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Abstract

In the last few years no other class of material of semiconductors has
attracted so much scientific and commercia attention like the group I11-
nitrides( AIN, BN, and InN). The increasing interest is due to its
extraordinary physical properties, which can be used in many new
electronic and optoelectronic devices. The AIN is stable to very high
temperatures in inert atmospheres. Another stable material in inert and
reducing atmospheres is BN. It is a very good electrical insulator. It offers
very high thermal conductivity and good thermal shock resistance. InN has
attracted considerable attention due to the repeated observation of an
effective band gap in the range around 0.7 eV by optical techniques, this
smaller band gap value would extend the possible emission range of
optoelectronic devices based on Il1-nitrides from the deep-UV down to the

near-1R region.

Very prominent examples are the short wavelength Light emitting
diodes (LED’s) and laser diodes, which take advantage of the wide band
gap of AIN. InN aso has been expected to be a suitable material for

electronic devices such as high mobility transistors due to its small

effective mass.

The effect of pressure on the electronic properties of (AIN, BN, and

INnN) are investigated using both experimental and theoretical methods. In
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this study, we carry out al-electron full potential linearized-augmented
plane waves (FP-LAPW) (which is included in a computer code
WIENZ2K) approach within the density functional theory (DFT) in the local
density approximation (LDA), and the generalized gradient approximation
(GGA) for the exchange correlations functional, which used to calculate
ground-state energies, the lattice parameters, the bulk modulus and its
derivatives, transition pressure and the band structures. The equation of
state of wurtzite (WZ), zincblende(ZB) and rocksalt(RS) structures for
(AIN, BN, and InN) compounds have been cal cul ated.

In this study, the most important results are:

1. The present calculations agree very well with available experimental
data and other theoretical calculations.

2. AIN compound behaves as an insulator in (WZ, ZB, and RYS)
structures.

3. BN compound behaves as a semiconductor for RS and ZB in LDA
calculation and an insulator for RS and ZB in GGA calculation.

4. InN compound behaves as a semimetal in (WZ, ZB, and RS)
structures.

5. The energy band gap for (WZ, RS, and ZB ) structures of AIN are
found to be (4.42, 4.032, 2.7) eV respectively, using LDA method,
and (4.17, 4.34, 3.275) eV respectively, using GGA method.
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. The energy band gap for (ZB and RS) structures of BN are found to
be (4.36, 2.193) eV respectively, using LDA method, and (4.43,
1.71) eV respectively, using GGA method.

. The energy band gap for (WZ, RS, and ZB ) structures of InN are
found to be (-0.264, 0.0838, -0.3896) eV respectively, using LDA
method, and (-0.3643, -0.277, -0.5136) eV respectively, using GGA
method.

. For AIN the transition pressure from wurtzite to rocksalt was found
to be (10) GPa and from zincblende to rocksalt was found to be
(4.64) GPa using GGA method, while the transition pressure from
wurtzite to rocksalt was found to be 9.3 GPa and from zincblende to
rocksalt was found to be 3 GPausing LDA method.

. For InN the transition pressure from wurtzite to rocksalt was found
to be 16.6 GPa and from zincblende to rocksalt was found to be 18.5

GPa using GGA method.

10.The transition pressure for BN compound from zincblende to

rocksalt was found to be 500 GPa using GGA method.
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Chapter 1
I ntroduction

Today, semiconductor materials constitute basic building blocks of
emitters and receivers in cellular, satellite, and fiberglass communication.
One important class of semiconductor material is the Ill-nitrides such as
BN, AIN, and InN. These semiconductor materials have also received
considerable attention for their device applications in blue and ultraviolet
wavelengths [1, 2, 3]. Recently, the successful fabrication of the blue light
[11-nitrides semiconductor laser was first demonstrated by Nakamura [4].
The vast maority of research on IlI- nitrides has been focused on the
wurtzite crystal phase, because the sapphire substrates tend to transfer their
hexagonal symmetry to the nitride films grown on them [2]. However,

Interest in zincblende nitrides has been growing recently.

The dependence of photoluminescence on pressure is very useful in
the understanding of electronic energy band structure and structura
properties in semiconductors. The effect of pressure on the electronic
properties of Il1-nitride compounds can be investigated experimentally in
many wayg[2]. The technical development of epitaxial growth at the end of
the last century has provided the possibility for researchers to fabricate
synthetic materials with expected compositions and structures. On the other
hand, theoretical and technical developments in density-functional theory
(DFT) and pseudopotential calculations in recent decades have provided
researchers with powerful methods for predicting electronic and energetic

properties as reveded by novel experimental techniques. This has



stimulated extensive computational studies on high-pressure behavior of

various semiconductors [2].

The electronic properties of the zincblende and wurtzite group 111-
nitride compound semiconductors (AIN, GaN, and InN) were studied
within the empirical pseudopotential approach [5]. Using ionic model
potentials and the static dielectric screening function derived by Levine and
Louie [6], the cationic and anionic model potential parameters were
obtained from zincblende AIN, GaN, and InN experimental data. By using
the concept of transferable model potentials, Levine and Louie also,
calculated the band structure of group-Ill nitrides in zincblende and
wurtzite phase using the same ionic model potential parameters[6]. Self-
consistent linear muffin-tin-orbital band-structure calculations were used to
investigate the optical and structural properties of Ill-nitrides
semiconducting under hydrostatic pressure]7]. The pressure behavior of the
energy band structures was discussed in the context of the postulated
chemical trends in |Ill-nitrides semiconductors. The total-energy
calculations suggested that most of the nitrides under pressure transform to
the semiconducting rocksalt phase. It was found that the transition
pressures are 21.6 GPa, 16.6 GPa, and 850 GPa for InN, AIN, and BN,
respectively. Experimental values that agree well with this have been found

for the three compounds [7].

Indium nitride (InN) is a small band gap semiconductor material

which has potential application in solar cells and high speed electronics.



The band gap of InN has now been established to be between 0.65 and 0.7
eV depending on temperature [8,9]. The effective electron mass (m*) of
InN is between 0.04m, and 0.07 m,, which is the smallest effective el ectron

mass among the nitrides but perhaps also of all semiconductorg10].

Recently, InN has attracted considerable attention due to its potential
applications, which are suggested because of its superior transport
properties on one side, and the seemingly conflicting results of various
investigations, on the other side. The most important results were the
repeated observations of an effective band gap of about 0.7 €V by optical
techniques, in contrast to the value of 1.9 eV established for the last 20
yearg[11]. The growth of InN is very difficult due to the low dissociation
temperature and the extremely high equilibrium vapor pressure of nitrogen.
Nevertheless, in the last four years, considerable progress has been made to
grow epitaxial hexagonal InN films by molecular beam epitaxial (MBE)
and metal organic vapor phase epitaxy (MOVPE) [12, 13]. It was found
that the hexagonal wurtzite phase with space group P6;mc is the
thermodynamically stable under ambient conditions, also, successful
growth by MBE has been reported for cubic InN crystalizing in zinc-
blende (ZB) structure with space group F43m [14,15]. Theoretical studies
based on tota-energy calculations clearly predict a first-order phase
transformation from the wurtzite into the rock salt (RS) structure with
space group Fm3m under hydrostatic pressure [16]. Theoretica studies of

the atomic structures, in particular the lattice constants, were usually based



on the density functional theory (DFT) [17]. They give a unique picture if
the In 4d electrons are included in the calculations. Deviations arise mainly
from the treatment of exchange and correlation (XC) within the local
density approximation (LDA) or the generalized gradient approximation
(GGA). Other small deviations are due to the treatment of the electron-ion
interaction and the expansion of wave functionsin a certain basis set. Much
more confusing are the results of various theoretical studies. It is well
known that the density functional theory in (LDA) or (GGA), which is
widely used in modern band-structure calculations, severely underestimates
the fundamental gaps and transition energies of semiconductors and
insulators. For InN the DFT-LDA and DFT-GGA calculations usually give
rise to negative energy gaps between 0.0 and -0.3 eV for wurtzite and
somewhat more negative values for zinc blende if the In 4d electrons are

taken into account [15].

Aluminum nitride (AIN) has a hexagonal crystal structure called the
wurtzite crystal structure (WZ), that has an extremely wide band gap (6.2
€V) semiconductor material. Also, it has a potential application for deep
ultraviolet optoelectronics. Aluminum nitride is amostly covalently bonded

material. The space group for this structure is P6smc [18].

It was found that AIN is stable at very high temperatures in inert
atmospheres . It refers to a gaseous mixture that contains little or no oxygen
and primarily consists of non-reactive gases or gases that have a high

thresholdbefore they react. Nitrogen, argon, helium, and carbon dioxide are



common components of inert gas mixtures [18]. Currently, there is much
research into developing light-emitting diodes to operate in the ultraviolet
using the galium nitride based semiconductors and aloy auminum
galium nitride, wavelengths as short as 250 nm have been reported. In
May 2006 an inefficient light emitting diode (LED) emission at 210 nm
was reported[18]. The large band gap for AIN alows a wavelength of
around 200 nm to be achieved, in principle. Therefore, AIN is the best
material for constructing devices for the ultraviolet region[19]. AIN, which
has partially ionic and partially covalent chemica bonds, is an important
coordinated Ill-nitrides compound. It has a high melting point, a high
thermal conductivity, and alarge bulk modulus. At ambient condition, AIN
Is generally reported to be no polymorphous, crystallizes in the wurtzite
structure[24]. The cubic zincblende (ZB) form has also been theoretically
reported to be metastable [19].

Besides important practical applications, AIN is aso a unique
semiconductor compound for fundamental studies. In contrast to all the
other [1-VI and Il11-V binary semiconductors, AIN in the zinc-blende
structure has a larger band gap than that in the wurtzite structure. AIN is
also the only WZ semiconductor compound that has been predicted to have
a negative crystal field splitting at the top of valence band [20].
Confirmation of these predictions are important because the negative
crystal field splitting can lead to unusual optical properties of AIN than
other wurtzite semiconductors such as GaN [21]. The band structure and

optical properties of AIN is very limited. For example, the detailed band



structure parameters near the G point of AIN are still unclear. The band gap
was determined in the past only by optical absorption and transmission
measurements with energy values scattered around 6.3 €V at liquid helium
temperatures [22]. The band structure parameters of AIN, including the
effective masses of e ectrons and holes as well as the character and splitting
at the valence band edge are not yet well understood. Fundamental optical
transitions including the band-to-band and excitonic transitions have not
been well investigated. It is, therefore, of fundamental and technological

importance to fill in the unknowns for AIN [23].

AIN is suitable for high-temperature electronics and opto-electronic
applications. It was characterized by high temperature stability (melting
temperature 3000 -C), high elastic stiffness and good thermal conductivity.
AIN crystallizes in the WZ structure (WZ-AIN) is the only Il —nitrides
based Al semiconductor compound with a direct band gap. The zincblende
structure form has been theoretically reported to be metastable [24,25], and
only the calculated lattice parameter a=4.37 isavailable[26].

Both WZ-AIN and ZB-AIN have been the subject of extensive
theoretical studies ranging from the semi-empirical to the first-principles
methods within the density functional theory (DFT) framework using both
pseudopotential and all-electron approaches[27,28].

Boron nitride (BN) is a binary chemical compound, consisting of
equal numbers of boron and nitrogen atoms. Cubic boron nitride is an

electrical insulator but an excellent conductor of heat. This diamond-like



polymorph, known as cubic boron nitride, is widely used as an abrasive for
industrial tools. Its usefulness arises from its insolubility in iron, nickel,
and related alloys at high temperatures, whereas diamond is soluble in
these metals to give carbides. Like diamond, cubic BN has good thermal
conductivity, caused by phonons. In contact with oxygen a high
temperatures, BN forms a passivation layer of boron oxide. Boron nitride
binds well with metals, due to formation of interlayers of metal borides or
nitrides. Materials with cubic boron nitride crystals are often used in the
tool bits of cutting tools. For grinding applications, softer binders (e.g,
resin, porous ceramics, and soft metals) are used. Ceramic binders can be

used aswell [29].

Ab initio is a computational chemistry methods based on quantum
chemistry. It indicates that the calculations of structural energies
calculation is from first principles and that no empirical data is used [30].
Also, it indicates that cubic BN (ZB-BN) is the most stable structure at
ambient conditions while the other structures are local energy minima with
large energy barriers separating them[31]. These large energy barriers are
responsible for the metastability of the other crystal structures. Despite the
theoretical indication that (ZB-BN) is the most stable structure at ambient
conditions, it is very difficult to grow high quality (ZB-BN) crystals. The
hexagona BN (WZ-BN) is the most common synthesized product. In fact,
it was accepted for along time that (WZ-BN) is the most stable structure at
ambient conditions. But more recent experimental investigations and ab

initio calculations affirm that (ZB-BN) is the most stable structure [32].



8

As mentioned earlier, there are some conflicts in the obtained results for
AIN, InN, and BN compounds. The motivation beyond this study isto give
a better understanding for the structural parameters, band structure and

transition pressure for these compounds.

To obtain the goa of this study, the Full-Potentia Linearized
Augmented Plane Wave method as implemented by WIEN2K code (which
is based on the density functional theory in the local density approximation
and generalized gradient approximation is used). This method is an
efficient and accurate approach for studying various properties of
condensed matter system. So the aim of this study isto:

1) calculate the structural parameters (lattice parameters a, bulk
modulus B and its deritive B") for ZB, RS phases of AIN, InN, and
BN compounds; and WZ phase of AIN and InN compounds.

2) determine the equation of state of all previous phases for AIN, BN
and InN compounds, by calculating the total energy at different
volumes and fitting the calculated values to the Murnaghan's
equation of state (EOS).

3) determine the transition pressure from ZB to RS for BN, WZ to ZB

and WZ to RS for AIN and InN compounds.
4) determine the band structure of these phases for AIN, BN and InN

compounds.

The present thesis is divided into four chapters. Chapter two presents
the density functiona theory, Kohn Sham equation, local density
approximation, and generalized gradient approximation. Chapter three
presents the computational details. Finally, chapter four presents the results
and conclusions.
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Chapter 2
M ethodology

2.1 Density Functional Theory

Physics and chemistry use a theory called Density functional theory (DFT)
,which is a quantum mechanical theory, to examine the electronic structure
of many body systems, especially, atoms, molecules and the condensed
phases. DFT is one of the most common and flexible technigue obtainable
in condensed matter physics, computational physics, and computational
chemistry [33], due to its capability to deal with large numbers of electrons
with complete precision [34].

Time-dependent density-functional theory (TDDFT) is the
generalization of ground-state DFT to include time-dependent external
potentials on electrons, and its formal validity was set up with the Runge-
Gross theorem [35]. The analogous connection between time-dependent
densities and time-dependent potentials for a given preliminary state guides
to the time-dependent Kohn-Sham system, which is a set of no interacting
presumptive electrons moving in a time-dependent Kohn-Sham potentials.
TDDFT has been applied to many problems in atomic, molecular and solid-
state systems, including optical response, dynamic polarizabilities and
hyperpolarizabilities, excitation energies, species in intense laser fields and

highly energetic collisions [36].

The principle of DFT is to illustrate an interconnecting system of
fermions by means of its density and not by its many-body wave function
[37]. While DFT chiefly gives a good explanation and portraya of ground
state qualities. Practical applications of DFT rely on rough calculations for
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the so-called exchange-correlation probability. The exchange-correlation
probability portrays the influences of the Pauli principle and the Coulomb
possibility beyond a pure electrostatic interaction of the electrons. The
precise exchange-correlation probability gives a solution of the many-body

problem precisely, which is obviously not possible in solids [37].

In spite of the fact that density functional theory has its theoretical
roots in the Thomas-Fermi model, it was put on a solid hypothetical
foundation by the two Hohenberg-K ohn theorems (H-K) [38]. The original
H-K theorems held only for non-degenerate ground states in the absence of
amagnetic field, although they have since been generalized to include them
[39].

The ground state properties of a many-electron system are
exclusively decided by an electron density that depends only on 3 spatial
coordinates, this is shown in the first H-K theorem. It puts down the base
work for reducing the many-body problem of N electrons with 3N spatial
coordinates to only 3 spatial coordinates, by the use of functional of the
electron density. This theorem can be expanded to the time-dependent
sphere to build up time-dependent density functional theory, which can be
applied to portray stimulated conditions. The second H-K theorem defines
an energy functiona for the system and gives evidences to prove that the

proper ground state el ectron density reduces this energy functional [33].

The intractable many-body problem of interacting electrons in a
static external potential, within the framework of Kohn-Sham DFT(KS-

DFT), s reduced to a tractable problem of non-interacting electrons
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moving in an effectual potential. The effective potential contains the
external potential and the effects of the Coulomb interactions between the
electrons, eg., the exchange and correlation interactions. Modeling the
latter two interactions becomes the difficulty within KS DFT. The simplest
rough calculation is the local-density approximation (LDA), which depends
on precise exchange energy for a uniform electron gas, which can be
obtained from the Thomas-Fermi model, and from fits to the correlation
energy for auniform electron gas.

Hohenberg and Kohn [38] were the first to formulate the special
place of DFT in 1964 which becomes directly clear from the fundaments,

Here aderivation of DFT and its formula.

The nuclei of the treated molecules or clusters ,as usua in many-
body electronic structure calculations, are seen as fixed (the Born-
Oppenheimer approximation), generating a static external potential V in
which the electrons are moving. A stationary electronic state is then
portrayed by a wave function ‘¥ (FennTy) satisfying the many-electron

Schr dinger equation:
R oA N h2 N N
M =[f+V+0]w = YoV VYU | = EY ()
i m i i(]
Where|:| is the electronic molecular Hamiltonian, Nis the number
of eectrons, T is the N-electron kinetic energy, V is the N-dectron

potential energy from the externa field, and U is the electron-electron

interaction energy for the /N-electron system. The operators Tand U are
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so-called universal operators as they are aike for any system, while Vis
system dependent, i.e. non-universal. The differentiation between having
separate single-particle problems and the much more complex many-

particle problem stems from the interaction term U .

The many-body Schr dinger equations solved by many complicated
technique based on the extension of the wave function in Slater
determinants. While the easiest one is the Hartree-Fock technique, more
sophisticated techniques are usualy classified as post-Hartree-Fock
techniques. However, the problem with these techniques is the vast
computational effort, which makes it amost unfeasible to apply them

competently to larger, more complicated systems.

Here DFT offers an attractive substitute, being much more adaptable
as it provides a way to systematically map the many-body problem,

witth , onto a single-body problem WithOUtU . In DFT the key
changeable is the particle density n(F) , which for a normalized Wis given

by:
n(F) = N [d°r, [d°r,.... [dr ¥ (1 Ty ) W (B F) (2:2)

This relation can be reversed, that is to say, for a given ground-state
density () it is principaly potential, to work out the equivaent

ground-state wave function q’o(ﬁ,---,FN) . That is to say, LPo IS a sole
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functional of Ny, Yy =LP[no] and as a result the ground-state

expectation value of an observable O isalso afunctional of N,

O[no] = <‘P[no]‘o‘ lP[no ]> (2-3)
In particular, the ground-state energy is a functional of

£, - Elny |- (Pl I +V U] ¥ln, ) e

(ol el (I VI, )+ (ln

-Ic[no] +\7[no] + UA[no] (2-6)

T U

¥[n, ]> (2-5)

where the contribution of the external <\P[no ]M LP[no ]>

potential can be written clearly in terms of the ground-state density I

V[no] = IV(F) Ny (F)d°r (2-7)
More commonly, the contribution of the external potential <‘P’V ‘P> can
be written clearly in terms of the density n,

V[n|= jV(r) n(F)d°r (2-8)

As mentioned above , the functiona T[n] andU[n] are caled

universal functional, whereas V[n] Is caled a non-universal functional,

asit relies on the system under study. Having a definite system, i.e., having

specified V', one then has to reduce the functional
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E[n]=T[n]+U[n] + _[V(F) n(r)d’r (2-9)

In regards to n(r), taking for granted one has got dependable
terms for  T(MandU(N). A successful reduction of the energy
functional will produce the ground-state density n, and thus all other

ground-state observables.

The Lagrangian technique of undetermined multipliers[39]can be
applied to solve the variation problems of minimizing the energy functional

E(N). F rst, one takes into accounts an energy functiona that doesn't

clearly have an electron-electron interaction energy term,

E.[n]= <‘Ps[n] T.+V. LPs[n]> (2-10)

where T indicates the non-interacting kinetic energy and\7S Is an externa

effectual potential in which the particles are moving. clearly, if Vis

N, (M) =n(r) selected to be

V,=V+U+(T-Ty) (2-11)
Consequently, one can solve the so-called Kohn-Sham equations of

this assisting non-interacting system,

{ g2 +VS(F)} ¢ () =< ¢(r) (2-12)

- 2m

which produces the @ orbital that reproduce the density n(F) of the

authentic many-body system
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The effective single-particle potential can be written in more detall

as

V,(F)=V(F) + je ) g v [, (1)

where the second term stands for the so-called Hartree expression

(2-14)

portraying the electron-electron Coulomb repulsion, while the last
expression Vxc is called the exchange-correlation possibility. Here, Vxc
has all the many-particle interactions. Since the Hartree expression and
Vxc rely on N(T") , which relies on the@, , which in turn relies onV., the
problem of solving the Kohn-Sham equation has to be done in a self-
consistent way. One typically begins with an first guess for n(r) , then

works out the equivalent \/AS and solves the Kohn-Sham equations for the

@ [33].

To conclude , techniques in DFT are complex and different, but can

roughly be partitioned into three categories [40]:

e Techniques that apply a local density rough calculation (LDA). The
LDA isdecided exclusively and based on the qualities of the electron
density. The significant supposition of this approximation is that, for a
molecule with many electrons in a gaseous state, the density is
consistent throughout the molecule. This is not the case for molecules,
where the electron density is decidedly not consistent.  This

approximation does, however, work well with electronic band
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structures of solids, which illustrates the scope of energies in which
electrons are allowed or not allowed . Outside of these applications,

however, LDA's are not very acceptable.

e Techniques that unite the electron density calculations with a gradient
correction factor. A gradient in mathematics is a function that measures
the rate of change of some property. In this case, the gradient seems to
explain the non-uniformity of the electron density, and as such is

known as gradient-corrected. Another expression for thisis non-local.

e Techniques that are a mixture of a HF approximation to the exchange
energy and a DFT approximation to the exchange energy, all united
with a functional that has electron correlation. These Techniques are
known as hybrid techniques , and are now the most common and

popular DFT techniques used in practically.
2.2 Kohn Sham Equations

A set of eigen value equations within density functional theory (DFT)
are caled Kohn Sham equations. As mentioned above , DFT tries to
minimize a many-body problem for the N particle wave function
\PO(F;_""’ FN ) to one in terms of the charge density n(F) which relies on
3 variables, using the Hohenberg-Kohn theorems[41]. The total energy E of

the system as afunctional of the charge density can be written as :

E(N)=T(n) + Voo ()n(r)dr +V,,[n]+ E[n] (2-15)

where T is the kinetic energy of the system, V. IS an external

potential acting on the system, and
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In(r) n(r’) drdr’ 16

|s the Hartree energy and E,. is the exchange-correlation energy.
The straight forward application of this formula has two barriers:

First, the exchange-correlation energy E,. is not known precisely,
and second, the kinetic term must be created in terms of the charge density.
As was first suggested by Kohn and Sham, the charge density n(r) can be

written as the sum of the squares of a set of orthonormal wave functions

@ (1):

n(r)= ZM ol (2-17)

The unit of charge density n(r) is (c/m°).

Equation (2-17) represents the solution to the Schr dinger equation for N

non-interacting electrons moving in an effectua potential Vet (r)

—h—mV2¢, (1) + Vi (NN = & 4,(1) (2-18)

where the effectual potential is defined to be

)dr’ + 5EXC|:n:|

(2-19)

n

These three equations form the Kohn-Sham orbital equations in their
standard form. This system is then solved iteratively, until self-consistency

is approached. Note that the eigen values g; have no physical meaning, only
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the total sum, which matches the energy of the entire system E through the
equation[42]:

O[N]

E=) & -Vuln]+ Ecln]- jm nnar o)

Schematic representation of the self-consistent loop for solution of the
Kohn-Sham equations. Generally speaking one must repeat two such
circles at once for the two spins, with the potential for each spin relying

upon the density of both spins[43].

Self-Consistent Kohn—Sham Equations

Initial Guess

nl(r),nt(r)

o
]

Calculate Effective Potential

VI(r) = Voze(7) + Vizare[n] + V2 [nT, n!]

|

Solve KS Equation
(-39 +vem)vr ) —ezve)

!

Calculate Electron Density

n?(r) = 3, felwe (0)|?

Output Quantities

Compute Energy, Forces, Stresses

Figure (2.1): Flow chart of solving the self-consistent K ohn-Sham equation
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Practically, there are severa distinct ways in which Kohn-Sham
theory can be applied depending on what is being examined. In solid state
calculations, the local density approximations are still commonly used
aong with plane wave basis sets, as an electron gas approach is more
suitable for electrons delocalized through an infinite solid. In molecular
calculations, however, more complicated functional are needed, and a huge
variety of exchange-correlation functional have been developed for
chemical applications. Some of these are incompatible with the uniform
electron gas approximation, however, they must reduce to LDA in the
electron gas limit. For molecular applications, in particular for hybrid
functional, Kohn-Sham DFT techniques are usualy applied just like
Hartree-Fock itself [44].

The main difficulty with DFT is that the precise functional for
exchange and correlation are not identified except for the free electron gas.
However, rough calculations exist which alow the calculation of certain
physical amounts rather precisely. In physics the most widely used

approximation is the local-density approximation (LDA).
2.3 Local Density Approximation

One of the efficient rough cal culation techniques for working out the
exchange-correlation term in the density functional theory (DFT) is the
local density approximation (LDA). LDA has widely been applied to
portray a variety of close-ranged exchange-correlation interactions of, for

instance , covaent bonding systems. However, LDA has serious limitation
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that this approximation cannot provide estimation to  the long-ranged
exchange-correlation interaction, as typified by the Van der Waals (VdW)
interaction. The VAW interaction is one of the long-ranged electronic
interactions which mainly add to the first stage of the material reactions
such as the chemical reaction, crystal growth and physical absorption. To
assess the VAW interaction, many efforts have been devoted to develop

useful calculating recipes for the non-local exchange-correlation term [45].

Kohn and Sham applied LDA approximation to DFT [41]. The
Hohenberg-Kohn theorem states that the energy of the ground state of a
system of electrons is a functional of the electronic density, especialy, the
exchange and correlation (XC) energy is aso a functional of the density
(this energy can be seen as the quantum part of the electron-electron
interaction). This XC functional is not identified accurately and must be
approximated [38]. LDA is the simplest approximation for this functional,
it islocal in the sense that the electron exchange and correlation energy at

any point in space is afunction of the electron density at that point only.

The XC functiona is the total of a correlation functiona and an

exchange functional:

Exc = Ex + Ec (2-21)

LDA uses the exchange for the uniform electron gas of a density

equal to the density at the point where the exchange is to be assessed:
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jd rn(F)| — |(3z°n(F )3 (2-22)

In Sl units, Nn(r) is the electron density per unit volume at the

point I ande isthe charge of an electron [46].

While looking for the ways out to the system of Schr dinger equation:
1 oo
Ey/(X) =~ - V() +V (X (x) 2

It is found that all amounts are represented as functional of the

dectronic €y (I) charge density. The significant point that makes this

system easier to solve (or more accurately, needs less computation) than,
for instance the Hartree-Fock equations, is that the efficient possibility is
local. Therefore there is no more complication added in solving
Schr dinger equation than there is in the Hartree approximation. Of course,
this is only true if the exchange-correlation energy can be portrayed as a
function of the local charge density. A technique of doing so is known as
the local density approximation (LDA) [41]. As mentioned above in LDA,
the exchange-correlation energy of an electronic system is built by taking
for granted that the exchange-correlation energy for each electron at a

point I in the electron gasis equal to the exchange-correlation energy for

each electron in aidentical electron gas that has the same electron density

at thepoint I . It followsthat:

£ [N = Jew (T n(F a 220
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S0 that
. 5[”(;)5}5 (n(;))] (2-25)
M (T)= -
an(r)
with
£, (N(r) =& ""(n(r)) (2.26)

BN
h
Where 5x§m(n(r)) IS exchange-correlation energy in identical

electron gas. Equation (2-26) is the supposition that the exchange-

correlation energy is purely local. Several parameterizations for

hom

N
Exc (n(r)) exist, but the most commonly used is that of Perdew and

Zunger [47]. This parameterisation is based on the quantum Monte Carlo
calculations of Ceperley and Alder [48] on homogeneous electron gases at
various densities. The parameterization uses interpolation formulas to link
these precise outcomes for the exchange and correlation energy at many
dissimilar densities.

Adjustment to the exchange-correlation energy because of the in-

homogeneities in the electronic charge density about I are overlooked, in

LDA,. Therefore, it may at first seem somewhat surprising that such

calculations are so successful, when taking into account this inexact nature
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of the approximation. This can be to some extent ascribed to the fact that
LDA gives the accurate sum rule to the exchange-correlation hole. That is,

there is atotal electronic charge of one electron excluded from the vicinity

of the electron at I . Endeavors to improve on LDA, such as gradient

extensions to correct for in- homogeneities do not seem to show any
enhancement in results got by the simple LDA. One of the reasons for this

failureisthat the sum rule is not obeyed by the exchange-correlation hole.

The contributions of electron-electron interactions in N-electron

systems are shown briefly in Figure (2.2). It demonstrates the conditional
electron probability distributions n(r) of N-1 electrons around an electron
with given spin located at r = 0.

All €electrons are dealt with as independent, in the Hartree
approximation [49], Figure (2-2a), therefore is structureless. Figure (2-2b)
stands for the Hartree-Fock approximation where the N-electron wave
function reflects the Pauli exclusion principle. Around the electron at r = 0.
The exchange hole can be seen where the density of spins equal to that of

the central electron is reduced. Electrons with opposite spins are
unchanged. In the LDA (Figure (2-2c)), where spin states are degenerate,

each sort of electron sees the same exchange-correlation hole (the sum rule

being demonstrated where the size of the hole is one el ectron).

Figure (2-2d) shows electron-electron interaction for non-degenerate
spin systems (the local spin density approximation (LSDA). It can be seen
that the spin degenerate LDA is basically the average of the LSDA.
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1
(a) Hartree
7 0 r
=
2
% (b) HF
&
[
By
= 1k
% cILDA
£
é 0 r
J 1k
(d)LSDA
0 r

Figure (2.2): Summary of the electron-electron interactions (excluding coulomb
effects) in (a) the Hartree approximation, (b) the Hartree-Fock approximation,
(c) the local density approximation and (d) the local spin density approximation
which allowsfor different interactionsfor like-unlike spins.

GGA's approximation has minimized the LDA errors of atomization
energies of standard set of small molecules. This enhanced precision has

made DFT an important element of quantum chemistry.
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2.4 Generalized Gradient Approximation (GGA)

The local spin density (LSD) approximation has been the basis of
electronic structure calculations in solid-state physics for many years [41].

This rough calculation may be written as:

E. (n,n) = jd?’r n(r)ng”[nT(r),ni(r)} (2.27)

if
& ;2 | (r% 1 n¢) exchange-correlation energy for each particle of a uniform

electron gas [50]. The LSD exchange-correlation energies are inadequately
negative (by about 10%) for aimost all atoms, molecules, and solids. The
LSD is a dependable, moderate-accuracy approximation. For many solid-
state objectives , the LSD level of precision is adequate, but LSD is not
precise enough of most chemical applications, which need the deter-
mination of energy diversities with substantial accuracy. Hence the
disinterest of the quantum chemistry community toward density functional
techniques until recently[51]. New gradient-corrected functional of the

form:
ES:GA[W’W] _ jd?’r f(nT(?),m(?),VnT,Vm) (2-28)

where f are functionals for different energies of the same system.
These functionals may be partitioned into two wide categories : “‘locally
based’’ functional, whose construction starts from the uniform electron gas,

and "semi empirical" functional, which has one or more parameters fitted to
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a particular finite system, which have minimized LSD atomization energy
errors by about a factor of 5[52]. The generalized gradient approximation
(GGA) has attracted much attention for its abstract simplicity and moderate
computational workloads. at present, two GGA functional, one suggested
by Becke and Perdew (BP)] and one suggested more recently by Perdew
and Wang (PW), are the most popular ones in the literature [53]. Many
calculations assessing the accuracy of the GGA have been reported and
commonly demonstrate that the GGA substantially corrects the LDA error
in the cohesive energies of molecules and solidg54]. Generalized gradient
approximations (GGA’s) to the exchange-correlation (XC) energy in
density-functional theory, are at present receiving increasing attention as a
straightforward substitute to improve over the local-density approximation
(LDA) in ab initio total-energy calculations [50]. In avariety of fields, the

GGA provided evidence to be more suitable than the LDA:

(1) Binding energies of molecules and solids became more precise,

correcting the trend of the LDA to over binding [55].

(2) Activation energy obstacles, e.g., for the dissociate adsorption of H »
on metal and semiconductor surfaces, are in distinctly better
accordance with experiment. Reaction and activation energies for a

variety of chemical reactions give the same enhancement [56].

(3) The relative constancy of structural phases seems to be anticipated

more realistically for magnetic and for nonmagnetic materials ,too

[57].
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Bulk structura qualities are often not developed within the GGA.
While the lattice parameters aways rise in comparison with the LDA, a
closer agreement with experimental data is reported for alkali metals, 3 d
metals, and some 4d metals. However, an overestimation of up to severa
percent is found for 5d metals and common semiconductors, their bulk

moduli accordingly turning out to be too small (typically by <25%)[58].
2.5 Thefull-potential linearized augmented-plane wave technique

The full-potential linearized augmented-plane wave (FP-LAPW)
technique is well known to allow most precise calculation of the electronic
structure and magnetic qualities of crystals and surfaces. The application
of atomic forces has greatly maximized its applicability, but it is still
commonly supposed that FP-LAPW computations need considerable
higher computational effort in comparison with the pseudopotential plane

wave (PPW) based techniques [59].

FP-LAPW has recently showed important progress. For example,
researchers habitually work out magnetism and nuclear quantities (for
example, isomer shifts, hyperfine fields, electric field gradients, and core
level shifts) [60]. Also, forces and molecular dynamics have been applied ,
and recent optimizations have decreased the CPU time of FP-LAPW
calculations significantly [59]. Nevertheless, because the computational
expense and memory requirements are still fairly high, FP-LAPW
implementations are suitable only to fairly complicated systems. One

successful implementation of the FP-LAPW technique is the program
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package WIENZ2K, a code enhanced by Blaha, Schwarz and coworkers
[61]. It has been successfully implemented to a various scope of difficulties
such as electric field gradients [62] and systems such as high-temperature
superconductors, minerals [63], surfaces of transition metals [64], or anti-
ferromagnetic oxides [65] and even molecules [66]. Reducing the total
energy of a system by comforting the atomic counterparts for complicated
systems became potential by the application of atomic forces, and even
molecular dynamics became possible. So far the main disadvantage of the
FP-LAPW-technigue in comparison with the pseudopotential plane-wave
(PPW) [67] method has been its higher computational expense. This may
be largely because of an inconsistency in optimization efforts spent on both
techniques, and so we have investigated the FP-LAPW technique from a

computational arithmetical viewpoint.

Lately, the development of the Augmented Plane Wave (APW)
techniques from Slater's APW, to LAPW and the new APW+lo was
portrayed by Schwarz et a[68].

One of the most precise techniques for performing electronic
structure calculations for crystals is the full potential linearized augmented
plane wave FP-LAPW technique. It is based on the density functional
theory for the handling of exchange and correlation and uses (for example,
the local spin density approximation) (LSDA). Effects, for valence states

relativistic ,can be incorporated either in a scalar relativistic handling or
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with the second dissimilarity technique including spin-orbit coupling. Core

states are treated fully relativistically.

The FP- LAPW technique ,which is Like most " energy-band
techniques ,is a process for solving the Kohn-Sham equations for the
ground state density, total energy, and (Kohn-Sham) eigen values (energy
bands) of a many-electron system by presenting a basis set which is

particularly modified to the problem.

11

Figure (2.3): Partitioning of the unit cell into atomic spheres (1) and an inter stitial
region (11)

This dteration is achieved by partitioning the unit cell into (1) non-
overlapping atomic circles (centered at the atomic sites) and (I1) an
interstitial region, that’s to say, a region between two spaces. In the two

sorts of regions diverse basis sets are used:

« Inside atomic sphere t of radius R; a linear combination of radial

functions times spherical harmonics Y (r) is used

D = Z[Amul (?, E)+B.U (7’ E )]Ylm(_r)) (2-29)
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where Ul(l', El) is the (at the origin) normal way out of the radial
Schr dinger equation for energy E and the spherical part of the potential
inside sphere, lJI (r, El ) is the energy derived of U;taken at the similar

energy. A linear mixture of these two functions comprise the linearization
of the radial function; the coefficients Amand Bmare functions of

kndecided by requiring that this root function U, goes with the equivalent

basis function of the interstitial region; U and are achieved by numerical

integration of the radial Schr dinger equation on a radial mesh inside the
sphere.

« (Il) intheinterstitial zone aplane wave extension is applied
1 ik.r
#, =—=€" -
kn \/va (2-30)
« Where kn =k+ kn, kn are the mutual lattice vectors and k is the wave

vector inside the first Brillouin zone . Each plane wave is increased by

an atomic-like function in every atomic sphere.

The solutions to the Kohn-Sham equations are extended in this joint

basis set of LAPW's according to the linear dissimilarity technique

Y = z Cofkn (2-31)

and the coefficients C,are decided by the Rayleigh-Ritz variation rule.

The union of this basis set is controlled by a disconnected
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parameter R, K, =6 -9, where R.is the smallest atomic sphere

radiusin the unit cell and K o isthe magnitude of the largest K vector.

Additional (Kn independent) basis functions can be added to

Improve upon the linearization and to make possible a reliable treatment of
semi core and valence states in one energy window .They are called "local
orbitals’ and consist of a linear combination of 2 radia functions at 2

dissimilar energies and one energy derivative:
© = [AM(DE) B (LENFGU(LEIY a9

The coefficients Am, Bm, and G, are decided by the necessities
that ¢LO should be regularized and has zero value and slope at the sphere

border.

The FP- LAPW technique ,in its general form ,extends the potential

in the following form

I DV(NY.()  insidesphere
v =1m""
D Vice" outsi desphert (2-33)
L K

And the charge densities analogously. Thus no form of rough
calculations are made, a process often called the "full- potential "

technique.
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The "muffin-tin" rough calculation applied in early band calculations
matches to keeping only the L= 0 and M=0 component in the initial idiom
of final equation. and only the K=0 constituent in the second. This process
matches to take the spherical rate inside the spheres and the volume rate in

the interstitial region.
The entire energy is calculated according to Weinert et al [69].
The forces at the atoms are worked out according to Yu et al [70].

The Fermi energy and the weights of each band state can be worked

out using an adapted tetrahedron (having four surfaces) technique [ 71].
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CHAPTER 3
Computational Details

3.1 Wurtzite Structure (WZ2)

The wurtzite structure WZ has a hexagonal unit cell with two lattice
parameters a and c in ratio ¢/a =1.633. This structure is composed of two

hexagonal closed-packed (hcp) sub lattices.

The primitive unit cell of the WZ structure is shown in Figure (3.1),
while its conventional unit cell is shown in Figure (3.2). The conventional
unit cell of WZ structure has a hcp lattice with two basis. Al, B or In atom
a (a3, 2a/3,0) and N atom at (a/3, 2a/3, u), where u is caled the
dimensionless cell internal structure parameter and a is the lattice

parameters. The wurzite structure space group is p6;mc.

Figure (3.1): The primitive unit cell of AIN in wurtzite structure



34

Figure (3.2): The conventional unit cell of AIN in thewurtzite structure

3.2 Rocksalt Structure (RS)

In rocksalt (RS) structure the anions form a face-centered cubic (fcc)
lattice where open sites are occupied by cations. The space group for the
rocksalt structure is Fm3m. The primitive unit cell of the RS structure is
shown in Figure (3.3), while its conventional unit cell is shown in Figure
(3.4). The coordinate of Al, B, or In atom is (Oa, Oa, 0a) and the N atom at
(a2, al2, al2).

Figure (3.3): Theprimitive unit cell of AIN in rocksalt structure
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Figure (3.4): Te conventional unit cell of AIN in therocksalt structure
3.3 Zincblende Structure (ZB)

In semiconductors the most ambient-pressure structure is the
Zincblende (ZB) structure. ZB structure is cubic with space group F43m.
The Zincblende structure is also basically just an fcc lattice with two atoms
at each lattice site. One atom centered at the lattice site itself and another
atom offset from the lattice site by a4 along all axes72]. The primitive
unit cell of the ZB structure is shown in Figure (3.5), while its conventional

unit cell is shown in Figure (3.6).

Figure (3.5): Theprimitiveunit cell of AIN in zincblende structure
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Figure (3.6): Te conventional unit cell of AIN in the zincblende structure
3.4 The Computational Details

In our calculations, we use the full-potentia linearized augmented
plane wave method (FP-LAPW) within the local density approximation
(LDA) and the generalized gradient approximation (GGA) as implemented
by WEIN2K code [73]. The FP-LAPW method is used to calculate the
electronic and structural properties of AIN, BN, and InN in the Wurtzite,

Zincblende, and Rocksalt phases.

As mentioned before the crystal structure of the ZB and RS phases
can be defined by the lattice parameter a. The wurtzite structure, however
is hexagona structure, which depends on three structure parameters : a, ¢
and interna parameter, u. To determine the equilibrium geometry of
wurzite phase we follow the following steps. In the first step the optimum
value of u is determined by calculating total energies of c/aratio. Then the
equilibrium value and bulk modulus were determined by calculating the

total energies for a set of volumes and fitting these to the Murnaghan's
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equation of state [74]. The next step is calculating the total energies for 6
different values of c/a. After this step we find the minimum energy by
fitting the resulting values to a parabola. Fixing the optimum value of a and
c/a, we vary the parameter u and find the new total energy. Finally, with c/a
and u fixed at their optimized value, we vary a and calculate the total
energy at 6 different volumes, which we fit again by the Murnaghan's

equation of state.

Before we start these calculations on WEIN2K code, a well known
compound TiC is practiced. Inserting the lattice parameter a, the muffin-tin
(MT) radius Ryr, and the atom's positions. We obtained structural
parameters (bulk modulus B, the derivative of bulk modulus to pressure B

and the energy E). We got results similar to published ones.

In our calculations we take the L-expansion of the non spherical
potential and charge density L. t0 be 12, according to convergent test,
which shows that this value is the suitable one in our calculations, as shown
in Figure 3.10.

Table (3.1): L- expansion of the non spherical potential and energy
using GGA and L DA approximationsfor RS-AIN.

L Energy (Rydberg) | Energy (Rydberg)
(GGA) (LDA)

4 595.3579 592.83169

6 595.3394 592.82991

8 595.3379 592.82979

10 595.3378 592.82978

12 595.3378 592.82978
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Convergent Test

595.36

595.355 \
595.35

595.345 \\
595.34

595.335

Energy (redberg)

Figure (3.7): The convergent test using GGA approximation for RS-AIN.

Convergent Test

592.8315
592.831

592.8305

Energy (redberg)

592.83

592.8295

Figure (3.8): The convergent test using L DA approximation for RS-AIN.

For AIN compound the muffin-tin radius Ryt in ZB, RS, and WZ
structure are taken to be 1.9 and 1.5 for Al and N, respectively, in
GGA cdculation ; whereas the Ryt aretakentobe 1.6 and 1.6 for Al
and N, respectively in LDA calculation. It is found that in the MT spheres,
the L-expansion of the nonspherical potential and charge density was
carried out up to L = 12. In order to achieve energy eingenvalue

convergence, it is expanded the basis function up to RytKuax = 10 (where
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Kwmax 1S the maximum modulus for the reciprocal lattice vector, and Ry is
the average radius of the MT spheres), equivalent to approximately 1400
and 300 basis functions per atom for WZ and cubic phases, respectively.
The k integration over the Brillouin zone is performed upto a4 x 4 x 4
Monkhorst—Pack [75] mesh. The number of sampling k-points in the
irreducible Brillouin Zone is 114, 72 and 72 for the WZ , ZB and RS
structures respectively, which correspond to 12x12x12 k-points meshes for
ZB and RS structures and to 12x12x6 k-points for the WZ structure in LDA
calculations, whereas the number of sampling k-points in the irreducible
Brillouin Zone is 297, 165 and 165 for the WZ , ZB and RS structures
respectively, which correspond to 17x17x17 k-points meshes for ZB and
RS structures and to 17x17x9 k-points for the WZ structure in GGA

calculations.

For BN compound the muffin —tin radius Ryt in ZB, RS structure is
taken to be 1.25 for B and 1.25 for N in GGA calculation, whereas the
Rut In ZB, RS structureistakento be 1.4 for B and 1.5 for N in LDA
calculation. The number of sampling k-points in the irreducible Brillouin
Zone is 5 for the ZB and RS structures respectively, which correspond to
3x3x3 k-points meshes for ZB and RS structures in LDA calculations,
whereas the number of sampling k-points in the irreducible Brillouin Zone
is 14 for the ZB and RS structures respectively, which correspond to 5x5x5

k-points meshes for ZB and RS structuresin GGA calculations.
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For InN Compound the muffin —tin radius Ryr in WZ, ZB, RS
structures aretakentobe2 and 1.9 for Inand N, respectively, in GGA
caculation ; while the Ryt in WZ, ZB, and RS aretakentobe 2.3 , 1.6
for In and N, respectively, in LDA calculation. The number of sampling k-
points in the irreducible Brillouin Zone is 21, 10 and 10 for the WZ, ZB
and RS structures respectively, which correspond to 4x4x4 k-points meshes
for ZB and RS structures and to 6x6x3 k-points for the WZ structure in
LDA and GGA calculations. In the case of the fcc Bravais lattice, an
equidistant 8x8x8 mesh has been used; whereas in the case of the

hexagonal Bravais lattice, we applied a 25x25x16 mesh [76].
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Chapter 4
Results And Discussion

4.1 AIN Compound:

AIN is a ceramic and refractory material and has combination of
attractive physical properties such as: low thermal expansion, high thermal
conductivity, high hardness and high melting points. In this section we

present structural properties, band structure and transition pressure for AIN

compound.
4.1.1 Structural properties:

The structural parameters have been obtained by minimizing the total

energy with respect to the volume and fitting it to the Murnaghan equation

of state:

E0)—E(,) = BV {(\/O/V)B(’) +1}_ BV

B, | B-1 ) B-1 @

where E(V ) isthe DFT ground-state energy with the cell volume V,
Vo is the unit-cell volume at zero pressure, B, denotes the bulk modulus,

and their first pressure derivative is[74]:
B',=dB,/dP aP=0 (4-2)

The calculated lattice parameters for AIN, BN, and InN in LDA and

GGA calculations are shown in Tables 4.1 and 4.2, respectively.
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Table (4.1): The calculated lattice parameters for AIN, BN, and InN
using LDA method.

Structure AIN BN InN
ZB a=4.349 3.615 4.96
RS a=4.01 3.503 4.63

Wz a=3.11 3.52
c=4.97 5.702
u=0.380 0.375

Table (4.2): The calculated lattice parameters for AIN, BN, InN using
GGA method.

Structure AIN BN InN
ZB a=4.409 3.615 5.04
RS a=4.07 3.503 471

WZ a=3.113 3.58
c=5.023 5.7638
u=0.380 0.379

4.1.1.aWurtzite—AIN structure:

Table (4.3): The structural parameters for wurtzite-AIN structure
using LDA and GGA methods.

Method LDA GGA Experimental
Results
a( ) Present 3.0906 3.138
Other 3.057°- 4114 | 3135 3.11°
c( ) Present 4.9449 5.024
Other | 4.943-5046° | 5023° 4.978°
o/a Present 1.60 1.601
Other 1.604*-1.619% | 1.601° 1.601°
J Present 0.380 0.380
Other 0.380*- 0.383% | 0.3801° 0.385°
195.0232
B,(GPa) Present 211.0047 :
Other 215° 192.35 185°¢- 212°
B, Present 3.8757 4.0295
(GPe) Other 3.82° 3.757° 5.7°-6.3°

Ref [77], ° Ref.[ 78], ¢ Ref.[79)].
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In table (4.3) we present structural properties (lattice constants a,
bulk modulus B, and Bo’ ) for wurzite AIN in LDA and GGA calculations.
As shown in this table the lattice constants (u, a, ¢) for the WZ-AIN used
in our calculation are so closed to the experimental values.

For WZ-AIN the lattice parameters (a=3.08 , c=4.94 ) determined
by Wright and Nelson [80] using pseudopotential calculations, which is

close to that obtained by us.

These parameters are dlightly underestimated compared to the
experimental values using the LDA method. Figure 4.1 shows the fitted
total energy versus volume for WZ-AIN using GGA method, while Figure
4.2 shows the fitted total energy versus volume for WZ-AIN using LDA

method.
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Figure (4.1): Energy versusvolumefor WZ-AIN using GGA method.
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Figure (4.2) : Energy versusvolumefor WZ-AIN using LDA method.

4.1.1.b Zincblende-AIN structure:

Table (4.4): The structural parameters for zincblende-AIN structure
using LDA and GGA Methods.

M ethod a() Experimental B (GPa) B’ (GPa)
Results
LDA Present | Other 4.38° Present | Other | Present | Other
4344 | 4.31° 4.37¢ 200.191 | 213° | 3927 | 3.2°
GGA 4.41 4.39" 193.715 | 1917 | 4.0899 | 3.81°

°Ref.[79], “Ref.[26] , ®Ref [ 81], 'Ref.[82].

In table 4.4, it is shown that the lattice constant a ( ) for the ZB-AIN

in LDA method is underestimated compared to the experimental value, but

in GGA method is overestimated compared to the experimental value.

Also, in GGA method our calculation is in better agreement compared to

the others. In Figure 4.3 shows the fitted total energy versus volume for

ZB-AIN using GGA method, while Figure 4.4 shows the fitted total

energyversus volume for ZB-AIN using LDA method.
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46

4.1.1.c Rocksalt- AIN structure:

Table (4.5): The structural parameters for rocksalt-AIN structure
using LDA and GGA methods.

M ethod a() B, (GPa) B, (GPa) Experimental
Results
Present | Other | Present | Other | Present| Other |a = 4.04%
LDA 4.012 | 3.978% | 273.9226 | 2729 | 39958 | 3.8 |[B,= 221
GGA 4.076 | 4.074" | 249.0013 | 252" | 39822 | 3.901" | B/ = 4.8’

9Ref.[83], " Ref.[1], ' Ref.[84],! Ref.[85]

In table 4.5, we notice that the lattice constant in LDA method is

underestimated, while in GGA method is overestimated compared to the

experimental value. The Bulk modulus obtained in LDA method is larger

than both GGA and experimental values.
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Figure (4.6): Energy versusvolumefor RS-AIN using GGA method.

Figure 4.5 shows the fitted total energy versus volume for RS-AIN
using GGA method, while Figure 4.6 shows the fitted total energy versus
volume for RS-AIN using LDA method. The theoretical |attice parameters,
bulk modulus and the derivative of bulk modulus to the pressure are
obtained through fitting the total energy versus volume data with the

Murnaghan's equation of state [74].

4.1.2 Band Structure

An energy range in a solid where no electron states exist is called
energy band gap. The band gap generally refers to the energy difference
between the top of the valence band and the bottom of the conduction band
in insulators and semiconductors ; it is the amount of energy required to
free an outer shell electron from its orbit about the nucleus to a free state.

The semiconductors have a small band gap < 3 eV, aso electrons are
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confined to a number of bands of energy, and forbidden from other
regions[86]. The band gap energy of semiconductors tends to decrease with
increasing temperature. When temperature increases, the amplitude of
atomic vibrations increase, leading to larger interatomic spacing. The
interaction between the lattice phonons and the free electrons and holes will
also affect the band gap to a smaller extent [87]. The relationship between
band gap energy and temperature can be described by Varshni's empirical

expression [88].

aT?
E,(T)=E,(0) - T45 (4-3)

where E4(0),0 and B are material constants.

Band gaps also depend on pressure. Band gaps can be either direct or

indirect band gaps, depending on the band structure.

4.1.2.aBand structurefor AIN compound

Table (4.6): The energy band structuresfor AIN compound in WZ, RS,
and ZB structures.

Structure | Method Present Other Experimental
calculations(eV) | calculations(eV) | Result (eV)
Wurtzite LDA 4.425 4.39" 6.28%
GGA 4.179 4.027"
Rocksalt LDA 4.032
GGA 4.341
Zinchlende| LDA 2.70 3.21"
GGA 3.275 3.304"

" Ref .[1], “Ref. [89]
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The most features of the band structure of WZ-AIN, RS-AIN and
ZB-AIN are shown in Figures 4.7, 4.8 and 4.9 in GGA and LDA methods

respectively.

In WZ-AIN the band gap is 4.4 eV, 4.17 eV using LDA and GGA
methods respectively, and adirect band gap at I" point ; thisisin agreement
with the results of Wright and Nelson [80], who used plane-wave

pseudopotential total energy calculation in the LDA approach.

Slight differences are seen in valence bands : In this case GGA bands
lie higher in energy than those of LDA which leads to dlightly reduction
bandwidths.

We notice that the ZB-AIN is indirect band gap from the I" point, at
the X point. Comparing LDA and GGA calculations in the ZB-AIN we see
that the band structures are similar, except that the band gap at " point for
the LDA issmaller than the GGA results.

There is no other calculations about RS-AIN using LDA or GGA

methods.
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Figure (4.9): The energy band structure for zincblende AIN using GGA and LDA
methods.

4.1.3 Structural phase transition:

When a system of molecules undergoes change, whether chemical
reaction or changes in physical states such as phase changes. There are two

tendencies driving the changes:
« Free Energy tendsto decrease,

« Entropy tendsto increase.
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If E represents the energy, T the temperature, and S the entropy,
these two tendencies can be combined by stating that the expression E - TS,
the Helmholtz function, tends to decrease. Strictly, this is only true in
situations where the volume is constant, as in sealed containers. If the
pressure is constant, as in open containers, the enthalpy H = E + PV (where
P represents the pressure and V represents the volume) replaces the energy,
and thus the quantity that must be minimizedisH - TS=E + PV - TS, the
Gibbs function. When T=0, then H= E +PV and then we can get the

pressure.

Physicists have tended to use the term free energy and the symbol F
for the Helmholtz function, using G to represent the Gibbs function;
chemists have preferred to denote the Helmholtz function by A and call it
the work content, reserving the term free energy and the symbol F for the
Gibbs function. Recently a compromise notation has become common,
using A for the Helmholtz function, G for the Gibbs function, and avoiding
F entirely. The functions are then referred to as the Helmholtz free energy

and Gibbs free energy[90].

Table (4.7): Transition pressure (P;) of AIN structure using LDA and
GGA methods.

P (GPa)
Structure Method Present Other Experimental
Results
ZB-RS GGA 4.64 5.3"
WZ-RS GGA 10 95" 14', 16
ZB-RS LDA 3 78
WZ-RS LDA 9.3 12.9' ,16.6"

"Ref[1] 'Ref. [84] 'Ref.[85], 'Ref.[91],
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Figures 4.10 and 4.11 show the fitted energy versus volume for AIN.
The transition pressure p; from WZ to RS and ZB to RS of AIN is
determined. The p, for WZ to RSisfound to be 10 GPaand for ZB to RSis
found to be 4.64 GPa within GGA calculations. Whereas the (p,) from WZ
to RS and ZB to RS of AIN is found to be 9.3 GPa, 3GPa respectively,
within LDA calculations. From the Figures we notice that the WZ structure

isthe stable structure for AIN.
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Figure (4.10): Thetransition pressure of AIN using GGA method.
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Figure (4.11): Thetransition pressure of AIN using L DA method.
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4.2 BN Compound:

Boron nitride possesses many properties which are of technological
interest. It is used as an electrical insulator however its tendency to oxidise
at high temperatures often restrict its use to vacuum and inert atmosphere
operation. Also, its chemical inertness leads to application as thermocouple
protection sheaths, crucibles and linings for reaction vessels though as
above oxidation must be avoided. In its dense cubic zincblende form, boron
nitride has extreme hardness, high melting point, wide band gap, chemical

inertness, and large thermal conductivity.

4.2.1 Structural properties:

Table (4.8): The structural parameters for zincblende-BN structure
using LDA and GGA methods

a() B (GPa) B’ (GPa)
M ethod Present | Other | Present | Other | Present | Other
LDA 3.595 | 3.575" | 403.7575 | 397" 41791 | 3.97"
386" 4"
GGA 3.623", | 370.9779 | 368", 3.5891 3.3,
3.626" | 3.606" 360" 4", 3.6"
Experimental 3.615" 369™ qm
Results

"Ref [92], "Ref [93]

The curves of Figures 4.12, 4.13 are fitted to Murnaghan's equation
of state in order to determine the structural parameters given in tables 4.8
and 4.9. In table 4.8, the lattice constant in GGA method is in a good
agreement with the experimental value whereas it is found that the LDA

calculation is slightly lower than the experimental value. In addition, the



56

Bulk modulus value is closed to the experimental value in GGA method
but in LDA is slightly larger. In the LDA, the B’ isin good agreement

with the experimental value.
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Figure (4.12): Energy versusvolumefor ZB-BN using GGA method.

=158, 2808 T T T T |

-158, 8038 | 1

=1348. 2048 -

=134.2638 -

Energy CRyl

=1548.2898 | 1

=138.2108 | 1

=138.2118

1 L L I L 1
74 & e o L L1 L] L1
Yoluse [&.0."3]

Figure (4.13): Energy versusvolumefor ZB-BN using L DA method
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Table (4.9): The structural parameters for rocksalt-BN structure using
LDA and GGA methods.

Method | a () B (GPa) B’ (GPa)

Present Other Present | Other | Present Other
LDA 3.467 3.500" |428.6748| 425" 4.2683 459"

3.493"
GGA 3.5041 | 3.503", |381.4622| 399", | 3.7236 | 2.53",
3.49" 480" 3.7

"Ref [93]

Table 4.9 shows the structural parameters (a, B, B') compared with

other calculations.
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Figure (4.14): Energy versusvolumefor RS-BN using L DA method
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Figure (4.15): Energy versusvolumefor RS-BN using GGA method

Figures 4.14 and 4.15 show the fitted energy versus volume for RS-
BN using LDA and GGA method which the structural properties are

obtained from them.

4.2.2 Band structure

Table (4.10): The energy band structurefor BN compound

Present Other Experimental
Structure | Method | calculations | calculations Result
(eV) (eV) (eV)
Zincblende LDA 4.356 42" 4.4" 6"
GGA 4433 6.4"
Rocksalt LDA 2.193 6.3" 6.4"
GGA 1.710

"Ref.[93]

Figures 4.16, 4.17 show the energy band gap for ZB-BN and RS-BN,
which present that these band structures are calculated at the equilibrium
lattice constants for the LDA and GGA methods. It is found to be 4.35 eV
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and 443 eV, 2.19 eV and 1.71eV by LDA and GGA respectively. We
notice that the energy band gap for ZB-BN is indirect (I'-X). The energy
band gap for ZB -BN in GGA method is in close agreement with other
calculations. Also, the energy band gap for RS-BN isindirect (L-X).

The conduction bands in LDA calculations are shifted a little down
with respect to those of the GGA which is leading to a reduction of the
band within the ZB-BN structure. Thisisin contrast in RS-BN structure.
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Figure (4.16): The energy band structure for zincblende BN using GGA and LDA
methods.
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Figure (4.17): The energy band structure for rocksalt BN using GGA and LDA
methods
4.2.3 Structural phase transition:

Table (4.11): Transition pressure (P;) of BN structure using GGA
method

Structure | Method P (GPa)
Present Other(GPa)
ZB-RS GGA 500 555", 111"

"Ref [93]
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Figure (4.18): Thetransition pressure of BN using GGA method

Figure 4.18 shows that the P, for ZB to RS in BN is 500 GPa. This

result is in a good agreement with other calculations. From the Figure we

notice that the ZB structure is the stable structure for BN.

4.3 InN compound:

4.3.1 Structural properties:

Recently, InN has attracted considerable attention due to its potential

applications, on one side, and the seemingly conflicting results of various

investigations, on the other side.
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Table (4.12):The structural parameters for Wurtzite-InN structure
using LDA and GGA methods.

Method LDA GGA Experimental
Results
a() Present 3.514 3.594 3.54°
Other 3.52° 3.58°
c() Present 5.692 5.786
Other 5.702° 5.763°
c/a Present 1.62 1.61 1.611°
Other 1.62° 1.61°
u Present 0.375 0.379 0.375°
Other 0.3788° 0.379°
B (GPa) Present 149.0221 122.7514 125.5°
Other 142.58° 123.51°
B’ (GPa) | Present 4.7825 5.2645 12.7°
Other 4.67° 4.43°

°Ref. [94] PRef [95]

In our GGA calculation seem to be accurate when compared with the
experimental value. Moreover, the u parameter in LDA caculation is
accurate compared to the experimental value. The Bulk modulus (B)
obtained using LDA is larger than experimental value, whereas the B is
smaller using GGA method.
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Figure (4.19): Energy versusvolumefor WZ-InN using L DA method
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Figure (4.20): Energy versusvolumefor WZ-InN using GGA method

Figures 4.19 and 4.20 show the fitted energy versus volume for WZ-InN
using LDA and GGA method which the structural properties are obtained
from them.

Table (4.13): The structural parameters for Rocksalt-InN structure
using LDA and GGA methods.

M ethod a( ) B(GPa) B’ (GPa)
Present | Other | Present Other | Present | Other
LDA 4.603 4.63° |196.2893 | 186.2° | 6.2854 |4.67°
GGA 4.709 4.71° |151.1941 | 161.45°| 3.5766 |4.45°
Experimental 1708 5099
Results

°Ref.[94]. Ref [83]

As shown in table 4.13, the lattice constant is close to other
calculations. The bulk modulus (B) in LDA is larger than experimental
value but GGA calculations show that B is smaler than the experimental
values. We notice that B* in both LDA and GGA appears to be in

reasonable agreement with experimental value. Figures 4.21 and 4.22 show
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the fitted energy versus volume for RS-InN using LDA and GGA methods.

The structural properties (a, B, and B') are obtained from them.
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Figure (4.21): Energy versusvolumefor RS- InN using GGA method
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Figure (4.22): Energy versusvolumefor RS-InN using LDA method
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Table (4.14): Thestructural parametersfor ZB-InN structure using
L DA and GGA methods.

M ethod a() B (GPa) B’ (GPa)
Present | Other Present Other Present | Other
LDA 494 4.96° 148.5.94 142.37° 48702 | 4.69°
GGA 5.06 5.04° 122.0732 | 123.23° 47914 | 4.44°
Experimental 4,989 1379
Results '

°Ref .[94], Y Ref.[83]

In table 4.14, the lattice constant of ZB-InN in LDA caculation

seems to be in a good agreement compared to the experimental value. In

GGA method the value of B is smaller when compared with the LDA and

experimental value.The B’ in LDA calculation is larger than in GGA

calculation
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Figure (4.23): Energy versusvolumefor ZB-InN using L DA method
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Figure (4.24): Energy versusvolumefor ZB-InN using GGA method

Figures 4.23 and 4.24 show the fitted energy versus volume for ZB-
INN using LDA and GGA method which the structural properties are

obtained from them.

4.3.2 Band structure

Table (4.15): Theenergy band structurefor InN compound

Present Other

Structure Method calculations(eV) | calculations(eV)
Wurtzite LDA -0.2640 -0.27°

GGA -0.3643 -0.37°
Rocksalt LDA 0.0838

GGA -0.2770
Zincblende LDA -0.38962 -0.29-0.4,1

GGA -0.51361 -0.55"

IRef.[96].

In table 4.15 we notice that the energy band gap for InN compound

in all structures is small. The energy band gap for InNN compound in LDA
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and GGA calculations seem to be in a good agreement compared to the
other calculations. The energy band gap for InN compound in

LDAcalculation is overestimated than the energy band gap in GGA

calculation.
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Figure (4.25): The energy band structure for wurtzite InN using GGA and LDA
methods.
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methods.
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Figure (4.27): The energy band structure for rocksalt InN using GGA and LDA
methods.

In Figures 4. 25 and 4. 26 the band structure of InN in the ZB and the

WZ structures appear quite similar, with no band gap at I" for LDA
and GGA inthe ZB and WZ structures.

In WZ-InN the energy band gap is -0.264eV, -0.3643eV using LDA
and GGA methods respectively, and adirect band gap at I point ; thisisin
agreement with the results of plane-wave pseudopotential total energy

calculation in the LDA approach [96].
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We notice that the in RS-InN is indirect band gap from the L point,
at the I" point. There is no calculations about RS-InN using LDA or GGA
methods.

4.3.3 Structural phase transition:

Table (4.16): Transition pressure (P;) of InN structure using GGA
method

Structure | Method P (GPa)

Present Other Experimental Results
WZ-RS | GGA 16.6 12.47", 11" 12.1", 1¢°
ZB-RS | GGA 18.5 10", 21.6'

"Ref.[1], "Ref.[97], °Ref.[98], 'Ref.[99].
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Figure (4.28): Thetransition pressureof InN using GGA method

In table 4.14 the transition pressure p; from WZ to RS is found to be
16.6 GPa and from ZB to RS is 18,5 GPa. These results are close to

experimental values. The ground state of InN isthe WZ structure.
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Chapter 5
Conclusion

The full-potential linearized augmented plane wave (FP-LAPW)
approach within the density functiona theory (DFT) in the local density
approximation (LDA) and the generalized gradient approximation (GGA)
for the exchange correlations functional is used to calculate bulk properties,
ground-state energies, lattice parameters, bulk modulus, its derivatives,

eguation of state, transition pressure, energy band gap and band structures.

Using FP-LAPW method we have obtained the following results:

.

The calculated structural parameters (a, B, B') using FP-LAPW method
are found to be in good agreement with the available experimental data
and other theoretical results.

2- The phase transition for AIN compound occur from WZ to RS and from
ZB to RS.The transition pressure from WZ to RS is found to be 9.3
GPa, 10 GPa and the transition pressure from ZB to RSisfound to be 3
GPa, 4.64 GPafor LDA and GGA calculations respectively.

3- For InN compound, the phase transition from WZ to RS and from ZB
to RS is found to be a 16.6GPa, 18.5 GPa for GGA calculations,
respectively.

4- For BN compound, the phase transition from ZB to RS is found to be at

500 Gpafor GGA calculation.
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The energy band gaps for AIN compound are calculated for WZ, RS
and ZB structuresisfound to be 4.425 eV, 4.032 eV, 2.70 eV and 4.179
eV, 4.341 eV, 3.275 eV for LDA and GGA calculations, respectively.
For InN compound, the energy band gap is calculated for WZ, RS and
ZB structures which is found to be -0.264 eV, 0.083 eV, -0.3896 eV
and -0.3643 eV, -0.277eV, -0.51361eV using LDA, GGA and
calculations, respectively.
For BN compound the energy band gap is calculated for RS and ZB
structures, which is found to be 2.193, 1.710 eV and 4.356, 4.433 eV
using LDA, GGA and calculations, respectively.
This study shows that AIN compound is insulator for WZ, ZB and RS
structures in both GGA and LDA calculations, while the BN compound
Is semiconductor for RS and ZB in LDA calculations, and insulator for
RS and ZB in GGA calculations. In addition, the InN compound is
semimetal for WZ, RS and ZB in both GGA and LDA calculations.
AIN and InN compounds can be found in WZ structures as a ground
state and originally in WZ structure since this structure has a minimum
binding energy.

BN compound can be found in ZB structures as a ground state and
originally in ZB structure since this structure has a minimum binding

energy.
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