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Abstract

In this paper we provide a uniform convergence using an overlapping
Schwarz method on nonmatching grids for quasi-variational inequalities
related to impulse control problem. The discretization on every sub-
domain converges in uniform norm was provided and a result of

approximation in the L” -norm was given.
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Introduction

In this paper we provide a uniform error estimate of an overlapping
Schwarz method on nonmatching grids for quasi-variational inequalities

related to impulse control problem. Find u e H'(Q) solution of
—Au-f <0

Uu—Mu<0,Mu>0

(Au—f)u-Mu)=0inQ

u=ginl,
a
on

where Q is a smooth bounded domain of R"with boundary 6Q =T and
f is aregular function and M is an operator given by

Mu=k+ inf _u(x+¢)

£20,x+&EeQ

wherek > 0 and & > 0 means that& = (51,52, ...... §n) with & >0,i=1,n.

Finally, T, is the part of the boundary defined as

T, = {x e &Qsuch that V& > 0and x+§¢5}

On the analytical side, quasi-variational inequalities have been
extensively studied in the last three decades (cf., e. g., (Bensoussan, A. &
Lions, J. L. Acad, CR. & Paris, t., Sc. 1973. Boulbrachene, M. &
Optimal, L. 2002). For the numerical approximations and computational
aspects we have a few of the results (cf,, e.g., (Boulbrachene, M. &
Optimal, L. 2002. Haiour, M. & Hadidi, E. 2009. Jinping, Zeng. &
Shuzi, Zhou. 1998).

In the present paper a new approach for the finite element
approximation for the problem where the obstacle related to solution. We
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consider a domain which is the union of two overlapping sub-domains
where each sub domain has its own generated triangulation. The grid
points on the sub-domain boundaries need not much the grid points from
the other sub-domain. Under a discrete maximum principle, we show that
the discretization on each sub-domain converges quasi-optimally in the
L” -norm.

We study in the first section the Schwarz method for the elliptic
quasi-variational inequalities; we state the continuous alternating
Schwarz sequence for the precedent quasi-variational inequalities, and
define their respective finite element counterparts in the context of
overlapping grids. Section 2 is devoted to the error analysis of the
overlapping domain decomposition methods. As a result of this, is
devoted to the proof of main fundamentals theorems then constructed,
geometrical convergence established of the problem, and an error
estimate in the maximum norm is derived.

The Schwarz Method for the Elliptic Quasi-variational Inequalities

We begin by down some definitions and classical results related to
Quasi-variational inequalities.

Elliptic Quasi-Variational Inequalities

Let Q be a convex domain in R? with sufficiently smooth
boundary 6Q . Now we consider the obstacle problem. Find ue H'(Q)
solution of
-Au-f<0
Uu—Mu<0,Mu>0
u=ginl, (D)
ou

—=0
on

We are given the right hand side f suchthat f € L*(Q) and M is
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given by
Mu=k+ inf u(x+¢) (2)

£20,x+E€0
We can reformulate (1) as
a(u,v—u)>(f,v-u)inQ
Uu—-Mu<0,Mu>0

u=ginl, 3)
au_y,
on

where

a(u,v) = [ Vu(x)vv(x)dx

(f,v)= I f (xv(x)dx

Q

M

and the non empty convex set

ueH'(QLu=¢inT,,u<MuonQ,
K = 4
? anda—u:O @
on

Where ¢ is a regular function defined in T,.

Let V" be the space of finite elements consisting of continuous
piecewise linear functions. The discrete counterpart of (3) consists of
finding u, € K, such that
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a(uh’vh_uh)z(f’vh_uh)

u,—r,Mu, <0

u, =¢inT, )
ou,,
on

=0

where K, non empty discrete convex set associated to K

ueV"u, =7z,pinT,,

Ka =

ou (6)
u, <r.Mu, on Qand —" =0
on
where 7, is an interpolation operator onI", and r, is the usual finite
element restriction operator on Q.
The lemma below establishes a monotonic property of the solution of
(5) with respect to the obstacle.

Lemma 1 (cf. 14)
If u, <u, in the K ,, then Mu, <Mu,

and we have important propriety

VA>0,VueK, ;Mu+1)=M(u)+4 (7)
Remark 2
vu,uekK,; Mu—MGHLw(Q) sHu—G o (8)

Prof. We have U <u+ Hu B GHL* (@)

Now, making use of (7) and (8), we obtain
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MUSM(J+HU—J j=|\/|J+HU—J

L” (@) L”(Q)
or
“Mu<l—ul
Mu-—Mu =< HU UHL”(Q)
Similarly, interchanging the roles of the Muand M U we obtain
TRV I
Mu—Mu < HU UHL”(Q)
hence

-, <lu-u

1" (@)’

Theorem 3 (cf. 7). Under the previous assumptions, and the
maximum principle, there exists a constant C independent of h such that

Hu _GHL”(Q) < Ch2|10g h|2

The Continuous Schwarz Sequences

We consider a bounded, open domain Qin R*and we assume (to
simplify) that QO is smooth and connected and we then decompose Q in
two sub-domains Q,, Q, such that

Q=0Q,uQ, 9)
and u satisfies the local regularity condition
ueW>"(Q)on Q (10)

and we denote by
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I'=0Q,I, =0Q,, I, =0Q,, y, =0Q, NQ,,
7,=00,NQ,Q , =0 nNnQ,.

Re-consider the model obstacle problem: Find u € K such that

a(u,v-u)>(f,v-u)in Q
U-Mu<0,Mu=k+ inf ,u(x+cf),

£20,x+£€Q
u=ginl,, (11)
au_y
on

where f is a given function in Q say in L”(Q)we will assume in this
section that f >0, ¢ > 0. Indeed enable us to make such an assumption
by adding constants to U and ¢ and a positive function to f .

We define the following process; Let u, e K be given, we

2n+1

respectively define the alternating Schwarz sequences u~"" on Q, such

that u*™" e K_solves
a(U2n+l,V—U2n+l)Z (f,V—U2n+l)
u2I’H—1 _ MuZn—l S 0’ (12)
u2n+1 :u2n |n an

and U™ on Q, such that u*" € K_solves

au>,v-u>)=(f,v—u™)
u*" —Mu*"? <0, (13)
u" =u*""in aQ,
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Proposition 4. Let (Mu,go); (M 6,5) be a pair of data and
u= O'(Mu,go); u= O'(M 6,5) the corresponding solution to (3), we have
for i # j andi, j=12 Vu,uekK,

HU_GHW(Q) SHMU_I\/IGHL“°(Q)+H(0_(_DH|_°°( (14)

QnQ))

Prof. Setting for i = j andi, j =12

p|mu-mi_ lo-el., 0 (15)
we have
Mu <MU+Mu-Mu <Mu+Mu-Mu
SMG+Www—Mqu)
<Mumu-mu]_+lo—o].
hence
Mu<Mu+f

On the other hand, we have
F<p+p+p< ;+H¢_&HL‘”(QiﬁQj)

< E""H(”_gzuw(amﬂj)

< 5+H¢_;’Hm(emﬂj) + HMU -M aHmm

SO

p<p+p (16)
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then since o and M are increasing on L*(Q), it follows that

o(Mu,p)< oMU+ .0+ p)<o(Mu,p)+ g
or
o(Mu,p)-o(Mu,p)< 2

similarly, interchanging the roles of the couples (Mu,go) and (M G,&) we
obtain

o(Mu,p)-o(Mu,p)<
thus

HU _GHL“’(Q) SHMU -M aH|_°°(Q) +H¢)_&

L (@ine;)

the proof for the discrete case is similar.

Discretization

Assumption [cf. 9]: The discrete maximum principle assumption.
The matrix whose coefficients a((oi N )are supposed to be M-matrix. For
convenience in all the sequels, C will be a generic constant independent
on h.

Fori, j=1,2, letz" be a standard regular and quasi-uniform finite
element triangulation in Q; h, (h, =h, =h), being the mesh size. We
assume that the two triangulations are mutually independent on Q, , in

the sense that a triangle belonging to one triangulation does not
necessarily belong to the other.
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Let V " be the space of continuous piecewise linear functions on 7"
which vanish on Q; NoQ;,i= jand i, j=1.2.

For we C(@Q_i) we define

v, =V"v, =7, (W)on Q; noQ;,
Vo' =1 ov (17)
with—"=0
on
where 7, denotes the interpolation operator ondQ

We assume that the respective matrices resulting from the
discretization of problems (13) and (14) are M-matrix and we define the
discrete counterparts of the continuous Schwarz sequences defined in

(13) and (14), respectively by u s "*' e V " such that
a(u,f””,vh —Uﬁ”H)Z (f,Vh _uﬁn+l)
u™ =, Mu" <0, (18)
u™ =u" in aQ,

2 h
and u;" eV ),
Up

a(u,f”,v—uzn)z (f ,v—uﬁ”)
u" —r,Mu"? <0, (19)

2n __ ,,2n-1
u," =u,  in 0Q,

Error analysis

This section is devoted to the proof of main result of the present
paper, we need first to introduce an auxiliary sequence of discrete quasi-
variational inequalities and next to prove the two fundamental theorems.
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0 0 2n+1 2n+1 h
For &, =u, € K, we define the sequences ( . )n such &} eVuﬁn
that solves
a( h2n+1’Vh . l12n+1)2(favh _ h2n+1)
2n+l1 2n-1
no—=rMu;T <0 (20)

2n+l .20
n=Uugin o€,

and ( h2 n)n such that fhz " eVJ;n,1 that solves
h

a( ﬁ”,v—u“)z(f,v—ghz”)
20—, Mu"? <0, (21)
S =u""in 0Q,

Convergence Proof via the Maximum Principle

We introducing the sets

ua"" eV —Au™ < fon @,
u," =u"on oQ,,

L u™ —r,Mu" <0 onQ,,
ou;™!

on

=0

and
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2 h . 2
u," evuﬁn,l,—Auh“ <fonQ,,
2n 2n-1
u," =u;" on 0Q,,
T =! o 2n-2
u, —r,Mu; "~ <0onQ,,

ou."
on

=0

2n+1

Lemma 5: Let A is M-matrix and u_" (resp. u;""") is the solution
(19, 20). Then u;" (resp. u."") is the minimal of T*" (resp. T>"") .

Remark 6: The demonstration of lemma 5 is an adaptation of the
one in (Jinping, Zeng. & Shuzi, Zhou. 1998). given for the problem of
variational inequality. This lemma remained true for the problem
introduces in this paper.

Theorem 7: Let u,, is the solution of (5). Then the iterative sequence

2n+1

u;" (resp.u."") is monotone; that is u."" e T>"" (resp.u;" e T*") and

u™ <uL<ul = Uy

Prof. we take U, = U, onQ, such that —Au; = f ,

we know that if u) <rMu, then (—Au,?—f)SOOnQZthatis
IVuﬁV(vh —uﬁ)— f(vh —uﬁ)dxz 0.
Q

Therefore

Uy €T’, From lemma 5 we know that u; is the minimal element of
T, so U <r,Mu,,
we yields that

u; <u,. By induction, for index nwe obtain

An - Najah Univ. J. Res. (N. Sc.) Vol. 24, 2010



Mohamed Haiour & Salah Boulaaras

83

u™ <u <) =,
and we know that if

u <r,Mu! then (—Au; — f )< 0on Q, that is

IVuﬁV(vh —uﬁ)— 1‘(vh —uﬁ)dx > 0.
Q,

Therefore U’ eT® and from lemma 5 we know that U is the

minimal element of T,’ we yields thatu’ <u,.
By induction, for index n we obtain

2n+1 2n-1 1
umt e <Uu,.

Lemma 8: Let A= (aij )ijzm be an M-matrix such that

a; = a(gpi .0 ), then there exists constantsk,, K, ;
k, = sup{w, (x), xe 7, } € (0,1)
and

k, =sup{w, (x), x € 7, } € (0,1) such that

sup‘uh —u" <k, sup‘uh —u"
N N
and
sup‘uh —u "™ <k, sup‘uh —ul"
72 72
Prof.

2n+l1

and M, :sup‘uh —up
72

2n+l1

7

we may suppose M, # 0, we prove

(22)

(23)
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M, <M (24)
If (22) is not true then there exists X;, € 7, such that
‘UEM (Xio)_ uh(xiox =M, >2M

hence, we have (noting a; >0, a; <0 for i# jbecause A is M-matrix)

N N
0= a; (U™ -u)=>a; >0
i=l i=1
We know by theorem 3 that u;™"' > u, which implies that

2n+l1
Zano‘uh —uh‘— M, =0.

i,
Therefore
‘u,f”“ —uh‘ =M, if a; #0 (25)
Since A = (aij )ij:TN is irreducible there exist X;,,X;,........ Xis €7, such
that
L TIRTs a;, #0

We know by (25) that ‘uﬁ”“ (x,)-u, (Xizj =M, similarly, we get

‘UﬁM (Xi2 )_uh(xiz 1 == ‘UEM (Xis )_uh(xisj - ‘uﬁnﬂ (XIk )_uh(x'k 1 =M.

Hence we have

N N

2n+1
Za”‘uh —uh‘ZZa”M1>O
i=1 i=1

this contradiction proves (25), and the proof for the (23) case is similar.

The main convergence result is given by the:

An - Najah Univ. J. Res. (N. Sc.) Vol. 24, 2010



Mohamed Haiour & Salah Boulaaras 85

Theorem 9: The sequences (u,f”+1 )n ,(uﬁ” )n n>0

produced by the Schwarz alternating method converge geometrically
to the solution u, of the obstacle problem (5). More precisely, there
exist k;,k, € (0,1) which depend only respectively of (Ql, 7/2) and
(Q,,7,)such that all n >0

sup‘uh —u™ < kK] sup‘uh —~ u,?‘ (26)
Q n

and
Sllp‘uh —u" <k k) sup‘uh —u,ﬂ" (27)
Q) 72

Prof. Under Lemma 8 (from the maximum principle) we have

‘uh —u™ < w, (X)sup‘uh —u"
N
hence
sup‘uh —u" <k, sup‘uh —u; (29)
n N
and thus
2n+1 nn 0
sup‘uh —u;," <Kk, sup‘uh —uh‘
n n
also we have
‘uh —uX<w, (X)sup‘uh —uX!
721
sup‘uh —uﬁ”‘ <k, sup‘uh —u! (30)
72 72

thus
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sup‘uh —u" <k k) sup‘uh —u,ﬂ"
72 72

Then (29), (30) follows from the maximum principle which yields
forn>0

2n+l1 2n+l1 2n

Qi 7 4!
and
suplu, —u""| = sup‘uh —u™ = sup‘uh —u;"
Qo 72 72
hence
u _u2n+1 <knkn u _UO
supju, —U, | = Ky K, suplu, = Uy,
O V41
and

sup‘uh —u" <k k) sup‘uh —u,?‘
52 72
Error Estimate for the QVI.

Theorem 10: Letu be a solution of problem (3). Then there exists a
constant C independent of both h and n such that:

“U _ uﬁnﬂ

,)SCh2|logh|3 (D)

L* (QI
and

‘@—uﬁ

o,) < Ch7llog h (32)

(o

Prof. We setting herek = k; = k, and using theorem 3 and theorem 9
we have
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2n+1 2n+1

_ <y — _
“U uh Lx(al) _Hu uh Lx(51)+Huh uh Lx(yl)
<lby — w0
_Hu uh”l_*(ﬁl)-i_k Un —Us ()
SCh2|10gh|2 +k*"u, —uy )

SCh2|log h|2 +

+k2”(

< Ch?[logh|” +Ch*k™"[logh|’.

Lx(ﬁ))

0 0
— + —
u=uy Hw(yl) Hu Un

Now setting k" < |10g h| we get

2n+1

Ju—u;

5 < Ch’[log h|3

L* (Ql

The proof for the (32) case is similar.
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