Monkhorst Pack [75] mesh. The number of sampling k-points in the 

irreducible Brillouin Zone is  114, 72 and 72 for the WZ , ZB and RS  

structures respectively, which correspond to 12x12x12 k-points meshes  for  

ZB and RS structures and to 12x12x6 k-points for the WZ structure in LDA 

calculations, whereas the  number of sampling k-points in the irreducible 

Brillouin Zone is  297, 165 and 165 for the WZ , ZB and RS  structures 

respectively, which correspond to 17x17x17 k-points meshes  for  ZB and 

RS structures and to 17x17x9 k-points for the WZ structure in GGA 

calculations. 

For BN compound the muffin tin radius RMT in ZB, RS structure is 

taken to be 1.25  for B and 1.25  for N in GGA calculation, whereas the 

RMT in ZB, RS structure is taken to be 1.4  for B and 1.5  for N in LDA 

calculation. The number of sampling k-points in the irreducible Brillouin 

Zone is 5 for the ZB and RS structures respectively, which correspond to 

3x3x3 k-points meshes for ZB and RS structures in LDA calculations, 

whereas the number of sampling k-points in the irreducible Brillouin Zone 

is 14 for the ZB and RS structures respectively, which correspond to 5x5x5 

k-points meshes  for  ZB and RS structures in GGA calculations. 
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For InN Compound the muffin tin radius RMT in WZ, ZB, RS 

structures are taken to be 2   and

 
1.9   for In and N, respectively, in GGA 

calculation ; while the RMT in WZ, ZB, and RS are taken to be 2.3  , 1.6  

for In and N, respectively, in LDA calculation. The number of sampling k-

points in the irreducible Brillouin Zone is 21, 10 and 10 for the WZ, ZB 

and RS structures respectively, which correspond to 4x4x4 k-points meshes 

for ZB and RS structures and to 6x6x3 k-points for the WZ structure in 

LDA and GGA calculations. In the case of the fcc Bravais lattice, an 

equidistant 8x8x8 mesh has been used; whereas in the case of the 

hexagonal Bravais lattice, we applied a 25x25x16 mesh [76]. 
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Chapter 4 

Results And Discussion 

4.1 AlN Compound:  

AlN is a ceramic and refractory material and has combination of 

attractive physical properties such as : low thermal expansion, high thermal 

conductivity, high hardness and high melting points. In this section we 

present structural properties, band structure and transition pressure for AlN 

compound. 

4.1.1 Structural properties: 

The structural parameters have been obtained by minimizing the total 

energy with respect to the volume and fitting it to the Murnaghan equation  

of state:   

            1
1

1

)/(.
)()(

0

0

0

00

0

0
0 B

VB

B

BVV

B

VB
VEvE       (4-1) 

where E(V ) is the DFT ground-state energy with the cell volume V, 

V0 is the unit-cell volume at zero pressure, Bo denotes the bulk modulus, 

and their first pressure derivative is [74]: 

B/
o= dBo /dP   at P = 0                                                                   (4-2) 

The calculated lattice parameters for AlN, BN, and InN in LDA and 

GGA calculations are shown in Tables 4.1 and 4.2, respectively. 
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Table (4.1): The calculated lattice parameters for AlN, BN, and InN 
using LDA method. 

Structure AlN BN InN 
ZB a=4.349  

 
3.615  

 
4.96  

 

RS a=4.01  

 

3.503  

 

4.63  

 

WZ a=3.11  

 

c=4.97  

 

u=0.380  

  

3.52  

 

5.702  

 

0.375  

  

Table (4.2): The calculated lattice parameters for AlN, BN, InN using 
GGA method. 

Structure AlN BN InN 
ZB a=4.409  

 

3.615  

 

5.04  

 

RS a=4.07  

 

3.503  

 

4.71  

 

WZ a=3.113 
c=5.023 
u=0.380  

3.58 
5.7638 
0.379 

 

4.1.1.a Wurtzite AlN structure: 

Table (4.3): The structural parameters for wurtzite-AlN structure 
using LDA and GGA methods. 

Experimental 
Results 

GGA LDA Method 

 

3.138 3.0906 Present 
3.11c 3.135b 3.057a - 4.114a Other 

a (  ) 

 

5.024 4.9449 Present c (  ) 
4.978 c 5.023 b 

4.943a - 5.046a Other  

 

1.601 1.60 Present 
1.601 c 1.601b 1.604a - 1.619 a Other 

c/a 

 

0.380 0.380 Present 
0.385 c 0.3801b 0.380a - 0.383 a Other 

u 

 

195.0232 211.0047 Present 
185 c - 212 c 192.35 b 215 a Other 

Bo(GPa)

  

4.0295 3.8757 Present 
5.7 c - 6.3 c 3.757 b 3.82 a Other 

Bo
/ 

(GPa) 

aRef.[77], b Ref.[78], c Ref.[79]. 
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In table (4.3) we present structural properties (lattice constants a, 

bulk modulus Bo and Bo
/ ) for wurzite AlN in LDA and GGA calculations. 

As shown in this  table the lattice constants (u, a, c) for the WZ-AlN used 

in our calculation are so closed to the experimental values.  

For WZ-AlN the lattice parameters (a=3.08  , c=4.94  ) determined 

by Wright and Nelson [80] using pseudopotential calculations, which is 

close to that obtained by us. 

These parameters are slightly underestimated compared to the 

experimental values using the LDA method. Figure 4.1 shows the fitted 

total energy versus volume for WZ-AlN using GGA method, while Figure 

4.2 shows the fitted total energy versus volume for WZ-AlN using LDA 

method.     

Figure (4.1): Energy versus volume for WZ-AlN using GGA method. 
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Figure (4.2) : Energy versus volume for WZ-AlN using LDA method. 

4.1.1.b Zincblende AlN structure: 

Table (4.4): The structural parameters for zincblende-AlN structure 
using LDA and GGA Methods. 

B / (GPa) B (GPa) Experimental 
Results 

a ( )

 

Method

 

Other Present Other Present Other Present 
3.2e 3.927 213e 209.191 4.31e 4.344 

LDA 

3.81 f 4.0899 191 f 193.715 

4.38c 

4.37d 

4.39f 4.41 GGA 
cRef.[79], dRef.[26]  ,  eRef.[ 81], fRef.[82].  

In table 4.4, it is shown that the lattice constant a ( )

 

for the ZB-AlN 

in LDA method is underestimated compared to the experimental value, but 

in GGA method is overestimated compared to the experimental value. 

Also, in GGA method our calculation is in better agreement compared to 

the others. In Figure 4.3 shows the fitted total energy versus volume for 

ZB-AlN using GGA method, while Figure 4.4 shows the fitted total 

energyversus volume for ZB-AlN using LDA method. 
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Figure (4.3): Energy versus volume for ZB-AlN using GGA method.       

Figure (4.4): Energy versus volume for ZB-AlN using LDA method. 
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4.1.1.c Rocksalt- AlN structure: 

Table (4.5): The structural parameters for rocksalt-AlN structure 
using LDA and GGA methods. 

Experimental 
Results 

Bo
/ (GPa) Bo (GPa) a ( )

 

Method 

a  =    4.045j Other Present

 

Other Present Other Present

  

Bo =    221 i                      3.8g 3.9958 272 g 273.9226

 

3.978g 4.012 LDA 
 Bo

/ =  4.8 i 3.901h 3.9822 252h 249.0913

 

4.074h 4.076 GGA 

gRef.[83], h Ref.[1], i Ref.[84], j Ref.[85] 

In table 4.5, we notice that the lattice constant in LDA method is 

underestimated, while in GGA method is overestimated compared to the 

experimental value. The Bulk modulus obtained in LDA method is larger 

than both GGA and experimental values.      

Figure (4.5): Energy versus volume for RS-AlN using LDA method.  
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Figure (4.6): Energy versus volume for RS-AlN using GGA method. 

Figure 4.5 shows the fitted total energy versus volume for  RS-AlN 

using GGA method, while Figure 4.6 shows the fitted total energy versus 

volume for RS-AlN using LDA method. The theoretical lattice parameters, 

bulk modulus and the derivative of bulk modulus to the pressure are 

obtained through fitting the total energy versus volume data with the 

Murnaghan's equation of state  [74]. 

4.1.2 Band Structure 

An energy range in a solid where no electron states exist is called 

energy band gap. The band gap generally refers to the energy difference 

between the top of the valence band and the bottom of the conduction band 

in insulators and semiconductors ; it is the amount of energy required to 

free an outer shell electron from its orbit about the nucleus to a free state. 

The semiconductors have a small band gap < 3 eV, also electrons are 
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confined to a number of bands of energy, and forbidden from other 

regions[86]. The band gap energy of semiconductors tends to decrease with 

increasing temperature. When temperature increases, the amplitude of 

atomic vibrations increase, leading to larger interatomic spacing. The 

interaction between the lattice phonons and the free electrons and holes will 

also affect the band gap to a smaller extent [87]. The relationship between 

band gap energy and temperature can be described by Varshni's empirical 

expression [88]. 

                               T

T
ETE gg

2

)0()(                 (4-3) 

where Eg(0),  and  are material constants.   

Band gaps also depend on pressure. Band gaps can be either direct or 

indirect band gaps, depending on the band structure. 

4.1.2.a Band structure for AlN compound 

Table (4.6): The energy band structures for AlN compound in WZ, RS, 
and ZB structures. 

Structure Method

 

Present 
calculations(eV)

 

Other 
calculations(eV)

 

Experimental

 

Result (eV) 
Wurtzite LDA 4.425 4.39h 6.28 k 

 

GGA 4.179 4.027h  

Rocksalt LDA 4.032   

 

GGA 4.341   
Zincblende

 

LDA 2.70 3.21h  

 

GGA 3.275 3.304h  

h Ref.[1], kRef. [89] 
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The most features of the band structure of WZ-AlN, RS-AlN and 

ZB-AlN are shown in Figures 4.7, 4.8 and 4.9 in GGA and LDA methods 

respectively. 

In WZ-AlN the band gap is 4.4 eV, 4.17 eV using LDA and GGA 

methods respectively, and a direct band gap at  point ; this is in agreement 

with the results of Wright and Nelson [80], who used plane-wave 

pseudopotential total energy calculation in the LDA approach. 

Slight differences are seen in valence bands : In this case GGA bands 

lie higher in energy than those of LDA which leads to slightly reduction 

bandwidths. 

We notice that the ZB-AlN is indirect band gap from the  point, at 

the X point. Comparing LDA and GGA calculations in the ZB-AlN we see 

that the band structures are similar, except that the band gap at  point for 

the LDA is smaller than the GGA results. 

There is no other calculations about RS-AlN using LDA or GGA 

methods.     
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Figure (4.7) : The energy band structure for wurtzite AlN using GGA and LDA 

methods.     
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Figure (4.8) : The energy band structure for rocksalt AlN using GGA and LDA 
methods.    
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Figure (4.9): The energy band structure for zincblende AlN using GGA and LDA 
methods. 

4.1.3 Structural phase transition: 

When a system of molecules undergoes change, whether chemical 

reaction or changes in physical states such as phase changes. There are two 

tendencies driving the changes:  

 

Free Energy tends to decrease, 

 

Entropy tends to increase.   
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If E represents the energy, T the temperature, and S the entropy, 

these two tendencies can be combined by stating that the expression E - TS, 

the Helmholtz function, tends to decrease. Strictly, this is only true in 

situations where the volume is constant, as in sealed containers. If the 

pressure is constant, as in open containers, the enthalpy H = E + PV (where 

P represents the pressure and V represents the volume) replaces the energy, 

and thus the quantity that must be minimized is H - TS = E + PV - TS, the 

Gibbs function. When T=0, then H= E +PV and then we can get the 

pressure.  

Physicists have tended to use the term free energy and the symbol F 

for the Helmholtz function, using G to represent the Gibbs function; 

chemists have preferred to denote the Helmholtz function by A and call it 

the work content, reserving the term free energy and the symbol F for the 

Gibbs function. Recently a compromise notation has become common, 

using A for the Helmholtz function, G for the Gibbs function, and avoiding 

F entirely. The functions are then referred to as the Helmholtz free energy 

and Gibbs free energy[90].  

Table (4.7): Transition pressure (Pt) of AlN structure using LDA and 
GGA methods. 

Pt (GPa) 
Structure Method Present Other Experimental 

Results 
ZB-RS GGA 4.64 5.3h  

WZ-RS GGA 10 9.5 h 14i, 16j 

ZB-RS LDA 3 7 a  

WZ-RS LDA 9.3 12.9l ,16.6 h  

hRef.[1], 
iRef. [84], 

jRef.[85], lRef.[91],  
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Figures 4.10 and 4.11 show the fitted energy versus volume for AlN. 

The transition pressure pt from WZ to RS and ZB to RS of AlN is 

determined. The pt for WZ to RS is found to be 10 GPa and for ZB to RS is 

found to be 4.64 GPa within GGA calculations. Whereas the (pt) from WZ 

to RS and ZB to RS of AlN is found to be 9.3 GPa, 3GPa respectively, 

within LDA calculations. From the Figures we notice that the WZ structure 

is the stable structure for AlN.    

Figure (4.10): The transition pressure of AlN using GGA method.    

Figure (4.11): The transition pressure of AlN using LDA method. 
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4.2 BN Compound: 

Boron nitride possesses many properties which are of technological 

interest. It is  used as an electrical insulator however its tendency to oxidise 

at high temperatures often restrict its use to vacuum and inert atmosphere 

operation. Also, its chemical inertness leads to application as thermocouple 

protection sheaths, crucibles and linings for reaction vessels though as 

above oxidation must be avoided. In its dense cubic zincblende form, boron 

nitride has extreme hardness, high melting point, wide band gap, chemical 

inertness, and large thermal conductivity. 

4.2.1 Structural properties: 

Table (4.8): The structural parameters for zincblende-BN structure 
using LDA and GGA methods  

a ( )

 

B (GPa) B / (GPa) 

Method Present Other Present Other Present Other 
LDA 3.595  3.575n 403.7575

 

397n 

386n 
4.1791 3.97n, 

4n 

GGA  
   3.626 p

 

3.623n,

 

3.606 n  
370.9779

 

368n, 

360n 

3.5891 3.3n, 
4n, 3.6n

 

Experimental 

 

Results 
3.615m 369 m 4m 

mRef.[92], nRef.[93] 

The curves of  Figures 4.12, 4.13 are fitted to Murnaghan`s equation 

of state in order to determine the structural parameters given in tables 4.8 

and 4.9. In table 4.8, the lattice constant in GGA method is in a good 

agreement with the experimental value whereas it is found that the LDA 

calculation is slightly lower than the experimental value. In addition, the 
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Bulk modulus value is closed to the experimental value in GGA method 

but in LDA is slightly larger. In the LDA,  the B/  is in good agreement 

with the experimental value.        

Figure (4.12): Energy versus volume for ZB-BN using GGA method.       

Figure (4.13): Energy versus volume for ZB-BN using LDA method 
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Table (4.9): The structural parameters for rocksalt-BN structure using 
LDA and GGA methods. 

Method a (  )

  
B (GPa)  B/ (GPa)

   
Present Other Present Other Present Other 

LDA 3.467 3.500 n 

3.493n 
428.6748

 

425 n 4.2683 4.59 n 

GGA 3.5041 3.503n, 
3.49 n  

381.4622

 

399n, 
480n  

3.7236 2.53n , 
3.7n 

nRef.[93]  

Table 4.9 shows   the structural parameters (a, B, B/) compared with 

other calculations.      

Figure (4.14): Energy versus volume for RS-BN using LDA method    
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Figure (4.15): Energy versus volume for RS-BN using GGA method 

Figures 4.14 and 4.15 show the fitted energy versus volume for RS-

BN using LDA and GGA method which the structural properties are 

obtained from them. 

4.2.2 Band structure 

Table (4.10): The energy band structure for BN compound 

Structure Method 
Present 

calculations 
(eV) 

Other 
calculations 

(eV) 

Experimental 
Result 
(eV) 

Zincblende LDA 4.356 4.2n, 4.4n 6n 

 

GGA 4.433  6.4n 

Rocksalt LDA 2.193 6.3n 6.4n 

 

GGA 1.710   

nRef.[93] 

Figures 4.16, 4.17 show the energy band gap for ZB-BN and RS-BN, 

which present that these band structures are calculated at the equilibrium 

lattice constants for the LDA and GGA methods. It is found to be 4.35 eV 
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and 4.43 eV, 2.19 eV and 1.71eV by LDA and GGA respectively. We 

notice that the energy band gap for ZB-BN is indirect ( -X). The energy 

band gap for ZB -BN in GGA method is in close agreement with other 

calculations. Also, the energy band gap for RS-BN is indirect (L- ). 

The conduction bands in LDA calculations are shifted a little down 

with respect to those of the GGA which is leading to a reduction of the 

band within the ZB-BN structure. This is in contrast in RS-BN structure.            

Figure (4.16): The energy band structure for zincblende BN using GGA and LDA 
methods. 
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Figure (4.17): The energy band structure for rocksalt BN using GGA and LDA 
methods 

4.2.3 Structural phase transition:  

Table (4.11): Transition pressure (Pt) of BN structure using GGA 
method 

Structure Method Pt (GPa) 

  

Present Other(GPa) 
ZB-RS GGA 500 555n, 111n 

nRef.[93] 
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Figure (4.18): The transition pressure of BN using GGA method 

Figure 4.18 shows that the Pt for ZB to RS in BN is 500 GPa. This 

result is in a good agreement with other calculations. From the Figure we 

notice that the ZB structure is the stable structure for BN. 

4.3 InN compound: 

4.3.1 Structural properties: 

Recently, InN has attracted considerable attention due to its potential 

applications, on one side, and the seemingly conflicting results of various 

investigations, on the other side. 
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Table (4.12):The structural parameters for Wurtzite-InN structure 
using LDA and GGA methods. 

Method LDA GGA Experimental 
Results 

a (  )

 
Present 3.514 3.594 3.54p 

 

Other 3.52 o 3.58 o  

c (  )

 

Present 5.692 5.786  

 

Other 5.702 o 5.763 o  

c/a Present 1.62 1.61 1.611o 

 

Other 1.62 o 1.61 o   

u Present 0.375 0.379 0.375o  

 

Other 0.3788 o 0.379 o  

B (GPa) Present 149.0221 122.7514 125.5o  

 

Other 142.58 o 123.51 o  

B/ (GPa) Present 4.7825 5.2645 12.7 o 

 

Other 4.67 o  4.43 o  

oRef. [94]. 
pRef.[95] 

In our GGA calculation seem to be accurate when compared with the 

experimental value. Moreover, the u parameter in LDA calculation is 

accurate compared to the experimental value. The Bulk modulus (B) 

obtained using LDA is larger than experimental value, whereas the B is 

smaller using GGA method.     

Figure (4.19): Energy versus volume for WZ-InN using LDA method 
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Figure (4.20): Energy versus volume for WZ-InN using GGA method 

Figures 4.19 and 4.20 show the fitted energy versus volume for WZ-InN 

using LDA and GGA method which the structural properties are obtained 

from them. 

Table (4.13): The structural parameters for Rocksalt-InN structure 
using LDA and GGA methods. 

B/  (GPa) B(GPa) a ( ) Method 

 

Present Other Present Other Present Other 
LDA 4.603 4.63 o 196.2893 186.2 o  6.2854 4.67 o 

GGA 4.709 4.71o 151.1941 161.45o 

 

3.5766 4.45 o 

Experimental 
Results  

170g 5.09 g 

oRef.[94]. gRef.[83] 

As shown in table 4.13, the lattice constant is close to other 

calculations. The bulk modulus (B) in LDA is larger than experimental 

value but GGA calculations show that B is smaller than the experimental 

values. We notice that B` in both LDA and GGA appears to be in 

reasonable agreement with experimental value. Figures 4.21 and 4.22 show 
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the fitted energy versus volume for RS-InN using LDA and GGA methods. 

The structural properties (a, B, and B/) are obtained from them.       

Figure (4.21): Energy versus volume for RS-InN using GGA method     

Figure (4.22): Energy versus volume for RS -InN using LDA method 
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Table (4.14): The structural parameters for ZB-InN structure using 

 LDA and GGA methods.  

Method a ( )

 
B (GPa) B/ (GPa) 

 
Present

 
Other Present Other Present Other 

LDA 4.94 4.96 o  148.5.94 142.37 o  4.8702 4.69 o   

GGA 5.06 5.04o  122.0732 123.23 o 4.7914 4.44 o  

Experimental

 

 Results 
4.98g 137g  

o Ref.[94], g Ref.[83] 

In table 4.14, the lattice constant of ZB-InN in LDA calculation 

seems to be in a good agreement compared to the experimental value. In 

GGA method the value of  B is smaller when compared with the LDA and 

experimental value.The B/ in LDA calculation is larger than in GGA 

calculation.       

Figure (4.23): Energy versus volume for ZB-InN using LDA method 
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Figure (4.24): Energy versus volume for ZB-InN using GGA method 

Figures 4.23 and 4.24 show the fitted energy versus volume for ZB-

InN using LDA and GGA method which the structural properties are 

obtained from them. 

4.3.2 Band structure 

Table (4.15): The energy band structure for InN compound 

Structure Method Present 
calculations(eV)

 

Other 
calculations(eV)

 

Wurtzite LDA -0.2640 -0.27q 

 

GGA -0.3643 -0.37q 

Rocksalt LDA 0.0838  

 

GGA -0.2770  
Zincblende  LDA -0.38962 -0.2q,-0.4, q 

 

GGA -0.51361 -0.55q 

qRef.[96]. 

In table 4.15 we notice that the energy band gap for InN compound 

in all structures is small. The energy band gap for InN compound in LDA 
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and GGA calculations seem to be in a good agreement compared to the 

other calculations. The energy band gap for InN compound in 

LDAcalculation is overestimated than the energy band gap in GGA 

calculation.          

Figure (4.25): The energy band structure for wurtzite InN using GGA and LDA 
methods.   
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Figure (4.26): The energy band structure for zincblende InN using GGA and LDA 
methods.     
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Figure (4.27): The energy band structure for rocksalt InN using GGA and LDA 
methods. 

In Figures 4. 25 and 4. 26 the band structure of InN in the ZB and the  

WZ structures appear quite similar, with no band gap at  for LDA 

and GGA in the ZB and WZ structures. 

In WZ-InN the energy band gap is -0.264eV, -0.3643eV using LDA 

and GGA methods respectively, and a direct band gap at  point ; this is in 

agreement with the results of plane-wave pseudopotential total energy 

calculation in the LDA approach [96]. 
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We notice that the in RS-InN is indirect band gap from the L point, 

at the  point. There is no calculations about RS-InN using LDA or GGA 

methods. 

4.3.3 Structural phase transition: 

Table (4.16): Transition pressure (Pt) of InN structure using GGA 
method 

Structure Method

 

Pt (GPa) 

  

Present Other Experimental Results 
WZ-RS GGA 16.6 12.47h, 11h 12.1r, 10s 

ZB-RS GGA 18.5 10h, 21.6t  

h Ref.[1], rRef.[97], sRef.[98], tRef.[99].      

Figure (4.28): The transition pressure of InN using GGA method 

In table 4.14 the transition pressure pt from WZ to RS is found to be 

16.6 GPa and from ZB to RS is 18.5 GPa. These results are close to 

experimental values. The ground state of InN is the WZ structure.  
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Chapter 5 

Conclusion 

The full-potential linearized augmented plane wave (FP-LAPW) 

approach within the density functional theory (DFT) in the local density 

approximation (LDA) and the generalized gradient approximation (GGA) 

for the exchange correlations functional is used to calculate bulk properties, 

ground-state energies, lattice parameters, bulk modulus, its derivatives, 

equation of state, transition pressure, energy band gap and band structures.  

Using FP-LAPW method we have obtained the following results: 

1- The calculated structural parameters (a, B, B') using FP-LAPW method 

are found to be in good agreement with the available experimental data 

and other theoretical results. 

2- The phase transition for AlN compound occur from WZ to RS and from 

ZB to RS.The transition pressure from WZ to RS is found to be 9.3 

GPa, 10 GPa and the transition pressure from ZB to RS is found to be 3 

GPa, 4.64 GPa for LDA and GGA calculations respectively. 

3-  For InN compound, the phase transition from WZ to RS and from ZB 

to RS is found to be at 16.6GPa, 18.5 GPa for GGA calculations, 

respectively. 

4- For BN compound, the phase transition from ZB to RS is found to be at 

500 Gpa for GGA calculation. 



72        

5- The energy band gaps for AlN compound are calculated for WZ, RS 

and ZB structures is found to be 4.425 eV, 4.032 eV, 2.70 eV and 4.179 

eV, 4.341 eV, 3.275 eV for LDA and GGA calculations, respectively. 

6- For InN compound, the energy band gap is calculated for WZ, RS and 

ZB structures which is found to be -0.264 eV, 0.083 eV, -0.3896 eV 

and -0.3643 eV, -0.277eV, -0.51361eV using LDA, GGA and 

calculations, respectively.  

7- For BN compound the energy band gap is calculated for RS and ZB 

structures, which is found to be 2.193, 1.710 eV and 4.356, 4.433 eV 

using LDA, GGA and calculations, respectively.  

8- This study shows that AlN compound is insulator for WZ, ZB and RS 

structures in both GGA and LDA calculations, while the BN compound 

is semiconductor for RS and ZB in LDA calculations, and insulator for 

RS and ZB in GGA calculations. In addition, the InN compound is 

semimetal for WZ, RS and ZB in both GGA and LDA calculations. 

9- AlN and InN compounds can be found in WZ structures as a ground 

state and originally in WZ structure since this structure has a minimum 

binding energy.  

10- BN compound can be found in ZB structures as a ground state and 

originally in ZB structure since this structure has a minimum binding 

energy.   
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