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Abstract

In this paper we define and study a new concept called the extended
center of a group. Some examples are given and some results are
obtained to explain some of the properties of the extended center of a
group. Finally, homomorphism and extended center of groups are

studied.
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68 “The Extended Center of Groups”

1. Introduction

In this paper we define and study the extended center of a group. We
introduce some examples and obtain new results concerning the
properties of the extended center. We also show that the extended center

of the domain is a topological property.

Finally we give some examples to show that this is not the case if we
remove one of the following conditions of the mapping ¢: one to one,

onto, and homomorphism.

Let G be any group, then the center of G will be denoted by Z(G) =
{geG : gx = xg, for all xeG}. If S is a nonempty subset of G, the
centralizer of S in G is denoted by C(S) = {geG: gx = xg, for all xeS},
but the centralizer of {g} is denoted by C,, where g is a fixed element in
G. A group G is a torsion group if every element in G is of finite order. G
is torsion free if no element other than the identity is of finite order

(Fraleigh, J. B. 1976, pp.78).

Let Gy, Gy, .... and, G, be a family of groups. Then the Cartesian
product G; x G; x .... x G, is a group (called the direct product of
groups) under the pointwise binary operation (g, g2, ...., ) (hy, ha, ...,
h, ) = (g1 hy, g hy, ...., gy hy), where g, hie G; , i =1, 2, ...... n.
(Bhattacharya, P. & et. al. 1986. pp.67).
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2. Some Properties of Extended Center

In this section we define a new concept named the extended center of

a group, then we get some results and examples concerning this notion.
2.1 Definition

The extended center of a group G is defined by:
Z.(G)={geG:gx=xg, forall xeG except for a finite number}.
2.2 Theorem

Let G be a group. Then,
i. Ze(G)isasubgroup of G and Z(G) < Z¢(G) .
ii. If G is finite or abelian, then Z¢(G) = G.

iii. ge Z¢(G) ifand only if G\ Cy is finite. That is, Z¢(G) ={geG : G\
C g isfinite }.

Proof

i. Since e € Z(G), then Z .(G) # ¢@. Now, let a, be Z (G). Then there
are elementsaj,ay, ....,azand by, by, ...., by, in G such that ga
=agforall geG\{a,, as, ....,a,} and gb=bgforall geG\{b;, b
2 ...., b}, Hence (ab)g=g(ab™) forall geG\ {a,, as, ....,an b
I, ba, ..., by} Hence ab '€ Z.(G). Therefore, Z (G) is a subgroup
of G. Z(G) < Z «(Q) is clear from the definitions of the center and the

extended center .
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ii. If G is finite or abelian, then for any fixed xeG, xg = gx for all geG
except at most for a finite number of elements. Hence xe Z ((Q).

Thus G < Z(G) and hence G = Z .(G)

iii. Let ge Z(G). Then there are elements g, g2, ...., g, in G such that
gx = xg for all xeG \{g, g2, ...., gn}. Hence G\ C, is at most {g 1,
g2, ..., n}. Therefore, G\ C, is finite.

Conversely, suppose that G\ C, is finite, say G\ C, = {g1, g2, ...,
gntandsoG\{gi, g2 ...., gn} = C,. Hence gx = xg for all xeG \{g,
g2, ...., En}. This means that ge Z .(G)

Remark

From Theorem 2.2 (ii) we can see that, If G is finite and non abelian,
then Z «(G) # Z(G). For example, consider the dihedral group D3 which is
finite (of order 6) and non abelian. Moreover, Z(D3) = {Ro}, where Ry is
the identity element of Ds. See (Gallian, J. A. 2002. pp. 65). But from the
definition of the extended center, it is clear that Z .(D3) = Ds. Therefore,
Z (D3) # Z(Ds3).

2.3 Corollary

Let G and H be two finite groups. If ¢ : G — H is an onto group
homomorphism, then ¢ (Z.(G)) = Z(H).

It is trivial to note that if G = Z(G), then G is abelian and Z(G) =

Z (G) = G, however in the next example we show that the equality above
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may happen even in the case of non abelian group, moreover these
examples show that Z (G) is a proper subset of G. Surely the group in

the next example must be infinite (see the above remark).
2.4 Example

There is an infinite non abelian group G with Z¢(G) = Z(G).
Construction

X

Consider the group G = ¢ [

0
j: xz # 0 and x, y and z are real numbers }

y z
under matrix multiplication. One can easly see that Z(G) = { [’S Oj;xio }.
X

Let (X 0] be any element in G with x # z or y # 0. If x # z, then we can
y z

find infinite number of matrices (a Oj e G with ¢ # 0 such that,
C a

(x 0) [a 0];&(3 Oj [X OJ.Hence{X Ojeze(G)wheneverx

y z)\c a c a)l\y z y z

#z. If y # 0, then we can find infinite number of matrices [a 0 J with a
0 b

# b such that, [X OJ (a OJ * [a Oj (X Oj. Hence [X 0] ¢
y z)lo b 0 b)ly z y z
Z «(G) whenever y # 0. Therefore, Z (G) = [3 OJ: x =0 5 thatis

2(G) =Z(G)
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2.5 Theorem
Let G be a group. Then,
i. Z¢(Z(G)) cZ(Z.(G)).
ii. If Gisfinite, then Z ¢ (Z(G)) = Z(Z. (G)).
Proof

1. If xeZJ(Z(G)), then xeZ(G), so xeZ(G) and xg = gx for all g in G.
Hence xeZ(Z.(G)). Therefore, Z.(Z(G)) < Z(Z.G)). Or, since
Z (Z(G)) = Z(G) and Z(G) < Z(Z (G)), then Z . (Z(G)) < Z(Z (G)).

ii. By Theorem 2.2 (ii), Z(Z(G)) = Z(G) = Z(Z(G)) O
2.6 Theorem

Let H be the direct product of the groups Gi, G, .... and, G,. Then
Z{(H) = ZA(G1) x Ze(G2) X ... X Ze(Gy).

Proof

Let(gi, g2, ...-» En) € Z(H). Then there is a finite set of elements
[including the case of 0 elements, i. e. no element] (g1, 21, +.-..r &nl)s

(125 €225 «+ees Zn2)s vevne , (1m> 2my -+-..» Eam) in H such that (g1, go, ....,
g ) commutes with all elements in H\{ (g11, 221, ....., 8n1), (812, €22, -+ - vy
02)s cevenn , (Z1ms E2my -+ Eum )}. Hence for any fixedi=1,2, .....n, g;

commutes with all elements in G\{gi;, g, ......... , Zm}. Thus g €

Z<(G;j). This means that (g 1, €2, ..., 1) € Ze(G1) X Z(Gy) x ... %
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Z.(Gyp). Conversly, let (g1, g2, ... , €n) € Z(G)) X ZGy) x .... %
Z.(Gyp). Then gj € Z(G;) foralli=1, 2, ..... n. Then for each i there is a
finite number of elements g, g, ......... , @m 1n Gj such that g
commutes with all elements in G; \{gi1, g, ......... , im}. Hence (g1, g2,

.., gn) commutes with all elements in H\{(g11, g1, -...., 1), (12, L2,

vevers Z02)s eeenen , (2im> Z2m» ---err Eum)} and hence (g1, g2, ... , 1)
€ Z (H). This complete the proof of the theorem.

2.7 Theorem

Let H be a cyclic subgroup of a group G. If G is torsion free or H is
infinite, then H < C(Z ¢(G)).

Proof

It is clear that the theorem is trivial in the case that H = {e}. Let H #
{e} be a cyclic subgroup of a torsion free group G. Then there exists ac G
such that H = < a >. Since G is torsion free, then o(a) is infinite. For any
fixed zeZ (G), z commutes with all elements in H except for a finite
number of elements of H since H < G. Hence there exists a natural
number k such that a"z = za™ for all integers m with the property | m | >

. . + _ + -
k. Now, using the above equality we have, az = a“la*z ="z ak =

za""! a® = za, (such k+1 exists since o(a) is infinite). It follows that a™z =
za™ for all integers m. Since z was arbitrary in Z (G), then a™z = za™ for
all integers m and all ze Z (G); i. e., H < C(Z (G)). The case, where H

is infinite cyclic subgroup of a group G is similar.
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3. Homomorphism and Extended Center
In this section we obtain some results that explain the effect of the

isomorphism on the extended center of groups. We also give some
counter examples to show that Theorem 3.1 need not be true if some of
the conditions in the hypothesis of the theorem is omitted.

3.1 Theorem

Let G and H be two groups. If ¢: G — H is an isomorphism from G
onto H, then ¢(Ze(G)) = Z<(H).
Proof

Let ¢(g) € ¢(Z(G)). Then there is a finite number of elements g, g
2, ....and, g, in G such that g commutes with all elements in G\ {g;, g
2 o> @nf. Let o(f) € H\ {@(g 1), ¢(g2),..., ¢(gn) }, then ¢(g) ¢(f) =
o(gh) = o(fg) = o(f) e(g). Hence ¢(g) € Z (H) = Z(0(G)) (as ¢ is onto).
Thus ¢(Z(G)) = Z(H) = Z(9(G)).

Conversely, let he Z ((H). As above, say h commutes with all
elements in H except h, ho, .... and, h,. Let ¢(g) =h and ¢(gi) = h; for
i=1,2,...,n Forany feG\{g, g2, .....8n}, k= o(H)g{h,, h
2, . ha} and gf=7(h) ¢ '(k) = ¢ '(hk) = ¢"'(kh) = ¢"(k) ¢ "'(h) =
fg. Hence ge Z (G) and so h = ¢(g) € ¢(Z(G)). Thus Z (H) <
P(Z(G)).

3.2 Corollary
Let G and H be two groups. If ¢: G — H is a monomorphism of G

into H, then ¢ (Z¢(G)) = Z¢(p(G)).
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The following example shows that Theorem 3.1 need not be true if @

is either not one to one or not onto mapping. Also this will be the case if

¢ 1s not a homomorphism..

3.3 Examples

1.

1l.

111.

There is an epimorphism from a group G onto a group H, but ¢
(Z«(G)) #Ze(H).

There is a monomorphism from a group G into a group H, but ¢
(Z«(G)) #Ze(H).

There is a bijection from a group G into a group H, but ¢ (Z.(G)) =
Z(H).

Construction

1.

11.

: — 0
Consider the group G = { [X j: xz # 0 and x, y and z are real numbers }
y z

in Example 2.4 above, and the group H = {(X 0] : x and z are non
0 =z

zero real numbers} under matrix multiplication. Define ¢: G — H

by (p((X OJ) = (’(; O]. One can show that ¢ is an epimorphism,
y z z

but not one to one. By Example 2.4, ¢ (Z«(G)) = ¢ (Z(G)) = Z(G) #
H = Z.(H), because H is abelian.

Let G = {e, ¢, a*, f} be a normal subgroup of the octant group H =
{e,a,a’, a’, b,c, d,f} (Gilbert, J. & Gilbert, L. 1984. pp120),
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Define ¢: G — H by ¢ (x) = x, then ¢ is a monomorphism. By
Theorem 1.1 (ii), ¢ (Z«(G)) = G # H = Z(H).

cee . _ 0
iii. Consider the group G = { (x }: xz # 0 and x, y and z are real numbers }
y z

in Example 2.4 above and the group H = {(x,y, z): xz# 0 and x, y

and z are real numbers} under the binary operation (a, b, ¢) * (X, y, z)

= (ax, b +y, cz). Define the mapping ¢: G — H by (p((X OJ ) = (X,
y z

y, z). One can show that ¢ is bijective but not homomorphism. Use

Example 2.4 and the facts that G is not abelian but H is abelian to
get, @ (Z(G)) = ¢ (Z(G)) # (G) = H=Z(H).
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