An-Najah National University

Faculty of Graduate Studies

Error Analysis and Stability of Numerical Schemes

for Initial Value problems “IVP’s”

By

Imad Omar Faris Kayid

Supervised

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Computational Mathematics, Faculty of
Graduate Studies, An-Najah National University, Nablus, Palestine.

2013

Error Analysis and Stability of Numerical Schemes

for Initial Value problems “IVP’s”

By
Imad Omar Faris Kayid

This thesis was defended successfully on 7/2 /2013 and approved by:

Defense Committee Members Signature
1-Prof. Dr. Naji Qatanani (Supervisor) N*G::’&WIM Aﬂ \

2-Dr. Yousef Zahaykah (External Examiner)

3-Dr. Subhi Ruzieh (Internal Examiner)

Dedication

| would like to dedicate this thesis to my parents, to my wife Raifa, who
supported me each step of the way and to my children Yara, Kareem and

Noor.

v

Acknowledgment

First of all, I would thank my supervisor Prof. Dr. Naji Qatanani for his

efforts and important guidance for the completion of this thesis.

Vv

I8N
10 i) Jaat il Al j)1 adie olial a8 sall Ll
Error Analysis and Stability of Numerical Schemes for Initial
Value problems “IVP’s”

41Y) acll) Sl Jad dgasad) (5 plall ALY 9 pUadY) Judas

L 4l 3LV i Lo oLl ¢ alall saga ZU o Lai) Alu o2 4gle calaidl e ol

oA Ly dpagded A e

Declaration

The work provided in this thesis, unless otherwise references, is the
researcher’s own work, and has not been submitted elsewhere for any other

degree or Qualification.

Student’s name: sallal) sl

Signature: s f— o1

Date: s—a

\

Table of Content

no Content Page
Dedication i
Acknowledgment v
Declaration \/
Table of Content VI
Table of Tables IX
Table of Figures XI
Abstract XV
Introduction XV
_ _Chapter One 1
Initial value problem
1.1 | Preliminaries 1
1.2 | Initial Value Problem (IVP) 2
1.3 | Existence and uniqueness of the solution 3
1.4 | Systems of First Order Initial Value Problems 9
15 Higher Order Initial VValue Problem 10
_ Chapter T_V_/o 13
Numerical Methods for Initial Value Problem
2.1 | Introduction 13
2.2 | Single Step Methods 14
2.2.1 | Euler’s Method 17
2.2.2 | Runge—Kutta Methods 21
2.2.3 | Taylor Methods 27

Vil

2.3 | Multistep Methods 30
2.3.1 | Predictor Methods 31
2.3.2 | Implicit Methods 40
2.3.3 | Predictor-Corrector Methods 45

2.4 | Stability and Stability Regions 45

Chapter Three 55
Higher Order Taylor Methods

3.1 | Introduction 55

3.2 | Higher Order Taylor Methods for Solving First Order IVP 55
3.2.1 | Finding Higher Order Derivatives of First Order IVP’s 55
3.2.2 Constructing Taylor Expansion for First order IVP’s 61
393 Approximating the Solution of First Order IVP’s using 62

"= | Higher Order Taylor Methods

Higher Order Taylor Methods for Systems of First Order
3.3 , 66
IVP’s
Finding Higher Order Derivatives of Systems of First Order
3.3.1) 68
IVP’s
Constructing Taylor Expansion for a System of First Order
3.3.2) 70
IVP’s
Higher Order Taylor Methods for Systems of First Order
3.3.3 , 72
IVP’s
3.4 | Higher Order Taylor Methods for Higher Order I\VP’s 78

VI

Chapter Four

Error Analysis 85

4.1 | Error Analysis for Numerical Methods 85
4.2 | Error by Higher Order Taylor Methods 97
4.3 | Conclusions 99
References 102
Appendices 104
Appendix (A) My Matlab Programs 104
aaladll -

Table of Tables

No Table Page

2.1 | Results of Example (2.1) using Euler’s method with h=0.1 19

2.2 | Results of Example (2.1) using Euler’s method with h=0.05 20

2.3 | Results of Example (2.2) using RK4 method with h;=0.1 and h,=0.05 27

2.4 | Results of Example (2.3) using Taylor’s methods 2 and 6 with h=0.2 29

2.5 | Coefficients of Adams-Bashforth methods 33
Results of Example (2.4) using Adams-Bashforth 4-step method with

2.6 36
h=0.2 and h=0.1

2.7 | Coefficients of 4-step Milne’s method 37

2.8 | Results of Example (2.5) 39

2.9 | Coefficients of Adams-Moulton methods 41

2.10 | Results using the 3-step Adams-Moulton method for Example (2.6) 42

2.11 | Results of Example (2.7) 44

2.12 | Amplification functions G(z) for RK1,...,RK4 49

31 Results of Example (3.5) using Taylor methods of orders 4 and 10 with 65

| step size h=0.1

3.2 | Results of Example (3.8) using fourth order Taylor’s method using h=0.1 | 74

3.3 | Results of Example (3.9), using Taylor method with n=9 and h=0.1 77
Result of Example (3.10) using Taylor method of order n=4 and step size

3.4 81
h=0.1
Results of Example (3.11), using Taylor of order n=15 and step size

3.5 83
h=0.1

4.1 | Results of problem (4.1) using Taylor method 86

4.2 | Results of problem (4.1) using Runge-Kutta method 87
4.3 | Results of problem (4.1) using fourth order Adams-Bashforth method 88
4.4 | Results of problem (4.1) using Milne’s method 89
4.5 | Results of problem (4.1) using predictor-corrector method 90
4.6 | Results of problem (4.1) using Adams-Moulton method 91
4.7 | Errors generated by the six methods used to solve Example (4.1) 93
4.8 | Error ratios for the methods under study 94
4.9 | Global error generated in Example (4.2) 95
4.10 | Error ratios of the methods under study for Example (4.2) 96
4.11 | Comparing CPU time 97
4.12 | Global error generated by Taylor (n=4,...,10) method for Example (4.2) 98

XI

Table of Figures

No Figure Page
1.1 | (a) Convex SetS (b) Non-convex Set D 5
”1 Comparison between the approximated solution and the exact solution o1
T | of Example (2.1) (a): using h=0.1 (b) using h=0.05.
2.2 | Butcher tableau for explicit RK methods 22
2.3 | Butcher tableaus for some RK explicit methods : 22
(a) One stage Euler’s forward method.
(b) Two stages midpoint method.
(c) Two stages Heun’s method.
(d) Three stages RK method
(e) Butcher tableau for classical explicit RK4 method
24 Comparison between the approximated solution and exact solution of -
' Example (2.2) using h;=0.1
Results of Example (2.3) with h=0.2
2.5 29
(a) Taylor 2 (b) Taylor 6
2.6 | Comparing approximate and exact solutions in Example (2.4) 36
2.7 | Comparing approximate and exact solutions of Example (2.5) 39
2.8 | Comparing approximate and exact solutions of Example (2.6) 43
29 (a) Stability region for Euler’s Forward method 47
- (b) Stability region for Euler’s Backward method
2.10 | Relation between A, h and stability of Euler’s method 48

(@) t=200 h=0.001, 4, =1 +2i
(b)t=200,h = 01,4, = —1+ 2i

(c) t=200, h=05, A, = —1+ 2i

Xl

2.11 | Stability regions for RK1,...,RK4 49
2.12 | Stability regions for Taylorl,..., Taylor6 methods 50
213 Stability behavior of fourth order Taylor method: 51
(@ lambda=10+1*i; h=.1; b=5;
(b) lambda=-2+1*i; h=.1; b=5;
(c) lambda=-50+1*i;h=.1; b=5;
(d) lambda=1%*i; h=.1; b=30;
(e) lambda=10%*i; h=.1; b=100;
(f) lambda=-40%*i; h=.1; b=100;
(9) lambda=-i; h=.1; b=100;
31 Comparing approximated solution w by fourth order Taylor method and 66
exact solution y of the IVP in Example (3.5) with h=0.1
3.2 | Results of Example (3.8) 75
3.3 | Results of Example (3.9) 78
3.4 | Results of Example (3.10) 82
Comparison between the approximated solution wand the exact
- solution y in Example (3.11) with n=15, h=0.1 o
i1 Approximate and exact solutions for problem (4.1) using fourth order 86
Taylor method
42 Approximate and exact solutions for problem (4.1) using fourth order -
Runge-Kutta method
43 Approximate and exact solutions for problem (4.1) using fourth order -
Adams-Bashforth method
s Approximate and exact solutions for problem (4.1) using fourth order 89
Milne’s method
45 Approximate and exact solutions for problem (4.1) using fourth order %0

predictor-corrector method

Xl

Approximate and exact solutions for problem (4.1) using fourth order

4.6 92
Adams-Moulton method

17 (a) Propagation of GE by the six methods in study for Example (4.1) 03
(b) Closer look into the first 4 methods with least error

48 Error accumulated at the last step in the methods under study in Y
Example (4.1)

49 (@) Propagation of GE by the methods under study for Example (4.2) 96
(b) Closer look into the first 4 methods with least error
(c) Closer look into the 2 methods with greatest error

4.10 | (a) Error propagation for Taylor Methods n=4,...,6 for Example (4.2) 98

(b) Error propagation for Taylor Methods n=6,...,8 for Example (4.2)
(¢) Error propagation for Taylor Methods n=8,...,10 for Example (4.2)

XV

Error Analysis and Stability of Numerical Schemes
for Initial Value problems “IVP’s”
By
Imad Omar Faris Kayid
Supervisor
Prof. Dr. Naji Qatanani
Abstract

Most of initial value problems are natural phenomena written in the
language of mathematics. Solving these initial value problems is one of the
most challenging fields in mathematics, because of the mathematicians’
continuous desire of exactness.

This work focuses mainly on developing algorithms and programs to
construct higher order Taylor’s methods for approximating the solution of first
order initial value problems, systems of first order initial value problems and
higher order initial value problems. Moreover, it concentrates on studying
error and stability of numerical methods for solving initial value problems. For
this purpose, we developed programs to find the error amplification functions
of Taylor’s and Runge-Kutta methods and to plot boundaries of stability
regions for these methods and other methods.

We concluded that with the programs we developed, higher order Taylor’s

methods could be a good choice for approximating solutions of a wide range

of

initial

XV

value

problems.

XVI

Introduction

Many problems in engineering and science can be formulated in terms of
differential equations. Many mathematicians have studied the nature of these
equations and many complicated systems can be described exactly with
compact mathematical expressions.

The techniques for solving differential equations based on numerical
approximations were developed before programmable computers existed. The
problem of solving ordinary differential equations is classified into initial
value and boundary value problems, depending on the conditions specified at
the end points of the domain.

There are numerous methods that produce numerical approximations to the
solution of initial value problems in ordinary differential equations such as
Euler’s method which was the oldest and simplest method originated by
Leonard Euler in 1768. He was the first who suggested the idea to propagate
the solution of an initial value problem by a sequence of small time-steps. In
each step, the rate of change of the solution is treated as constant and is found
from the formula for the derivative evaluated at the beginning of the step [5].
An improved Euler’s method and Runge-Kutta methods described by Carl
Runge and Martin Kutta in 1895 and 1905 respectively. The paper by Runge

IS now recognized as the starting point for modern one-step methods [6].

XVii

The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton
[14] were the foundation blocks of developing multistep methods. Through
their work, the explicit Adams-Bashforth methods, the implicit Adams-
Moulton methods and the predictor-corrector methods were established. Milne
also contributed in this field by the methods called after him and by the so-
called Milne’s device, which estimates error in predictor-corrector methods
[13].

Numerical methods form an important part of solving initial value problems
in ordinary differential equations most especially in cases where there is no
closed form solution.

This thesis is organized as follows:

Chapter one gives perspective study of differential equations in particular,
initial value problems, systems of first order initial value problems and higher
order initial value problems.

In chapter two we introduce some numerical examples for solving initial
value problems. These include single step methods and multistep methods.

Chapter three deals with higher order Taylor methods for solving first order
IVP’s, systems of first order IVP’s and higher order IVP’s.

In chapter four some error analysis for the numerical methods: Taylor
method, Runge-Kutta method, Adams-Bashforth method, Adams-Moulton
method, predictor-corrector method and Milne’s method will be investigated

and presented through same numerical examples.

Chapter One

Initial VValue Problem

1.1 Preliminaries
A differential equation: is an equation relating some function f to one or
more of its derivatives.

The equation

dy
—=y(t)—t*+3
g Y®

Is a differential equation.
The order of a differential equation is the order of the highest derivative that
appears in the equation.

The equation

y' =2y +y =te’ —t

is of order 2.
The degree of an ordinary differential equation: is the greatest number of
times the dependent variable appears in any single term. For example, the
degree of y' + (3')2y+ 1 = 0 is 3, whereas the degree of y''v'y*+ x>y =1
is 4.
An ordinary differential equation (ODE): is an equation with the derivatives of
a function of one variable.

The general form of an explicit kth order ordinary differential equation is

given by

y® =f(t,y,y",...,y*) (1.1)

where y, y', . . ., y*™® are functions of t.

The general solution of this equation contains k arbitrary constants
€4,€2,..., C - These constants can be found by prescribing k conditions.
A partial differential equation (PDE) describes a relation between an unknown
function and its partial derivatives.

The heat equation
ou 62u+62u+62u 0
ac " \axz T ayz 922)"

Is a second order PDE.

Initial value problem (I\VVP): is a problem that specifies the initial conditions at
the same value of t.

As an example

y'=y+2e, y@=0 y'0=1

is an initial value problem since both conditions imposed on ¢ = 0.

Boundary value problem: is a problem that specifies the boundary conditions

at different values of t.

As an example

y'=y+2e, y(0=0 y@D=e

IS a boundary value problem because the two conditions are specified at

different values of t.

1.2 Initial Value Problem (1VP)

A first order initial value problem defined on the interval [a, b] can be written
as

d)

d—;=f(t,y(t]) ast=bh yla=a (1.2)

Since any ordinary differential equation of order k
y® =f@&y,y,....y%)
can always be transformed into a system of k first—order equations, we will
focus on solving first order initial value problems and systems of first order
initial value problems.
1.3 Existence and Uniqueness of the Solution

Solving differential equations can be done by two major ways. The first way
is to find the exact solution analytically. The other way is to approximate the
solution by numerical methods at usually equally spaced points, then
interpolate the solution to the whole interval of interest. Since most
differential equations that represent real nature phenomena cannot be solved
analytically, we will focus on solving initial value problems using numerical
approximations.

Before we discuss methods for approximating the solution to our basic
problem (1.2), we must consider some theory to ensure that our problem has a
unique solution and know how small errors on the initial condition can affect

the accuracy of the approximated solution.

Definition (1.1)

A function f(t,v) is said to satisfy a Lipschitz condition in the variable y on a
set D © R? if a constant L = 0 exists with
|F(&y) —fE&y) < Ll yy — 21,

whenever (t,y,) and (t,v,) are in D. The constant L is called a Lipschitz
constant for f [3].
Example (1.1) We can show that f(t,y) =ty? satisfies a Lipschitz
conditionontheset D = {(t,y):1<t=2and1 <y < 3}
For each pair of points (t,y;) and (t,y,) in D we have

If(t,30) — F&, 32| = ltyf — 3| = ltllyi 5|

=[tllyy + 2 llys = 2|
= 2X6X |y =yl =12]y; — 1.
Thus, f satisfies a Lipschitz condition on D in the variable y with a Lipschitz
constant L, = 12.
Definition (1.2) [16]
A set D < R™ is said to be convex if, whenever x and y belong to D, also
Bx+(1—-68)ye D V8 € [0,1].
Thus, a set D < R? is convex if (t;,y,),(t,,¥,) € D then the point
A(ty,yvy) + (1 — A)(t,,v,) € Dwith A€[0,1].

Since a line segment between (t,,y,) and (t,,y-) is the set of all points
(£, y) = Alty,y) + (1 — D(t2y.) A€[0,1],
then a set D in R? is called a convex set if the line segment joining any pair of

points of D lies entirely in 5.

The set S in Figure (1.1) (a) is convex because the line segment joining any

pair of points of S lies entirely in S, while the set D in Figure (1.1) (b) is non-

convex, since points a and b lie in D, but the line segment ab does not lie

entirely in D.

(a) (b)
Figure(1.1): (a) Convex Set S. (b) Non-convex Set D.

Example (1.2)
We can show that the set D ={(t,v):a<t<band —o <y < o} is
CONVex.
Let(t,,y,) (t;,1,) € D.
So,ast,<band a<t, <bh.
For A€ [0,1]
(I1-A)a=(1-At;=(1—A)band Aa < At, < Ab.
These two inequalities give
a<(1—A)t;+At, < b.
It is obvious that
—o = (1—A)y, + Ay, < oo,
Therefore, D is a convex set.

Theorem (1.1) [3]

Suppose f(t,y) is defined on a convex set D < RZ2. If a constant L > 0 exists

with
d
|£i (t’_}r]| = L, for all {:t,_}’] = D;

then f satisfies a Lipschitz condition on D in the variable y with a Lipschitz
constant L.

Proof: Holding t constant and applying the Mean Value Theorem to the
function f(t,y), when y, < y,, a number & in (y,, v;) exists with

f(t,y,) — ft,y) _ g(t £),
Y2 =W

£ = £63l = Iy =3l 2 @9 = Iy, — 3l

Thus, f satisfies a Lipschitz condition on D in the variable y with a Lipschitz

constant L.

Example (1.3)

For the set D ={(t,y):1 =t =2 and —oo <y < oo} it easy to show,
that f(t,v) = ty satisfies a Lipschitz condition in the variable y.

We have shown in Example (1.2) that D is convex. In addition
|—ﬁyﬂ=M£a

Thus f satisfies a Lipschitz condition on D in the variable y with a Lipschitz

constant 2.
Definition (1.3) [3]

The initial value problem

dv
T —f(ty®), a<t<b, y@-q

Is said to be a well-posed problem if:

¢ A unique solution, y(t) to the problem exists, and

e There exist constants €y > 0 and k > 0 such that for any €, with g, > € > 0,

whenever J(t) is continuous with |5 (t) | < & for all £ in [a, b], and when

| 8| < € the initial-value problem

dz
Ezf(t,z]+r5{t), a=t=h, z(a) = a + &,.

has a unique solution z(t) that satisfies
|z (t)- vy (t]| < keforalltin[a,b].

Point two in this definition says that small perturbations of the original
problem and small perturbations of the initial condition have only small error
effects on the approximated solution. To illustrate this we give the following
example.

Example (1.4)

Using definition (1.3), we can show that the initial value problem
y)=yvt)+1, 0=t<1, y(0)=0
is well-posed.
Consider the perturbed problem with constant § and §,
z(t)=z(t)+ 1+ 4, D=t=1, z(0) = &,.
y(t)=e"—1 and z(t) = (6 + 6, + 1)e* — (1 +).

Suppose that £ > 0. And if |6] < £ and|§,| < &, then

|z(t) — y(£)| = (6 + Gp)e® — 4|
< |(6 +68)et| + 6] < 2cel + 2= (2e+1)g,
for all t . Therefore, the problem is well-posed with k = (2e + 1) and for all

> 0.

The next theorem tells us sufficient conditions that guarantee well posedness
of our basic problem.
Theorem (1.2) [3]

Suppose thatD ={(t,y):as=t=b and —eo<y<owl} If f(t,y) is
continuous and satisfies a Lipschitz condition in the variable y on the set D,
then the initial value problem
y(®=fty), ast<b, yla)=aqa,
is well-posed.

We note, that this theorem ensures the uniqueness of the solution y(t)
fora<t <h.

Example (1.5)

We can show that the I\VVP
y =ty +1, 0=t=2, y(0) =1,
is well-posed.

The function f(t,y) = t*y+ 1 is continuous. We have shown in Example

(1.2) that the set D = {(t,y):0 =t <2 and — oo < y << o0} is convex. In

addition, we have

ar
—(t,y)| =t?| = 4.
5| =127

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz

constant 4. Therefore, according to theorem (1.2) the IVP is well-posed.
Theorem (1.3) [4]

Suppose that f and f,, its first partial derivative with respect to y, are

continuous for tin [a, b] and for all y. Then the initial value problem

dv
d—i = f(t,y(t)), a=t<b and y(a)=a,

has a unique solution y(t) for @ < t < b, and the problem is well-posed.

Proof: Theset D = {(t,yv):a<t <b and — oo < y < o0} is convex. Since
f; is continuous on [a, b], then £, is bounded. Therefore, there exists a real
number L > 0 such that |f,| < L. Thus, f satisfies a Lipschitz condition on D

in the variable y. Also f is continuous. It follows from theorem (1.2), that the

IVP is well-posed.
Example (1.6)
The initial-value problem
y' =({t—-05t)+y for 0<=t=<landy(0)=1
is a well-posed initial value problem, since the functions
ft,y)=(—-05t%)+y,and f,(t,y)=1
are both continuous for 0 < t < 2 and for all y.
1.4 Systems of First Order Initial Value Problems
A kth-order system of first order initial value problems has the general form
u; = f;(tug,u,,...,0y)

uIZ = (L uy,uy, ..., uy)

10

U, = fi (b ug,uy, ., uy)
for a = t = b, with the initial conditions
us(a) =ay, Ux(a) = oz, - . ., Uk(@) = ox. (1.3)
To solve this system we must find uy, u,,...,u, that satisfy all the differential
equations and the initial conditions.
Consider the following system of IVP’s
u3(t)= ua(t)
us ()= 2uy(t)+ ua(t)
together with the initial conditions
u;(0) = 8 and uy(0) = 4.
We can show that
uy(t) = 4e” + 4e™, u,(t) = 8e* + 4e™
is the solution of this system.
Solving this system numerically will be discussed in next chapter.
1.5 Higher Order Initial Value Problem
The first step to solve an IVP of order k
y(") =f(t,y,y,y",.. .,y(k'l)), a<t<b
y(a) =0y, y' (2) = a, ¥"(2) = aa,..., y* (@) = o (1.4)
is to transform it into a system of first order I\VVP as follows:

Let

ur =Yy,

11

U =Y,
Us =y",
U =y,
Differentiating these equations, we get
ui =y,
u; =y,

S TT]
u; =y,

u =y¥=f(ty,y, vy

Substituting we get a system of first order VP

I —
112 - U3

r —_
Ug_ 3 = Uy

u =f(t, ug, Uy, ..., Ug).

uy(@) =y(a) = o1, Ux(@) =Y'(@) = a,

(1.5)

(1.6)

oy U@) =Y* V@) =0, (1.7)

The second step is to solve this system for uy, ...,ui satisfying (1.6). Finally,

the solution of u; is assigned to y because y = uj.

To illustrate this method, consider the following example.

Example (1.7)

We will show how to transform the following second order IVP into a

12

two-dimensional system of first order IVP’s:
y' -2y +y=te'—t, 0<t<lI,
with initial conditions
y(0)=0, y'(0)=0.
First, we rewrite the DE as
y' =2y -y+te'—t
Now let
ur =Yy,
U=y
Differentiating both equations with respect to t, we get
u; =y,
us =y"
Substituting, we get a system of first order IVP’s
uj = U,
ub = 2U,- Uy +te' —t
with initial conditions
ui(0)=y(0) =0, ux(0)=y'(0)=0.

Solving systems of IVP’s numerically will be discussed next chapter.

13
Chapter Two

Numerical Methods for Initial Value Problems

2.1 Introduction

In this chapter, we shall study some numerical methods for solving IVP’s of
the form
Y®=f(ty®), a=st<b y@=gq
that possess a unique solution on some specified interval, t <[a,b]. In these
numerical methods, we will find approximations to the solution of the initial

value problem at N particular equally spaced points
te,=t,+h i=1,.. N N= lb:’], t,=a, y(t,) =a,

approximations to the numbers y(t,),...,¥(ty+1), rather than to the curve of
y(®.
Methods for approximating the solution of initial value problems can be
classified mainly into two types. They are
(i) Single step methods,
(it) Multistep methods.

Both of these methods can be either implicit or explicit. If the approximate
solution w;,; depends only on the previous w; ,j = 1,...,1, then the method is

explicit. However, if w,,, depends on w,,, too, then the method is implicit,

that is, we get an algebraic equation for the solution of w, ;.

14

2.2 Single Step methods

In single step methods, the solution at any point ¢;. , is obtained by using the
solution at only the previous point t;. Thus, we can write a general implicit
single step method as
Wirr =W; + h@(tiq,Wip, t,w, h),
and a general explicit single step method as
Wi =Ww; + ho(t,w;,h), (2.1)
where ¢ is a function of the arguments t;,w;, h and depends on f(t,y(t)) of

the given differential equation. The function ¢ is called the increment

function, see [10].

Definition (2.1) (Local Truncation Error) [9]

The local truncation error t,,, of a method is defined to be the difference
between the exact and the numerical solution of the IVP attimet = t,.,:
Tie1 = Y(Cir1) — Wisq,
under the localizing assumption that w; = y(t;), i.e. that the current numerical
solution w; is exact. If 7;,; = O(hP**)(p > 0), the method is said to be of
order p.

If we calculate W, ; assuming w; = v, that is:
Wier =Y +holt,y, hf), (2.2)
then the LTE, t,.,, at t,,, is defined by:
Tigr = Vis1 — Wiy

Tip1 = YVier — i — ho(t, v, b f). (2.3)

15

Definition (2.2)

The global truncation error: The difference

e, = y(t) —w;

is referred to as the global error (GE) att = t..
Definition (2.3) [3]

A one-step difference-equation method with local truncation error t,(h) at
the ith step is said to be consistent with the differential equation it
approximates if
Plzi—IE:lt max |z, (h)| = 0.

Definition (2.4) [9]
A numerical method is said to converge to the solution y(t) of a given IVP at
t =t iftheGE e, =y(t,)—w, att, =t" = t, + ih satisfies

le;| =0
as h — 0. It converges at a pth-order rate if e; = O(h?) for some p = 0.

A numerical method is said to be consistent of order p if

T+, = O(hP*1) with p > 0.

Before we begin our discussion of the methods, we shall first derive the
Taylor series expansion of y(t;,,) with remainder.

Theorem (2.1) (Taylor Theorem) [2]

Suppose f hasn + 1 continuous derivatives on an open interval containing a.

Then for each x in the interval,

= £)
FO = [Zf @ (e~ o
k=0

k + R‘]‘l-l' 1 Ex]J

16

where the error term R, ; (x) satisfies

f(ﬂ+ 1) (c)

G O

Rn+ 1 E?’C] =

for some ¢ between a and x.

Now for our Problem (1.2), if y(t) is continuous and has n+ 1 continuous
derivatives on an interval about t = ¢;, then the Taylor series expansion of

y(t)aboutt =¢t; is

= @) e
y(t) =Z (} pf‘tl} (_t—tijp) (2.4)

p=0

Now, for t =t,,,,t;,, —t; = h, therefore (2.4) becomes

1 1 .

Vier = Vit hy/ + 2 hz}i'” +-t Ehﬂ}’i{ 4 Ry (1) (2.5)
N Lo i

Vo = Vit R4Sk s P iR O 26)

R 1(t) = ot D) Rty (o), € (ty ti) (2.7)

When y'(t) = f(¢t,y(t)), we can replace J’Fﬂj by jj.m in the previous
equations for j =0, ..., n.

We note that the expression in the square brackets in (2.6) represents the

(n — 1) Taylor expansion of f(t,y).

Finally, in (2.6) if we let
! 1 ()
T (t, y;,h) = [J’; + 2 hy" + -+ — R ',]! (2.8)
n.

then (2.6) becomes

17

Vier = Vi + AT, y;,h) + Ry (). (2.9)

2.2.1 Euler’s Method

Euler was the first who suggested the idea to propagate the solution of an
initial value problem forward by a sequence of small time-steps. In each step,
the rate of change of the solution is treated as constant and is found from the
formula for the derivative evaluated at the beginning of the step [5].

One way to derive Euler’s method for approximating the solution of the first
order IVP (1.2) is achieved by approximating ¥, = f(t;,¥;) as follows:

Yie1 — Vi
—

ft,y) =~
Solving for y,. ;, we get

Visr ® ¥ + hf(t,).

Using this equation, we get Euler’s forward method

wip1 = wy + hf (&, wy). (2.10)

Now, if f is differentiable on (a, b) and f' is continuous on [a, b], then there

exists ¢ € [t;, t;,,] such that

Visr =¥i + hf () + % R2f (¢, y(c)).

To find the LTE of Euler’s method, we have i as defined in (2.2)

Wier =Y +h f(E,¥5),

therefore

Tip1 =YV ir1 — Vi — R (&L 00,

1
Tiv1 =) hzfl('fr}’(f))-

18

Then, if a positive number M exists so that |f’ (¢,y)| = M for all t (a, b),

then

1
ITia | = _ZMhz T4 = O(R?).

It follows from Definition (2.1) that Euler’s method is of order O(h).

We introduce now Algorithm (2.1) for approximating the solution of the
problem (1.2) using Euler’s method and comparing the approximated solution

with the exact solution.

Algorithm (2.1): Euler’s Method.

Step 1: Define f(t,y), vExact(t)
Step 2 Input a,b,a,h

Step 3:

Step 4: Let N=(b—a)/h

Step 5 Letw, = a, t;=a ,=a

Fori=1to N

Wigg = w; + hf(t,w;)
Step 6: Vis1 = YExact(ty,)

Step 7 t:‘+1 = tz‘ + h

Step &: Find GE = abs(y—w)

Output t,v,w,GE

Stop

Example (2.1)
Consider Euler’s method to approximate the solution of the following initial-

value problem:

19

v oy 2 .
y =2 (t) 1 =t=2, y(1)=1,usingh=0.1.

This initial value problem has the exact solution

y(® = log(t) +1°

Matlab Program (2.1)(See Appendix A) is an implementation of Algorithm

(2.1) in computer language. The results of running this program for our

Example (2.1) are represented in Table (2.1). In addition to the approximated

solution of y(t), at each step the program calculates the absolute values of the
global error e (column 4) and the local truncation error T (column 6). It also
plots (Figure (2.1)) the approximated vector w (column 3) and the exact vector
y (column 2) against the vector t (column 1).

Table (2.1): Results of Example (2.1) using Euler’s method with h=0.1

£ ¥i W; ﬂbS(}i z} ”’ri ﬂbS(T }
1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000
1.1000000 1.0042817 1.0000000 0.0042817 1.0000000 0.0042817
1.2000000 1.0149523 1.0082645 0.0066879 1.0122262 0.0027261
1.3000000 1.0298137 1.0216895 0.0081242 1.0279950 0.0018187
1.4000000 1.0475339 1.0385147 0.0090192 1.0462776 0.0012562
1.5000000 1.0672624 1.0576682 0.0095942 1.0663717 0.0008907
1.6000000 1.0884327 1.0784611 0.0099716 1.0877888 0.0006439
1.7000000 1.1106551 1.1004322 0.0102229 1.1101830 0.0004721
1.8000000 1.1336536 1.1232621 0.0103915 1.1333041 0.0003494
1.9000000 1.1572284 1.1467236 0.0105048 1.1569686 0.0002599
2.0000000 1.1812322 1.1706516 0.0105806 1.1810389 0.0001934

We notice that the results are consistent with the theoretical error estimates

for Euler’s method, since the global error is of O(h) and the local truncation
error is of 0(h?).
If we repeat solving Example (2.1), but using & = 0.05 instead of h = 0.1,

we get better results. Table (2.2) shows that the global error at the last step

20

using h = 0.05 is 0.0051070, while it was 0.0105806 (Table 2.1) when we
used h = 0.1.

In addition, we notice that

0.0051070

0.05y" B
0.0105806

— 0.4826758 ~ (—) 05
0.1

which agrees with our theoretical analysis that Euler’s method is of O(h).
If we do the same for the local truncation error, we get

2

0.0000437 0.05
— 0.2259565 ~ (W) — 025

0.0001934

which agrees with our theoretical analysis that local truncation error for
Euler’s method is of O(h?).

Table (2.2): Results of Example (2.1) using Euler’s method with h=0.05

t; ¥i w; abs(y; — wy) Wy abs(;)
1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000
1.0500000 1.0011536 1.0000000 0.0011536 1.0000000 0.0011536
1.1000000 1.0042818 1.0022676 0.0020142 1.0033714 0.0009104
1.1500000 1.0089827 1.0063152 0.0026674 1.0082539 0.0007287
1.2000000 1.0149523 1.0117819 0.0031704 1.0143620 0.0005903
1.2500000 1.0219569 1.0183942 0.0035627 1.0214736 0.0004833
1.3000000 1.0298136 1.0259420 0.0038717 1.0294145 0.0003992
1.3500000 1.0383780 1.0342605 0.0041175 1.0380456 0.0003323
1.4000000 1.0475339 1.0432196 0.0043144 1.0472554 0.0002785
1.4500000 1.0571876 1.0527145 0.0044732 1.0569528 0.0002348
1.5000000 1.0672624 1.0626605 0.0046019 1.0670633 0.0001990
1.5500000 1.0776949 1.0729880 0.0047068 1.0775256 0.0001693
1.6000000 1.0884327 1.0836401 0.0047926 1.0882881 0.0001446
1.6500000 1.0994318 1.0945687 0.0048630 1.0993078 0.0001239
1.7000000 1.1106551 1.1057341 0.0049209 1.1105486 0.0001065
1.7500000 1.1220713 1.1171026 0.0049686 1.1219796 0.0000916
1.8000000 1.1336535 1.1286457 0.0050078 1.1335746 0.0000790
1.8500000 1.1453792 1.1403389 0.0050402 1.1453110 0.0000681
1.9000000 1.1572285 1.1521615 0.0050669 1.1571697 0.0000588
1.9500000 1.1691843 1.1640954 0.0050889 1.1691337 0.0000507
2.0000000 1.1812322 1.1761253 0.0051070 1.1811885 0.0000437

21

Figure (2.1) compares the approximated solutions with the exact solutions of
Example (2.1). It is clear that Euler’s method is not accurate for our choice of
the step size h = 0.1 (Figure (2.1):(a)). To get better results, we have to make
h smaller, and that means more computation time, or to find another more
accurate method. Figure (2.1) (b) shows that the approximated solution gets

closer to the exact solution when we use smaller values of h.

118f ' ' ' ' ' T 118}
Bract zolufony ——
|Approsimate soltion W ==

Bxact zolufon y ——
116 | |Approximate solution W =S

116

1.14F 1141

112 1.12F
1F 111
1.08 1.08
1.06 1.06 -
1.04F 1.04 F

1.02+ 102+

1 I I I L 1 I 1 1 L
1 1.2 1.4 16 18 2 22 1 1.2 1.4

(@) (b)

Figure (2.1) Comparison between the approximated solution and the exact solution of
Example (2.1) (a): using h=0.1 (b) using h=0.05.

2.2.2 Runge—Kutta Methods

Runge-Kutta methods are based on the 1895 paper of C. Runge [15] and the
1901 paper of W. Kutta [11]. The paper by Runge is now recognized as the
starting point for modern one-step methods [6].

The family of explicit Runge—Kutta methods is given by

Whi1 = Wy +Z bikv
i=1

where

ky,=hf(t,w,),

22

k, =hf(t, +c,hw, +a,,k;),

ks = hf(t, +cshw, +ask; +as;k,),

ko = hf(t, + cchw, + agk; + apk, + -+ a1 ko) [7].

To specify a particular method, one needs to provide the integer s (the number
of stages), and the coefficients a;;(for 1 =j <i <s), b;(fori=1,2,...,s)
and ¢;(fori=2,3,...,s). The matrix [a;;] is called the Runge-Kutta matrix,
while the b; and ¢; are known as the weights and the nodes. These data are
usually arranged in a mnemonic device, known as a Butcher tableau (after

John C. Butcher):

Cy | Gzq

C; | Oz | Qz;

Cs Agy | Qg | Ags—1

hl bz bs—l bs

Figure (2.2):Butcher tableau for explicit RK
methods [7]

The Runge—Kutta method is consistent if (see [7])

5 i—1
ZE}}-=1 and Zaij=c1-fﬂ’ri=2,...,s.
j=1 j=1

Figures (2.3) contains some Butcher tableaus for Runge-Kutta explicit
methods. We can use any of these tableaus in Algorithm (2.2) to generate the

desired Runge-Kutta method.

(oJofo]o]

23

oJolo olJofo][1]12][0] 0
0Jo][12]12]0 1]1]0 1]-1
1 01 12 | 172 1/6 | 2/3 | 1/6
(@) (b) (©) (d)

Figure (2.3): Butcher tableaus for some RK explicit methods :
(a) One stage Euler’s forward method. (b) Two stages midpoint method.

(c) Two stages Heun’s method. (d) Three stages RK method [7]
0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
1/6 1/3 1/3 1/6

Figure (2.3) (e) Butcher tableau for classical

explicit RK4 method [7]
We will use Taylor expansion
1 1
Vier = O+ hy/ + 2 Ry + -+ Ehg}’im +)y
hz
=y +hfi+= (£ +115),,
hE
+E(_ﬁt + zfﬁ?}r +f2fyy + ﬂfy +ffy2)tf+
to study two stages Runge-Kutta methods:
Vier = Vi + biky + by Kk,
k,=hf;
ko= hf(t;+echy; + az.hf;)
= h[f; + (c,hf; + azlhffy)tf

"‘%{(czh]zj‘;t + 2c;h a5, hf o Han hf)? fop e, + -1

= hf; + h*(c,f; + az1 1),
hz
—I-?{(ngzf;t +2¢c,a54ffy + ﬂ'%lfzfy}?}tf + -

Substituting the values of k, and &, in (2.12), we get

(2.11)

(2.12)

24

Vie1 = Vi + (by + b)Af; + hZ (byesf, + bza’zlff;lf]tf

3

h
+?b2{[c2]2f;t +2¢,a, 1ffty + a§1f2fvy}tf + (2.13)

Comparing the coefficients of h and h?, we get

1

Solving these equations, we get

1
Az = C3, b'z:g: blzl_g'
2 2

Using these values, we get the two stages Runge-Kutta methods

1 1
Wi+1 = Wi + (1 _2_%)k1+2_c|2k2

ki =hf(t,w;)
k,=hf(t;+chw, +c,k,)
To find the local truncation error, we first substitute the values of a,,, b,and
b, in equation (2.13). So we get
hz
Yier = Vi + hf; +?(ﬁ& +)
h® ¢, ¢y,
+? {Eftt + szfxy +Ef fyy}tg + -

hz
=Y +hfi+— (i +),

Y S A (2.14)

+
4

Subtracting (2.14) from (2.11), we get

1 Ca

T = R [G—2) U, + 2ff,, + Ff, 3+ (F.f, +FF2) + ...]t[.(2.15)

Therefore, we have local truncation error equals to O(h*) and hence the

methods are of order two.

25

If we choose ¢, = 2/3, then the first term in brackets in (2.15) vanishes and

we get a method with minimum local truncation error:
k, =hf(t,w;),

2 2
kz = hf (t1+§h_,w1 +§k1),

1
Wi+1 = Wi +£_1- (kl + Skzj.

We employed Algorithm (2.2) to approximate the solution of first order
IVPs using any RK explicit method. We enter the VP, number of stages, s
and the desired RK method (Butcher tableau) that agrees with s. In the next

example, we will use the classical fourth order RK method (Figure (2.3) (e)).

Algorithm (2.2): Runge-Kutta explicit methods.

Step 1: Define f(t,y), vEx(t)

Step 2: Input endpoints a,b; initial condition a;step size h

Step 3 mmput number of stages s
Step 4 Input Butcher matrix in A, B, C
Step 5:

LetN=(b—a)/h
Step 6:

Letw, = a, t3=a, y, =«
Step 7: ! ! '
Step 8: For n=1to N repeat steps 8-18

Step 9: Let suml =0

Step 10: .
Fori=1to s repeatsteps 10-15
Step 11:
Let sum2 =0
Step 12:
Step 13 For j=1toi—1 repeatstep 12
Step 15: sum2 = sum2 + A(L,j) = k()

Step 16: k(i) =h=f(t(n) +C(1) = hw(n) + sum2)

26

Step 17: suml = suml + B(Q) = k(i)
Step 18: w(n + 1) = w(n) + suml

Step 19: t(n4 1) =t(n) +h

Step 20:

Step 21
Find GE = abs(y—w)

vin+1)= fEx(t(n + 1))

Output t,yv,w,GE

Stop

We translated Algorithm (2.2) into a Matlab Program (2.2), which we will
use to approximate the solution of the IVP and compare the approximate
solution w with the exact solution y.

Example (2.2)

We can approximate the solution to the initial value problem
y'=-2ty? t€ [01], y(0)=1.
using the fourth order classical Runge—Kutta method with h; = 0.1 and for

h, = 0.05.

This initial value problem has the exact solution
y(t)=1/(1+1t2).

We represented the results of running Program (2.2) for this problem in
Table (2.3) and Figure (2.4). We see that the results of this method are better

than the results of Euler’s method.

In addition, Table (2.3) shows that the global errors at t = 1 are 6.0221055E-

07 and 4.0931106E-08 for h;=0.1 and h,=0.05 respectively.

27

Straight forward computation of the ratio for these global errors we obtain

4.0931106E — 0B 0.05*
= 0.0679681 % (—) =.0625,
6.0221055E — 07 0.1

which agrees with Runge-Kutta of O(h?).

Figure (2.4) shows how close the approximate solution w and the exact

solution are.

Table (2.3): Results of Example (2.2) using RK4 method with h;=0.1
and h,=0.05

Wi error; Wi error;

i yi hi=0.1 h;=0.1 h>=0.05 h,=0.05
0.0000000 1.0000000 1.0000000 0.0000000E+00 1.0000000 0.0000000E+00
0.1000000 0.9900990 0.9900990 8.4950827E-08 0.9900990 5.1539253E-09
0.2000000 0.9615384 0.9615381 3.1788036E-07 0.9615384 1.8421105E-08
0.3000000 | 0.9174312 0.9174306 5.9514099E-07 0.9174312 3.3211020E-08
0.4000000 | 0.8620690 0.8620682 7.8202896E-07 0.8620690 4.2046747E-08
0.5000000 | 0.8000000 0.7999992 7.9098146E-07 0.8000000 4.0618882E-08
0.6000000 0.7352941 0.7352935 6.1736802E-07 0.7352941 2.9229003E-08
0.7000000 0.6711410 0.6711406 3.2007944E-07 0.6711409 1.1436653E-08
0.8000000 0.6097561 0.6097561 2.1627292E-08 0.6097561 8.3141618E-09
0.9000000 | 0.5524862 0.5524865 3.4201159E-07 0.5524862 2.6452970E-08
1.0000000 | 0.5000000 0.5000006 6.0221055E-07 0.5000001 4.0931106E-08

28

1 1 1 1 1 1 1 1 1 &+
0.1 02 03 04 05 06 07 08 089 1

Figure (2.4): Comparison between the approximated
solution and exact solution of Example (2.2) using h;=0.1

2.2.3 Taylor Methods

To derive Taylor methods to solve the initial value problem (1.2), we

consider equations (2.5),(2.6),(2.7) and (2.8). These equations give us

Taylor methods of order n

Wieq = w; +hT™ (t,w,, h), (2.16)

where

1 1
TO(t, y,h) =y + 2 hyy' + -+ Tl h™" lJ’i{ﬂJ

and local truncation erroratt = ¢,

Tipp = Ry () = hnﬂ}’{ﬂﬂj (c) cé€(ab),

(n + 1)!

and, if [y(™*(t)] < Mforallt e (a b), then
M

(n+ 12

|T1'+1| = hn+l,

that is
T;.; = O(h™*1) and the method is O(h™).

Example (2.3)

29

We can apply Taylor’s method of orders two and six to the next initial value

problem using step size h = 0.2.

y=y—t*+1, 0=t=2, y(0)=0.5.
This initial value problem has the exact solution
y(t) = (t+ 1)% - 0.5e".

Results of running Program (3.3) for this problem are represented in Table
(2.4) and Figure (2.5). The exact solution y is given in column 2, approximate
solution and global error using second order Taylor method in columns 3 and
4, and finally approximated solution and global error using sixth order Taylor
method in columns 5 and 6. It is clear we have better results using higher
order Taylor methods with the same step size.

In Figure (2.3), we have a closer look to see what happens at the last step.

Comparing Figures (2.5) (a) and (b), we see that w and y in (a) are not so

close as in (b). That means we have better results with higher order Taylor

methods.

Table (2.4): Results of Example (2.3) using Taylor’s methods 2 and 6 with

h=0.2
n=2 n=6
ti Vi error; error;
Wi Wi
0.0000000 | 0.5000000 | 0.5000000 | 0.0000000E4+00 | 0.5000000 0.0000000E+00
0.2000000 0.8292986 | 0.8300000 | 7.0137909E-04 0.8292986 1.3023073E-09
0.4000000 1.2140877 | 1.2158000 | 1.7123488E-03 1.2140877 3.1812835E-09
0.6000000 1.6489406 | 1.6520760 | 3.1354001E-03 1.6489406 5.8284417E-09
0.8000000 | 2.1272295 | 2.1323327 | 5.1031844E-03 2.1272295 9.4918331E-09
1.0000000 | 2.6408591 | 2.6486459 | 7.7868327E-03 2.6408591 1.4491690E-08
1.2000000 3.1799415 | 3.1913480 | 1.1406482E-02 3.1799416 2.1240226E-08
1.4000000 3.7324000 | 3.7486446 | 1.6244568E-02 3.7324000 3.0266683E-08
1.6000000 4.2834838 | 4.3061464 | 2.2662606E-02 4.2834838 4.2248928E-08
1.8000000 4.8151763 | 4.8462986 | 3.1122332E-02 4.8151763 5.8053327E-08

2.0000000

5.3054720

5.3476843

30

4.2212341E-02

5.3054720

7.8784993E-08

&i5F

55

y_
——w

L L L L L L L L 1 L L L
1.8 1.85 19 195 2 205 18 1.85 19 1.95 2 205

(@ (b)
Figure (2.5): Results of Example (2.3) with h=0.2 (a) Taylor 2 (b) Taylor 6

Table (2.4) shows that the global error at t = 2 is 7.8784993E-08 for n=6 and

h=0.2. We solved the same problem with n=6 and h=0.05. We found that the
global error at t = 2 is 1.3433343E-009

We notice that

1.3433343E — 009 0.1,°
= 0.017051 ~ (—) = 0.015625
7.8784993FE — 08 0.2

which agrees with the theoretical error estimate for sixth order Taylor method
which is equal O (h®).
2.3 Multistep Methods

The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton

[14] were the foundation blocks of developing multistep methods. Through

31

their work, the explicit Adams-Bashforth methods, the implicit Adams-
Moulton methods and the predictor-corrector methods were established. Milne
also contributed in this field by the methods called after him and by the so-
called Milne’s device, which estimates error in predictor-corrector methods,
see [13].

Multistep methods use the solution at a number of previous points to find

the solution at any point t,, . If we use w;,w,_, ..., w__ .., f(t,w;),

FlEuwWiii) e, f(Xiome 1, Wiima1)

at m previous points t;,t, ,,...,t to find the approximation w,,, to

P riemal
v(t) at t;,,, then we call the method as an m—step multistep method.
For example, the method
Wi = W; + h@(t;, tiq, tig Wi, Wi_1, Wi_s, h),
is a three step method.
We can write a general explicit m—step method as [10]
Wiv1 = Wiy Fh@(Eimi1) e bty by Wisma1s s Wis, Wy, R,
where re{0,1,....m—1}, i=mm+1,..,N. (2.17)
If the right hand side contains w;, ; , then we have an implicit method.
To construct multi-step methods, we first integrate the differential equation
y' =fty)
in the interval [t,_,, t;.,], getting

tz'+1 tz'+1
f ay=| feeyadt
t

i-r Ly

32

V(tw) =y + | Feey)de 101 (2.18)

We will use Newton’s backward difference interpolating polynomial to

approximate the integrand f(x, v).
2.3.1 Predictor Methods

An m-step predictor method is an m-step explicit method defined in (2.17).
If we use Newton’s backward difference interpolating polynomial of degree
m — 1 to approximate the integrand f(x, y) in the interval [t,_,, t;4,].

For equally spaced m points, t,,t;_;, ...,t;_n+1 » We get degreem —1

Newton’s backward difference interpolating polynomial of f(¢,y), [3]
Py (1) = Zrt(—=1)F (7)) VEF (2, 37) (2.19)

{ {%-})

F(67) = Py (8) + 2252 (6= £)(t =) e (— typmsy). (2.20)

Now, for t = t, + sh we get
(t—t;)=sh, (t—t,_y)=h(s+1),.,(t—t,_,1)=h(s+m—1).

Therefore,
(t—t)t—t,_1) ... (t—t_) =h"s(s+1)...(s+m—1). (2.21)
Substituting (2.19), (2.20), (2.21) and r = 0 in (2.18), we get

Y(tis) = y(£) + f F(6y(0) dt

I‘-E+1 m—1

=)+ f Z(—l)*) V£t vo e

33

N f £ (g,3(2))

I (=t)(E—t;oq) . (t =t)dt
e

£

= y@+h Y | [0F()as
k=0 o

1
m+1

|
m!
i)

(Vhi=fi—fir and Vi =VETIf —VET1f),

This leads to the m-step explicit Adams—Bashforth methods,
m—1 1
—5
wes =wth) |PEfm) [(1F () ds],
k=0 o k

with local truncation error
1

Mm+1
|T,] < = fs(s—l—l]...(s—km—ljds.

Therefore, T, = O(h™*1) and the methods are O (h™).

Now, we compute the coefficients [(—1)*(7)ds.

Fork =0, [(-1)°(%)ds = [ds = 1.

Fork=1, [(-1)!(7)ds= [(-1)(=s)ds = [sds =$
Fork =2, [, (-1)*()ds= ifﬂl(—sj(—s —1)ds = ifﬂl s(s+1)ds =2
Fork =3, [, (—1)*(3)ds == [, s(s + 1)(s+2)ds = —.

Fork =4, [, (—1)*(7)ds = ifﬂls(s +1)(s+2)(s+3)ds =

£ («gi,y(gi))f s(s+1) ..(s +m—1)ds

(2.22)

(2.23)

251

720

3
12

34

ka=kiﬁ—hﬂﬁﬁmzfﬁﬂ&+1H&+%@+k—1ma
We used Matlab Program (2.3) to compute these integrals for k =1, ...,10

and represented the results in Table (2.5). Using these results, (2.22) becomes

5 3
W, q = w+h[ﬁ+ vﬁ+—v2f1+ v3ﬁ+mv*,ﬁ]

Form=1k=0

Wipq = W; + 1f;

Table (2.5): Coefficients of Adams-Bashforth methods

1 _
-’ru (_ljk (:)ds
1

1/2

5/12

3/8

251/720

95/288
19087/60480
5257/17280
1070017/3628800
25713/89600
26842253/95800320

O© 0O N O Ul W N = O X

—_
o

Form=2,k=0,1
1 1
Wiy = w+h[fi+SVE| = w k|2 (= fino)|
h
Wip1 = W; +§[3ﬁ_ﬁ—1]

Form=3,k=0,12
1 5 .

=w;+h

35

[1 5 v
45— fi) + 15 VG~ fimo)|

[1 5
ot 5 (= foet) + 75 (= i) = (s — fima)|

23 16

5
_ﬁﬁ - Eﬁ-—l +Eﬁ-—z]

h
Wi = W; +E[23ﬁ —16f;,_; +5f_,1.

Form =4,k =0,1,2,3 we find in the same way that

= +h[+1v +5v2 +3v3]
Wis1 = W; fi zfi 12 fi g fi

h
W1 =W1-—|—ﬁ[55ﬁ-—59ﬁ-_1+3?ﬁ-_2 —9f._5]. (2.24)

The method in (2.24) is the 4-step Adam-Bashforth method, for which we

wrote Algorithm (2.3) to approximate first order IVP (1.2). It uses RK4 to

approximate the solution at t,,t,,t,, where t;, = a and y(t,) = «.

Algorithm (2.3): Adams-Bashforth 4-step method using RK4 to find the
starting points

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11:
Step 12:
Step 13:

Define f(t,v), vEx(t)
Input endpoints a,b; initial condition a;step size h
Let number of steps N = (b—a)/h
Let t; = a;
Let w, = a; The vector w contains the approximad solution of v
Let y, = a; The vector y contains the exact solutionof y
Fori=1to N repeat steps 3 — 15
ky = f(tuwy)
k,=f(t,+ 1/2h,w, + 1/2hk,)
ky=f(t,+ 1/2h,w; + 1/2hk;)
k.= f(t; + hyw, + hk;)

36

Step 15' W:‘+1 = Wi + hfﬁ[kl + zkz + Ekﬂ + kq_:]
Step 16: to,=t +h

Step 17: Visr = VEx(t;4q)
Fori=4to N repeat steps 17 — 19
Step 18:
Wisq = w; +h/24[55f(t,w;) — 59F (t;_ 1, w;iy)
Step 19:

F37f(t 0w,) — 9f ([t g W,
stop 20, £(Fltswios)]
Stepz1: eiThThR
Step22: Vi1 = YEX(t;14)

Find GE = abs(y— w)

Output t, v,w,GE

Stop

Example (2.4)
Using explicit Adams—Bashforth four—step method with step size h = 0.2,

we can approximate the solution of the initial value problem,

y'=y—t?+1, 1=t=<3, y(0)= 4—0.5¢,

and then refine the solution by using h = 0.1,

This initial value problem has the exact solution

y(t) = (t +1)% - 0.5¢".

We represented the results for this problem in Table (2.6).

At t = 3, the global error 5.7083601E-03 for h = 0.2 and 5.0822471E-04 for
h = 0.1. We note that

5.0822471E — 04 0.089037 & (0.1)“ 00625
5.7083601E — 03 “\o2/) T

37

which agrees with the theoretical error estimate for Adams—Bashforth which
is equal to O(h*).

Table (2.6): Results of Example (2.4) using Adams-Bashforth 4-step
method with h=0.2 and h=0.1

Wi error; Wi error;

ti i
y h=0.2 h=0.2 h=0.1 h=0.1

1.0000000 | 2.6408591 | 2.6408591 | 0.0000000E+00 2.6408591 0.0000000E+00
1.2000000 | 3.1799417 | 3.1799386 | 2.9179384E-06 3.1799414 1.8399729E-07
1.4000000 | 3.7323999 | 3.7323945 | 5.6519293E-06 3.7324054 5.4625666E-06
1.6000000 | 4.2834840 | 4.2834759 | 7.9774882E-06 4.2835054 2.1798965E-05
1.8000000 | 4.8151765 | 4.8153915 | 2.1536958E-04 4.8152208 4.4641027E-05
2.0000000 | 5.3054719 | 5.3060632 | 5.9144641E-04 5.3055487 7.6600882E-05
2.2000000 | 5.7274933 | 5.7285838 | 1.0904461E-03 5.7276139 1.2052076E-04
2.4000001 | 6.0484118 | 6.0501885 | 1.7766465E-03 6.0485921 1.8013343E-04
2.5999999 | 6.2281308 | 6.2308531 | 2.7220398E-03 6.2283912 2.6023496E-04
2.8000000 | 6.2176766 | 6.2216763 | 3.9999373E-03 6.2180438 3.6697558E-04
3.0000000 | 5.9572315 | 5.9629397 | 5.7083601E-03 5.9577398 5.0822471E-04

Figure (2.6) compares the curves of exact and approximate solutions of

Example (2.4).

1 1
1 15 2 25 3 3.5

Figure (2.6): Comparing approximate and exact solutions
in Example (2.4)

To derive Milne’s methods, we let ¥ =m — 1 in (2.18), so we get
Bigs
V) =¥+ [FEwde (2.25)

Lim+1

38

If the Newton Backward-Difference interpolating polynomial is integrated
over [t;_,..q,t;o1]USINg m — 1 points; (t,, v,), (t;_1,Vie1) .-

(ti—ms2,Vi—m+2), then we get P _, polynomial and (2.19) becomes

Py (t) = Z DF (7,) P (2.26)

Again, we havet = t; + sh. Therefore, we get dt = hds.
Whent =t;,,, s = 1. Inaddition,whent =t, . ,,,8§ = —m+ 1.

From (2.25) and (2.26), we get

Wis = 1m+1+hz IR f(_—ll’* 7)ds

—m+1

For m = 4 we get
Wit = Wisg + RE3 o [VEF(E,) [, (-4 () ds]
Fork =0, [(-1)°(%)ds= [, ds = 4.
We used Program (2.5) to compute f_lg (—1)F(7)ds fork =1,..,4 and put
the results into Table (2.7) together with the coefficient 4 when k = 0.

Table (2.7): Coefficients of 4-step Milne’s method

K 0 1 2 3 4
8 14
1 k —_—
-1 ds —4 - —
L0 4 » 0 "

Using the data in Table (2.7), we get
Wiy = Wi_a + h[4f, — 4Vf, + 2V2f)],

4h
W1'+1:W1'—3+?[2f1 fic1+2fi5],

39

which is the 4-step explicit Milne’s method. Since the coefficient vanishes for

k. = 3, the local truncation error becomes

- 14n™ 1M A
|T1'I— 45*mr y M=%

Therefore, T; = O(h" 1) and the method is of O(h").
The following Algorithm (2.4) approximates the solution to the IVP (1.2)
using RK4 to produce the starting points for Milne’s 4-step method.

Algorithm (2.4) Milne’s 4-step method

Step 1: Deft‘ne f(t,}i], }TEx[tj
Step 2: Input endpoints a,b; initial condition a;step size h

Step 3: Let number of stepsN = (b—a)/h
Step 4:

Let t; = a;
Step 5:
Let w, = a; The vector w contains the approximad solution of v
Step 6:
Let y, = a; The vector y contains the exact solutionof y
Step 7:
Step 8: Fari=1to N repeat steps 8 — 15
Step 9: ky = f(t.wy)
Step 10: ky = f(t; + 1/2h,w; + 1/2hk,)
Step 11: ks = f(t,+1/2h,w, + 1/2hk;)

Step 12: ky= f(t; + h,w, + hky)
Step13: = w, +h/6(k, + 2k, + 2k + k)

Step 15: b=t 4+h
Step 16:
Vier = YEx(t;44)

Step 17:

Fori=4to N repeat steps 17— 19
Step 18:
Step 19 Wipy = wig Th/3[2F(t,wy) — f (8 wioy) +2F (82, w;i5)]
Step 20: tipr =t; T h

Step 21: Vis1 = YEx(t;44)

40

Step 22: Find GE = abs(y— w)

Output t,y,w,GE

Stop

We translated this algorithm into the Matlab Program (2.6).

Example (2.5)
Consider Milne’s 4-step method to approximate the solution to the initial
value problem
V(0 = —2ty,

using step size h = 0.1.

0=t=1 y(0)=0.5

This initial value problem has the exact solution
y(t) = 0.5e7".
Table (2.8) contains the results of Example (2.5).
Table (2.8): Results of Example (2.5)

t; ¥i w; |GE;|
0.0000000 | 0.5000000 | 0.5000000 0.0000000E+00
0.1000000 | 0.4950249 | 0.4950249 2.0791741E-10
0.2000000 | 0.4803947 | 0.4803947 1.9583726E-09
0.3000000 | 0.4569656 | 0.4569656 5.6262963E-09
0.4000000 | 0.4260719 | 0.4261052 3.3334312E-05
0.5000000 | 0.3894004 | 0.3894376 3.7220070E-05
0.6000000 | 0.3488382 | 0.3488814 4.3255306E-05
0.7000000 | 0.3063132 | 0.3063461 3.2902120E-05
0.8000000 | 0.2636462 | 0.2637070 6.0803573E-05
0.9000000 | 0.2224290 | 0.2224652 3.6136491E-05
1.0000000 | 0.1839397 | 0.1839864 4.6702633E-05

41

0.35

03

0.25

0.2r

Bl

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure (2.7): Comparing approximate and exact solutions of Example (2.5)

Figure (2.7) compares the curves of exact and approximate solutions of

Example (2.5).

2.3.2 Implicit Methods
If we use the point (t;.,, f(t;.1,V(t:11))) together with the m points used

in Adams-Bashforth methods to interpolate f(t,v) in the integral
Eita
f(&ydt,

L5}
then we will get an interpolating polynomial B, of degree m.

Now, fort =t;+sh, dt =h.dsand t =t,,, —h+sh =t;.; +(s—1)h
Therefore, (7°) becomes ('{Sk‘ 13) = ('5;1). In addition, fort = t,, s = 0 and
fort=t,,,,s=1.

Applying this to (2.22) and (2.23), we get the implicit Adams—Moulton

methods

m 1
. . —5+1
Wy =W +h) P f(tgwin) | X (T T)as| @27)
k=0 0

42

|T,] < Eﬁijf%%if(s——ljs(s4—1] (s+m—1)ds.

Now for k=0, fu (—1) (‘fgl)dszfo ds =1,
for k=1, [(—D'("7)ds= (s — Dds=— 3,
forke2, [2 -7 (71)as=1 (s — Dysds= .

for k=3, [/ (—1(71")ds= 5; [(s — Ds(s + Dds= —,

24

19
720"

for k=4, ["D S“)ds- f (s —1)s(s + 1) (s + 2)ds= —
Hence, we have
Wips =W, +R|fy —2VE—2Vf — 2V 2V 4
Table (2.9) contains the coefficients [(—1)*("*)ds for k =0,..10. We

computed these coefficients using Program (2.7).

Table (2.9): Coefficients of Adams-Moulton methods

=

J" (.l}k(—s+i}d5

1

-1/2

-1/12

-1/24

-19/720
-3/160
-863/60480
-275/24192
-33953/3628800
-8183/1036800
-3250433/479001600

O© 00 N O U1 » W N P, O

Uy
o

43

Now, for m = 0, we get
Wirr =W; + Rf(E101, W),
which is the backward Euler’s method of order 2.
For m=1, we get the 1-step method of order 2
Wipp = W; +Hh [f i+1 i Vi
= W+ hlfias — 5 Giva =]
= W+ 2 [fier + £l

Form = 2, we get the 2-step method of order 3

Wies = W+ [5fis + 8 — fiza]
Form = 3, we get the 3-step method of order 4 and 7, = O(h*).

Wies = Wi+ 2= [9fies + 19f,—5fis +fis] (2.28)
Example (2.6)

We can approximate the solution to the initial value problem in Example

(2.4), using the 3-step fourth order Adams-Moulton method with step

size h = 0.2, and compare the results with the results we got in Example (2.4)

for the same step size.

At first, we must solve (2.28) algebraically for w;, , , where
.f(t1'+11 Wi+1j = Wiy — (tﬂ.ljg +1
Doing that, we get
24 h 3
Wit1 = m[wi +; [9(—t, +1) + 19f —5f_; + fi2]|.
Then we insert this explicit formula as a 3-step Adams-Moulton method in

Program (2.7), which gives the results illustrated in Table (2.10).

44

Table (2.10): Results using the 3-step Adams-Moulton method for
Example (2.6)

£ ¥ Wi GE;

1.0000000 2.6408591 2.6408591 0.0000000E+00
1.2000000 3.1799417 3.1799386 2.9179384E-06
1.4000000 3.7323999 3.7323945 5.6519293E-06
1.6000000 4.2834840 4.2834592 2.4484483E-05
1.8000000 48151765 4.8151245 5.1853749E-05
2.0000000 5.3054719 5.3053818 9.0046029E-05
2.2000000 5.7274933 5.7273507 1.4260200E-04
2.4000001 6.0484118 6.0481977 2.1401687E-04
2.5999999 6.2281308 6.2278209 3.1006479E-04
2.8000000 6.2176766 6.2172384 4.3815278E-04
3.0000000 5.9572315 5.9566236 6.0776027E-04

The global error at t = 3 using Adams-Moulton method is 6.0776027E-04,

while it was 5.7083601E-03 in Example (3.1). This means that we have about
9.4 times less error in the 3-step Adams-Moulton method than the error
produced by the 4-step Adams-Bashforth method. Although implicit Adams-
Moulton methods give better results than the explicit Adams-Bashforth

methods of the same order, they have the weakness of that we have to convert

them algebraically to an explicit representation for w; ;.

45

1

1 1
1.5 2 25 3 35

Figure (2.8): Comparing approximate and exact solutions of Example (2.6)

Figure (2.8) compares the approximate and exact solutions of Example (2.6).
2.3.3 Predictor-Corrector Methods

Since implicit multistep methods must be solved algebraically for w,_
before using them to approximate the solution, they are usually not used alone.

Rather, they are used with explicit methods to improve the results. Because

implicit methods need the value of w,,, att;.,, explicit methods are used to
approximate w;, , for them. This technique of approximating w;,, , by explicit
methods and improve approximations by implicit methods is called predictor-
corrector methods.

As an example, we will use Adams-Bashforth 4th-order 4-step method
h
Wipq =W + 24 [55f; —59fi_1 +37fi_, —9f; 5]

as a predictor method and Adams-Moulton 4th-order 3-step method
h
Wiy = Wi+£[9ﬁ+1 + 19f, — 5fi.1 + fi2]

46

as a corrector method for solving an initial value problem. We first need to
calculate the starting values w,,w,, w5, w, for the explicit Adams-Bashforth
4-Step method. To do this, we will use the 4th-order 1-step Runge-Kutta
method.

Example (2.7)

Consider using the 4-step Adams-Bashforth method as a predictor and the 3-
step Adams-Moulton method as a corrector to approximate the solution to the
initial-value problem in Example (2.4) with h = 0.2. We consider using the
fourth order Runge-Kutta method to approximate the starting values.

Table (2.11): Results of Example (2.7)

t; ¥i W, GE;
1.0000000 2.6408591 2.6408591 | 0.0000000E+00
1.2000000 3.1799417 3.1799386 2.9179384E-06
1.4000000 3.7323999 3.7323945 5.6519293E-06
1.6000000 4.2834840 4.2834759 7.9774882E-06
1.8000000 4.8151765 4.8151636 1.2691397E-05
2.0000000 5.3054719 5.3054528 1.9202997E-05
2.2000000 5.7274933 5.7274652 2.7937787E-05
2.4000001 6.0484118 6.0483723 3.9602623E-05
2.5999999 6.2281308 6.2280760 5.5064698E-05
2.8000000 6.2176766 6.2176013 7.5431999E-05
3.0000000 5.9572315 5.9571295 1.0211881E-04

For the predictor-corrector method the global error at t = 3 is 1.0211881E-
04 which is about six times less than the error (6.0776027E-04) generated by
the implicit Adams-Moulton method and about 56 times less than the error

(5.7083601E-03) generated by Adams-Bashforth method. Both the Adams-

Bashforth and the predictor-corrector methods took advantage at ¢t = 1.6 by

47

the higher accuracy of Runge-Kutta, but this is not the case for Moulton’s
method.
2.4 Stability and Stability Regions [8, 12]

In this section, we will study absolute stability of one-step numerical
schemes. Absolute stability considers the behavior of the numerical scheme
when the time step h is held fixed and t — oo .

A numerical method is stable if and only if it is consistent and stable.
Moreover, if a numerical is stable and has local truncation error equals
to O(hP*1) then it has global error equals to O(h?).

This means that if a method is consistent and stable then |y(t;) —w;| =0
as t; — oo. In other words global error vanishes as t — oo.

Our model for studying stability will be
y' ()= Ay(t), y(0)=1, t=>0, y(t)=e™, 1 L. (2.29)

For z = ah, the numerical scheme is absolutely stable if [8]

G(z)| < 1,

where

G(z) = Wi+1.
W

Definition (2.5) [8]
The locus S of points z € C for which |G(z)| < 1 s called the (absolute)
stability region of the scheme.

Since z = |z|e®" , the boundary of the region of absolute stability is the

roots of the equation

48

G(z) = e%, 0<8<2m.

Now, for Euler’s forward method

Wi =W, +hF(~E,w;)

Wi+1 = Wi + Ath-

Wit1

W;

=1+ 4h

G(z)=1+z.

(2.30)

We wrote a Matlab Program (2.9) to find the roots of (2.30) at equally spaced

values in the interval [0, 27[and to plot these roots.

To find the boundary of the region of absolute stability for Euler’s forward

method, we run Program (2.9) for G(z) = 1 + z.

Figure (2.9) (a) shows the stability region (shaded) for Euler’s forward

method. In addition, Figure (2.9) (b) shows the stability region (shaded) for

Euler’s backward method.

(@)

-0 05 1 15 25

(b)

Figure (2.9): (a) Stability region for Euler’s Forward method

(b) Stability region for Euler’s Backward method

49

We find that the stability region is the inner of the disk (Figure (2.9) (a)) with
center (—1,0) and radius equals one. This means that Ak must be inside this
disk. For complex A = a + bi,we (ha+ 1)*+ (hb—0)* <1
(ha)?>+ 2ha+1+ (hb)> <1 dividingby h=>0

ha?+2a+ hb* <0
—2a

h <)
a‘ + b?

(2.31)

This means that for a = 0, there is no h satisfies (2.31). Therefore, Euler’s
method is not stable when real(4) =0 and absolutely stable when

real(A) < 0 and h satisfies (2.31). To make this clearer, we take A, = 1+ 2i
and A, = —1+ 2i. For A,, thereisno h < = meaning that for any choice of

h, Euler’s method is unstable. For A,, we must choose h < % = 0.4 so that the

method is stable.

We will use the three dimensional Cartesian coordinate system to plot the

complex numbers y and w as they vary with t.

A0 0

(a)
Figure (2.10): Relation between 4, h and stability of Euler’s method:
(@) t=200 h=0.001, 4, =1+2i (b)t=200,h=0.1,4,=—-1+2i
(c) t=200, h=0.5, A, = —1+2i

50

Figure (2.10) (a) shows that Euler’s method is unstable for 4, = 1 + 2i, even
though we chose h = 0.001. Figure (2.10) (b) shows that Euler’s method is
stable for A, = =1+ 2iand h = 0.1 < 0.4. But, Figure (2.10) (c) shows that

Euler’s method is unstable for A, = —1 + 2iand h = 0.5 > 0.4

To study stability of backward Euler’s method, we have

Wiy =W +Rf(E, Wiig)
Wipg = W; + hAw;

Wips — hAw gy = w,

Wiy 1
w, 1—Ah

1
G(z) =——.
(z) -

We used Program (2.10) to plot the boundary of the region of absolute
stability for G(z) = i . Figure (2.9) (b) shows the stability region for this
method is the outer side of the disk with centre (1,0) and radius 1.

We can find the function G for other methods in the same way as we did for
Euler’s methods.

We wrote Program (2.11) to find G(z) for explicit RK methods and to plot
the boundary of regions of stability. Table (2.12) contains G(z) for RK
methods 1,...,4, generated by Program (2.11). Figure (2.11) contains the
regions of stability of RK methods 1,2,3 and 4, generated by Program (2.11).

Table (2.12): Amplification functions G(z) for RK1,...,RK4

Method | G(2z)

51

RK1 | 1+z

RK2 | 1+z+1/2*z"2

RK3 | 14z+1/2*2°2+1/6*z"3

RK4 | 1+z+1/2%2"2+1/6%2"3+1/24*2 4

RK1

RK2

RK3

| RKk4

Figure (2.11): Stability regions for RK1,...,RK4

Finally, we will derive the functions G(z) for Taylor methods. First, we note
that
y =4y, y'=2y ,.., y® ="y,
Therefore, Taylor’s method of order n will be

h2A* (hA)™
Wl + e + r Wl
.

Wi q =W, +h Aw; +

z? z"
Wi+1 == Wi +.ZW1 +EW1 + '+EW1

And hence,

" N zP
Gz)=1+z+--+— Z—.
n! — p!

=
=1

52

Program (2.12) is designed to plot the boundary of the regions of stability of

any range of Taylor’s methods. We used this program to plot these boundaries

for Taylor’s methods n = 1, ...,6 in Figure (2.12).

-d- T T T _.-_'i_ T T
o Taylorl —

Taylor2

Taylor3 —

Taylor4d —

Taylor5 —

Taylor6

4 3 -2 -1 0 1 2

Figure (2.12): Stability regions for Taylorl,..., Taylor6 methods

Figure (2.13) demonstrates stability behavior of fourth order Taylor’s method
when applied to (2.29) with different values of h and lambda. The method
shows absolute stability in (b), (d) and (g). It shows instability in (a), (c) and
(F). In (e) the error remains bounded and the method is stable but not

absolutely stable.

Exact y
Approximate w

—*—— efror

Figure (2.13): Stability behavior of fourth order Taylor method:

(@) lambda=10+1*i; h=.1; b=5

s

Exact y

Approximate w

—*—— efrar

il

T
- ' -
Hak ' -
1 . ' el
' . ' -
- : P q
el - 1
- - '
- Ve !
[' " '
' . ' -1
- H - u
. ' T- !
- L .
e ' - 1
[' t- '
' - ' L
- 1 s 1 =
. ' - 1
- re]
T ' - 1
[' . '
' ~ L !
1 - -
- H . i
. Tl !
- . 1
i '
1
'
k]
'
1
'
1
'

Figure (2.13) :(b) lambda=-2+1*i; h=.1; b=5

54

-7 Exact y
) ! ; - —— Approximate w
- . .
- : r ' —*— efmor
5. : :
- ;

st AR Exact y
e ! ! —— Approximate w

cem 1 ; A AT —— afror

1
' ! T T
et , 1 ~ ! i _

i _ - -': ' ' ! " H : T
P] f =" .] ' - ' 1
- 1 - - 1 e
30 -- ‘ ' Lo ! T : 4
' . - [i [! T 1
B 1

Figure (2.13) :(d) lambda=1*i; h=.1; b=30

55

—+—Ewnact y

—+— Approximate w

| —— erraor

=
=
—

0.4

50

.1; b=100;

Figure (2.13): (e) lambda=10%*i; h

h=.1; b=100;

=-40*i;

Figure (2.13): (f) lambda:

56

—_—— E}{aﬁt -_.I,-

—— Approximate w

"t ——— arror

00

0.5

F LSS0 L L ¢4 00
#.4.%» g

AR
A

i
mwmwwmm...

SHSARSER LAY

3 e M Sy

.. ;
. .. 5
K - ... ; :
o] = Z = A
@ 2 = o

'1; b=100;

Figure (2.13) (g) lambda

57

Chapter Three
Higher Order Taylor Methods

3.1 Introduction

In this chapter, we will be focusing on solving first order initial value
problems, systems of first order initial value problems and higher order initial
value problems, using higher order Taylor methods. Here, a question arises,
since Taylor methods are well known, why we have chosen to investigate
Taylor methods. Taylor methods have the weakness of having to find higher
order derivatives needed to construct these methods. We thought, it is worth to
develop an algorithm and later a computer program to accomplish this task. In

this chapter and in the next chapter we will try to answer this question.

3.2 Higher Order Taylor Methods for Solving First Order IVP

In this section, we will develop some numerical algorithms to find y"'(t), ...,
y@™)(t) of our basic problem,
Y =fty), a=t=bh yl@=a
and construct nth order Taylor methods to solve this problem.
3.2.1 Finding Higher Order Derivatives of First Order IVP’s
Theorem (3.1) [17]
If wis a function of uy, u,, ..., ux and each is a function of one variable t , then

w is a function of t and

dw _ dw du. + dw dus +6w duy
dt dus dt dup, dt duy dt

Applying this theorem on

58

y @®=fy(1)),

where f, t and y represent w, u,and wu, in the theorem respectively, we get

dy’_afdt+ af dy
dt 9t dt 8y dt

That is

at ay

""—{:]_j'?f.|.a_:'Ilrrjr f

Now let
h(ty) =y (8.
Applying theorem (3.1) on h we get

dy'" _ dh dt + ah dy
dt at dt dy dt '

ay” ay”
rrr r
= + .
Y at ay Y

Repeating this process until we get

gy Mm—1) gy (M—1)
(n)= + !
y 2 P 3.1)

From (3.1), we get an iterative method to find higher order derivatives y",

y'"',...,v@ of first order IVP’s and that is:

: (1—-1) (I-1)
(D= Iy + 9y

At 3y y,t = 2,3, ..,n (3.2)

Algorithm (3.1) finds y",¥"",..., ™ and store them together with " in the
vector y,,, where ¥, (i) = y™. We translated Algorithm (3.1) into a Matlab

Program (3.1), which we will use to find the derivatives.

59

Algorithm (3.1) Finds the first n derivatives of y(t) where y'(t) = f(t,y)

To find the first n derivatives of y(t) where ¥'(t) = f(t, v).
We wil use the vector y, to hold the derivatives.
Step 1: Define t,y assymbols
Step 2: Define f(t,y)
Step 3 Input n
Step 4: Let y'¥ = f(t,y)
Step 5: Lety,(1) = }r':ﬂ'
Step 6: Fori=2 to n repeat step7— 8
Gim gl

: () _ & . (D)
Step 7: Lety ™ + m Y

Step 8: Let y, (i) = }r':ﬂ'
Step 9: Output y,

Step10: Stop

Example (3.1)
We can find the first 4 derivatives of y(t) where y'(t) = exp(y).
Running Program (3.1) for y'(t) = exp(y) and n = 4, produces the vector y,,,

where
Vp= [exp(y), exp(2+y),2+*exp(3+y),6*exp(4*y)].
That is
Y =exp(y), y" = exp(2*y), y" = 2*exp(3*y) and y*' = 6*exp(4*y).
Example (3.2)
Consider running Program (3.1) for y' = y exp(y) and n = 20.

60

Doing that, we get y,, where

ypl=y*exp(y)
yp2=exp(2*y)*(1+y)*y
yp3=exp(3*y)*(4*y+2*y"2+1)*y
ypd=exp(4*y)*(18*y"2+6*y"3+11*y+1)*y
yp5=exp(5*y)*(96*y"3+24*y"4+98*y"2+26*y+1)*y
yp6=exp(6*y)*(600*y"4+120*y"5+874*y"3+424*y"2+57*y+1)*y
yp7=exp(7*y)*(4320*y"5+720*y"6+8244*y"4+6040*y*3+1614*y"2
+120*y+1)*y
yp8=exp(8*y)*(35280*y"6+5040*y"7+83628*y"5+83500*y"4
+35458*y"34+5682*y"2+4+247*y+1)*y
yp9=exp(9*y)*(322560*y"7+40320*y"8+915984*y"6+1169768
*yA"5+701164*y"44+187288*y"34+19022*y*2+502*y+1)*y
ypl0=exp(10*y)*(14+61584*y"24+920350*y"34+5191412*y"4
+13329084*y"5+1013*y+16939800*y"6+10824336*y"7
+3265920*y"8+362880*y"9)*y
ypll=exp(11*y)*(14+194882*y"2+4297240*y"3+35160560*y"4
+131888624*y"5+2036*y+251869440*y"6+255992688*y"7
+137636640*y"8+36288000*y"9+3628800*y"10)*y
ypl2=exp(12*y)*(1+607042*y"2+19332662*y"3+223072440*y"4
+1178097904*y"5+4083*y+3213860944*y"6+4818505344
*y"74+4054649328*y"8+1876883040*y"*9+439084800*y"10
+39916800*y"11)*y
ypl3=exp(13*y)*(1+1870122*y"2+84615152*y"*3+1347354144
*y"4+9745456704*y"5+8178%*y+479001600*y" 12

61

+36634201456*y"6+77114374080*y"7+94313908080*y"8
+67424622336%y79+27352529280%y"10+5748019200*y*11)*y
ypld=exp(14*y)*(1+5716680*y"2+362772194*y3+7836767696*y"4
+75988344096*y"5+16369*y+80951270400*y" 12
+383130347344*y"6+1093159611568*y"7+6227020800
*yA13+1851312035760*y8+1900327028400*y"9
+1177397912448*y710+424559111040*y11)*y
yp15=exp(15*y)*(1+17379206*y*2+1531122296*y"3+44262649196
*yA4+565644812320%y75432752*y+6996194069760*y" 12
+3745749248752*y76+14109101755360*y*7+1220496076800
*yA13+31966042883792*y"8+87178291200*y" 14
+44921638784640*y"9+39555955434528*y10
+21578280106752*y 11)*y
yp16=exp(16*y)*(1+52628898*y2+6385177274*y"3
+244280080420%y"4+4057808611860*y5+65519*y
+414624724508160*y"12+34704916926064*y"6
+169059052774160*y"7+122029856121600*y"13
+499330912284528*y78+19615115520000%y" 14
+928707031103280*y"9+1307674368000*y 15
+1108940091549408*y"10+852278692798944*y 11)*y
yp17=exp(17*y)*(1+20922789888000*y"16+158934998*y"2
+26382771464*y3+1323563238484*y 4+28255332957880
*yA5+131054*y+19026580503389184*y"12+307859356272208
*yA6+1907751093010304*y"7+8342413577832960*y"13
+7198923054947312*yA8+2246704430745600*y" 14
+17276364907585248%y"9+334764638208000*y" 15

62

+27057653504695968*y"10+27970385778377856*y 11)*y
yp18=exp(18*y)*(1+6046686277632000*y*16+479032912*y"2
+108232980822*y"3+7066323307308*y"4+192032572801508
*yA5+262125%y+722842104776482944%y 12
+2635356154189416*y26+20495617800709968*y"7
+440245658647277568*y*13+97222076075700976*y"8
+175521597284344320*y" 14+295145341009956784*y"9
+43550209534003200%y"15+591332391980604864*y"10
+795624738920365728*y*11+355687428096000%y"17)*y
yp19=exp(19*y)*(1+886697438331801600*y"16+1441816986*y"2
+441554515704*y"3+37279810191336*y 4
+1279389256340592*yA5+524268*y+23718192662660861376
*yA12421904079389753056*y"6+211401353181089232
*yA7+19174597107038578944*y~13+1243919805094088208
*yA8+10557245814916161024*y"14+4701450779462185408
*yA9+3856192103662248960*y"15+11817272449965875616
*yA10+20191479922695276288*y"11+115242726703104000
*yA17+6402373705728000*y18)*y
yp20=exp(20*y)*(1+88341506421223357440*y*16+4335412050%y"2
+1793612585550%y"3+194788586755056*y 4
+8384651931678936*y5+1048555*y
+691974623145801447360*y"12+177636951598742640%*y"6
+2107388333854021920*y"7+719090020089096471360*y"13
+15211903956287489280*y"8+522676032257475415296*y" 14
+70648984091409530032*y"9+262286744142003042816%*y"15
+219317561759406154528*y"10+466825935621694952160

63

*yA11+18921620408960102400*y*17+2311256907767808000
*y718+121645100408832000%y"19)*y.

3.2.2 Constructing Taylor Expansion for First order IVP’s
The next Algorithm (3.1) finds the first n derivatives of y(t), where

y'(t) = f(t,y) and constructs the nth order T (t,, v;, h) defined in (2.8)
1 1

T (t, y;,h) = [J’; +ohy + e+ = A 1}"{?1]];
2 n! !

for the nth order Taylor method (2.16)

Wi+1 =W1+hT{n:](t”W“h), i= 1,...,N.

We translated this algorithm into a Matlab Program (3.2), which we will use

to solve the following examples.

Algorithm (3.2) Finds the first n derivatives of y(£) where y'(t) = f(t,y)

and constructs T

To construct T defined as T™ in (2.8) by finding first the derivativesof y(t)
where y'(t) = f(t,¥)

We wil use the vector y, to hold the derivatives.

Step 1: Definet,y and h as sympols

Step 2: Define f(t,v)

Step 3: Input n

Step 4: Letfac=1

Step 5: Let y'™ = f(t,y)

Step 6: Let T =y

Step 7: Lety,(1)=y™

Step 8 Fori=2 to n repeat steps 9—12

64

2]

E'_','::[_— a}_i[—*_

Step 9 Let y¥ = 2o+ = — =y
Step 10: Let fac= fac=*i

Step 11: Let T=T+ ’;:; xy(®

Step 12: Let yp(i) = y(o

Step 13: OQutput Voo T

Step 14: Stop

Example (3.3)
Consider constructing T™) for y'(t), where y' (t) = log(t).
Entering n = 4 and y'(t) = log(t) into Program (3.2), we get
T =log(t)+1/2+h/t —1/6=h*2/t"2+ 1/12+ h"3/t"3.
Example (3.4)
Consider running Program (3.2) forn =15andy' = ¢t — y.
Doing that, we get
T35 =t-y+1/2*h*(1-t+y)+1/6*h"2* (-1+t-y)+1/24*h"3*(1-t+y)+1/120*h"4
*(-1+t-y)+1/720*h"5*(1-t+y)+1/5040*h"6* (-1+t-y)+1/40320*h A 7*(1-t+y)
+1/362880*h"8*(-1+t-y)+1/3628800*h"9* (1-t+y)+1/39916800*h~10
*(-1+t-y)+1/479001600*h 1 1*(1-t+y)+1/6227020800*h 1 2% (-1+t-y)
+1/87178291200*h"13*(1-t+y)+1/1307674368000*h14*(-1+t-y).
3.2.3 Approximating the Solution of First Order IVP’s using Higher
Order Taylor Methods
Now, we are ready to introduce an algorithm to approximate the solution of

the first order initial value problem using higher order Taylor methods.

65

Algorithm (3.3) enables the user to approximate IVVPs with different Taylor

orders (n) and step sizes (h). It also, finds numerical approximations and
exact values of the solution of the problem at each t; and stores them in the
vectors w and y. In addition, it finds the accumulated global errors at each step
and stores them in the vector named ‘error’.

We translated Algorithm (3.3) into Matlab Program (3.3) to find T,
generates nth Taylor’s higher order method and uses it to approximate the

solution of the first order I\VP.

Algorithm (3.3) Solves first order 1VVPs using higher order Taylor
methods and compares with the exact solution

To approximate the solution of the IVP yv'(t) = f(t.v), a=<t < b, y(a) = a
And compare the approximated solution w with the exact solution y

We will use T constructed by algorithm (3.2)

Step Define f(t,v); and yEx(t)

Step Input endpoints a,b; initial condition y(a) = a
Step Input Taylors ordern; stepsize h
Step Let N=(b—a)/h

1
2:
3.
4
Step 5: Lett(1) =a; w(l)= a; yExact(l)=a
6.
7
8.
9:

Step Let y'(t) = f(t.y)

Step Use algorithm (3.2) to Get T

Step Fori=1 to N repeatsteps 9— 11
Step w(i+ 1) =w(i)+h=T(t(i),w(i),h)
Step 10: y(i+1)=yEx(t(i + 1))

Step 11: t(i+1)=t(i)+h

Step 12: GE = abs(y —w)

66

Step 13: Output t,y,w,GE

Step 14: Stop

Example (3.5)
We can find numerical approximation of the solution of the next IVP, using

step size h = 0.1 and Taylor methods of ordersn = 4 and n = 10.
(2 - 2ty)

70 0<t=l y(O)=1

y'(t) =

The exact solution of this problem is

y(t) =

The results of running Program (3.3) for h = 0.1 and n=4, 10 are represented
in Table (3.1) and Figure (3.1).
The generated Taylor iterative method for n=4 and h=0.1 is
wie, = w; + hT®(t,w,); hisreplaced by its value 0.1,
where
T (£,y) = (2-2%t*y)/(1"2+1)+1/10% (3*y*t"2-y-4*t)/(t"2+1)"2
~1/50%(2*tA3*y-2*t*y-3*t"2+1)/(t"2+1)"3+1/1000
*(GrY*AL-10%y*tA2+y-8*tA3+8%t) /(1" 2+1)4
The generated Taylor iterative method forn = 10and h = 0.11is
w.y = w, + hTAO(t,w,); his replaced by its value 0.1,
where

TR, y)=(2-2%t%y)/(tA2+1)+ 1/10*(3*y*tA2-y-4*t)/ (1" 2+1)"2

67

-1/50*(2*t"3*y-2*t*y-3*t"2+1)/(t"2+1)"3+1/1000
*(GrY*A4-10%y*tA2+y-8* A3 +8*t)/ (1N 2+1)4
-59029581035870595/295147905179352825856
*(3FAG*Y4+3*t*Y-5* A4+ 10%tA2-1-10%t13*Y)/(tA2+1)5
+377789318629571835/37778931862957161709568
*(TFY*NG-35*Y* N+ 21y *tA2-y-12%tN5-1 2%
+40*t"3)/(1"2+1)"6
-1208925819614629935/604462909807314587353088
*(4*NT*y-28*tN\5*y+28* N3 *y-A*t*y-T*t"6+35
L2 1%t +1)/ (1A 2+1)7
+1934281311383408085/19342813113834066795298816
*(126%y*tA4-36*y*t2+y+16*t-84*y*t16-112*t13
+112%tA5+9*y*A8-16%t"7)/(t"2+1)"8
-24758800785707614605/1237940039285380274899124224
*(-1+36*t"2+5*t*y+5*t"0*y-126*t"4-60*t"3*y+84*t"\6
+126*t"\5*y-60*t"\7*y-9*t"8)/(t"2+1)"9
+79228162514264376375/79228162514264337593543950336
*(-20*t19-330*y*t"N4+55*y*t"2+11*y*t"10-y-20*t+462
*y*tN6+240*t73-504*t"5-165*y*t\8+240*t"7)/(t"2+1)"10.
Table (3.1) contains the results produced by Matlab Program (3.3) used to
approximate the solution of the IVVP in Example (3.5). At ¢t = 1, itis clear that
the global error with n = 10 is highly reduced with the probation 1.06201E-

08 to the global error with n = 4.

68

Table (3.1): Results of Example (3.5) using Taylor methods of orders 4
and 10 with step size h=0.1

ti y () wi (Taylor 4) | error; (Taylor4) | w; (Taylor 10) error; (Taylor 10)
0.0000000 | 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000E-000
0.1000000 | 1.1881188 1.1881000 0.0000188 1.1881188 1.8811841E-011
0.2000000 | 1.3461539 1.3461270 0.0000268 1.3461538 1.4418022E-011
0.3000000 | 1.4678899 1.4678676 0.0000223 1.4678899 3.1070702E-012
0.4000000 | 1.5517242 1.5517144 0.0000098 1.5517241 1.0866197E-011
0.5000000 | 1.6000000 1.6000041 0.0000041 1.6000000 6.6371353E-012
0.6000000 | 1.6176471 1.6176616 0.0000145 1.6176471 5.7087668E-013
0.7000000 | 1.6107383 1.6107583 0.0000201 1.6107383 1.9819701E-012
0.8000000 | 1.5853659 1.5853873 0.0000215 1.5853659 1.7961188E-012
0.9000000 | 1.5469613 1.5469815 0.0000201 1.5469613 8.6997076E-013
1.0000000 | 1.5000000 1.5000175 0.0000175 1.5000000 1.8585133E-013

Figure (3.1) compares the exact solution y and the approximated solution of

the IVP in Example (3.5) using fourth order Taylor method with step

size h = 0.1. It shows how close the approximated and exact solutions are.

1.8

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure (3.1): Comparing approximated solution w by fourth order
Taylor method and exact solution y of the IVP in Example (3.5)
with h=0.1

3.3 Higher Order Taylor Methods for Systems of First Order IVP’s

69

A system consisting of k equations of first order ordinary differential

equations can be written as
uI].(t) = fl (ta ula) uk)1

us(t) = (t, ug, ..., uy),

u;t(t) = fk (t, up, ..., uk),
where uy, ..., ugare functions of t. (3.3)

Reformulating (3.3), we get
w(®) =ftu,....u), j=12,....k (3.4)

Now, applying theorem (3.1) to each equation in (3.4), where j = 1,2, ..., k,

we get
a r:it ar: du ar: du ar: du
uf'(t)y = =L 9y) o S e (3.5)
at cit du, dt du, dt duy dt

Substituting f; by u;, (3.3) becomes

au”

w!'(t) = —i —iu —i + .. +—Lu
(1) = ol Fm - G Uk
Now, letting
au’, au’, au’
_1 idhes B8
g;,(0) = 't = ol Gt U

aT.I.j_ 1 ﬂ'ug
and applying Theorem (3.1) again to g;(t), then we get

g (t) u (t)_ ﬂ'g I:“.|. @.{E a_giﬁ_’_.“_'__hg-_duk.
J at dt dus dt Oug dt duy, dt

Substituting g; by u;, we get

70

n " L rr
G
w(t) = oup o % Ly %M L Lyl
/| at duy 1 El'ug duy

Repeating this process n-1 times until we reach u} j, then we get

au[n—lj au[n -1)

() aptntu gy~

n — I pi ' Y ey

U = + u + + ...t .
;0 at du, ot du; 42 u K

We note that every u depends only on u{) and the given u , Where

i=2,...n; j=1,2, ...,k So, we can generalize that

(i—1) {i—-1) (i—1) (i—-1)
(i) _ El'uj auj , du , du; ,
u.?' (t) - at + By u, + g Ut ..t By Uk
where i =2,...,nand j=1,2,..., k. (3.6)
Putting (3.6) into summation form, we get
i (i-1) k p (i-1)
(1)]]
t)y =
p=1
where i=2,...,n; j=12,..,k (3.7)

In our programs, we will use matrices “up“ of dimensions kxn to
enter u”(t) in up(j, i) where i=1,...n, j=1,2, ...,k The notation up(j
1) and up(p,1) refer to u” and uy,, where i=1,...,n, j=1, ..., k and p=1,
...k. Now for i=1, u(j ,1) is ;. Thus, we can write (3.7) as follows:

u(j,1) =1,

Forj=1,..k

up(j i)= 22y y [a“?—l} p(,)| i=2...n. (38)

71

In the following subsections, we will first implement (3.7) in algorithms to
find higher order derivatives of u} in each equation in the system of first order

IVP’s (3.4), and then use these derivatives to construct Taylor expansion of

each f;(t,uy,-..,u;) and finally solve the system of I\VVP using higher order

Taylor methods.

3.3.1 Finding Higher Order Derivatives of Systems of First Order IVP’s
We put the iterative method (3.7) into Algorithm (3.4). In addition, we
translated it into a Matlab Program (3.4). This program uses the alternative

form (3.8) instead of (3.7) for finding the first n derivatives of
w(t);j=2,..k
Algorithm (3.4) Finds higher order derivatives of u}(tj in the system of

first order IVP’s: u}(tj =fituy, .., wp),j=1,.. .k

To find higher order derivatives of u(t) in the system of first order ODEs:
u;(t] =fi(tug, o ug) =1,k
Step 1: Define number of equations k;
, 1) .
Step 2: Define the system u; (t) = filtiwg, vy), J =1,k
Step 7: Forj=1tok; Letu,(j1)= uj_lj (t)

Step 3: Fori=2ton repeat steps 4—8

Step 4: For j=1to k repeat steps 5—8

Step 5: Let uf} = auj."‘” /at

Step 6: For p=1to k repeat steps 7—8

Step 7: Let uj.i} = uﬁi} + [ﬂu:_l}fﬂuﬁj * ui}l}

72

Step 8: Letu,(j,i) = u™

i

Step 9: Output u,

Step 10: Stop

Example (3.6)
For n =3 and 6, we can find the first n-1 derivatives of each qu of the

following system with respect to t, where u; are functionsoftand j=1, 2, 3.
u;=u, —uy +t
u; = 3t2,
us=u, +e".

Running Program (3.4), entering the system and three for n, gives the
following results:
[uy,uy, uy]=[u2-ud+t, 1+3*t"2-u2-exp(-t), 6*t+exp(-t)-3*t"2]
[uf,ul, ui'l=[3*t"2, 6*t, 6]
[ui,uy, ui']=[u2+exp(-t), -exp(-t)+3*t"2, 6*t+exp(-t)]

Repeating running the program for the same system but for n=4, gives the
following results:
[u},u], uy’, u{f:'] = [u2-u3+t, 1+3*t"2-u2-exp(-t),

6*t+exp(-t)-3*t"2, 6-exp(-t)-6*t]

[uy, uy, uy’, uP1=[3*12, 6%t, 6, 0]

[u5, ug, ug’, u?] = [u2+exp(-D), -exp()+3°2, 6*trexp(-), 6-exp(-)]

3.3.2 Constructing Taylor Expansion for a System of First Order IVP’s

Taylor expansion for f(t,y) of first order I\VVP as defined in (2.8)

73

! h " hn_i
TM(t,y, h)=y'+ SY et T y(”),

n!

Now for the system (3.3), the nth Taylor expansion of f;(t,u,, ..., u;) will

be

- R, R (m)
T} (t, Ug, ..., Uk, h) u_] 21 u_] n! u.] ’

i=1,..k (39

Algorithm (3.5) constructs the array T, where T; refers to T}{“j defined in the

system (3.3). It includes the steps used in Algorithm (3.4), in addition to the
steps needed to generate (3.9).

We translated Algorithm (3.5) into Matlab Program (3.5). It constructs the
array T, where T (j) refers to T}{“j in equation (3.9).
Algorithm (3.5) Constructs T;'s as Taylor expansions of each u}- (t) in the

system of first order IVPs: w;(t) = f;(t,uy, ..., w),j = 1,..., k

To construct the array T,where T; is the Taylor expansion of w;(t) by first
finding higher order derivatives of w;(t) in the system of first order ODEs:
u;[:t] =fi(tug, g) j =1,k

Step 1: Define number of the equations k;

Step 2: Define the system uj_lj' (t) = f;.(t,ul, Uy)

Step 3: For j= 1tok repeat steps 5—6

Step 5: Letup(j, 1) = u;ﬂ(tj

Step 6: Let T;(t, Uy, ..., Uy, h) = uj.lj (t)

Step 7: Let fac=1

Step 8: Fori=2ton repeat steps 9— 15

Step 9: Let fac= fac=i

Step 10: For j=1to k repeat steps 11— 15

74

Step 11: Let uj.i} = auj."‘ﬂ /ot

Step 12: For p=1to k repeat step 13

Step 13: Let uj.i} = uji} + [au:_l}fauﬁ] * uil}

Step 14: Let up(j,i) = uj.i}

Step 15: Ti(to g, s U, h) = Ti(t Uy, o Uy, B) + (R Fac) = up (j,1)

Step 16: Output T

Step 16: Stop

Example (3.7)
Consider constructing T for the system in Example (3.6) using n=2 and n = 4.
Running Program (3.4), entering the system and n, results:
For n=2
T(1) = (U2-u3+t)+1/2*h*(1+3*t"2-u2-exp(-t)),
T(2) = 3*t"2+3*h*t,
T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t"2).
For n=4
T(1) = (U2-u3+t)+1/2*h*(1+3*t"2-u2-exp(-t))+1/6*h"2
*(6*t+exp(-t)-3*t"2)+1/24*h"3*(6-exp(-t)-6*1),
T(2) = 3*t"2+3*h*t+h"2,
T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t"2)+1/6*h"2
*(6*t+exp(-t))+1/24*h"3*(6-exp(-t)).

75

3.3.3 Higher Order Taylor Methods for Systems of First Order IVP’s
From previous discussions, we have the iterative method (2.16) for a single
equation IVP
Wiss =W; + hT(t, wi, h), i=1,2,...,N

and Taylor expansion “equation (3.9)” for a system of IVP
n—1
u™: j=1,...k

n!]

(n) — h
T:r' (t, Us,..., ug,) = UJ{+ o UJ{I+ .t

Combining these equations, we get the iterative method for approximating
the solution of a system of first order IVP.
A hT}{“j (s, Wigye e Wi s)
i=12,..,N, j=1,2,..k (3.10)

In Algorithm (3.6), we changed Taylor method we used in Algorithm (3.3),
by using equation (3.10), to deal with systems of equations instead of one
equation. Algorithm (3.6) approximates the solution (w)of a system of first
order IVP, finds the exact solution (uN) and global error (error), using
different orders n and different step sizes h. We put this algorithm into a
Matlab Program (3.6) that we will use in approximating the solution of

systems of first order ordinary differential equations initial value problems.

Algorithm (3.6): Solves the system w;(t) = f;(t,uy, ..., wy), j=1,..., k
by higher order Taylor methods

To solve the system uj“(t:] = }G-[t,ul,...,uk:], ji=1,...k
by higher order Taylor method
Step 1: Define number of equations k;

Step 2: Define the system uj.lj (t) = filtuyg, oy), j =1,k

76

Step 3: Define the functions fuEx,(t),..,fuEx,(t)

Step 4: Define endpoints a,b

Step 5: Define initial conditions uN,; = ay, ..., ulN,, = a,
Step 6: Define step size h;Taylor's ordern

Step 7: Use algorithm (3.5)to get T(t, uy,..., Uy,)

Step 8: Lett,=a

Step 9: LetN=(b—a)/h

Step10: Forj=1to krepeat Let w;; =ulN;,

Step 11: Fori=1to N repeat steps 12— 15

Step 12: For j=1to k repeat steps 13— 14

Step 13: Let H{;I‘_.E"l‘i = W_;I'_.E. + h * T:J(t' W:L,i! e Wk,i’ h’:]
Step 14: Let ulN;;,y = fuEx;(t;q)

Step 15: te,=t,+h

Step 16: GE = abs(uN — w)
Step 17: Output t, uN, w, GE

Step 18: Stop

Example (3.8)
We can find an approximate solution to the following system using h=0.1

and Taylor order n=4:

uy=—4u; + 3u, + 6,
uj =—2.4u; + 1.6u, + 3.6,
u(0)=0, uy(0)=0, O<t<l.
Actual solution of the system
uy(t) =—3.375e > + 1.875¢ "' + 1.5,
Up(t) = —2.25e '+ 2.25 >4,

77

The generated Taylor method (h is replaced by its value 0.1)
Wy i+1 = Wy i + hTo(ti, wyj, W) for approximation of ug, i=1, ..., N.
Wy i1 = Wo, i + hTo(ti, wyj, Wi) for approximation of up, i=1,...,N
where
Ta(t, uy, Up) =-224273/62500*ul+41618/15625*u2+672819/125000,
To(t, ug, Uy) =-166472/78125*u1+1297121/937500*u2+249708/78125.

Table (3.2) contains exact values, approximated values and errors at each t;

for each u in the system of Example (3.8).

Table (3.2): Results of Example (3.8) using fourth order Taylor’s method

using h=0.1
ti Ui, Wi erTrorii uzi W2 i errory
0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 0.0000000
0.1000000 | 0.5382639 | 0.5382552 | 0.0000087 | 0.3196321 | 0.3196262 0.0000058
0.2000000 | 0.9685130 | 0.9684988 | 0.0000143 | 0.5687917 | 0.5687822 0.0000095
0.3000000 | 1.3107365 | 1.3107190 | 0.0000175 | 0.7607448 | 0.7607331 0.0000117
0.4000000 | 1.5812844 | 1.5812652 | 0.0000191 | 0.9063333 | 0.9063206 0.0000127
0.5000000 | 1.7935270 | 1.7935075 | 0.0000196 | 1.0144155 | 1.0144024 0.0000130
0.6000000 | 1.9583968 | 1.9583776 | 0.0000192 | 1.0922257 | 1.0922129 0.0000128
0.7000000 | 2.0848298 | 2.0848114 | 0.0000184 | 1.1456703 | 1.1456580 0.0000122
0.8000000 | 2.1801288 | 2.1801114 | 0.0000172 | 1.1795682 | 1.1795567 0.0000114
0.9000000 | 2.2502594 | 2.2502437 | 0.0000158 | 1.1978493 | 1.1978387 0.0000105
1.0000000 | 2.3000934 | 2.3000791 | 0.0000144 | 1.2037157 | 1.2037061 0.0000096

Figure (3.2) contains plotted results of Example (3.8). It contains four curves;
u; and u, represent the exact solutions, while w; and w, represent the
approximated solutions of u; and u,. We notice that the curves of w; and w;
coincide with the curves of u; and u, respectively. That means that we have

good results.

78

25

05k

,:F" 1 1 1 1 1 1 1 1 1
1] 0.1 02 03 04 05 06 07 08 08 1

Figure (3.2): Results of Example (3.8)
Example (3.9)
We can find an approximate solution of the following system of I\VP.
Take n=9 and h=0.1.
Up= Uy —ug+t,
ul = 3%, 0<t<l
ub=u,+e", h=0.1;
with initial conditions
ui(0)=1, u0)=1 and uz(0)=-1.
This system has the exact solution
uy(t) =—0.05t° + 0.25t* +t+2 —e ',
u(t) =t + 1, and
us(t) =0.25t" +t—e ™.
We ran Program (3.6) for this problem and it produced the following results:
e The generated Taylor method (h is replaced by its value 0.1)

Wy i+1 = Wy i + hTo(ti, Wy, Wai, Ws;) for approximation of ug, i=1, ..., N,

79

Wy i1 = Wo, i + hTo(ti, Wy, Wa i, Ws;) for approximation of up, i=1, ...

W3 i+1 = W3 i + hTo(ti, wyj, Wai, Ws;) for approximation ofuz, i=1, ...

where

Ta(t, Uy, Uy, U3) =19/20*u2-u3+4039/4000*t+14829706495736582734389
/295147905179352825856000+29/200*t"2
-122643117536780316708704412413253
/2535301200456458802993406410752000*exp(-t),

T,(t, Uy, Uy, U3) = 3*tA2+3/10*t+1/100,

Ts(t, Uy, Uy, U3) =u2+2412658082919678486284701998338747
/2535301200456458802993406410752000

*exp(-t)+3/20*t*2+1/100*t+1/4000.

e Table (3.3) contains exact values, approximated values and errors at each

t; for each u in the system of Example (3.9). We have very good results,

since the global errors at the final step is about 10™*°, which is better than

the expected O(h®).

e Figure (3.3) contains plotted results of Example (3.9). It contains six

curves; U, Up and us represent the exact solutions, while w;, w, and w;

represent the approximated solutions of u;, uz and uz. We notice that the

curves of wj, w, and ws coincide with the curves of u;, u, and us;

respectively. That means that we have good results.

Table (3.3): Results of Example (3.9), using Taylor method with n=9 and

h=0.1

‘ t ‘ Uz, ‘ Wi, ‘ €Irory, ‘ Ui ‘ W2 ‘ errory;

80

0.0 | 1.0000000 | 1.0000000 | 0.0000000E+00 | 1.0000000 1.0000000 | 0.0000000E+00
0.1 | 1.1951871 | 1.1951871 | 0.0000000E+00 | 1.0010000 1.0010000 | 0.0000000E+00
0.2 | 1.3816532 | 1.3816532 4.4408921E-16 1.0080000 1.0080000 | 4.4408921E-16
0.3 | 1.5610853 | 1.5610853 2.2204460E-16 1.0270000 1.0270000 | 4.4408921E-16
0.4 | 1.7355680 | 1.7355680 2.2204460E-16 1.0640000 1.0640000 | 8.8817842E-16
0.5 | 1.9075318 | 1.9075318 2.2204460E-16 1.1250000 1.1250000 | 8.8817842E-16
0.6 | 2.0797004 | 2.0797004 4.4408921E-16 1.2160000 1.2160000 | 1.1102230E-15
0.7 | 2.2550362 | 2.2550362 4.4408921E-16 1.3430000 1.3430000 | 1.1102230E-15
0.8 | 24366870 | 2.4366870 4.4408921E-16 1.5120000 1.5120000 | 1.3322676E-15
0.9 | 2.6279308 | 2.6279308 4.4408921E-16 1.7290000 1.7290000 | 1.1102230E-15
1.0 | 2.8321206 | 2.8321206 8.8817842E-16 2.0000000 2.0000000 | 1.1102230E-15
Uusi W3 i €rrors;
-1.0000000 | -1.0000000 | 0.0000000E+00
-0.8048124 | -0.8048124 | 1.1102230E-16
-0.6183308 | -0.6183308 | 1.1102230E-16
-0.4387932 | -0.4387932 | 1.6653345E-16
-0.2639200 | -0.2639200 | 5.5511151E-17
-0.0909057 | -0.0909057 | 0.0000000E+00
0.0835884 | 0.0835884 | 0.0000000E+00
0.2634397 | 0.2634397 | 1.1102230E-16
0.4530710 | 0.4530710 | 5.5511151E-17
0.6574553 | 0.6574553 | 1.1102230E-16
0.8821206 | 0.8821206 | 2.2204460E-16

0 01

0.2 0.3 0.4

0.5 0.6 0.7 0.8

09 1

Figure (3.3): Results of Example (3.9)

3.4 Higher Order Taylor Methods for Higher Order IVP’s

81

In this section, we will develop an algorithm, which we will translate into a
Matlab program to approximate the solution of the VP (1.4)
yOO=fty v, v, ..., y®), a=t<b,
y@)=ai,y'@) =a y"@) = as, ...,y* @) = a
To approximate the solution of a higher order I\VP, we first transform it into
a system (1.7) of first order IVP’s as discussed in chapter one. Then, we
approximate the solution of the system satisfying the initial conditions.
Finally, we treat the approximated w, of 1, as the approximation of y.
Algorithm (3.7) solves higher order ordinary differential equations initial
value problem
y @ =f(Lyy.y", ., y*), a<t<b,
y@=a;, y@=a,..,y*V(@) =0,

following the steps mentioned in the last paragraph.

Algorithm (3.7): Solves higher order IVP’s by higher order Taylor
methods

To solve the ODE y'"™(t) = fltyy.y", .- ,v':l"_ﬂ), by converting it into

a system af first order ODEs and then solve the system by higher arder
Taylor methods

Step 1: Define orderof the ODE k;

Step 2: Define the ODE y"(t) = fayy,y" . yE 0y,

Step 3: Define the exactfunction fyEx(t)

Step 4: Define endpoints a,b

Step 5: Define initial conditions y(a) = a,, y'(a) = g, ..,y ¥V (a) = o,
Step 6: Define step size h;Taylor's ordern

82

Step 7: Lety=u,; uN; = y(a)

Step 8 Fori=1to(k—1) repeatsteps 9-11

Step 9: Let u;, = u;yy
Step 10 Lety™ =u,,
Step 11: uN,., = yv'¥(a)

Step 12: Let u, = f[t,y,y',y”, ...,}r':k_ﬂ); Note:This results u, = f(t,uq, ..., Uy)
Step 13: Use algorithm (3.5)to get T(t, uq, ..., Uy, 1)

Step 14: Lett, =a

Step 15: LetN=(b—a)/h

Step 16: For j= 1to krepeat Let w;; =ul;
Step 17: Let yN, = ulN,

Step 18: Fori=1to N repeat steps 19 — 22

Step 19: For j=1to k repeat step 20

Step 20: Let wy;pg =w;; +h*T;(t,wy,, .., Wy, h)
Step 21: t.,=t;,+h

Step 22: Let yN,., = fyvEx(t;sq)

Step 23: GE = abs(yN — wy;,y44)

Step 24: Output t, YN, wyq.y:4 ., GE

Step 25: Stop

We translated Algorithm (3.7) into the Matlab Program (3.7), which we will
use in solving the following examples.
Example (3.10)
We can transform the following VP into a system of first order s, and then

approximate the solution of y(t) usingn=4and h =0.1.

yiO(t) =2y+y® (1) -3y (1) +2y® (1) +y'(t) +y(t) -(exp(-t)+t+1), 0 < ¢ <1,

83

with initial conditions
y(0)=-1, y'(0)=2, y"(0)=-1, y""(0) =1, y®(0)=-1, y&(0) =1,
y®(0)=-1, y7(0) =1, y®(0)=-1and y*(0)=1.
Actual solution is
y(t) = t-e™.
Running Program (3.7) for this problem gives the following results:

The generated System

ul’'=u2; ul(0)=-1 u2'=u3; u2(0)=2
u3d’' =u4; u30)=-1 ud’=ub; ud(0)=1
ub'=u6; ub(0)=-1 ub’'=u7; u6(0)=1
u?7' =u8; u7(0)=-1 u8' =u9; u8(0)=1

u9" =ul0; u9(0)=—1

ul0 =2+ ul0+u9—-3+u8+2+ud+u2+ul —exp(—t)—t—1;
ulo(0)=1

Table (3.4) contains t, exact solution y, wjy,...,w;, approximating
Uy, ...,Uyy and “error”. The vector error is the absolute value of column
two minus column one. We are interested only on the vector w;, since it
approximates u,, which is equal to y. That means w, approximates y.

Table (3.4): Result of Example (3.10) using Taylor method of
order n=4 and step size h=0.1

‘ ti ‘ yi ‘ Wi,i ‘ W2,i ’ W3ii ’ Wa4,i ’ Wi ‘

84

0.0000000
0.1000000
0.2000000
0.3000000
0.4000000
0.5000000
0.6000000
0.7000000
0.8000000
0.9000000
1.0000000

-1.0000000
-0.8048374
-0.6187308
-0.4408182
-0.2703200
-0.1065307
0.0511884
0.2034147
0.3506710
0.4934303
0.6321206

-1.0000000
-0.8048375
-0.6187309
-0.4408184
-0.2703203
-0.1065309
0.0511881
0.2034144
0.3506707
0.4934300
0.6321202

2.0000000
1.9048375
1.8187309
1.7408184
1.6703203
1.6065309
1.5488119
1.4965856
1.4493293
1.4065700
1.3678798

-1.0000000
-0.9048375
-0.8187309
-0.7408184
-0.6703203
-0.6065309
-0.5488119
-0.4965856
-0.4493293
-0.4065700
-0.3678798

1.0000000
0.9048375
0.8187309
0.7408184
0.6703203
0.6065309
0.5488119
0.4965856
0.4493293
0.4065700
0.3678798

-1.0000000
-0.9048375
-0.8187309
-0.7408184
-0.6703203
-0.6065309
-0.5488119
-0.4965856
-0.4493293
-0.4065700
-0.3678798

We,i

W7

Wgii

Woi

W10,

errori=|yi-wu,|

1.0000000
0.9048375
0.8187309
0.7408184
0.6703203
0.6065309
0.5488119
0.4965856
0.4493293
0.4065700
0.3678798

-1.0000000
-0.9048375
-0.8187309
-0.7408184
-0.6703203
-0.6065309
-0.5488119
-0.4965856
-0.4493293
-0.4065700
-0.3678798

1.0000000
0.9048375
0.8187309
0.7408184
0.6703203
0.6065309
0.5488119
0.4965856
0.4493293
0.4065700
0.3678798

-1.0000000
-0.9048375
-0.8187309
-0.7408184
-0.6703203
-0.6065309
-0.5488119
-0.4965856
-0.4493292
-0.4065699
-0.3678796

1.0000000
0.9048375
0.8187309
0.7408184
0.6703203
0.6065310
0.5488121
0.4965858
0.4493296
0.4065704
0.3678803

0.0000000E+00
8.1964040E-08
1.4832827E-07
2.0131946E-07
2.4288185E-07
2.7471075E-07
2.9828229E-07
3.1487982E-07
3.2561721E-07
3.3145947E-07
3.3324104E-07

Figure (3.4) shows that the curve of w; coincides with the curve of .
This Figure shows only three of the nine remaining curves of w,, ..., wy,,
since u; = uz = u; = u; and uy = ug = ug = Ui, In addition we used

circles in plotting all curves of wy,...,wio.

85

3 I I 1 1 I I I I
] 01 02 03 04 05 06 07 08 09 1

Figure (3.4): Results of Example (3.10)

Example (3.11)
We can find an approximate solution to following IVVP using step size h=0.1
and Taylor of order n=15:
y?@) =yt), 0=t=2
with initial conditions
y?(0)=(-1)', i=0, ...,19.
Exact solution for the IVP is
y(t)=e".

Running Program (3.7) for this problem gives the following results:

The generated System

ul' =u2; ul(0)=—1 u2' =u3; u2(0)=1
u3' = u4; u3(0) = —1 ud’ = ub; ud(0)=1
ub’ = u6; ub(0) = —1 ub’' = u7; u6(0)=1
u7’' = u8; u7(0)=-1 u8’' = u9; ug(0)=1

w9’ =ul0; u9(0)=—1 w10 = ull; u10(0) =1

86

ull' = ul2; ull(0)=—1 ul2 = ul3; ul2(0)=1
ul3' =ul4d; ul3(0)=—1 uld’ = ul5; ul4(0)=1
ul5 = ulé; ul5(0)=—1 ul6' = ul7; ul6(0) =1
ul7 =ul8; ul7(0)=—1 ul8 = ul9%; ul8(0)=1
ul9' = u20; ul9(0)=—1 w20 =ul; u20(0) = 1.

Table (3.5) contains the vectors t, y,w; and GE. Since we are interested only

on w,, we haven’t presented w,, ..., w,, in Table (3.5). We still have good

results, but not as good as in the previous example, since we have used order

fifteen.

Table (3.5): Results of Example (3.11), using Taylor of order n=15 and
step size h=0.1

error= |yi- wi,

ti Vi W1,

0.0000000 | 1.0000000 1.0000000 0.0000000E+00
0.1000000 | 0.9048374 0.9048374 0.0000000E+00
0.2000000 | 0.8187308 0.8187308 0.0000000E+00
0.3000000 | 0.7408182 0.7408182 1.1102230E-16
0.4000000 | 0.6703200 0.6703200 0.0000000E+00
0.5000000 | 0.6065307 0.6065307 0.0000000E+00
0.6000000 | 0.5488116 0.5488116 1.1102230E-16
0.7000000 | 0.4965853 0.4965853 5.5511151E-17
0.8000000 | 0.4493290 0.4493290 5.5511151E-17
0.9000000 | 0.4065697 0.4065697 5.5511151E-17
1.0000000 | 0.3678794 0.3678794 0.0000000E+00
1.1000000 | 0.3328711 0.3328711 5.5511151E-17
1.2000000 | 0.3011942 0.3011942 0.0000000E+00
1.3000000 | 0.2725318 0.2725318 0.0000000E+00
1.4000000 | 0.2465970 0.2465970 2.7755576E-17
1.5000000 | 0.2231302 0.2231302 2.7755576E-17
1.6000000 | 0.2018965 0.2018965 2.7755576E-17
1.7000000 | 0.1826835 0.1826835 5.5511151E-17
1.8000000 | 0.1652989 0.1652989 8.3266727E-17
1.9000000 | 0.1495686 0.1495686 5.5511151E-17
2.0000000 | 0.1353353 0.1353353 5.5511151E-17

87

Figure (3.5) shows that the curve of w; coincides with the curve of y. As

earlier explained, we plotted only y and w,.

g

—B—y

09t ——wl |

08 -

0.7+ e

06 -

05t e

04t .

03 .

02+ e

D1 1 1 1 1
0 0.5 1 1.5 2 2,

Figure (3.5): Comparison between the approximated solution
wjand the exact solution y in Example (3.11) with n=15, h=0.1

88

Chapter Four
Error Analysis

4.1 Error Analysis for Numerical Methods

In this section, we will study the global error (GE) generated by fourth
order numerical methods studied in chapter two. These are Taylor method,
Runge-Kutta method, Adams-Bashforth method, Adams-Moulton method,
predictor-corrector method and Milne’s method. Using step size h = 0.1, we
will apply all of these methods to the initial value problem in the next
example.

Example (4.1)

Using step size h = 0.1, we can approximate the solution to the I\VP
y'(t) = —2+4t 0.5=t=1.5, y(0.5)=4.25. (4.1)
This initial value problem has the exact solution
y(t)=t*+ ti?

Fort € [0.5,1.5]and h = 0.1, we have t; =0.5andt; =05+ 0.1(i — 1),

i = 2,..,11. We will approximate the solution and compare it with the given

exact solution of (4.1) at these values of t

Table (4.1) contains the numerical results for fourth order Taylor method

generated for initial value problem (4.1).

89

Table (4.1): Results of problem (4.1) using Taylor method

t; ¥i w; |GE;|

0.5 4.2500000 4.2500000 0.0000000E+00
0.6 3.1377778 3.1440001 6.2222220E-03
0.7 2.5308163 2.5371852 6.3688587E-03
0.8 2.2025001 2.2080023 5.5023138E-03
0.9 2.0445678 2.0491660 4.5979898E-03
1.0 2.0000000 2.0038359 3.8358041E-03
11 2.0364463 2.0396702 3.2240110E-03
1.2 2.1344445 2.1371815 2.7370052E-03
1.3 2.2817159 2.2840633 2.3474416E-03
14 2.4702041 2.4722369 2.0328776E-03
1.5 2.6944444 2.6962206 1.7761366E-03

In Figure (4.1), we plotted the numerical results of the fourth order Taylor

method approximated solution w and the exact solution y for the initial value

problem (4.1) against t.

45 T T T T T
Exact solutiony —+—
Approximated solutionw —=—
s -
35+ s
3 - -
25¢F -
2 1
0.4 16 1.8
t

Figure (4.1): Approximate and exact solutions for problem (4.1)
using fourth order Taylor method

90

Table (4.2) contains the numerical results for fourth order Runge-Kutta method

generated for initial value problem (4.1).

Table (4.2): Results of problem (4.1) using Runge-Kutta method

£ Vi w; GE;
05 4.2500000 | 4.2500000 0.0000000E+00
0.6 3.1377778 | 3.1379659 1.8824609E-04
0.7 2.5308163 | 2.5310133 1.9703139E-04
0.8 2.2025001 | 2.2026730 1.7295216E-04
0.9 2.0445678 | 2.0447142 1.4627952E-04
1.0 2.0000000 | 2.0001233 1.2321006E-04
11 2.0364463 | 2.0365508 1.0438789E-04
1.2 2.1344445 | 2.1345336 8.9226342E-05
13 2.2817159 | 2.2817929 7.6985394E-05
14 2.4702041 | 2.4702711 6.7025467E-05
15 2.6944444 | 2.6945033 5.8843481E-05

In Figure (4.2), we plotted the Dby fourth order Runge-Kutta method

approximated solution w and the exact solution y for the initial value problem

(4.1) against t.

4.5

Exact solutiony ——
Approximated solutionw —=—

35

25F

1.6 1.€

Figure (4.2): Approximate and exact solutions for problem (4.1)
using fourth order Runge-Kutta method

91

Table (4.3) contains the numerical results for fourth order Adams-Bashforth

method generated for initial value problem (4.1).

Table (4.2): Results of problem (4.1) using fourth order Runge-Kutta
method

L; Vi W GE;

0.5 4.2500000 4.2500000 0.0000000E+00
0.6 3.1377778 3.1379659 1.8824609E-04
0.7 2.5308163 2.5310133 1.9703139E-04
0.8 2.2025001 2.2026730 1.7295216E-04
0.9 2.0445678 2.0833945 3.8826704E-02
1.0 2.0000000 2.0335274 3.3527330E-02
1.1 2.0364463 2.0818779 4.5431580E-02
1.2 2.1344445 2.1669915 3.2546941E-02
1.3 2.2817159 2.3164694 3.4753364E-02
1.4 2.4702041 2.4965878 2.6383726E-02
1.5 2.6944444 2.7205029 2.6058473E-02

In Figure (4.3), we plotted the by fourth order Adams-Bashforth method

approximated solution w and the exact solution y for the initial value problem

(4.1) against t.

4.5 T T
Exact solutiony ——
Approximated solutionw —=—
4} i
35} B
3k -
25+ —
2 1 L
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure (4.3): Approximate and exact solutions for problem (4.1) using
fourth order Adams-Bashforth method

92

Table (4.4) contains the numerical results for fourth order Milne’s method
generated for initial value problem (4.1).

Table (4.4): Results of problem (4.1) using Milne’s method

£ ¥ W GE;
05 4.2500000 4.2500000 0.0000000E+00
0.6 3.1377778 3.1379659 1.8824609E-04
0.7 2.5308163 2.5310133 1.9703139E-04
0.8 2.2025001 2.2026730 1.7295216E-04
0.9 2.0445678 2.0764439 3.1875897E-02
1.0 2.0000000 1.9933140 6.6860020E-03
11 2.0364463 2.0547066 1.8260250E-02
1.2 2.1344445 2.1075168 2.6927656E-02
13 2.2817159 2.3347795 5.3063568E-02
14 2.4702041 24275715 4.2632643E-02
15 2.6944444 2.7521725 5.7727974E-02

In Figure (4.4), we plotted the by fourth order mimme’s method approximated

solution w and the exact solution y for the initial value problem (4.1) against t.

45 < T T T T T T T_]
Exact solutiony ——
4l Approximated solutionw —=— |
35 -
CH o =
2:5F -
2F _
1 1 1 1 1 1 1
06 0.8 1 1.2 1.4 1.6 1.8

Figure (4.4): Approximate and exact solutions for problem (4.1) using fourth
order Milne’s method

93

Table (4.5) contains the numerical results for fourth order predictor-corrector

method generated for initial value problem (4.1).

Table (4.5): Results of problem (4.1) using predictor-corrector method

£; ¥ Wi GE;
05 4.2500000 4.2500000 0.0000000E+00
0.6 3.1377778 3.1379659 1.8824609E-04
0.7 2.5308163 2.5310133 1.9703139E-04
0.8 2.2025001 2.2026730 1.7295216E-04
0.9 2.0445678 2.0401838 4.3841591E-03
1.0 2.0000000 1.9949298 5.0701834E-03
11 2.0364463 2.0316632 4.7831568E-03
1.2 2.1344445 2.1301129 4.3315729E-03
1.3 2.2817159 2.2778773 3.8385985E-03
14 2.4702041 2.4668176 3.3863666E-03
15 2.6944444 2.6914520 2.9923916E-03

In Figure (4.5), we plotted the by fourth order predictor-corrector method

approximated solution w and the exact solution y for the initial value problem

(4.1) against t.

45 T T T T T
Exact solutiony ——
Approximated solutionw —=—
4t i
3st -
3 L -
25} -
2 L -
15 1 1 1 1 1 1
0.4 06 0.8 1 1.2 1.4 1.6 1.8

Figure (4.5): Approximate and exact solutions for problem (4.1) using
fourth order predictor-corrector method

94

Since Adams-Moulton method is an implicit method, we had to solve

manually for w;, ;. We found that

Wip1 =

4t;.4 [W_ 3ht; 4

h
PR +—(19f, —5f_ +f]
4t,., + 3h 5 T 52 (19f —5fia +fi2)

Table (4.6) contains the numerical results for fourth order Adams-Moulton

method generated for initial value problem (4.1).

Table (4.6): Results of problem (4.1) using Adams-Moulton method

£; ¥ W GE;
05 4.2500000 4.2500000 0.0000000E+00
0.6 3.1377778 3.1379659 1.8824609E-04
0.7 2.5308163 2.5310133 1.9703139E-04
0.8 2.2025001 2.1994088 3.0913462E-03
0.9 2.0445678 2.0410907 3.4770828E-03
1.0 2.0000000 1.9966804 3.3195824E-03
11 2.0364463 2.0334775 2.9686904E-03
1.2 2.1344445 2.1318364 2.6081272E-03
1.3 2.2817159 2.2794333 2.2827196E-03
14 2.4702041 2.4682019 2.0022437E-03
15 2.6944444 2.6926804 1.7641560E-03

In Figure (4.6), we plotted the by fourth order Adams-Moulton method

approximated solution w and the exact solution y for the initial value problem

(4.1) against t.

95

4.5 T

Exact solutiony ——

4t Approximated solutionw —=—

351

251

1.5

1 1
0.4 06 0.8 1

1
1.2

1 1
1.4 16

1.8

Figure (4.6): Approximate and exact solutions for problem (4.1)

fourth order Adams-Moulton method

using

Since we used the RK method to approximate the starting values for the

multistep methods, we thought that it would be not accurate to compare them

with other methods in such manner. Therefore, we modified the programs to

assign exact values to w; at the first four steps(t = 0.5,0.6,0.7,0.8) and let

the methods approximate the solution at the remaining points.

Table (4.7) contains global errors for these six methods. Since we assigned

wy ,W,, Wy, W, exact values, global errors at ¢, ,t,t5,t, will be zero for all

methods.

96

Table (4.7): Errors generated by the methods used to solve Example (4.1)

Adams- Predictor- Adams-

t; RK Tayl Mil

. aylor Moulton Corrector Bashforth 1ne
0.5 0.0000E4+00 | 0.0000E+4+00 | 0.0000E4+00 | 0.0000E+00 | 0.0000E4+00 | 0.0000E+00
0.6 0.0000E4+00 | 0.0000E+400 | 0.0000E4+00 | 0.0000E+00 | 0.0000E4+00 | 0.0000E+00
0.7 0.0000E+00 | 0.0000E+4+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E4+00 | 0.0000E+00
0.8 0.0000E+00 | 0.0000E+4+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E4+00 | 0.0000E+00
0.9 9.6250E-06 2.4960E-04 1.1967E-03 | 4.5224E-03 3.8711E-02 3.2083E-02
1.0 1.2520E-05 3.1322E-04 1.4195E-03 | 5.1824E-03 3.3428E-02 6.9048E-03
1.1 1.2908E-05 3.1260E-04 1.4029E-03 | 4.8760E-03 4.5360E-02 1.8357E-02
1.2 1.2358E-05 2.9051E-04 1.2919E-03 | 4.4096E-03 3.2480E-02 2.7329E-02
1.3 1.1488E-05 2.6280E-04 1.1614E-03 | 3.9051E-03 3.4701E-02 5.3589E-02
1.4 1.0550E-05 2.3537E-04 1.0354E-03 | 3.4437E-03 2.6335E-02 4.3203E-02
1.5 9.6474E-06 2.1029E-04 9.2199E-04 | 3.0423E-03 2.6018E-02 5.8328E-02

8.00E-02

== NMilne
6.00E-02
/'I == Adams-Bashforth
4 .00E-02 Predi -
] - —#—Predictor-Corrector
2.00E-02 v 2 n Adams-Moulton
0.00E+00 -~ === —<Taylor
L= B R L S T TR TS R S TR SR I il IR S - = RK

Figure (4.7): (a) Propagation of GE by the six methods in study for Example (4. 1)

6.00E-03
r" e~ —#—Predictor-Corrector
B N
4.00E-03 ~
/ A A |===Adams-Moulton
2.00E-03 =
M P IETHemDemyly¢ |[=—H—=Taylor
0.00E+00 Il IE==———4= o
- O S N DR DO N T S R L B = o

Figure (4.7): (b) Closer look into the first 4 methods with least error

Figure (4.7) (a) shows error propagation of the six methods under study. It is
clear that Milne’s method is the method with greatest error. To have a better

comparison for the methods, we excluded in Figure (4.7) (b) the curves of

97

Milne’s and Adams-Bashforth. Figure (4.7) (a) shows that RK method
generated the least error.

To do more analysis to the data in Table (4.7), we took the absolute global
errors, accumulated by using each of these six methods, at the last
step t = 1.5, sorted them in ascending order and put them into Table (4.8)
column 2. We found that RK method has the smallest error, while Milne’s
method has the greatest error. In addition, Table (4.8) contains the error ratios
of these methods. For example, the ratio of the error generated by Adams-
Bashforth method to the error generated by Adams-Moulton method is about
28:1.

Table (4.8): Error ratios for the methods under study

error at Runge- Adams- |Predictor-| Adams-

order t=1.5 Method Kutta Taylor Moulton | Corrector | Bashforth Milne
Runge-
1 | 9.6474E-06 Ko 1
2 | 2.1029E-04 | Taylor 21.798 1
3 | 9.2199F-04 | Adams- 95569 | 4.384 1
Moulton
4 | 3.04238-03 | Predictor- | sy 249 | 14467 | 3300 1
Corrector
5 | 26018602 | A9MS” | 2606897 |123.723| 28219 | 8552 1
Bashforth
. 277.36
6 | 5.8328E-02 Milne 6045.966 . 63.263 | 19.172 | 2.242 1
0.07
0.06
0.05 /_
0.04 ‘/
0.03 /
0.02 /
0'01 P
0.00 O— L= ‘gﬁ/
A\ A 0 < n Ane
® <eN® oW® 0‘{8610 s,%’rﬁc\r‘oﬂ e

S’ -
poa® ?{ed‘cto‘ pae

Figure (4.8): Error accumulated at the last step in the methods under study in Example (4.1)

98

Table (4.8) shows that the error ratio is1:3.300:28.219 for Adams-

Moulton, Predictor-Corrector and Adams-Bashforth methods respectively.
This means, using the implicit Adams-Moulton method as a corrector for the
explicit Adams-Bashforth method has reduced the error by 8.552 times.
Surprisingly, both Table (4.8) and Figure (4.8) shows that one-step methods
(RK and Taylor) are supreme to multistep methods of the same order.

To confirm our results, we will solve another example, using exact values at
the first four steps as we done in the previous example.

Example (4.2)

Using step size h = 0.1, approximate the solution to the IVP

2— 2ty
(t)=——F"+4t, 0=t<=1, y(0)=1.
V() =—rg + 4 , ¥(0)
This initial value problem has the exact solution
(t) — 2t +1
=

We represented global errors generated by the methods in Table (4.9), plotted

this data in Figure (4.9) and calculated error ratios in Table (4.10).

Table (4.9): Global error generated in Example (4.2)

Adams- : Predictor- Adams-

L Bashforth Milne Corrector Moulton Taylor RK

0.5 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
0.6 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
0.7 | 0.0000E4+00 | 0.0000E+4+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
0.8 | 0.0000E+00 | 0.0000E+4+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
0.9 | 1.9204E-05 | 3.9552E-05 | 2.5176E-05 | 2.4057E-05 | 1.1170E-05 | 4.3123E-07
1.0 | 3.9721E-04 | 3.4727E-04 | 7.3954E-05 | 6.0292E-05 | 2.3500E-05 | 8.4084E-07
1.1 | 8.4929E-04 | 3.9845E-04 | 1.2262E-04 | 9.1653E-05 | 3.2397E-05 | 1.1590E-06
1.2 | 1.2234E-03 | 3.5059E-04 | 1.5530E-04 | 1.0972E-04 | 3.6408E-05 | 1.3584E-06
1.3 | 1.4192E-03 | 2.0552E-04 | 1.6775E-04 | 1.1415E-04 | 3.6282E-05 | 1.4462E-06
1.4 | 1.4510E-03 | 3.8881E-04 | 1.6374E-04 | 1.0876E-04 | 3.3558E-05 | 1.4472E-06

99

1.5

1.3660E-03 | 2.7794E-04 | 1.4979E-04 | 9.8060E-05 | 2.9654E-05 | 1.3900E-06

0.0020

=—4— Adams-Bashforth
0.0015 A4y | -8 Mine

0.0010 //
= Adams-Moulton
0.0005 i O

—i Al === Taylor
0.0000 1—***-‘#

G0 T Y A L e Y LT T Y, &—RK

== Predictor-Corrector

Figure (4.9): (a) Propagation of GE by the methods under study for Example
(4.2)

0.00020
0.00015 A -"“""— —de— Predictor-Corrector
0.00010 P 3¢ | =>e=Adams-Moulton
=—f=Taylor
0.00005
MM KM= RK
0.00000 Il oor0-o0
Lo T Y LA L, L) LT L L

Figure (4.9): (b) Closer look into the first 4 methods with least error

0.0020

0.0015 ,F*-’

0.0010 / == Adams-Bashforth

0.0005 / == Milne
jf-l--..__',,l-...

0.0000 | ----m—m—

G0 T Y A T e Y T T e e

Figure (4.9): (c) Closer look into the 2 methods with greatest error

Table (4.10): Error ratios of the methods under study for Example (4.2)

error at Adams- | Predictor- . Adams-
order t=1.5 method RK Taylor Moulton | Corrector Milne Bashforth
1.39E-06 RK 1
2.97E-05 Taylor | 21.334 1
3 9.81E-05 | Adams- | 5, | 3307 1
Moulton
4 1.50E-04 |redictor-iy o061 | 5051 | 1.528 1
Corrector
5 2.78E-04 Milne |199.956 | 9.373 | 2.834 1.856 1
6 137603 | Adams- | 500 220 | 46.064 | 13.930 9.120 | 4915 1
Bashforth

Table (4.10) and Figure (4.9) confirm the results we got in Example (4.1)

100

with one exception; Adams-Bashforth method has generated the greatest error
instead of Milne’s method.

Finally, we will compare these methods according to CPU time. We
measured CPU time for these methods used in Example (4.2) with different
step sizes and represented the results in Table (4.11). We found that the CPU
time for the Taylor method is the highest, and that is due to the time cost of
constructing Taylor expansion of f(t,y(t)). We noted also, that with
decreasing step size the CPU time differences between Taylor method and

other methods decreases in favor of Taylor method.

Table (4.11) Comparing CPU time

Adams- Predictor- . Adams-
Step size CPUPt{iIfne /s Cpgagiﬁg /s Moulton Corrector CPLI\I/[gnmee /s Bashforth
CPU time/s | CPU time/s CPU time/s
h=0.5 0.0017888 | 0.0481321 | 0.0017486 | 0.0020422 | 0.002092 | 0.0022194
h=0.2 0.0049428 | 0.049220 | 0.0041848 | 0.0079606 | 0.005129 | 0.0060896
h=0.1 0.0127556 | 0.052088 | 0.0103906 | 0.0215922 | 0.010619 | 0.0155052
h=0.05 0.0290058 | 0.057133 | 0.0228816 | 0.0477258 | 0.024353 | 0.0305398

4.2 Error by Higher Order Taylor Methods

In this section, we will compare global error generated by different higher
order Taylor methods (Taylor4, ..., Taylor10). We will see how error is
reduced by increasing Taylor’s order.

Table (4.11) contains errors accumulated after each step using Taylor

methods n = 4, ...10. We plotted this data in Figure (4.10). Figure (4.10)
contains the methods (a) forn=4,...6, (b) for n=6,...8 and (c) for
n=28,..10. We intentionally repeated the method n=6 in (b) and the

method n = 8 in (c), to have better comparison.

101

Table (4.12): Global error generated by Taylor (n=4,...,10) methods

ti Taylor4 Taylor5 Taylor6 Taylor7 Taylor8 Taylor9 Taylor10

0.5 | 0.000E+00 |0.000E+00|0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00
0.6 | 1.881E-05 | 1.188E-06 | 1.881E-07 | 1.188E-08 | 1.881E-09 | 1.188E-10 | 1.881E-11
0.7 | 2.682E-05 | 3.179E-06 | 2.273E-07 | 3.248E-08 | 1.854E-09 | 3.232E-10 | 1.442E-11
0.8 | 2.228E-05 | 4.810E-06 | 1.167E-07 | 4.421E-08 | 2.971E-10 | 3.790E-10 | 3.108E-12
0.9 | 9.768E-06 | 5.356E-06 | 3.884E-08 | 4.104E-08 | 1.056E-09 | 2.780E-10 | 1.087E-11
1.0 | 4.070E-06 | 4.882E-06 | 1.432E-07 | 2.994E-08 | 1.341E-09 | 1.628E-10 | 6.638E-12
1.1 | 1.454E-05 | 3.897E-06 | 1.708E-07 | 1.966E-08 | 9.182E-10 | 1.120E-10 | 5.711E-13
1.2 | 2.011E-05 | 2.885E-06 | 1.469E-07 | 1.380E-08 | 4.060E-10 | 1.098E-10 | 1.982E-12
1.3 | 2.147E-05 | 2.096E-06 | 1.056E-07 | 1.163E-08 | 9.640E-11 | 1.193E-10 | 1.796E-12
1.4 | 2.014E-05 | 1.574E-06 | 6.816E-08 | 1.124E-08 | 1.170E-11 | 1.221E-10 | 8.697E-13
1.5 | 1.751E-05 | 1.266E-06 | 4.195E-08 | 1.126E-08 | 1.164E-11 | 1.166E-10 | 1.859E-13

Generally, the higher the Taylor’s order, the better results we get. Exceptions

are possible. We see that the results for n = 8 are better than forn = 9,

3.0E-05

2.0E-05 /.,—&"\‘ +—Taylor4

1.0E-05 =l—Taylor5
=—&—Taylor6

0.0E+00 A

00 T Y A e Y T T e e

Figure (4.10) (a) Error propagation for Taylor Methods n=4,...,6 for Example (4.2)

2.5E-07

2.0E-07 A

1.5E-07 F \ —j—TaylorG
5.0E-08 i ;ﬁ : i~ =—<=Taylor8
0.0E+00 -

Figure (4.10): (b) Error propagation for Taylor Methods n=6,...,8 for Example (4.2)

2.0E-09

=—>e=Taylor8
1.0E-09

=—=—Taylor9
0.0E+00 +—+= =f=Taylorl0

O I YA R O P A P

Figure (4.10): (c) Error propagation for Taylor Methods n=8,...,10 for Example (4.2)

102

Finally, we can say that Taylor methods are a good choice to approximate the
solution of initial value problem ordinary differential equations, since with
algorithms we developed, all we need is to enter a higher value of n to get
more accurate solutions to a single first order I\VP, a system of first order

IVP’s or a higher order IVP’s.

4.3 Conclusions
The main aim of this thesis was to develop algorithms to get highly accurate

approximations to the solution of initial value problem
y' (@) =f(ty), ast=h yla)=aqa,

and to study the concepts of stability and error propagation when a numerical
method is applied to an initial value problem. Through our work, we found
that higher order Taylor’s methods give highly accurate approximations.
However, the main obstacle was the tedious work of finding higher order
derivatives of the initial value problem. We managed to write algorithms to
find higher order derivatives of initial value problems and to construct
Taylor’s methods for solving these problems numerically. We also managed
to develop these algorithms to deal in the same way with systems of first order
initial value problems. In addition, we wrote an algorithm to convert higher
order initial value problems into systems of first order initial value problems
and to solve these systems. We translated all of these algorithms into Matlab
programs. For these programs, all we need is to enter the problem, choose the

desired order (n), and step size (h).

103

We wrote also algorithms, which we translated into Matlab programs for the
fourth order Runge-Kutta, Adams-Bashforth, Adams-Moulton, Milne’s and
predictor-corrector (4-step fourth order Adams-Bashforth method as predictor
and 3-step fourth order Adams-Moulton method as corrector) methods. We
used these programs to compare errors generated by these methods and the
fourth order Taylor’s method. We found that single step methods (Runge-
Kutta and Taylor) generated the best results. Since we can increase accuracy
of Taylor’s methods only by selecting a higher value of n, we concluded that
with the programs we developed, higher order Taylor’s methods could be a

good choice for approximating the solution of initial value problems.

We used the test initial value problem (2.29)
y'(t)=Ay(), t=0, y(0)=1, A€eC,
to study absolute stability of Taylor’s methods. For this purpose, we wrote a
Matlab program to find the error amplification functions and to plot the

boundaries of stability regions of any Taylor’s method.

To compare stability of Taylor’s methods with other single step methods, we
also wrote the Matlab Program (2.11) to find the error amplification functions
and to plot the boundaries of stability regions of any explicit Runge-Kutta
method. In addition, we wrote the Matlab Program (2.9) to plot the boundaries
of stability regions of any explicit method given we have the error

amplification functions. Matlab Program (2.10) plots the boundaries of

104

stability regions of implicit methods (only of orders less than five) given we

have the error amplification functions.

Using results of these programs, we found that Taylor’s methods, compared
with other explicit methods, have similar stability regions. The most part of
these stability regions lies at the imaginary axis and in the left part of the

complex plane. That means, with enough small step size h and with non

positive real part of A, Taylor’ methods are stable.

Finally, we conclude that we can get higher accuracy of a wide range of

initial value problems applying Taylor’s methods to them.

105

References

[1] F. Bashforth, J. Adams, An attempt to test the theories of capillary
action by comparing the theoretical and measured forms of drops of fluid,
with an explanation of the method of integration employed in
constructing the tables which give the theoretical forms of such drops,
Cambridge University Press, Cambridge, 1883.

[2] R. Buck, Advanced Calculus, McGraw-Hill, 1978.

[3] R. Burden and J. Faires, Numerical Analysis, Brooks/Cole, Cengage
Learning, 2011.

[4] R. Burden and J. Faires, Numerical Methods, Brooks Cole, 2002.

[5] J. Butcher, “A history of Runge-Kutta methods”, Applied Numerical
Mathematics, 20, 1996/ 247-260.

[6] J. Butcher, “Numerical methods for ordinary differential equations in
the 20th century”, Journal of Computational and Applied Mathematics,
125, 2000/ 1-29.

[7] J. Butcher, Numerical Methods for Ordinary Differential Equations,
John Wiley & Sons Ltd,2008.

[8] I. Danaila, P. Joly, S. Kaber and M. Postel, An Introduction to Scientific
Computing, Springer Science & Business Media, LLC, 2007.

[9] D. Griffiths and D. Higham, Numerical Methods for Ordinary
Differential Equations Initial Value Problems, Springer-Verlag London

Limited, 2010.

106

[10] S. lyengar and R. Jain, Numerical Methods, New Age International (P)
Ltd., Publishers, 2009.

[11] W. Kutta, “Beitrag zur Ndaherungsweisen Integration Totaler
Differentialgleichungen”, Z. Math. Phys. , 46, 1901/ 435-453.

[12] R. LeVeque, Finite Difference Methods for Ordinary and Partial
Differential Equations, Society for Industrial and Applied Mathematics,
2007.

[13] W. Milne, “A note on the numerical integration of differential
equations”, J. Res. Nat. Bur. Standards, 43, 1949/ 537-542.

[14] F. Moulton, New Methods in Exterior Ballistics, University of
Chicago, Chicago, 1926.

[15] C. Runge, “Uber die numerische Auflosung von
Differentialgleichungen”, Math. Ann. , 46, 1895/ 167-178.

[16] E. Sili and D. Mayers, An Introduction to Numerical Analysis,
Cambridge University Press, 2003.

[17] E. Swokowski, Calculus with Analytic Geometry, Prindle, Weber &
Schmidt, 1979.

107

Appendices
Appendex (A)

My Matlab Programs

function Euler_2_1

1

2 | % ========================= St S st
3 | % Entering The IVP

4 | Yp==
5 a=1;

6 b=2;

7 | y()=1;

8 | fyp=inline(y/t-(y/"2"'t,'y"); %y'=f(ty)

9 | fy=inline('t/(log(t)+1)",'t"); %Exact Solution

10 | h=.1;

11 | Yp=========mmmssmosmssosSSSSSSSSSSSSSSSSSSS S S S S = s =S
12 | % Initializing For Euler

13 | Yo=================================s=s==============
14 | N=(b-a)/h;

15 | t(1)=a;

16 | w()=y(1);
17 | wHat(1)=y(1);

18 | Yp====================c=cccccooooosoosoo oo s s s s a
19 | % Euler Method

20 | Yp===
21 | fori=1:N;

22 | w(i+1)=w(i)+h*fyp(t(i),w(i));% Approximated Solution
23 | wHat(i+1)=y(i)+h*fyp(t(i),y(i));% w hat

24 | t(i+1)=t(i)+h;

25 | y(i+1)=fy(t(i+1));% Exacty

26 | end

27 | Yp==================——=——=—=————ooooooooooooo oo
28 | % Finding Global And LTEs

29 | Yp===================—c—c=c=——————c—o—oooo—oooo——oooo

30 | gEr=abs(y-w);% Absolute Value of Global Error
31 | locEr=abs(y-wHat);% Absolute Value of LTE

32 | Yp===
33 | % Displaying And Plotting The Results
34 | Yp===

35 | formatlong

36 | disp(single([t'y' w' gEr' wHat' locEr']))
37 | plot(ty,'k+-',t,w,'ks-")

38 | legend('y','w")

Program (2.1) Euler’s Method

function ExplicitRK

Yp=============== |VP =============——=c——ooooooo
f=inline('-2*t*y2",'t,'y");% y'(t)

a=0; b=1;% end points

alpha=1; % initial condition

yEx=inline("1/(1+t"2)",'t");% Actual solution y(t)
h=.1;% Step size

001]
B=[1/61/31/31/6];

108

c=[01/21/2 1];

w(1)=alpha;
y(1)=alpha;

for j=1:i-1
m=m-+A(Lj)*k();
end
k()=h*f(t(n)+C()*h,w(n)+m);
sum=sum+B(1)*k(i);
end
w(n+1)=w(n)+sum;
t(n+1)=t(n)+h;
y(n+1)=yEx(t(n+1));
end

error=abs(y-w);

format long ;
plot(ty,'k+-',t,w,'ko-")
legend('y','w")

out=single([t'y' w' error'])
xlswrite(‘testxls',out,'sheetl’,'d2");

Program 2.2 Fourth order Runge-Kutta method

function CoeffAdam_Bashforth
syms s
k=10;
x=1;
y(1)=sym('1;
fac=1;
fori=1:1:k
x=x*(s+i-1);
fac=fac*i;
y(i+1)=(int(x,0,1)/fac);
end

y

Program (2.3) Coefficients of Adam-Bashforth methods

function Adams_Bashforth
f=inline('y-t"2+1"'t'y");
yEx=inline('(t+1)"2-0.5%exp(t)','t");
a=1;b=3

alpha=4-0.5*exp(1);

h=.1

N=(b-a)/h
t(1)=a
w(1)=alpha;
y(1)=alpha;

fori=1:3
k1=f(t(i),w(i))
k2=f(t(i)+.5*h,w(i)+.5*h*k1)
k3=f(t(i)+.5*h,w(i)+.5*h*k2)

109

k4=f(t(i)+h,w(i)+h*k3)
w(i+1)=w(i)+(h/6)*(k14+2*k24+2*k3+k4)
t(i+1)=t(i)+h
y(i+1)=yEx(t(i+1))

end

fori=4:N
w(i+1)=w(i)+h/24*(55*f(t(i),w(i))-59*f(t(i-1),...
w(i-1))+37*(t(i-2),w(i-2))-9*f(t(i-3),w(i-3)))
t(i+1)=t(i)+h
y(i+1)=yEx(t(i+1))
end
error=abs(y-w);

format long

out=single([t'y' w' error' |);
disp(out)

plot(ty,'’k+-'t,w,'ks-")
legend('y','w")
xlswrite("test.xls',out,'sheet1’,'d2")

Program (2.4) Fourth order Adams-Bashforth method

function CoeffMilne

syms s X

k=4;

x=1;

y(1)=sym('4");

fac=1;

fori=1:1:k
x=x*(s+i-1);
fac=fac*i;
y(i+1)=(int(x,-3,1) /fac);

end

y

Program (2.5) Coefficients of the four step Milne’s method

function Milne
f=inline('y-t"2+1"'t.'y");
yEx=inline('(t+1)"2-0.5%exp(t)','t");
a=1;b=3

alpha=4-0.5*exp(1);

h=.1

N=(b-a)/h
t(1)=a
w(1)=alpha;
y(1)=alpha;

fori=1:3
k1=f(t(i),w(i))
k2=f(t(i)+.5*h,w(i)+.5*h*k1)
k3=f(t(i)+.5*h,w(i)+.5*h*k2)
k4=f(t(i)+h,w(i)+h*k3)
w(i+1)=w(i)+(h/6)*(k14+2*k24+2*k3+k4)
t(i+1)=t(i)+h
y(i+1)=yEx(t(i+1))

end

for i=4:N

w(i+1)=w(i-3)+4*h/3*(2*f(t (), w(i))-f(t(i-1),w([i-1))...

+2*f(t(i-2),w(i-2)))
t(i+1)=t(i)+h
end

110

format long

out=single([t'y' w' error' |);
disp(out)

plot(ty,'k+-",tw,'ks-")
legend('y','w")
xlswrite("test.xls',out,'sheet1’,'d2")

Program (2.6) Fourth order Milne’s method

function CoeffMoulton

Syms S X

k=10;

x=1;

y(1)=sym('1");

fac=1;

fori=1:1:k
x=x*(s+i-2);
fac=fac*i;
y(i+1)=(int(x,0,1)/fac);

end

y

Program (2.7) Coefficients of .Adams-Moulton methods

function Moulton

f=inline('y-t"2+1"'t"'y");

yEx=inline('(t+1)"2-0.5*exp(t)",'t");

a=1;b=3

alpha=4-0.5*%exp(1);

h=.2

N=(b-a)/h

t(1)=a

w(1)=alpha;

y(1)=alpha;

fori=1:2
k1=f(t(i),w(i))
k2=f(t(i)+.5*h,w(i)+.5*h*k1)
k3=f(t(i)+.5*h,w(i)+.5*h*k2)
k4=f(t(i)+h,w(i)+h*k3)
w(i+1)=w(i)+(h/6)*(k14+2*k2+2*k3+k4)
t(i+1)=t(i)+h
y(i+1)=yEx(t(i+1))

end

fori=3:N

t(i+1)=t(i)+h
w(i+1)=24/(24-9*h)*(w(i)+h/24*(9*(-(t(i+1))"2+1)...
+19*f(t(i),w(i))-5*f(t(i-1),w(i-1)) +f(t(i-2),w(i-2))))

y(i+1)=yEx(t(i+1))

end

error=abs(y-w);

format long

out=single([t'y' w' error']);

disp(out)

plot(ty,'’k+-'t,w,'ks-")

legend('y','w")

xlswrite('test.xls',out,'sheet1','d2")

Program (2.8) 3-step Adams-Moulton method

111

function OtherExplicitStabilityRegions
syms zth Gz

HHH=sym2poly(Gz);
order=length(HHH)-1;

HHH=sym(HHH);
HHH(order+1)=HHH(order+1)-exp(i*th);

Yo================Finding roots and plottig =========
count=0;
for th=0:.01:2*pi
clear z
z=roots(eval(HHH));
for j=1:length(z)
count=count+1;
y(count)=(z(j));
end
end
hand =plot(real(y),imag(y),'k.");
set(hand, 'MarkerSize', 5);
hold all

Program (2.9) Plots the boundary of stability regions of explicit methods

function ImplicitStabilityRegions
syms zth

B=strcat(Gz,'-exp(i*th)=0");
s=0;
for th=0:.1:2*pi
clearz
z=solve(B,'z");
for j=1:length(z)
s=s+1;
y(s)=eval(z()));
end
end
hand =plot(real(y),imag(y),'k.");
set(hand, 'MarkerSize', 5);

Program (2.10) Plots the boundary of stability regions for implicit methods

function ExplicitRK_StabilityRegions
syms sum m z th

f=inline('z*y",'y",'z");% y'(t)
s=3;

switch s
case 1
B=[1];
case 2
A=[1/2];
B=[0 1];% midpoint method
case 3
A=[1/2 0;
-12];
B=[1/62/31/6];

112

case 4
A=[1/2 0 0 ;

0 1/20;

0 01
B=[1/61/31/31/6];
end

format rat
Gz=1;
for p=1:s;
m=0;
for j=1:p-1
m=m-+A(p-1j)*k();
end
k(p)=f(1+m,z);
Gz=Gz+B(p)*k(p);
end
char(simplify(Gz))

HHH=sym2poly(Gz);
HHH=sym(HHH);
HHH(s+1)=HHH(s+1)-exp(i*th);

%================Finding roots and plottig =========
count=0;
for th=0:.01:2*pi
clear z
z=roots(eval(HHH));
for j=1:length(z)
count=count+1;
y(count)=(z(j));
end

end

hand =plot(real(y),imag(y),'k.");
set(hand, 'MarkerSize', 5);

hold all

Program (2.11) Finds G(z) for RK1,..,RK4 and plots the boundary of the stability regions

function TaylorStabilityRegions

for k=kk:kkk

n=Kk;

clear B

Gzz=sym('Gzz");

clear th

th=sym('th’,'real");

Gzz(n+2)=1-exp(i*th);

fact=1;

for j=1:n+1
fact=fact*j;
Gzz(n+2-j)=1/fact;

end

Gzz

s=0;
for th=0:.05:2*pi
clear z
z=roots(eval(Gzz));
for j=1:length(z)
s=s+1;
y(ks)=(z());
end

113

end

end

colors = hsv(kkk);
for v=kk:kkk

hand =plot(real(y(v,:)),imag(y(v,:)),"", color’,colors(v,));
legendmatrix{v-kk+1,1}=strcat("Taylor ',num2str(v));
hold on

end

set(hand, 'MarkerSize', 5);

legend(legendmatrix)

Program (2.12) Finds G(z) for any Taylor method and plots the boundary of stability regions

function Taylor_3_1
symsty

% This Program finds the first n derivatives
% of'y, yp(i)refers to y prime(i)

n=input('n=");
yp(1)=input('y"="); %ODEy'(ty).
% To find the derivatives of y'

10 | fori=2:n

11 pt=diff(yp(i-1),t);

12 py=diff(yp(i-1),y);

13 yp(D)=simplify (pt+py*yp(1));
14 | end

15 | yp

O OO UTLH WN -

Program (3.1) Finds the first n derivatives of y in¥' = f{&¥)}

1 | function Taylor_3_2
2 | symstyh
3 | Yo============= ===== === ===== === ===
4 | %This Program finds the first n derivatives of y' yp(i)
5 | %refers toy prime(i)and construct Taylor series of order n
6 | o==================mm===== === ===== === ===
7 | n=input('n=");
8 | yp(1)=input('y"="); %ODEy'(ty).
9 | Yo============= ===== === ===== === ===
10 | %Finding the derivatives of y'and constructing Taylor expantion
11 | Yp========m==mmmmsssssssssESESEE S S S S E S S S S S S S S S S S s S sEs s s E ==
12 | fac=1;
13 | T=yp(1);
14 | fori=2mn
15 pt=diff(yp(i-1),t);
16 py=diff(yp(i-1),y);
17 yp()=simplify (pt+py*yp(1));
18 fac=fac*i;
19 T=T+h"(i-1)/fac*yp(i);
20 | end
21 | yp
22 | T

Program (3.2) Finds the first n derivatives of y in¥' = f(t.¥]and constructs T*

114

function Taylor_3_3
symstyh

%Entering the IVP and saving it with the ability to solve it with
%different order and step size of Taylor method

%======== ===== ====
Q=input('Do you want to enter a new problemy/n:",'s");
ifQ=="y'|Q=="Y’

yp(1)=input('ODE y" (t)=");% yp(i)is the i-th derivative of y
10 | yExact=inline(input('exact solution of ODE y(t)=",'s"));

11 | a=input('start of interval a=");

12 | b=input('end of interval b=");

13 | yN(1)=input('initial condition y(a)=");

14 save data_mat yp yExactab yN

OO UTLH WN -

15 | else
16 load data_mat yp yExactab yN
17 | end

18 | n=input('Taylor order n=");
19 | hN=input('step size h=");

20 | Y======== ===== ==== ==== ==
21 | % Constructing Taylor Expansion of f(t,y)
22 | Yp======== ===== ==== ====

23 | fac=1; %factorial
24 | T=yp(1);% Taylor series

25 | fori=2:n

26 pt=diff(yp(i-1),t);% partial derivative of y prime(i-1)
27 % with respect to t

28 py=diff(yp(i-1),y);% partial derivative of y prime(i-1)
29 % with respect to y

30 yp(i)=simplify (pt+py*yp(1));% construct y prime(i)
31 fac=fac*i;
32 T=T+h"(i-1)/fac*yp(i);% construct Taylor series

33 | end

34 | Yp=============================== == ====
35 | %Taylor Method

36 | ======== ===== ==== ====
37 | N=(b-a)/hN;

38 | tN(1)=a;

39 | w(D)=yN(1);

40 | h=hN;

41 | fori=1:N;

42 t=tN(i);

43 y=w(i);

44 w(i+1)=w(i)+h*eval(T);

45 tN(i+1)=tN(i)+h;

46 yN(i+1)=yExact(tN(i+1));

47 | end

48 | error=abs(yN-w)

49 | formatlong

50 | plot(tN,yN,'k+-"tN,w,'ko-")

51 | legend(y','w")

52 | out=single([tN' yN'w' error'])

53 | xlswrite('test.xls',out,'sheet1’,'d2")

Program (3.3) Finds the first n derivatives of y in3' =f{t.¥]}, constructs 7™ and solves the IVP

115

1| function SystDerivFind
2| symst
3 %___=====_____===== ==== ====
4| %Entering the System of First Order ODEs and saving it for
5| %further use
6 %___=====_____===== ==== ====
7| Q=input('Do you want to enter a new problemy/n:",'s");
81 if Q::'y'lQ::'Y'
9| k=input('No. of Equations k=");
10| fori=1:k
11 u(i)=sym(strcat('u',num2str(i)), real");
12| end
13| forz=1:k
14 up(z,1)=input(strcat('ODE',num2str(z)," u',num2str(z),...
15 'prime(t)="));
16| end
17| savedata_matup uk
18| else
19 load data_matup u k
20| end
21| Yo==========cmcoosssosssoooSooSSSSSSSSSoSSSSSSSSSSSSSSSSSSSSS === s
22 | %Finding the derivatives of (uj)’
23| Yp================== ==== ====
24 | n=input('Taylor order n=");
25| fori=2:n
26 forj=1:k
27 up(j,i)= diff(up(j,i-1),t);
28 for p=1:k
29 pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
30 %u prime(i-1) with respect to u
31 up(j,i)= up(,i)+pu(j,p)*up(p,1);% construct u prime(i)
32 end
33 end
34| end
35| disp(up)

Program (3.4) Finds the first n derivatives every ¥; in¥ =f(t ¥} and constructs?::t_'?

O OO UL WN =

function SystTaylorConstr
symst h

%Entering the System of First Order ODEs and saving it for
%further use

Q=input('Do you want to enter a new problem y/n:",'s");
ifQ==y'|Q=="v
k=input('No. of Equations k=");
forj=1:k
u(j)=sym(strcat("u’,num2str(j)), real’);
end
forj=1:k
up(j,1)=input(strcat('ODE",num2str(j),' u',num2str(j),...
'prime(t)="));% up(i)is the i-th derivative of
end
save data_mat up uk
else
load data_mat up u k
end

Yp=== === R g S

n=input('Taylor order n=");
forj=1:k

T(G)=up(j,1);% Taylor series
end

fac=1; %factorial

fori=2:n

116

fac=fac*i;
forj=1:k
up(j,)= diff(up(j,i-1),0;
for p=1:k
pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
% u prime(i-1) with respect to u
up(j,i)=up(,i)+pu(,p)*up(p,1);% construct u prime(i)
end
T(H=T(§+h"(i-1)/fac*simplify (up(j,i);
end
end
disp(T)

Program (3.5) Finds the first n derivatives every ¥; in3; =f;(t.¥) and constructsT, o

OO UL D WN -

function SystTaylorSolve
symst h

%Entering the IVP system and saving it with the ability to
%solve it with different Taylor order and step size

Q=input('Do you want to enter a new problem y/n:",'s");
ifQ=="y'|Q=="Y'
k=input('No. of Equations k=");
fori=1:k
u(i)=sym(strcat('u’,num2str(i)), real");
end
for z=1:k
up(z,1)=input(strcat('"ODE",num2str(z)," u',num2str(z),...
'prime(t)="));% up(i)is the i-th derivative of
end
for e=1:k
uN(e,1)=input(strcat('initial condition u',num2str(e),'(a)="));
end
fori=1:k
uExact(i)=input(strcat('exact solution of ODE u',num2str(i),'(t)="));
end
a=input('start of interval a=");
b=input('end of interval b=");
save data_mat up a b uk uN uExact
else
load data_mat up u ab k uN uExact
end
n=input('Taylor order n=");
hN=input('step size h =");

7 === ===== ===

Yp==================—=========—===—=======—==—===—=—=====—==========
fac=1; %factorial
fori=1:k
T(i)=up(i,1);% Taylor series
end
fori=2:n
fac=fac*i;
forj=1:k

pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1)
up(j,))=pt(j);
for p=1:k
pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
%u prime(i-1) with respect to u
up(j,i)= up(j,i)+pu(,p)*up(p,1);% construct u prime(i)
end
T(@G)=T(G)+h"(i-1)/fac*simplify(up(j,i));% construct Taylor series
end
end
D=cell(1,k);
fori=1:k

117

D(D)=(T(D);

for j=k:-1:1
D{i}=strrep(D{i},strcat('u’,num2str(j)),strcat('v(',num2str(j),")"));
end

N=(b-a)/hN;
tN(1)=a;
w(1:k,1)=uN(1:k1);
h=hN;
t=tN(1);
for i=1:N;
v(1:k)=w(1:k,i);
for s=1:k
w(s,i+1)=w(s,i)+h*eval(D{s});
end
tN(+1)=tN(i)+h;
t=tN(i+1);
for s=1:k
uN(s,i+1)=eval(uExact(s));
(s,i+1)=abs(uN(s,i+1)-w(s,i+1));
end
error=abs(uN-w);
end
out=[tN]’;
fori=1:k
out=[out uN(i,:)' w(i,:)" error(i,:)"];
end
format long e
single(out)
plot(tN,uN(1,:),'ko-"tN,w(1,:),'k+-"tN,uN(2,:),'ks-',...
tN,w(2,),'kx-")
legend('ul’,'w1','u2','w2")
xlswrite('test.xls',out,'sheet1’,'d2")

Program (3.6) Finds the first n derivatives every ¥; in3 =f;(t¥) and constructsT.”™ and solves the system of IVP

O OO UTLH WN -

% THIS PROGRAM APPROXIMATES IVP ODE's OF ORDER k BY
% CONVERTING THE ODE INTO A SYSTEM OF FIRST ORDER ODE's

syms t

% Entering The IVP ODE

% Transforming It Into A System Of First Order ODEs
% Saving It With The Ability To Solve

% It with Different Order and step size of Taylor method

T

Q=input('Do you want to enter a new problem y/n:",'s");

ifQ=="y'|Q=="Y"
k=input('order of ODE=");

forj=1:k
u(j)=sym(strcat('u’,num2str(j)), real');

118

end

y=u(1);

for j=2:k
yp(-D=u();

end

for j=1:k-1
up(jD=u(+1);
end
up(k,1)=input(strcat('ODE y prime',...
num?2str(k),'(t)="));

uN(1)=input(strcat('initial condition y','(a)="));
for e=2:k
uN(e)=input(strcat('initial condition y prime',...
num2str(e-1),'(a)="));
end

uExact=input(strcat('exact solution of ODE y(t)="));

a=input('start of interval a=");
b=input('end of interval b=");

save data_matuup abkuN uExact

else
load data_mat uup abk uN uExact
end
0 ========================= === ===== ===
% Displaying The Generated System
0p ========================= === —=====================

disp('The generated System")

for j=1:k

sys=["u’' num2str(j) "'="char(up(j))];

init=[; u' num2str(j) '(' num2str(a))="num2str(uN(j))J;

outl=strcat(sys,init);

disp(outl)

end

Yp========================= === —————=———=——————==—==
% Constructing Taylor expansion

Yp========================= === ===== ===

n=input('Taylor order n=");
h=input('step size h=");
fac=1; %factorial
fori=1:k
T(i)=up(i,1);% Taylor series
end
fori=2:n
fac=fac*i;
forj=1:k
pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1)
up(,)=pt();

for p=1:k
pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of
%u prime(i-1) with respect to u
up(j,i)= up(j,i)+pu(,p)*up(p,1);% construct u prime(i)

end

T(G)=T(G)+h"(i-1)/fac*simplify(up(j,i));%construct Taylor
end

end

D=cell(k,1);
fori=1:k
D(@=(T(®);
forj=k:-1:1
D{i}=strrep(D{i},strcat('u’,num2str(j)),...
strcat('v(',num2str(j),)"));

119

89 end

90 | end

91 | %=== S S ——= S N
92 | % Taylor Method

94 | N=(b-a)/h;

95 | tN(1)=a;

96 | w(1l:k1)=uN(1:k);

97 | t=tN(1);

98 | yN(1)=uN(1);

99 | fori=1:N;

100 v(1:k)=w(1:k,);

101 for s=1:k

102 w(s,i+1)=w(s,i)+h*eval(D{s});

103 end

104 tN(i+1)=tN(i)+h;

105 t=tN(i+1);

106 yN(i+1)=eval(uExact);

107 error(i+1)=abs(yN(i+1)-w(1,i+1));

108 | end

109 | %=== ===== ==
110 | % Results Output

111 | %=== ===== ==

112 | out=[tN'yN'w'error'];

113 | format short

114 | single(out)

115 | plot(tN,yN,'ks-"tN,w(1,:),'kx-"tN,w(2:k,:),'ko-")
116 | legend('y','wl','w>1")

117 | xIswrite('testxls',out,'sheet1’,'d2")

118

Program (3.7) Solves higher order IVP’s

Aib o) rladll dadly
Lalad) bl alf 418

Jibsa Jad aaad) 3 jall A5LEY 5 pUadl Julas
Al X5y audl

das |

..\..'\lSu.quéJ.AQ Alas

il)

(likd Al g

Ao gaal) ciludaly gﬁ saladl da 1 Jo Jgaad) cildhiial YiaSin) da g kY sy Cuadd
Coplaeatd ¢l 8 dila gl) el daaly G Lidad) il) Ay
2013

-

dgaaal) (3 ,lll ASLAY 9 pUaAY) Julas
4000y adll) Jila Jad
das
LS 8 jas s
il)
ki Al]

el

wll Jilsa Ja ¢ ilaualy) Aaly € s) 5k o Lgalina (3 3] ol Jilss

bl elde die 4805 paioeadl doe) Cunon Laatd Cilacaly Hl) Jsia €0 aal ga dlany)

Gl el L5 (350 (oS el s eyl sa skl e pulad IS Jaall 13a S5

Aaal e AEY) sl Jile dalai) s oy yiils YD sl e AIY) 4l Jilas Ja
e deall 138 35 elld) A8LeaWl Lladl cila 5ol (e 40000V adll Jilase sy ity V)
) 0 sty Ll (m jadl 13gd 5 A0y al) ilse Jad sl (3 pdall 45U 5 oUadYl Al)
LA (Blalia 2 gan a5 Ao puall US-oaiy ok Sl 3okl eladV) 5SS i) 31 slay

AT Gk Gkl s3]

oA i 1 Ulal) 15 G5l 0585 (f (S ali 5 sha 0 gmal sl sl s 4 Uiniia

AGY) 2l Jilise (e dail 5 de gana Jsla

