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Error Analysis and Stability of Numerical Schemes 

 for Initial Value problems “IVP’s” 

By 

Imad Omar Faris Kayid 

Supervisor 

Prof. Dr. Naji Qatanani 

Abstract 

    Most of initial value problems are natural phenomena written in the 

language of mathematics. Solving these initial value problems is one of the 

most challenging fields in mathematics, because of the mathematicians’ 

continuous desire of exactness. 

     This work focuses mainly on developing algorithms and programs to 

construct higher order Taylor’s methods for approximating the solution of first 

order initial value problems, systems of first order initial value problems and 

higher order initial value problems. Moreover, it concentrates on studying 

error and stability of numerical methods for solving initial value problems. For 

this purpose, we developed programs to find the error amplification functions 

of Taylor’s and Runge-Kutta methods and to plot boundaries of stability 

regions for these methods and other methods.  

   We concluded that with the programs we developed, higher order Taylor’s 

methods could be a good choice for approximating solutions of a wide range 



XV 
 

 
 

of initial value problems.



XVI 
 

 
 

 

 Introduction 

  Many problems in engineering and science can be formulated in terms of 

differential equations. Many mathematicians have studied the nature of these 

equations and many complicated systems can be described exactly with 

compact mathematical expressions. 

  The techniques for solving differential equations based on numerical 

approximations were developed before programmable computers existed. The 

problem of solving ordinary differential equations is classified into initial 

value and boundary value problems, depending on the conditions specified at 

the end points of the domain. 

  There are numerous methods that produce numerical approximations to the 

solution of initial value problems in ordinary differential equations such as 

Euler’s method which was the oldest and simplest method originated by 

Leonard Euler in 1768. He was the first who suggested the idea to propagate 

the solution of an initial value problem by a sequence of small time-steps. In 

each step, the rate of change of the solution is treated as constant and is found 

from the formula for the derivative evaluated at the beginning of the step [5]. 

An improved Euler’s method and Runge-Kutta methods described by Carl 

Runge and Martin Kutta in 1895 and 1905 respectively. The paper by Runge 

is now recognized as the starting point for modern one-step methods [6]. 
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The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton 

[14] were the foundation blocks of developing multistep methods.  Through 

their work, the explicit Adams-Bashforth methods, the implicit Adams-

Moulton methods and the predictor-corrector methods were established. Milne 

also contributed in this field by the methods called after him and by the so-

called Milne’s device, which estimates error in predictor-corrector methods 

[13]. 

   Numerical methods form an important part of solving initial value problems 

in ordinary differential equations most especially in cases where there is no 

closed form solution. 

 This thesis is organized as follows: 

  Chapter one gives perspective study of differential equations in particular, 

initial value problems, systems of first order initial value problems and higher 

order initial value problems. 

   In chapter two we introduce some numerical examples for solving initial 

value problems. These include single step methods and multistep methods. 

   Chapter three deals with higher order Taylor methods for solving first order 

IVP’s, systems of first order IVP’s and higher order IVP’s. 

   In chapter four some error analysis for the numerical methods: Taylor 

method, Runge-Kutta method, Adams-Bashforth method, Adams-Moulton 

method, predictor-corrector method and Milne’s method will be investigated 

and presented through same numerical examples. 
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Chapter One 

Initial Value Problem 

1.1 Preliminaries 

    A differential equation: is an equation relating some function  to one or 

more of its derivatives.  

  The equation 

 

 is a differential equation. 

The order of a differential equation is the order of the highest derivative that 

appears in the equation.  

  The equation 

                             

is of order 2. 

The degree of an ordinary differential equation: is the greatest number of 

times the dependent variable appears in any single term. For example, the 

degree of  is 3, whereas the degree of  

is 4.  

An ordinary differential equation (ODE): is an equation with the derivatives of 

a function of one variable.  

   The general form of an explicit kth order ordinary differential equation is 

given by 
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  where y, y′, . . . , y
(k−1)

 are functions of t.  

   The general solution of this equation contains k arbitrary constants 

 . These constants can be found by prescribing k conditions. 

A partial differential equation (PDE) describes a relation between an unknown 

function and its partial derivatives. 

The heat equation 

 

is a second order PDE.  

Initial value problem (IVP): is a problem that specifies the initial conditions at 

the same value of . 

As an example         

 

is an initial value problem since both conditions imposed on . 

Boundary value problem: is a problem that specifies the boundary conditions 

at different values of . 

As an example   

 

is a boundary value problem because the two conditions are specified at 

different values of t.  

1.2 Initial Value Problem (IVP)   
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 A first order initial value problem defined on the interval [a, b] can be written 

 as 

 

  Since any ordinary differential equation of order k 

 

can always be transformed into a system of k first−order equations, we will 

focus on solving first order initial value problems and systems of first order 

initial value problems.  

1.3 Existence and Uniqueness of the Solution 

   Solving differential equations can be done by two major ways. The first way 

is to find the exact solution analytically. The other way is to approximate the 

solution by numerical methods at usually equally spaced points, then 

interpolate the solution to the whole interval of interest. Since most 

differential equations that represent real nature phenomena cannot be solved 

analytically, we will focus on solving initial value problems using numerical 

approximations.  

   Before we discuss methods for approximating the solution to our basic 

problem (1.2), we must consider some theory to ensure that our problem has a 

unique solution and know how small errors on the initial condition can affect 

the accuracy of the approximated solution. 

Definition (1.1) 
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 A function  is said to satisfy a Lipschitz condition in the variable y on a 

set  if a constant  exists with 

                         , 

whenever  and  are in D. The constant L is called a Lipschitz 

constant for [3].  

Example (1.1)  We can show that  satisfies a Lipschitz 

condition on the set . 

For each pair of points  and  in D we have 

         

                                          |t|| || | 

                                            

Thus,  satisfies a Lipschitz condition on  in the variable y with a Lipschitz 

constant . 

Definition (1.2) [16] 

A set  is said to be convex if, whenever x and y belong to D, also 

  

Thus, a set  is convex if  then the point 

           . 

Since a line segment between  and  is the set of all points 

 

then a set  in  is called a convex set if the line segment joining any pair of 

points of  lies entirely in . 
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  The set S in Figure (1.1) (a) is convex because the line segment joining any 

pair of points of S lies entirely in S, while  the set D in Figure (1.1) (b) is non-

convex, since points a and b lie in D, but the line segment  does not lie 

entirely in D. 

  

Figure(1.1): (a) Convex Set S.     (b) Non-convex Set D. 

Example (1.2)  

  We can show that the set  is 

convex. 

Let  

 So,  

For   

 

These two inequalities give 

 

It is obvious that 

 

Therefore, D is a convex set. 

Theorem (1.1) [3] 

Suppose  is defined on a convex set . If a constant  exists  

D 

b 

a 

(b) 

S 

a b 

(a) 
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with  

 

then  satisfies a  Lipschitz condition on  in the variable y with a Lipschitz 

constant .  

Proof: Holding  constant and applying the Mean Value Theorem to the 

function , when , a number  in exists with 

 

 

Thus,  satisfies a Lipschitz condition on  in the variable y with a Lipschitz 

constant .  

Example (1.3)  

   For the set  it easy to show, 

that  satisfies a Lipschitz condition in the variable .  

 We have shown in Example (1.2) that D is convex. In addition 

 

Thus  satisfies a Lipschitz condition on  in the variable y with a Lipschitz 

constant 2. 

Definition (1.3) [3] 

The initial value problem 
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 is said to be a well-posed problem if: 

 A unique solution,  to the problem exists, and 

 There exist constants ɛ0 > 0 and k > 0 such that for any , with 0 >  > 0, 

whenever   is continuous with | (t) | <   for all  in [a, b], and when  

      | 0| <  the initial-value problem 

 

     has a unique solution z(t) that satisfies 

           .  

    Point two in this definition says that small perturbations of the original 

problem and small perturbations of the initial condition have only small error 

effects on the approximated solution. To illustrate this we give the following 

example. 

Example (1.4)  

  Using definition (1.3), we can show that the initial value problem 

 

is well-posed. 

Consider the perturbed problem with constant  

 

 

 Suppose that  . And if , then 
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for all t . Therefore, the problem is well-posed with  and for all 

. 

   The next theorem tells us sufficient conditions that guarantee well posedness 

of our basic problem. 

Theorem (1.2) [3] 

   Suppose that . If  is 

continuous and satisfies a Lipschitz condition in the variable  on the set , 

then the initial value problem 

 

is well-posed. 

  We note, that this theorem ensures the uniqueness of the solution  

for  

Example (1.5)  

  We can show that the IVP 

 

is well-posed. 

The function  is continuous. We have shown in Example 

(1.2) that the set  is convex. In 

addition, we have  
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Thus  satisfies a Lipschitz condition on  in the variable  with Lipschitz 

constant 4. Therefore, according to theorem (1.2) the IVP is well-posed. 

Theorem (1.3) [4] 

   Suppose that  and , its first partial derivative with respect to y, are 

continuous for t in [a, b] and for all y. Then the initial value problem 

 

has a unique solution y(t) for , and the problem is well-posed.  

 Proof: The set  is convex. Since 

 is continuous on [a, b], then  is bounded. Therefore, there exists a real 

number  such that .  Thus,  satisfies a Lipschitz condition on D 

in the variable . Also  is continuous. It follows from theorem (1.2), that the 

IVP is well-posed. 

Example (1.6)  

  The initial-value problem 

         , for  and  

is a well-posed initial value problem, since the functions  

         , and    

are both continuous for  and for all y. 

1.4 Systems of First Order Initial Value Problems 

  A kth-order system of first order initial value problems has the general form 
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for , with the initial conditions 

                  u1(a) =α1, u2(a) = α2, . . . , uk(a) = αk.                                      (1.3) 

  To solve this system we must find u1, u2,…,uk that satisfy all the differential 

equations and the initial conditions. 

Consider the following system of IVP’s 

                               (t)= u2(t) 

                               (t)= 2u1(t)+ u2(t) 

together with the initial conditions 

           u1(0) = 8 and u2(0) = 4. 

We can show that  

           u1(t) = 4e
2t
 + 4e

-t
,    

 
u2(t) = 8e

2t
 + 4e

-t
 

is the solution of this system. 

Solving this system numerically will be discussed in next chapter. 

1.5 Higher Order Initial Value Problem 

The first step to solve an IVP of order k 

          y
(k)

 = f(t, y, y', y'',…,y
(k-1)

),      a ≤ t ≤ b 

         y(a) = α1, y' (a) = α2, y''(a) = α3,…, y
(k-1)

(a) = αk.                           (1.4) 

is to transform it into a system of first order IVP as follows: 

Let  

           u1 = y,  
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           u2 = y',  

           u3 = y'', 

             

           uk = y
(k-1)

.                                                                                   (1.5) 

Differentiating these equations, we get  

            = y', 

            = y'', 

            = y''', 

             

           = y
(k)

 = f (t, y, y', y'',…,y
(k-1)

)                                                      (1.6) 

Substituting we get a system of first order IVP 

            = u2 

            = u3 

              

            = uk 

            = f (t, u1, u2, …, uk ). 

           u1(a) = y(a) = α1,   u2(a) = y'(a) = α2 , …,  uk(a) = y
(k-1)

(a) = αn.    (1.7) 

The second step is to solve this system for u1, …,uk satisfying (1.6). Finally, 

the solution of u1 is assigned to y because y = u1. 

To illustrate this method, consider the following example. 

Example (1.7)  

   We will  show  how  to transform  the  following  second order IVP into a  
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two-dimensional system of first order IVP’s: 

             y'' - 2 y' + y = te
t
 – t ,        0 ≤ t ≤ 1 , 

with initial conditions  

            y(0) = 0,   y'(0) = 0. 

  First, we rewrite the DE as 

             y'' = 2 y' - y + te
t
 – t. 

Now let  

            u1 = y,   

            u2 = y'. 

Differentiating both equations with respect to t, we get 

            =  y', 

            = y''. 

Substituting, we get a system of first order IVP’s 

                = u2 ,  

                = 2u2- u1 + te
t
 – t 

with initial conditions 

u1(0) = y(0) = 0 ,        u2(0) = y'(0) = 0. 

Solving systems of IVP’s numerically will be discussed next chapter. 
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Chapter Two 

Numerical Methods for Initial Value Problems 

2.1 Introduction 

    In this chapter, we shall study some numerical methods for solving IVP’s of 

the form  

 

that possess a unique solution on some specified interval, . In these 

numerical methods, we will find approximations to the solution of the initial 

value problem at N particular equally spaced points 

      

 approximations to the numbers , rather than to the curve of 

y(t).  

   Methods for approximating the solution of initial value problems can be 

classified mainly into two types. They are 

               (i) Single step methods,  

               (ii) Multistep methods. 

  Both of these methods can be either implicit or explicit. If the approximate 

solution wi+1 depends only on the previous , then the method is 

explicit. However, if  depends on too, then the method is implicit, 

that is, we get an algebraic equation for the solution of . 
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2.2 Single Step methods   

   In single step methods, the solution at any point  is obtained by using the 

solution at only the previous point . Thus, we can write a general implicit 

single step method as 

 

and a general explicit single step method as 

 

where φ is a function of the arguments  and depends on  of 

the given differential equation. The function  is called the increment 

function, see [10]. 

  Definition (2.1) (Local Truncation Error) [9] 

The local truncation error  of a method is defined to be the difference 

between the exact and the numerical solution of the IVP at time : 

 

under the localizing assumption that , i.e. that the current numerical 

solution  is exact. If , the method is said to be of 

order p.  

    If we calculate  assuming , that is: 

 

then the LTE, , at  is defined by: 

 

 

 



15 
 

 
 

Definition (2.2)  

The global truncation error: The difference 

 

is referred to as the global error (GE) at t = . 

Definition (2.3) [3] 

   A one-step difference-equation method with local truncation error  at 

the ith step is said to be consistent with the differential equation it 

approximates if 

 

Definition (2.4) [9] 

A numerical method is said to converge to the solution  of a given IVP at 

 if the GE    satisfies 

 

as . It converges at a -order rate if  for some . 

A numerical method is said to be consistent of order p if 

with   . 

 Before we begin our discussion of the methods, we shall first derive the 

Taylor series expansion of  with remainder. 

Theorem (2.1) (Taylor Theorem) [2] 

Suppose  has  continuous derivatives on an open interval containing . 

Then for each  in the interval, 
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where the error term satisfies 

 

for some c between a and x. 

Now for our Problem (1.2), if  is continuous and has   continuous 

derivatives on an interval about , then the Taylor series expansion of 

 about   is 

 

Now, for , therefore (2.4) becomes 

 

 

 

  When , we can replace  by  in the previous 

equations for  

    We note that the expression in the square brackets in (2.6) represents the 

 Taylor expansion of . 

  Finally, in (2.6) if we let  

 

then (2.6) becomes 



17 
 

 
 

 

2.2.1 Euler’s Method  

  Euler was the first who suggested the idea to propagate the solution of an 

initial value problem forward by a sequence of small time-steps. In each step, 

the rate of change of the solution is treated as constant and is found from the 

formula for the derivative evaluated at the beginning of the step [5].  

 One way to derive Euler’s method for approximating the solution of the first 

order IVP (1.2) is achieved by approximating  as follows: 

 

  Solving for , we get 

 

 Using this equation, we get Euler’s forward method 

 

Now, if  is differentiable on  and  is continuous on , then there 

exists  such that  

 

  To find the LTE of Euler’s method, we have  as defined in (2.2) 

 

therefore 
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  Then, if a positive number M exists so that  for all , 

then 

 

 It follows from Definition (2.1) that Euler’s method is of order  

  We introduce now Algorithm (2.1) for approximating the solution of the 

problem (1.2) using Euler’s method and comparing the approximated solution 

with the exact solution. 

 

 Algorithm (2.1): Euler’s Method. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

 

 

 

Step 6: 

Step 7: 

Step 8: 

  

  

  

  

  

         

         

         

  

  

  

Example (2.1)  

  Consider Euler’s method to approximate the solution of the following initial-

value problem:  
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This initial value problem has the exact solution 

 

  Matlab Program (2.1)(See Appendix A) is an implementation of Algorithm 

(2.1) in computer language. The results of running this program for our 

Example (2.1) are represented in Table (2.1). In addition to the approximated 

solution of , at each step the program calculates the absolute values of the 

global error  (column 4) and the local truncation error  (column 6). It also 

plots (Figure (2.1)) the approximated vector  (column 3) and the exact vector 

 (column 2) against the vector  (column 1). 

Table (2.1): Results of Example (2.1) using Euler’s method with h=0.1 

          
 

1.0000000 

1.1000000 

1.2000000 

1.3000000 

1.4000000 

1.5000000 

1.6000000 

1.7000000 

1.8000000 

1.9000000 

2.0000000 

1.0000000 

1.0042817 

1.0149523 

1.0298137 

1.0475339 

1.0672624 

1.0884327 

1.1106551 

1.1336536 

1.1572284 

1.1812322 

1.0000000 

1.0000000 

1.0082645 

1.0216895 

1.0385147 

1.0576682 

1.0784611 

1.1004322 

1.1232621 

1.1467236 

1.1706516 

0.0000000 

0.0042817 

0.0066879 

0.0081242 

0.0090192 

0.0095942 

0.0099716 

0.0102229 

0.0103915 

0.0105048 

0.0105806 

1.0000000 

1.0000000 

1.0122262 

1.0279950 

1.0462776 

1.0663717 

1.0877888 

1.1101830 

1.1333041 

1.1569686 

1.1810389 

0.0000000 

0.0042817 

0.0027261 

0.0018187 

0.0012562 

0.0008907 

0.0006439 

0.0004721 

0.0003494 

0.0002599 

0.0001934 

  We notice that the results are consistent with the theoretical error estimates 

for Euler’s method, since the global error is of  and the local truncation 

error is of . 

  If we repeat solving Example (2.1), but using  instead of , 

we get better results. Table (2.2) shows that the global error at the last step 
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using h = 0.05 is 0.0051070, while it was 0.0105806 (Table 2.1) when we 

used  

In addition, we notice that 

 

which agrees with our theoretical analysis that Euler’s method is of . 

 If we do the same for the local truncation error, we get 

 

which agrees with our theoretical analysis that local truncation error for 

Euler’s method is of . 

  Table (2.2): Results of Example (2.1) using Euler’s method with h=0.05 

 

          

1.0000000 

1.0500000 

1.1000000 

1.1500000 

1.2000000 

1.2500000 

1.3000000 

1.3500000 

1.4000000 

1.4500000 

1.5000000 

1.5500000 

1.6000000 

1.6500000 

1.7000000 

1.7500000 

1.8000000 

1.8500000 

1.9000000 

1.9500000 

2.0000000 

1.0000000 

1.0011536 

1.0042818 

1.0089827 

1.0149523 

1.0219569 

1.0298136 

1.0383780 

1.0475339 

1.0571876 

1.0672624 

1.0776949 

1.0884327 

1.0994318 

1.1106551 

1.1220713 

1.1336535 

1.1453792 

1.1572285 

1.1691843 

1.1812322 

1.0000000 

1.0000000 

1.0022676 

1.0063152 

1.0117819 

1.0183942 

1.0259420 

1.0342605 

1.0432196 

1.0527145 

1.0626605 

1.0729880 

1.0836401 

1.0945687 

1.1057341 

1.1171026 

1.1286457 

1.1403389 

1.1521615 

1.1640954 

1.1761253 

0.0000000 

0.0011536 

0.0020142 

0.0026674 

0.0031704 

0.0035627 

0.0038717 

0.0041175 

0.0043144 

0.0044732 

0.0046019 

0.0047068 

0.0047926 

0.0048630 

0.0049209 

0.0049686 

0.0050078 

0.0050402 

0.0050669 

0.0050889 

0.0051070 

1.0000000 

1.0000000 

1.0033714 

1.0082539 

1.0143620 

1.0214736 

1.0294145 

1.0380456 

1.0472554 

1.0569528 

1.0670633 

1.0775256 

1.0882881 

1.0993078 

1.1105486 

1.1219796 

1.1335746 

1.1453110 

1.1571697 

1.1691337 

1.1811885 

0.0000000 

0.0011536 

0.0009104 

0.0007287 

0.0005903 

0.0004833 

0.0003992 

0.0003323 

0.0002785 

0.0002348 

0.0001990 

0.0001693 

0.0001446 

0.0001239 

0.0001065 

0.0000916 

0.0000790 

0.0000681 

0.0000588 

0.0000507 

0.0000437 
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  Figure (2.1) compares the approximated solutions with the exact solutions of 

Example (2.1). It is clear that Euler’s method is not accurate for our choice of 

the step size  (Figure (2.1):(a)). To get better results, we have to make 

h smaller, and that means more computation time, or to find another more 

accurate method. Figure (2.1) (b) shows that the approximated solution gets 

closer to the exact solution when we use smaller values of h. 

 
(a) 

 
(b) 

Figure (2.1) Comparison between the approximated solution and the exact solution of 

Example (2.1)    (a): using h=0.1     (b) using h=0.05. 

2.2.2 Runge−Kutta Methods  

  Runge-Kutta methods are based on the 1895 paper  of  C. Runge [15] and the 

1901 paper of  W. Kutta [11]. The paper by Runge is now recognized as the 

starting point for modern one-step methods [6]. 

  The family of explicit Runge–Kutta methods is given by 

 
where 
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To specify a particular method, one needs to provide the integer s (the number 

of stages), and the coefficients ,  

and . The matrix  is called the Runge–Kutta matrix, 

while the  and  are known as the weights and the nodes. These data are 

usually arranged in a mnemonic device, known as a Butcher tableau (after 

John C. Butcher): 
 

0      

        

        

        

        

           

Figure (2.2):Butcher tableau for explicit RK 

methods [7] 

The Runge–Kutta method is consistent if (see [7]) 

 

  Figures (2.3) contains some Butcher tableaus for Runge-Kutta explicit 

methods. We can use any of these tableaus in Algorithm (2.2) to generate the 

desired Runge-Kutta method. 

                 

            0 0 0 0  
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   0 0 0 0 0 0 1/2 1/2 0 0  

 0 0 1/2 1/2 0 1 1 0 1 -1 2 0  

  1  0 1  1/2 1/2  1/6 2/3 1/6  

 (a) (b) (c) (d)  

Figure (2.3): Butcher tableaus for some RK explicit methods : 

(a) One stage Euler’s forward method.  (b) Two stages midpoint method. 

(c) Two stages Heun’s method.              (d) Three stages RK method   [7] 
  

 

   We will use Taylor expansion 

 

 

 

to study two stages Runge-Kutta methods: 

 

 

 

 

 

 

 

Substituting the values of  and  in (2.12), we get 

0 0 0 0 0 

1/2 1/2  0 0 0 

1/2 0 1/2 0 0 

1 0 0 1 0 

 1/6 1/3 1/3 1/6 

Figure (2.3) (e) Butcher tableau for classical  

explicit RK4 method [7] 
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Comparing the coefficients of  and , we get 

 

Solving these equations, we get 

 

Using these values, we get the two stages Runge-Kutta methods 

 

 

 

   To find the local truncation error, we first substitute the values of , and 

 in equation (2.13). So we get 

 

 

 

 

Subtracting (2.14) from (2.11), we get 

  

Therefore, we have local truncation error equals to  and hence the 

methods are of order two. 
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If we choose , then the first term in brackets in (2.15) vanishes and 

we get a method with minimum  local truncation error: 

 

 

 

   We employed Algorithm (2.2) to approximate the solution of first order 

IVPs using any RK explicit method. We enter the IVP, number of stages, s 

and the desired RK method (Butcher tableau) that agrees with s. In the next 

example, we will use the classical fourth order RK method (Figure (2.3) (e)). 

Algorithm (2.2): Runge-Kutta explicit methods. 

Step  1: 

Step  2: 

Step  3: 

Step  4: 

Step  5: 

Step  6: 

Step  7: 

Step  8: 

Step  9: 

Step 10: 

Step 11: 

Step 12: 

Step 13: 

Step 15: 

Step 16: 

  

  

  

 Input Butcher matrix in  

  

  

  repeat steps 8-18 

  

          repeat steps 10-15 

           

                     repeat step 12 
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Step 17: 

Step 18: 

Step 19: 

Step 20: 

Step 21   

         

   

   

   

  

  

  

  We translated Algorithm (2.2) into a Matlab Program (2.2), which we will 

use to approximate the solution of the IVP and compare the approximate 

solution  with the exact solution .  

Example (2.2) 

   We can approximate the solution to the initial value problem 

 

using   the fourth order classical Runge−Kutta method with  and for 

. 

 This initial value problem has the exact solution 

 

   We represented the results of running Program (2.2) for this problem in 

Table (2.3) and Figure (2.4). We see that the results of this method are better 

than the results of Euler’s method. 

In addition, Table (2.3) shows that the global errors at  are 6.0221055E-

07 and 4.0931106E-08 for h1=0.1 and h2=0.05 respectively. 
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 Straight forward computation of the ratio for these global errors we obtain 

 

which agrees with Runge-Kutta  of O(h
4
). 

Figure (2.4) shows how close the approximate solution w and the exact 

solution are. 

 

Table (2.3): Results of Example (2.2) using RK4 method with h1=0.1 

and h2=0.05 

ti yi 
wi 

h1=0.1 

errori 

h1=0.1 

wi 

h2=0.05 

errori 

h2=0.05 

0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

1.0000000 

0.9900990 

0.9615384 

0.9174312 

0.8620690 

0.8000000 

0.7352941 

0.6711410 

0.6097561 

0.5524862 

0.5000000 

1.0000000 

0.9900990 

0.9615381 

0.9174306 

0.8620682 

0.7999992 

0.7352935 

0.6711406 

0.6097561 

0.5524865 

0.5000006 

0.0000000E+00 

8.4950827E-08 

3.1788036E-07 

5.9514099E-07 

7.8202896E-07 

7.9098146E-07 

6.1736802E-07 

3.2007944E-07 

2.1627292E-08 

3.4201159E-07 

6.0221055E-07 

1.0000000 

0.9900990 

0.9615384 

0.9174312 

0.8620690 

0.8000000 

0.7352941 

0.6711409 

0.6097561 

0.5524862 

0.5000001 

0.0000000E+00 

5.1539253E-09 

1.8421105E-08 

3.3211020E-08 

4.2046747E-08 

4.0618882E-08 

2.9229003E-08 

1.1436653E-08 

8.3141618E-09 

2.6452970E-08 

4.0931106E-08 
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Figure (2.4): Comparison between the approximated 

solution and exact solution of Example (2.2) using h1=0.1 

2.2.3 Taylor Methods 

   To derive Taylor methods to solve the initial value problem (1.2), we 

consider equations ,  These equations give us 

Taylor methods of order n 

 

 where 

 

and local truncation error at  

 

and, if   for all t  (a, b ), then 

             , 

that is 

            and the method is . 

Example (2.3) 
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    We can apply Taylor’s method of orders two and six to the next initial value 

problem using step size . 

                           

This initial value problem has the exact solution 

 

    Results of running Program (3.3) for this problem are represented in Table 

(2.4) and Figure (2.5). The exact solution y is given in column 2, approximate 

solution and global error using second order Taylor method in columns 3 and 

4, and finally approximated solution and global error using sixth order Taylor 

method in columns 5 and 6. It is clear we have better results using higher 

order Taylor methods with the same step size. 

In Figure (2.3), we have a closer look to see what happens at the last step. 

Comparing Figures (2.5) (a) and (b), we see that w and y in (a) are not so 

close as in (b). That means we have better results with higher order Taylor  

methods. 

Table (2.4): Results of Example (2.3) using Taylor’s methods 2 and 6 with 

h=0.2 

ti yi 
n=2 

wi 
errori 

n=6 
wi 

errori  

0.0000000 

0.2000000 

0.4000000 

0.6000000 

0.8000000 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

0.5000000 

0.8292986 

1.2140877 

1.6489406 

2.1272295 

2.6408591 

3.1799415 

3.7324000 

4.2834838 

4.8151763 

0.5000000 

0.8300000 

1.2158000 

1.6520760 

2.1323327 

2.6486459 

3.1913480 

3.7486446 

4.3061464 

4.8462986 

0.0000000E+00 

7.0137909E-04 

1.7123488E-03 

3.1354001E-03 

5.1031844E-03 

7.7868327E-03 

1.1406482E-02 

1.6244568E-02 

2.2662606E-02 

3.1122332E-02 

0.5000000 

0.8292986 

1.2140877 

1.6489406 

2.1272295 

2.6408591 

3.1799416 

3.7324000 

4.2834838 

4.8151763 

0.0000000E+00 

1.3023073E-09 

3.1812835E-09 

5.8284417E-09 

9.4918331E-09 

1.4491690E-08 

2.1240226E-08 

3.0266683E-08 

4.2248928E-08 

5.8053327E-08 
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2.0000000 5.3054720 5.3476843 4.2212341E-02 5.3054720 7.8784993E-08 

 

 
 

 

Figure (2.5): Results of Example (2.3) with h=0.2 (a) Taylor 2  (b) Taylor 6 

Table (2.4) shows that the global error at  is 7.8784993E-08 for n=6 and 

h=0.2. We solved the same problem with n=6 and h=0.05. We found that the 

global error at   is 1.3433343E-009 

 We notice that   

 

which agrees with the theoretical error estimate for sixth order Taylor  method 

which is equal  

2.3 Multistep Methods 

   The 1883 paper of Bashforth and Adams [1] and the 1926 paper of Moulton 

[14] were the foundation blocks of developing multistep methods.  Through 

(a) (b) 
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their work, the explicit Adams-Bashforth methods, the implicit Adams-

Moulton methods and the predictor-corrector methods were established. Milne 

also contributed in this field by the methods called after him and by the so-

called Milne’s device, which estimates error in predictor-corrector methods, 

see [13]. 

    Multistep methods use the solution at a number of previous points to find 

the solution at any point . If we use  

 

at   previous points  to find the  approximation  to  

 at ,  then we call the  method as an m−step multistep  method. 

  For example, the method 

 

is a three step method.                      

We can write a general explicit m−step method as [10] 

 

where   

   If the right hand side contains  , then we have an implicit method. 

   To construct multi-step methods, we first integrate the differential equation 

 

 in the interval , getting  
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   We will use Newton’s backward difference interpolating polynomial to 

approximate the integrand . 

2.3.1 Predictor Methods 

    An m-step predictor method is an m-step explicit method defined in (2.17). 

If we use Newton’s backward difference interpolating polynomial of degree 

 to approximate the integrand  in the interval . 

   For equally spaced  points,  , we get degree  

Newton’s backward difference interpolating polynomial of , [3] 

                                      (2.19) 

      .  (2.20)                                                                                                              

Now, for   we get 

    . 

  Therefore, 

  .         (2.21) 

 Substituting (2.19), (2.20), (2.21) and  in (2.18), we get 
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 . 

This leads to  the m-step explicit Adams−Bashforth methods, 

 

  with local truncation error 

 

Therefore,  and the methods are  

Now, we compute the coefficients . 

    For ,  

    For ,  

 For , . 

 For ,  

 For ,   
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 For ,   

  We used Matlab Program (2.3) to compute these integrals for  

and represented the results in Table (2.5). Using these results, (2.22) becomes 

 

For  

 

Table (2.5): Coefficients of  Adams-Bashforth methods 

k   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

1/2 

5/12 

3/8 

251/720 

95/288 

19087/60480 

5257/17280 

1070017/3628800 

25713/89600 

26842253/95800320 

For  

 

 

For  
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For ,  we find in the same way that 

 

 

The method in (2.24) is the 4-step Adam-Bashforth method, for which we 

wrote Algorithm (2.3) to approximate first order IVP (1.2). It uses RK4 to 

approximate the solution at , where  and . 

Algorithm (2.3): Adams-Bashforth 4-step method using RK4 to find the 

starting points 

Step  1: 

Step  2: 

Step  3: 

Step  4: 

Step  5: 

Step  6: 

Step  7: 

Step  8: 

Step  9: 

Step 10: 

Step 11: 

Step 12: 

Step 13: 
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Step 15: 

Step 16: 

Step 17: 

 

Step 18: 

Step 19: 

Step 20: 

Step 21: 

Step22:   

         

         

         

  

         

                              

         

         

   

  

  

Example (2.4)  

    Using explicit Adams−Bashforth four−step method with step size , 

we can approximate the solution of the initial value problem,  

 

and then refine the solution by using , 

 This initial value problem has the exact solution 

 

 We represented the results for this problem in Table (2.6). 

 At , the global error 5.7083601E-03 for  and 5.0822471E-04 for 

. We note that 
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which agrees with the theoretical error estimate for Adams−Bashforth which 

is equal to . 

Table (2.6): Results of Example (2.4) using Adams-Bashforth 4-step 

method with h=0.2 and h=0.1 

ti yi 
wi 

h=0.2 

errori 

h=0.2 

wi 

h=0.1 

errori 

h=0.1 

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

2.2000000 

2.4000001 

2.5999999 

2.8000000 

3.0000000 

2.6408591 

3.1799417 

3.7323999 

4.2834840 

4.8151765 

5.3054719 

5.7274933 

6.0484118 

6.2281308 

6.2176766 

5.9572315 

2.6408591 

3.1799386 

3.7323945 

4.2834759 

4.8153915 

5.3060632 

5.7285838 

6.0501885 

6.2308531 

6.2216763 

5.9629397 

0.0000000E+00 

2.9179384E-06 

5.6519293E-06 

7.9774882E-06 

2.1536958E-04 

5.9144641E-04 

1.0904461E-03 

1.7766465E-03 

2.7220398E-03 

3.9999373E-03 

5.7083601E-03 

2.6408591 

3.1799414 

3.7324054 

4.2835054 

4.8152208 

5.3055487 

5.7276139 

6.0485921 

6.2283912 

6.2180438 

5.9577398 

0.0000000E+00 

1.8399729E-07 

5.4625666E-06 

2.1798965E-05 

4.4641027E-05 

7.6600882E-05 

1.2052076E-04 

1.8013343E-04 

2.6023496E-04 

3.6697558E-04 

5.0822471E-04 

 Figure (2.6) compares the curves of exact and approximate solutions of 

Example (2.4). 

 
Figure (2.6): Comparing  approximate and exact solutions  

in Example (2.4) 

 To derive Milne’s methods, we let  in (2.18), so we get 
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    If the Newton Backward-Difference interpolating polynomial is integrated 

over  using  points;  

, then we get  polynomial and (2.19) becomes 

 

 Again, we have . Therefore, we get . 

When . In addition, when . 

  From (2.25) and (2.26), we get 

 

For  we get 

            

For ,  

We used Program (2.5) to compute  for  and put 

the results into Table (2.7) together with the coefficient 4 when . 

Table (2.7): Coefficients of 4-step Milne’s method 

K 0 1 2 3 4 

  4     0   

Using the data in Table (2.7), we get 

               , 

               , 
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which is the 4-step explicit Milne’s method.  Since the coefficient vanishes for 

, the local truncation error becomes 

 

  Therefore,  and the method is of O . 

  The following Algorithm (2.4) approximates the solution to the IVP (1.2) 

using RK4 to produce the starting points for Milne’s 4-step method. 

Algorithm (2.4) Milne’s 4-step method 

Step  1: 

Step  2: 

Step  3: 

Step  4: 

Step  5: 

Step  6: 

Step  7: 

Step  8: 

Step  9: 

Step 10: 

Step 11: 

Step 12: 

Step 13: 

Step 15: 

Step 16: 

Step 17: 

Step 18: 

Step 19: 

Step 20: 

Step 21: 
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Step 22:      

  

  

 We translated this algorithm into the Matlab Program (2.6). 

 

Example (2.5)   

 Consider Milne’s 4-step method to approximate the solution to the initial 

value problem 

 

using step size . 

This initial value problem has the exact solution 

 

  Table (2.8) contains the results of Example (2.5). 

Table (2.8): Results of Example (2.5) 

 

      

0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

0.5000000 

0.4950249 

0.4803947 

0.4569656 

0.4260719 

0.3894004 

0.3488382 

0.3063132 

0.2636462 

0.2224290 

0.1839397 

0.5000000 

0.4950249 

0.4803947 

0.4569656 

0.4261052 

0.3894376 

0.3488814 

0.3063461 

0.2637070 

0.2224652 

0.1839864 

0.0000000E+00 

2.0791741E-10 

1.9583726E-09 

5.6262963E-09 

3.3334312E-05 

3.7220070E-05 

4.3255306E-05 

3.2902120E-05 

6.0803573E-05 

3.6136491E-05 

4.6702633E-05 
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Figure (2.7): Comparing approximate and exact solutions of Example (2.5) 

   Figure (2.7) compares the curves of exact and approximate solutions of 

Example (2.5). 

2.3.2 Implicit Methods 

     If we use the point  together with the m points used 

in Adams-Bashforth methods to interpolate  in the integral 

 

then we will get an interpolating polynomial  of degree . 

  Now, for ,  and  = . 

Therefore,  becomes . In addition, for ,  and 

for ,  

 Applying this to (2.22) and (2.23), we get the implicit Adams−Moulton 

methods 
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  Now for k=0, 
0

ds=  =1, 

            for k=1, 
1

ds= =  , 

            for k=2, 
2

ds=  =  , 

            for k=3, 
3

ds=  =   , 

            for k=4, 
4

ds=  =  . 

Hence, we have 

                

 Table (2.9) contains the coefficients  for . We 

computed these coefficients using Program (2.7). 

Table (2.9): Coefficients of Adams-Moulton methods 

k   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

  1 

-1/2 

 -1/12 

 -1/24 

 -19/720 

  -3/160 

  -863/60480 

  -275/24192 

  -33953/3628800 

   -8183/1036800 

  -3250433/479001600 
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Now, for , we get 

 

which is the backward Euler’s method of order 2. 

For m=1, we get the 1-step method of order 2 

              

 

                 . 

For , we get the 2-step method of order 3 

                 . 

For , we get the 3-step method of order 4 and  

                 .                  (2.28) 

Example (2.6) 

  We can approximate the solution to the initial value problem in Example 

(2.4), using the 3-step fourth order Adams-Moulton method with step 

size , and compare the results with the results we got in Example (2.4) 

for the same step size. 

   At first, we must solve (2.28) algebraically for  , where 

 

 Doing that, we get 

             .  

 Then we insert this explicit formula as a 3-step Adams-Moulton method in 

Program (2.7), which gives the results illustrated in Table (2.10). 
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Table (2.10): Results using the 3-step Adams-Moulton method for 

Example (2.6) 

        

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

2.2000000 

2.4000001 

2.5999999 

2.8000000 

3.0000000 

2.6408591 

3.1799417 

3.7323999 

4.2834840 

4.8151765 

5.3054719 

5.7274933 

6.0484118 

6.2281308 

6.2176766 

5.9572315 

2.6408591 

3.1799386 

3.7323945 

4.2834592 

4.8151245 

5.3053818 

5.7273507 

6.0481977 

6.2278209 

6.2172384 

5.9566236 

0.0000000E+00 

2.9179384E-06 

5.6519293E-06 

2.4484483E-05 

5.1853749E-05 

9.0046029E-05 

1.4260200E-04 

2.1401687E-04 

3.1006479E-04 

4.3815278E-04 

6.0776027E-04 

   The global error at  using Adams-Moulton method is 6.0776027E-04, 

while it was 5.7083601E-03 in Example (3.1).  This means that we have about 

9.4 times less error in the 3-step Adams-Moulton method than the error 

produced by the 4-step Adams-Bashforth method. Although implicit Adams-

Moulton methods give better results than the explicit Adams-Bashforth 

methods of the same order, they have the weakness of that we have to convert 

them algebraically to an explicit representation for  
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Figure (2.8): Comparing approximate and exact solutions of Example (2.6) 

Figure (2.8) compares the approximate and exact solutions of Example (2.6). 

2.3.3 Predictor-Corrector Methods 

   Since implicit multistep methods must be solved algebraically for  

before using them to approximate the solution, they are usually not used alone. 

Rather, they are used with explicit methods to improve the results. Because 

implicit methods need the value of  at , explicit methods are used to 

approximate  for them. This technique of approximating  by explicit 

methods and improve approximations by implicit methods is called predictor-

corrector methods. 

   As an example, we will use Adams-Bashforth 4th-order 4-step method 

 

as a predictor method and Adams-Moulton 4th-order 3-step method 
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as a corrector method for solving an initial value problem.  We first need to 

calculate the starting values  for the explicit Adams-Bashforth 

4-Step method. To do this, we will use the 4th-order 1-step Runge-Kutta 

method. 

Example (2.7) 

 Consider using the 4-step Adams-Bashforth method as a predictor and the 3-

step Adams-Moulton method as a corrector to approximate the solution to the 

initial-value problem in Example (2.4) with . We consider using the 

fourth order Runge-Kutta method to approximate the starting values. 

Table (2.11): Results of Example (2.7) 

        

1.0000000 

1.2000000 

1.4000000 

1.6000000 

1.8000000 

2.0000000 

2.2000000 

2.4000001 

2.5999999 

2.8000000 

3.0000000 

2.6408591 

3.1799417 

3.7323999 

4.2834840 

4.8151765 

5.3054719 

5.7274933 

6.0484118 

6.2281308 

6.2176766 

5.9572315 

2.6408591 

3.1799386 

3.7323945 

4.2834759 

4.8151636 

5.3054528 

5.7274652 

6.0483723 

6.2280760 

6.2176013 

5.9571295 

0.0000000E+00 

2.9179384E-06 

5.6519293E-06 

7.9774882E-06 

1.2691397E-05 

1.9202997E-05 

2.7937787E-05 

3.9602623E-05 

5.5064698E-05 

7.5431999E-05 

1.0211881E-04 

  For the predictor-corrector method the global error at  is 1.0211881E-

04 which is about six times less than the error (6.0776027E-04) generated by 

the implicit Adams-Moulton method and about 56 times less than the error 

(5.7083601E-03) generated by Adams-Bashforth method. Both the Adams-

Bashforth and the predictor-corrector methods took advantage at  by 
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the higher accuracy of Runge-Kutta, but this is not the case for Moulton’s 

method. 

2.4 Stability and Stability Regions [8, 12] 

 In this section, we will study absolute stability of one-step numerical 

schemes. Absolute stability considers the behavior of the numerical scheme 

when the time step h is held fixed and . 

   A numerical method is stable if and only if it is consistent and stable. 

Moreover, if a numerical is stable and has  equals 

to  then it has  equals to  

This means that if a method is consistent and stable then   

as . In other words global error vanishes as . 

 Our model for studying stability will be 

 

 For , the numerical scheme is absolutely stable if  

 

where 

 

Definition (2.5) [8] 

The locus S of points z ∈ C for which is called the (absolute) 

stability region of the scheme. 

   Since , the boundary of the region of absolute stability is the 

roots of the equation 
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Now, for Euler’s forward method  

 

 

 

 

  We wrote a Matlab Program (2.9) to find the roots of (2.30) at equally spaced 

values in the interval  and to plot these roots. 

  To find the boundary of the region of absolute stability for Euler’s forward 

method, we run Program (2.9) for .  

Figure (2.9) (a) shows the stability region (shaded) for Euler’s forward 

method. In addition, Figure (2.9) (b) shows the stability region (shaded) for 

Euler’s backward method. 

 

 
(a) 

 
(b) 

Figure (2.9): (a) Stability region for Euler’s  Forward method 

                       (b) Stability region for Euler’s  Backward method 
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  We find that the stability region is the inner of the disk (Figure (2.9) (a)) with 

center  and radius equals one. This means that  must be inside this 

disk. For complex , we   

 

 

 

This means that for , there is no  satisfies (2.31). Therefore, Euler’s 

method is not stable when real  and absolutely stable when 

 and  satisfies (2.31). To make this clearer, we take  

and .  For , there is no  , meaning that for any choice of 

 Euler’s method is unstable. For , we must choose  so that the 

method is stable. 

We will use the three dimensional Cartesian coordinate system to plot the 

complex numbers y and w as they vary with  .  

   
(a) (b) (c) 

Figure (2.10): Relation between , h and stability of Euler’s method: 

    (a)  t=200 h=0.001,        (b)    

    (c)  t=200, h=0.5,   
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Figure (2.10) (a) shows that Euler’s method is unstable for , even 

though we chose  Figure (2.10) (b) shows that Euler’s method is 

stable for  and   But, Figure (2.10) (c) shows that 

Euler’s method is unstable for  and   

To study stability of backward Euler’s method, we have 

 

 

 

 

 

We used Program (2.10) to plot the boundary of the region of absolute 

stability for  .  Figure (2.9) (b) shows the stability region for this 

method is the outer side of the disk with centre (1,0) and radius 1. 

 We can find the function G for other methods in the same way as we did for 

Euler’s methods.   

  We wrote Program (2.11) to find G(z) for explicit RK methods and to plot 

the boundary of regions of stability. Table (2.12) contains G(z) for RK 

methods 1,…,4, generated by Program (2.11). Figure (2.11) contains the 

regions of stability of RK methods  and 4, generated by Program (2.11). 

Table (2.12): Amplification functions G(z) for RK1,…,RK4 

Method G(z) 
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RK1 1+z 

RK2 1+z+1/2*z^2 

RK3 1+z+1/2*z^2+1/6*z^3 

RK4 1+z+1/2*z^2+1/6*z^3+1/24*z^4 

 

 
Figure (2.11): Stability regions for RK1,…,RK4 

 Finally, we will derive the functions G(z) for Taylor methods. First, we note 

that 

        

  Therefore, Taylor’s method of order n will be 

 

 

And hence,  

 

RK1  ــــــــــ 

RK2  ــــــــــ 

RK3  ــــــــــ 

RK4  ــــــــــ 
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 Program (2.12) is designed to plot the boundary of the regions of stability of 

any range of Taylor’s methods. We used this program to plot these boundaries  

for Taylor’s methods  in Figure (2.12). 

 
Figure (2.12): Stability regions for Taylor1,…, Taylor6 methods 

Figure (2.13) demonstrates stability behavior of fourth order Taylor’s method 

when applied to (2.29) with different values of h and lambda. The method 

shows absolute stability in (b), (d) and (g). It shows instability in (a), (c) and 

(f). In (e) the error remains bounded and the method is stable but not 

absolutely stable. 

Taylor1 ــــــ 

Taylor2 ــــــ 

Taylor3 ــــــ 

Taylor4 ــــــ 

Taylor5 ــــــ 

Taylor6 ــــــ 
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Figure (2.13): Stability behavior of fourth order Taylor method: 

 (a)   lambda=10+1*i; h=.1; b=5 

 

Figure (2.13) :(b)  lambda=-2+1*i; h=.1; b=5 
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Figure (2.13): (c)  lambda=-50+1*i; h=.1; b=5; 

 

Figure (2.13) :(d) lambda=1*i; h=.1; b=30 
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Figure (2.13): (e)   lambda=10*i; h=.1; b=100; 

 

Figure (2.13): (f)   lambda=-40*i; h=.1; b=100; 
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Figure (2.13) (g)   lambda=-i; h=.1; b=100; 
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Chapter Three 

Higher Order Taylor Methods 

3.1 Introduction 

   In this chapter, we will be focusing on solving first order initial value 

problems, systems of first order initial value problems and higher order initial 

value problems, using higher order Taylor methods. Here, a question arises, 

since Taylor methods are well known, why we have chosen to investigate 

Taylor methods. Taylor methods have the weakness of having to find higher 

order derivatives needed to construct these methods. We thought, it is worth to 

develop an algorithm and later a computer program to accomplish this task. In 

this chapter and in the next chapter we will try to answer this question. 

3.2 Higher Order Taylor Methods for Solving First Order IVP 

  In this section, we will develop some numerical algorithms to find   

 of our basic problem, 

 

and construct nth  order Taylor methods to solve this problem. 

3.2.1 Finding Higher Order Derivatives of First Order IVP’s  

Theorem (3.1) [17] 

If w is a function of u1 , u2 ,…, uk and each is a function of one variable t , then 

w is a function of t and 

              =   +   + … +  . 

 Applying this theorem on  
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               (t) = f (t, y ( t )), 

where  and  represent and   in the theorem respectively, we get 

              =   +    . 

That is 

           =   +    

Now let  

              

Applying theorem (3.1) on  we get 

              =   +    , 

             =   +    .  

 Repeating this process until we get 

             =   +    .                                                   (3.1) 

  From (3.1), we get an iterative method to find higher order derivatives  

 of first order IVP’s and that is: 

             =   +   ,                       (3.2) 

   Algorithm (3.1) finds  and store them together with  in the 

vector , where . We translated Algorithm (3.1) into a Matlab 

Program (3.1), which we will use to find the derivatives. 
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Algorithm (3.1)  Finds the first n derivatives of  where  

 

  

  

Step 1:      

Step 2:      

Step 3:      

Step 4:      

Step 5:      

Step 6:      

Step 7:               

Step 8:             

Step 9:    

Step10:   

 

Example (3.1) 

 We can find the first 4 derivatives of  where .  

 Running Program (3.1) for  and n = 4, produces the vector , 

where 

            

 That is 

          y' = exp(y),  y'' = exp(2*y),  y''' = 2*exp(3*y) and y
(4) 

= 6*exp(4*y). 

 Example (3.2)  

   Consider running Program (3.1) for  and . 
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   Doing that, we get  where 

       

yp1= y*exp(y) 

yp2= exp(2*y)*(1+y)*y 

yp3= exp(3*y)*(4*y+2*y^2+1)*y 

yp4= exp(4*y)*(18*y^2+6*y^3+11*y+1)*y 

yp5= exp(5*y)*(96*y^3+24*y^4+98*y^2+26*y+1)*y 

yp6= exp(6*y)*(600*y^4+120*y^5+874*y^3+424*y^2+57*y+1)*y 

yp7= exp(7*y)*(4320*y^5+720*y^6+8244*y^4+6040*y^3+1614*y^2 

+120*y+1)*y 

yp8= exp(8*y)*(35280*y^6+5040*y^7+83628*y^5+83500*y^4 

+35458*y^3+5682*y^2+247*y+1)*y 

yp9= exp(9*y)*(322560*y^7+40320*y^8+915984*y^6+1169768 

*y^5+701164*y^4+187288*y^3+19022*y^2+502*y+1)*y 

yp10= exp(10*y)*(1+61584*y^2+920350*y^3+5191412*y^4 

+13329084*y^5+1013*y+16939800*y^6+10824336*y^7 

+3265920*y^8+362880*y^9)*y 

yp11= exp(11*y)*(1+194882*y^2+4297240*y^3+35160560*y^4 

+131888624*y^5+2036*y+251869440*y^6+255992688*y^7 

+137636640*y^8+36288000*y^9+3628800*y^10)*y 

yp12= exp(12*y)*(1+607042*y^2+19332662*y^3+223072440*y^4 

+1178097904*y^5+4083*y+3213860944*y^6+4818505344 

*y^7+4054649328*y^8+1876883040*y^9+439084800*y^10 

+39916800*y^11)*y 

yp13= exp(13*y)*(1+1870122*y^2+84615152*y^3+1347354144 

*y^4+9745456704*y^5+8178*y+479001600*y^12 
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+36634201456*y^6+77114374080*y^7+94313908080*y^8 

+67424622336*y^9+27352529280*y^10+5748019200*y^11)*y 

yp14= exp(14*y)*(1+5716680*y^2+362772194*y^3+7836767696*y^4 

+75988344096*y^5+16369*y+80951270400*y^12 

+383130347344*y^6+1093159611568*y^7+6227020800 

*y^13+1851312035760*y^8+1900327028400*y^9 

+1177397912448*y^10+424559111040*y^11)*y 

yp15= exp(15*y)*(1+17379206*y^2+1531122296*y^3+44262649196 

*y^4+565644812320*y^5+32752*y+6996194069760*y^12 

+3745749248752*y^6+14109101755360*y^7+1220496076800 

*y^13+31966042883792*y^8+87178291200*y^14 

+44921638784640*y^9+39555955434528*y^10 

+21578280106752*y^11)*y 

yp16= exp(16*y)*(1+52628898*y^2+6385177274*y^3 

+244280080420*y^4+4057808611860*y^5+65519*y 

+414624724508160*y^12+34704916926064*y^6 

+169059052774160*y^7+122029856121600*y^13 

+499330912284528*y^8+19615115520000*y^14 

+928707031103280*y^9+1307674368000*y^15 

+1108940091549408*y^10+852278692798944*y^11)*y 

yp17= exp(17*y)*(1+20922789888000*y^16+158934998*y^2 

+26382771464*y^3+1323563238484*y^4+28255332957880 

*y^5+131054*y+19026580503389184*y^12+307859356272208 

*y^6+1907751093010304*y^7+8342413577832960*y^13 

+7198923054947312*y^8+2246704430745600*y^14 

+17276364907585248*y^9+334764638208000*y^15 
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+27057653504695968*y^10+27970385778377856*y^11)*y 

yp18= exp(18*y)*(1+6046686277632000*y^16+479032912*y^2 

+108232980822*y^3+7066323307308*y^4+192032572801508 

*y^5+262125*y+722842104776482944*y^12 

+2635356154189416*y^6+20495617800709968*y^7 

+440245658647277568*y^13+97222076075700976*y^8 

+175521597284344320*y^14+295145341009956784*y^9 

+43550209534003200*y^15+591332391980604864*y^10 

+795624738920365728*y^11+355687428096000*y^17)*y 

yp19= exp(19*y)*(1+886697438331801600*y^16+1441816986*y^2 

+441554515704*y^3+37279810191336*y^4 

+1279389256340592*y^5+524268*y+23718192662660861376 

*y^12+21904079389753056*y^6+211401353181089232 

*y^7+19174597107038578944*y^13+1243919805094088208 

*y^8+10557245814916161024*y^14+4701450779462185408 

*y^9+3856192103662248960*y^15+11817272449965875616 

*y^10+20191479922695276288*y^11+115242726703104000 

*y^17+6402373705728000*y^18)*y 

yp20= exp(20*y)*(1+88341506421223357440*y^16+4335412050*y^2 

+1793612585550*y^3+194788586755056*y^4 

+8384651931678936*y^5+1048555*y 

+691974623145801447360*y^12+177636951598742640*y^6 

+2107388333854021920*y^7+719090020089096471360*y^13 

+15211903956287489280*y^8+522676032257475415296*y^14 

+70648984091409530032*y^9+262286744142003042816*y^15 

+219317561759406154528*y^10+466825935621694952160 
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*y^11+18921620408960102400*y^17+2311256907767808000 

*y^18+121645100408832000*y^19)*y. 

3.2.2 Constructing Taylor Expansion for First order IVP’s 

   The next Algorithm (3.1) finds the first n derivatives of , where 

 and constructs the nth order   defined in   

 

for the nth order Taylor method (2.16) 

 

  We translated this algorithm into a Matlab Program (3.2), which we will use 

to solve the following examples. 

Algorithm (3.2)  Finds the first n derivatives of  where  

and constructs  

    

   

   

Step   1:        

Step   2:      

Step   3:      

Step   4:      

Step   5:      

Step   6:      

Step   7:      

Step   8:      
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Step   9:               

Step 10:             Let    

Step 11:             Let    

Step 12:                   

Step 13:     

Step 14:  

Example (3.3)  

  Consider constructing  for , where .  

Entering  and  into Program (3.2), we get 

              . 

Example (3.4)  

Consider running Program (3.2) for  and . 

Doing that, we get 

t-y+1/2*h*(1-t+y)+1/6*h^2*(-1+t-y)+1/24*h^3*(1-t+y)+1/120*h^4 

      *(-1+t-y)+1/720*h^5*(1-t+y)+1/5040*h^6*(-1+t-y)+1/40320*h^7*(1-t+y) 

      +1/362880*h^8*(-1+t-y)+1/3628800*h^9*(1-t+y)+1/39916800*h^10 

      *(-1+t-y)+1/479001600*h^11*(1-t+y)+1/6227020800*h^12*(-1+t-y) 

      +1/87178291200*h^13*(1-t+y)+1/1307674368000*h^14*(-1+t-y). 

 3.2.3 Approximating the Solution of First Order IVP’s using Higher 

Order Taylor Methods 

  Now, we are ready to introduce an algorithm to approximate the solution of 

the first order initial value problem using higher order Taylor methods. 
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Algorithm (3.3) enables the user to approximate IVPs with different Taylor 

orders  and step sizes . It also, finds numerical approximations and 

exact values of the solution of the problem at each   and stores them in the 

vectors  and . In addition, it finds the accumulated global errors at each step  

and stores them in the vector named ‘error’. 

  We translated Algorithm (3.3) into Matlab Program (3.3) to find , 

generates nth Taylor’s higher order method and uses it to approximate the 

solution of the first order IVP. 
 

Algorithm (3.3)  Solves first order IVPs using higher order Taylor 

methods and compares with the exact solution 

  

  

  

Step   1:        

Step   2:      

Step   3:      

Step   4:      

Step   5:      

Step   6:      

Step   7:      

Step   8:      

Step   9:                  

Step 10:                  

Step 11:                  

Step 12:     
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Step 13:     

Step 14:     

 Example (3.5) 

 We can find numerical approximation of the solution of the next IVP, using 

step size  and Taylor methods of orders . 

 

The exact solution of this problem is  

 

The results of running Program (3.3) for h = 0.1 and n=4, 10 are represented 

in Table (3.1) and Figure (3.1). 

The generated Taylor iterative method for n=4 and h=0.1 is 

         ;   h is replaced by its value 0.1, 

where 

         = (2-2*t*y)/(t^2+1)+1/10*(3*y*t^2-y-4*t)/(t^2+1)^2 

                       -1/50*(2*t^3*y-2*t*y-3*t^2+1)/(t^2+1)^3+1/1000 

                       *(5*y*t^4-10*y*t^2+y-8*t^3+8*t)/(t^2+1)^4 

The generated Taylor iterative method for  and  is 

            ; h is replaced by its value 0.1, 

where 

        (t, y)=(2-2*t*y)/(t^2+1)+1/10*(3*y*t^2-y-4*t)/(t^2+1)^2 
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                    -1/50*(2*t^3*y-2*t*y-3*t^2+1)/(t^2+1)^3+1/1000 

                    *(5*y*t^4-10*y*t^2+y-8*t^3+8*t)/(t^2+1)^4 

                    -59029581035870595/295147905179352825856 

                    *(3*t^5*y+3*t*y-5*t^4+10*t^2-1-10*t^3*y)/(t^2+1)^5 

                    +377789318629571835/37778931862957161709568 

                    *(7*y*t^6-35*y*t^4+21*y*t^2-y-12*t^5-12*t 

                     +40*t^3)/(t^2+1)^6 

                    -1208925819614629935/604462909807314587353088 

                   *(4*t^7*y-28*t^5*y+28*t^3*y-4*t*y-7*t^6+35 

                   *t^4-21*t^2+1)/(t^2+1)^7 

                   +1934281311383408085/19342813113834066795298816 

                   *(126*y*t^4-36*y*t^2+y+16*t-84*y*t^6-112*t^3 

                   +112*t^5+9*y*t^8-16*t^7)/(t^2+1)^8 

                   -24758800785707614605/1237940039285380274899124224 

                   *(-1+36*t^2+5*t*y+5*t^9*y-126*t^4-60*t^3*y+84*t^6 

                   +126*t^5*y-60*t^7*y-9*t^8)/(t^2+1)^9 

                   +79228162514264376375/79228162514264337593543950336 

                   *(-20*t^9-330*y*t^4+55*y*t^2+11*y*t^10-y-20*t+462 

                   *y*t^6+240*t^3-504*t^5-165*y*t^8+240*t^7)/(t^2+1)^10. 

  Table (3.1) contains the results produced by Matlab Program (3.3) used to 

approximate the solution of the IVP in Example (3.5). At , it is clear that 

the global error with  is highly reduced with the probation 1.06201E-

08 to the global error with . 
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Table (3.1): Results of Example (3.5) using Taylor methods of orders 4 

and 10 with step size h=0.1 
 

ti y (ti) wi (Taylor 4)    errori (Taylor4) wi (Taylor 10) errori (Taylor 10) 

0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

1.0000000 

1.1881188 

1.3461539 

1.4678899 

1.5517242 

1.6000000 

1.6176471 

1.6107383 

1.5853659 

1.5469613 

1.5000000 

1.0000000 

1.1881000 

1.3461270 

1.4678676 

1.5517144 

1.6000041 

1.6176616 

1.6107583 

1.5853873 

1.5469815 

1.5000175 

0.0000000 

0.0000188 

0.0000268 

0.0000223 

0.0000098 

0.0000041 

0.0000145 

0.0000201 

0.0000215 

0.0000201 

0.0000175 

1.0000000 

1.1881188 

1.3461538 

1.4678899 

1.5517241 

1.6000000 

1.6176471 

1.6107383 

1.5853659 

1.5469613 

1.5000000 

0.0000000E-000 

1.8811841E-011 

1.4418022E-011 

3.1070702E-012 

1.0866197E-011 

6.6371353E-012 

5.7087668E-013 

1.9819701E-012 

1.7961188E-012 

8.6997076E-013 

1.8585133E-013 

 Figure (3.1) compares the exact solution y and the approximated solution of 

the IVP in Example (3.5) using fourth order Taylor method with step 

size . It shows how close the approximated and exact solutions are. 

 

 

Figure (3.1): Comparing approximated solution w by fourth order 

Taylor method and exact solution y of the IVP in Example (3.5) 

with h=0.1 

3.3 Higher Order Taylor Methods for Systems of First Order IVP’s  
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   A system consisting of k equations of first order ordinary differential 

equations can be written as 

                   (t) = f1 (t, u1, …, uk), 

                   (t) = f2 (t, u1, …, uk), 

                        

                   (t) = fk (t, u1, …, uk),                                              

where u1, …, uk are functions of t.                                                         (3.3) 

  Reformulating (3.3), we get  

     (t) = fj (t, u1, …, uk),    j = 1, 2, … , k.                         (3.4) 

   Now, applying theorem (3.1) to each equation in (3.4), where , 

we get 

        (t) =   +     +   + …+ .                     (3.5) 

 Substituting fj by , (3.3) becomes 

          (t) =   +            + …+  .   

Now, letting 

          (t) =  (t) =  +            + …+   

and applying Theorem (3.1) again to (t), then we get 

          (t) =  (t) =   +         + …+  . 

Substituting  by , we get 
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         (t) =    +      +    + …+ . 

Repeating this process n-1 times until we reach , then we get 

       (t) =    +   +    + …+ . 

   We note that every  depends only on  and the given , where 

      i = 2,…,n ;     j = 1, 2, …, k. So, we can generalize that 

       (t) =    +   +    + …+ , 

where   

 Putting (3.6) into summation form, we get 

 

where    

     In our programs, we will use matrices “up“ of dimensions kn to 

enter (t) in up(j, i) where  i=1,…,n ,   j = 1, 2, …, k. The notation up(j 

,i) and up(p,1) refer to  and , where i=1,…,n, j=1, …, k and p=1, 

…,k. Now for i=1, u(j ,1) is . Thus, we can write (3.7) as follows: 

             

           For  

             up(j ,i)= , i=2,…,n.      (3.8) 
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     In the following subsections, we will first implement (3.7) in algorithms to 

find higher order derivatives of  in each equation in the system of first order 

IVP’s (3.4), and then use these derivatives to construct Taylor expansion of 

each  and finally solve the system of IVP using higher order 

Taylor methods.  

3.3.1 Finding Higher Order Derivatives of Systems of First Order IVP’s 

    We put the iterative method (3.7) into Algorithm (3.4). In addition, we 

translated it into a Matlab Program (3.4). This program uses the alternative 

form (3.8) instead of (3.7) for finding the first n derivatives of 

 

Algorithm (3.4) Finds higher order derivatives of  in the system of 

first order IVP’s:  

   : 

    

Step 1:      

Step 2:      

Step 7:      

Step 3:       

Step 4:             

Step 5:                           

Step 6:                                    

Step 7:                                       
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Step 8:                                      

Step 9:      

Step 10:     

Example (3.6)  

For n = 3 and 6, we can find the first n-1 derivatives of each  of the 

following system with respect to t, where  are functions of t and j = 1, 2 , 3. 

=   + t, 

= 2, 

=  + e
-t
. 

  Running Program (3.4), entering the system and three for n, gives the 

following results: 

[ , ,  ] = [   u2-u3+t, 1+3*t^2-u2-exp(-t),  6*t+exp(-t)-3*t^2] 

[ , ,  ]= [    3*t^2, 6*t, 6] 

[ , ,  ] = [   u2+exp(-t),  -exp(-t)+3*t^2, 6*t+exp(-t)] 

  Repeating running the program for the same system but for n=4, gives the 

following results: 

[ , ,  , ] = [  u2-u3+t, 1+3*t^2-u2-exp(-t), 

                                         6*t+exp(-t)-3*t^2,      6-exp(-t)-6*t] 

[ , ,  , ] = [ 3*t^2,  6*t,  6,  0] 

[ , ,  , ] =  [ u2+exp(-t), -exp(-t)+3*t^2, 6*t+exp(-t), 6-exp(-t)] 

3.3.2 Constructing Taylor Expansion for a System of First Order IVP’s  

  Taylor expansion for  of first order IVP as defined in (2.8) 
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                     (t, y, h) = yʹ+  yʹʹ+ ... +  y
(n)

. 

   Now for the system (3.3), the nth Taylor expansion of   will 

be 

      (t, u1, …, uk, h) = +  +  +  ;   j = 1, …, k.         (3.9) 

 Algorithm (3.5) constructs the array T, where  refers to  defined  in the 

system (3.3). It includes the steps used in Algorithm (3.4), in addition to the 

steps needed to generate (3.9).  

   We translated Algorithm (3.5) into Matlab Program (3.5). It constructs the 

array , where  refers to  in equation (3.9). 

Algorithm (3.5) Constructs Tj's as Taylor expansions of each  (t) in the 

system of first order IVPs:    

 

  : 

    

Step 1:      

Step 2:      

Step 3:      

Step 5:               

Step 6:              

Step 7:      

Step 8:       

Step 9:         

Step 10:            
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Step 11:                           

Step 12:                                    

Step 13:                                       

Step 14:                 

Step 15:                 

Step 16:    

Step 16:    

Example (3.7)  

Consider constructing T for the system in Example (3.6) using n= 2 and n = 4. 

Running Program (3.4), entering the system and n, results: 

For n=2 

                T(1) = (u2-u3+t)+1/2*h*(1+3*t^2-u2-exp(-t)), 

                T(2) = 3*t^2+3*h*t, 

                T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t^2). 

For n=4 

   T(1) = (u2-u3+t)+1/2*h*(1+3*t^2-u2-exp(-t))+1/6*h^2 

                         *(6*t+exp(-t)-3*t^2)+1/24*h^3*(6-exp(-t)-6*t), 

   T(2) = 3*t^2+3*h*t+h^2, 

   T(3) = (u2+exp(-t))+1/2*h*(-exp(-t)+3*t^2)+1/6*h^2 

                                         *(6*t+exp(-t))+1/24*h^3*(6-exp(-t)). 
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3.3.3 Higher Order Taylor Methods for Systems of First Order IVP’s 

  From previous discussions, we have the iterative method (2.16) for a single 

equation IVP 

            wi+1 = wi + hT(ti, wi, h),   i = 1, 2, … , N  

and Taylor expansion “equation (3.9)” for a system of IVP  

          (t, u1,…, uk, h) = +  + ... +  ;   j = 1, …, k. 

  Combining these equations, we get the iterative method for approximating 

the solution of a system of first order IVP. 

 

 

    In Algorithm (3.6), we changed Taylor method we used in Algorithm (3.3), 

by using equation (3.10), to deal with systems of equations instead of one 

equation. Algorithm (3.6) approximates the solution (w)of a system of first 

order IVP, finds the exact solution (uN) and global error (error), using 

different orders n and different step sizes h. We put this algorithm into a 

Matlab Program (3.6) that we will use in approximating the solution of 

systems of first order ordinary differential equations initial value problems. 

Algorithm (3.6): Solves the system   

by higher order Taylor methods     

   

   

Step   1:      

Step   2:      
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Step   3:      

Step   4:      

Step   5:      

Step   6:      

Step   7:      

Step   8:      

Step   9:      

Step10:      

Step 11:      

Step 12:              

Step 13:                         

Step 14:                         

Step 15:               

Step 16:                          

Step 17:     

                            

Example (3.8)  

   We can find an approximate solution to the following system using h=0.1 

 and Taylor order n=4:  

           = −4u1 + 3u2 + 6,           

          = −2.4u1 + 1.6u2 + 3.6,    

          u1(0) = 0,   u2(0) = 0,     0 < t < 1. 

   Actual solution of the system 

            u1(t) = −3.375e
−2t

 + 1.875e
−0.4t

 + 1.5, 

            u2(t) = −2.25e
−2t 

+ 2.25e
−0.4t

 .   
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 The generated Taylor method (h is replaced by its value 0.1) 

       w1, i+1 = w1, i + hT1(ti, w1,i, w2,i )   for approximation of u1, i = 1, …, N. 

       w2, i+1 = w2, i + hT2(ti, w1,i, w2,i )   for approximation of u2,  i = 1, …, N 

where 

       T1(t, u1, u2) = -224273/62500*u1+41618/15625*u2+672819/125000, 

       T2(t, u1, u2) = -166472/78125*u1+1297121/937500*u2+249708/78125. 

  Table (3.2) contains exact values, approximated values and errors at each  

for each u in the system of Example (3.8). 

Table (3.2): Results of Example (3.8) using fourth order Taylor’s method  

using h=0.1 

ti u1,i w1,i error1,i u2,i w2,i error2,i 
0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

0.0000000 

0.5382639 

0.9685130 

1.3107365 

1.5812844 

1.7935270 

1.9583968 

2.0848298 

2.1801288 

2.2502594 

2.3000934 

0.0000000 

0.5382552 

0.9684988 

1.3107190 

1.5812652 

1.7935075 

1.9583776 

2.0848114 

2.1801114 

2.2502437 

2.3000791 

0.0000000 

0.0000087 

0.0000143 

0.0000175 

0.0000191 

0.0000196 

0.0000192 

0.0000184 

0.0000172 

0.0000158 

0.0000144 

0.0000000 

0.3196321 

0.5687917 

0.7607448 

0.9063333 

1.0144155 

1.0922257 

1.1456703 

1.1795682 

1.1978493 

1.2037157 

0.0000000 

0.3196262 

0.5687822 

0.7607331 

0.9063206 

1.0144024 

1.0922129 

1.1456580 

1.1795567 

1.1978387 

1.2037061 

0.0000000 

0.0000058 

0.0000095 

0.0000117 

0.0000127 

0.0000130 

0.0000128 

0.0000122 

0.0000114 

0.0000105 

0.0000096 
  

  Figure (3.2) contains plotted results of Example (3.8). It contains four curves; 

u1 and u2 represent the exact solutions, while w1 and w2 represent the 

approximated solutions of u1 and u2. We notice that the curves of w1 and w2 

coincide with the curves of u1 and u2 respectively. That means that we have 

good results. 
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Example (3.9) 

 We can find an approximate solution of the following system of IVP. 

 Take n=9 and h= 0.1. 

                 =  u2 − u3 + t,     

                 = 3t
2
,              0 ≤ t ≤ 1 

                 = u2 + e
(− t)

 ,  h = 0.1; 

with initial conditions 

                  u1(0) = 1,     u2(0) = 1   and      u3(0) = −1. 

This system has the exact solution 

                    u1(t) = −0.05t
5
 + 0.25t

4
 + t + 2 − e

−t
 , 

                    u2(t) = t
3
 + 1, and  

                    u3(t) =0.25t
4
 + t − e

−t
 . 

 We ran Program (3.6) for this problem and it produced the following results: 

 The generated Taylor method (h is replaced by its value 0.1) 

     w1, i+1 = w1, i + hT1(ti, w1,i, w2,i, w3,i)   for approximation of u1, i = 1, …, N, 

 
Figure (3.2): Results of Example (3.8) 
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     w2, i+1 = w2, i + hT2(ti, w1,i, w2,i, w3,i)   for approximation of u2,  i = 1, …, N, 

     w3, i+1 = w3, i + hT2(ti, w1,i, w2,i, w3,i)   for approximation of u3,  i = 1, …, N, 

   where 

     T1(t, u1, u2, u3) = 19/20*u2-u3+4039/4000*t+14829706495736582734389  

                                       /295147905179352825856000+29/200*t^2 

                                         -122643117536780316708704412413253 

                                         /2535301200456458802993406410752000*exp(-t), 

    T2(t, u1, u2, u3) =  3*t^2+3/10*t+1/100, 

    T3(t, u1, u2, u3) =u2+2412658082919678486284701998338747 

                                       /2535301200456458802993406410752000 

                                      *exp(-t)+3/20*t^2+1/100*t+1/4000. 

 Table (3.3) contains exact values, approximated values and errors at each 

 for each u in the system of Example (3.9). We have very good results, 

since the global errors at the final step is about 10
-15

, which is better than 

the expected O(h
9
). 

 Figure (3.3) contains plotted results of Example (3.9). It contains six 

curves; u1, u2 and u3 represent the exact solutions, while w1, w2 and w3 

represent the approximated solutions of u1, u3 and u3. We notice that the 

curves of w1, w2 and w3 coincide with the curves of u1, u2 and u3 

respectively. That means that we have good results. 

Table (3.3): Results of Example (3.9), using Taylor method with n=9 and 

h=0.1 

ti u1,i w1,i error1,i u2,i w2,i error2,i 
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0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0000000 

1.1951871 

1.3816532 

1.5610853 

1.7355680 

1.9075318 

2.0797004 

2.2550362 

2.4366870 

2.6279308 

2.8321206 

1.0000000 

1.1951871 

1.3816532 

1.5610853 

1.7355680 

1.9075318 

2.0797004 

2.2550362 

2.4366870 

2.6279308 

2.8321206 

0.0000000E+00 

0.0000000E+00 

4.4408921E-16 

2.2204460E-16 

2.2204460E-16 

2.2204460E-16 

4.4408921E-16 

4.4408921E-16 

4.4408921E-16 

4.4408921E-16 

8.8817842E-16 

1.0000000 

1.0010000 

1.0080000 

1.0270000 

1.0640000 

1.1250000 

1.2160000 

1.3430000 

1.5120000 

1.7290000 

2.0000000 

1.0000000 

1.0010000 

1.0080000 

1.0270000 

1.0640000 

1.1250000 

1.2160000 

1.3430000 

1.5120000 

1.7290000 

2.0000000 

0.0000000E+00 

0.0000000E+00 

4.4408921E-16 

4.4408921E-16 

8.8817842E-16 

8.8817842E-16 

1.1102230E-15 

1.1102230E-15 

1.3322676E-15 

1.1102230E-15 

1.1102230E-15 

 

u3,i w3,i error3,i 

-1.0000000 

-0.8048124 

-0.6183308 

-0.4387932 

-0.2639200 

-0.0909057 

0.0835884 

0.2634397 

0.4530710 

0.6574553 

0.8821206 

-1.0000000 

-0.8048124 

-0.6183308 

-0.4387932 

-0.2639200 

-0.0909057 

0.0835884 

0.2634397 

0.4530710 

0.6574553 

0.8821206 

0.0000000E+00 

1.1102230E-16 

1.1102230E-16 

1.6653345E-16 

5.5511151E-17 

0.0000000E+00 

0.0000000E+00 

1.1102230E-16 

5.5511151E-17 

1.1102230E-16 

2.2204460E-16 

  

 

Figure (3.3): Results of  Example  (3.9)           

3.4 Higher Order Taylor Methods for Higher Order IVP’s 
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   In this section, we will develop an algorithm, which we will translate into a 

Matlab program to approximate the solution of the IVP (1.4) 

           y
(k)

 (t) = f (t, y, , , …, ),       a  t  b, 

           y(a) = 1 , (a) = 2, (a) = 3, …, (a) = k. 

  To approximate the solution of a higher order IVP, we first transform it into 

a system (1.7) of first order IVP’s as discussed in chapter one. Then, we 

approximate the solution of the system satisfying the initial conditions. 

Finally, we treat the approximated  of  as the approximation of y.  

  Algorithm (3.7) solves higher order ordinary differential equations initial 

value problem  

 

 

following the steps mentioned in the last paragraph.  

 

Algorithm (3.7): Solves  higher order IVP’s by higher order Taylor 

methods     

     

    

    

Step    1:      

Step    2:      

Step    3:      

Step    4:      

Step    5:      

Step    6:      
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Step    7:      

Step    8:      9-11 

Step    9:                    

Step  10:                    

Step  11:                    

Step  12:     

Step  13:      

Step  14:      

Step  15:      

Step  16:      

Step  17:      

Step  18:       

Step  19:              

Step  20:                         

Step  21:         

Step  22:         

Step 23:                           

Step 24:       

Step 25:            

                       

    We translated Algorithm (3.7) into the Matlab Program (3.7), which we will 

use in solving the following examples.  

Example (3.10) 

We can transform the following IVP into a system of first order s, and then 

approximate the solution of y(t) using n = 4 and h = 0.1. 

  y
(10)

(t) =2y
(9)

+y
(8)

 (t) -3y
(7)

(t) +2y
(3)

 (t) +y’(t) +y(t) -(exp(-t)+t+1), , 
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 with initial conditions 

 y(0) = -1,  (0) = 2,  (0) = -1,  (0) = 1,  (0) = -1,  (0) = 1, 

 (0) = -1,  (0) = 1,  (0) = -1 and  (0) = 1. 

   Actual solution is 

                    y(t) = t-e
-t
. 

   Running Program (3.7) for this problem gives the following results: 

The generated System 

    

    

    

    

   

     

u10(0)=1. 

Table (3.4) contains t, exact solution y,  approximating 

 and “error”. The vector error is the absolute value of column 

two minus column one. We are interested only on the vector , since it 

approximates , which is equal to y. That means  approximates y. 

Table (3.4): Result of Example (3.10) using Taylor method of 

order   n=4 and step size h=0.1 

ti yi w1,i w2,i w3,i w4,i w5,i 
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0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

-1.0000000 

-0.8048374 

-0.6187308 

-0.4408182 

-0.2703200 

-0.1065307 

0.0511884 

0.2034147 

0.3506710 

0.4934303 

0.6321206 

-1.0000000 

-0.8048375 

-0.6187309 

-0.4408184 

-0.2703203 

-0.1065309 

0.0511881 

0.2034144 

0.3506707 

0.4934300 

0.6321202 

2.0000000 

1.9048375 

1.8187309 

1.7408184 

1.6703203 

1.6065309 

1.5488119 

1.4965856 

1.4493293 

1.4065700 

1.3678798 

-1.0000000 

-0.9048375 

-0.8187309 

-0.7408184 

-0.6703203 

-0.6065309 

-0.5488119 

-0.4965856 

-0.4493293 

-0.4065700 

-0.3678798 

1.0000000 

0.9048375 

0.8187309 

0.7408184 

0.6703203 

0.6065309 

0.5488119 

0.4965856 

0.4493293 

0.4065700 

0.3678798 

-1.0000000 

-0.9048375 

-0.8187309 

-0.7408184 

-0.6703203 

-0.6065309 

-0.5488119 

-0.4965856 

-0.4493293 

-0.4065700 

-0.3678798 

  

w6,i w7,i w8,i w9,i w10,i 
errori=|yi-w1,i| 

1.0000000 

0.9048375 

0.8187309 

0.7408184 

0.6703203 

0.6065309 

0.5488119 

0.4965856 

0.4493293 

0.4065700 

0.3678798 

-1.0000000 

-0.9048375 

-0.8187309 

-0.7408184 

-0.6703203 

-0.6065309 

-0.5488119 

-0.4965856 

-0.4493293 

-0.4065700 

-0.3678798 

1.0000000 

0.9048375 

0.8187309 

0.7408184 

0.6703203 

0.6065309 

0.5488119 

0.4965856 

0.4493293 

0.4065700 

0.3678798 

-1.0000000 

-0.9048375 

-0.8187309 

-0.7408184 

-0.6703203 

-0.6065309 

-0.5488119 

-0.4965856 

-0.4493292 

-0.4065699 

-0.3678796 

1.0000000 

0.9048375 

0.8187309 

0.7408184 

0.6703203 

0.6065310 

0.5488121 

0.4965858 

0.4493296 

0.4065704 

0.3678803 

0.0000000E+00 

8.1964040E-08 

1.4832827E-07 

2.0131946E-07 

2.4288185E-07 

2.7471075E-07 

2.9828229E-07 

3.1487982E-07 

3.2561721E-07 

3.3145947E-07 

3.3324104E-07 

   Figure (3.4) shows that the curve of w1 coincides with the curve of y. 

This Figure shows only three of the nine remaining curves of   

since  and . In addition we used 

circles in plotting all curves of w2,…,w10. 
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Figure (3.4): Results of Example (3.10) 

Example (3.11)  

   We can find an approximate solution to following IVP using step size h=0.1 

and Taylor of order n=15: 

           y
(20)

 (t) = y(t) ,     0  t  2, 

with initial conditions 

                 y
(i)

(0)=(-1 )
i
 ,  i=0, …,19. 

Exact solution for the IVP is 

         y(t)= e
-t
. 

   Running Program (3.7) for this problem gives the following results: 

The generated System 

    

    

    

    

    



86 
 

 
 

    

    

    

    

    

  Table (3.5) contains the vectors  and . Since we are interested only 

on , we haven’t presented  in Table (3.5). We still have good 

results, but not as good as in the previous example, since we have used order 

fifteen.  

Table (3.5): Results of Example (3.11), using Taylor of order  n=15 and 

step size h=0.1   

ti yi w1,i 
error= |yi -  w1,i 

| 
0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

1.0000000 

1.1000000 

1.2000000 

1.3000000 

1.4000000 

1.5000000 

1.6000000 

1.7000000 

1.8000000 

1.9000000 

2.0000000 

1.0000000 

0.9048374 

0.8187308 

0.7408182 

0.6703200 

0.6065307 

0.5488116 

0.4965853 

0.4493290 

0.4065697 

0.3678794 

0.3328711 

0.3011942 

0.2725318 

0.2465970 

0.2231302 

0.2018965 

0.1826835 

0.1652989 

0.1495686 

0.1353353 

1.0000000 

0.9048374 

0.8187308 

0.7408182 

0.6703200 

0.6065307 

0.5488116 

0.4965853 

0.4493290 

0.4065697 

0.3678794 

0.3328711 

0.3011942 

0.2725318 

0.2465970 

0.2231302 

0.2018965 

0.1826835 

0.1652989 

0.1495686 

0.1353353 

0.0000000E+00 

0.0000000E+00 

0.0000000E+00 

1.1102230E-16 

0.0000000E+00 

0.0000000E+00 

1.1102230E-16 

5.5511151E-17 

5.5511151E-17 

5.5511151E-17 

0.0000000E+00 

5.5511151E-17 

0.0000000E+00 

0.0000000E+00 

2.7755576E-17 

2.7755576E-17 

2.7755576E-17 

5.5511151E-17 

8.3266727E-17 

5.5511151E-17 

5.5511151E-17 



87 
 

 
 

Figure (3.5)  shows that the curve of w1 coincides with the curve of y. As 

earlier explained, we plotted only  and . 

 

Figure (3.5): Comparison between the approximated solution 

and the exact solution y in Example (3.11) with n=15, h=0.1   
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Chapter Four 

Error Analysis 

4.1 Error Analysis for Numerical Methods 

      In this section, we will study the global error (GE) generated by fourth 

order numerical methods studied in chapter two. These are Taylor method, 

Runge-Kutta method, Adams-Bashforth method, Adams-Moulton method, 

predictor-corrector method and Milne’s method. Using step size , we 

will apply all of these methods to the initial value problem in the next 

example. 

Example (4.1) 

   Using step size , we can approximate the solution to the IVP 

 

This initial value problem has the exact solution 

 

   For  and , we have   and , 

. We will approximate the solution and compare it with the given 

exact solution of (4.1) at these values of  . 

Table (4.1) contains the numerical results for fourth order Taylor method 

generated for initial value problem (4.1).  
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Table (4.1): Results of problem (4.1) using Taylor method 

        

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1440001 

2.5371852 

2.2080023 

2.0491660 

2.0038359 

2.0396702 

2.1371815 

2.2840633 

2.4722369 

2.6962206 

0.0000000E+00 

6.2222220E-03 

6.3688587E-03 

5.5023138E-03 

4.5979898E-03 

3.8358041E-03 

3.2240110E-03 

2.7370052E-03 

2.3474416E-03 

2.0328776E-03 

1.7761366E-03 

In Figure (4.1), we plotted the numerical results of the fourth order Taylor 

method approximated solution  and the exact solution y for the initial value 

problem (4.1) against t.  

 
t 

Figure (4.1): Approximate and exact solutions for problem (4.1) 

using fourth order Taylor method 

 

 

Exact solution y  
Approximated solution w  
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Table (4.2) contains the numerical results for fourth order Runge-Kutta method 

generated for initial value problem (4.1).  

Table (4.2): Results of problem (4.1) using Runge-Kutta method 

            

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1379659 

2.5310133 

2.2026730 

2.0447142 

2.0001233 

2.0365508 

2.1345336 

2.2817929 

2.4702711 

2.6945033 

0.0000000E+00 

1.8824609E-04 

1.9703139E-04 

1.7295216E-04 

1.4627952E-04 

1.2321006E-04 

1.0438789E-04 

8.9226342E-05 

7.6985394E-05 

6.7025467E-05 

5.8843481E-05 

In Figure (4.2), we plotted the by fourth order Runge-Kutta method 

approximated solution  and the exact solution y for the initial value problem 

(4.1) against t.  

 
t 

Figure (4.2): Approximate and exact solutions for problem (4.1) 

using fourth order Runge-Kutta method 

Exact solution y  
Approximated solution w  
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Table (4.3) contains the numerical results for fourth order Adams-Bashforth 

method generated for initial value problem (4.1).  

Table (4.2): Results of problem  (4.1) using  fourth order Runge-Kutta 

method 

 

      

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1379659 

2.5310133 

2.2026730 

2.0833945 

2.0335274 

2.0818779 

2.1669915 

2.3164694 

2.4965878 

2.7205029 

0.0000000E+00 

1.8824609E-04 

1.9703139E-04 

1.7295216E-04 

3.8826704E-02 

3.3527330E-02 

4.5431580E-02 

3.2546941E-02 

3.4753364E-02 

2.6383726E-02 

2.6058473E-02 

In Figure (4.3), we plotted the by fourth order Adams-Bashforth method 

approximated solution  and the exact solution y for the initial value problem 

(4.1) against t.  

 

Figure (4.3): Approximate and exact solutions for problem (4.1) using 

fourth order Adams-Bashforth  method 

Exact solution y  
Approximated solution w  
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Table (4.4) contains the numerical results for fourth order Milne’s method 

generated for initial value problem (4.1). 

Table (4.4): Results of problem (4.1) using Milne’s method 

            

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1379659 

2.5310133 

2.2026730 

2.0764439 

1.9933140 

2.0547066 

2.1075168 

2.3347795 

2.4275715 

2.7521725 

0.0000000E+00 

1.8824609E-04 

1.9703139E-04 

1.7295216E-04 

3.1875897E-02 

6.6860020E-03 

1.8260250E-02 

2.6927656E-02 

5.3063568E-02 

4.2632643E-02 

5.7727974E-02 

In Figure (4.4), we plotted the by fourth order Milne’s method approximated 

solution  and the exact solution y for the initial value problem (4.1) against t.  

 
Figure (4.4): Approximate and exact solutions for problem (4.1) using fourth 

order Milne’s  method 

 

Exact solution y  
Approximated solution w  
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Table (4.5) contains the numerical results for fourth order predictor-corrector 

method generated for initial value problem (4.1). 

 

Table (4.5): Results of problem (4.1) using predictor-corrector method 

            

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1379659 

2.5310133 

2.2026730 

2.0401838 

1.9949298 

2.0316632 

2.1301129 

2.2778773 

2.4668176 

2.6914520 

0.0000000E+00 

1.8824609E-04 

1.9703139E-04 

1.7295216E-04 

4.3841591E-03 

5.0701834E-03 

4.7831568E-03 

4.3315729E-03 

3.8385985E-03 

3.3863666E-03 

2.9923916E-03 

In Figure (4.5), we plotted the by fourth order predictor-corrector method 

approximated solution  and the exact solution y for the initial value problem 

(4.1) against t.  

 

Figure (4.5): Approximate and exact solutions for problem (4.1) using 

fourth order predictor-corrector  method 

Exact solution y  
Approximated solution w  
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  Since Adams-Moulton method is an implicit method, we had to solve 

manually for . We found that 

 

Table (4.6) contains the numerical results for fourth order Adams-Moulton 

method generated for initial value problem (4.1). 

 

Table (4.6): Results of problem (4.1) using Adams-Moulton method 

            

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

4.2500000 

3.1377778 

2.5308163 

2.2025001 

2.0445678 

2.0000000 

2.0364463 

2.1344445 

2.2817159 

2.4702041 

2.6944444 

4.2500000 

3.1379659 

2.5310133 

2.1994088 

2.0410907 

1.9966804 

2.0334775 

2.1318364 

2.2794333 

2.4682019 

2.6926804 

0.0000000E+00 

1.8824609E-04 

1.9703139E-04 

3.0913462E-03 

3.4770828E-03 

3.3195824E-03 

2.9686904E-03 

2.6081272E-03 

2.2827196E-03 

2.0022437E-03 

1.7641560E-03 

In Figure (4.6), we plotted the by fourth order Adams-Moulton method 

approximated solution  and the exact solution y for the initial value problem 

(4.1) against t.  
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Figure (4.6): Approximate and exact solutions for problem (4.1) using 

fourth order Adams-Moulton method 

    Since we used the RK method to approximate the starting values for the 

multistep methods, we thought that it would be not accurate to compare them 

with other methods in such manner. Therefore, we modified the programs to 

assign exact values to  at the first four steps  and let 

the methods approximate the solution at the remaining points.  

Table (4.7) contains global errors for these six methods. Since we assigned 

 exact values, global errors at  will be zero for all 

methods. 

 

 

 

Exact solution y  
Approximated solution w  
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Table (4.7): Errors generated by the methods used to solve Example (4.1) 

 

RK Taylor 
Adams-

Moulton 

Predictor-

Corrector 

Adams-

Bashforth 
Milne 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

9.6250E-06 

1.2520E-05 

1.2908E-05 

1.2358E-05 

1.1488E-05 

1.0550E-05 

9.6474E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.4960E-04 

3.1322E-04 

3.1260E-04 

2.9051E-04 

2.6280E-04 

2.3537E-04 

2.1029E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1967E-03 

1.4195E-03 

1.4029E-03 

1.2919E-03 

1.1614E-03 

1.0354E-03 

9.2199E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.5224E-03 

5.1824E-03 

4.8760E-03 

4.4096E-03 

3.9051E-03 

3.4437E-03 

3.0423E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.8711E-02 

3.3428E-02 

4.5360E-02 

3.2480E-02 

3.4701E-02 

2.6335E-02 

2.6018E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.2083E-02 

6.9048E-03 

1.8357E-02 

2.7329E-02 

5.3589E-02 

4.3203E-02 

5.8328E-02 

 

 

 
Figure (4.7): (a) Propagation of GE by the six methods in study for Example (4. 1)  

 

Figure (4.7): (b) Closer look into the first 4 methods with least error  

Figure (4.7) (a) shows error propagation of the six methods under study. It is 

clear that Milne’s method is the method with greatest error. To have a better 

comparison for the methods, we excluded in Figure (4.7) (b) the curves of 
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Milne’s and Adams-Bashforth. Figure (4.7) (a) shows that RK method 

generated the least error. 

    To do more analysis to the data in Table (4.7), we took the absolute global 

errors, accumulated by using each of these six methods, at the last 

step , sorted them in ascending order and put them into Table (4.8) 

column 2. We found that RK method has the smallest error, while Milne’s 

method has the greatest error. In addition, Table (4.8) contains the error ratios 

of these methods. For example, the ratio of the error generated by Adams-

Bashforth method to the error generated by Adams-Moulton method is about 

28:1. 

Table (4.8): Error ratios for the methods under study 

order 
error at 

t=1.5 
Method 

Runge- 
Kutta 

Taylor 
Adams- 
Moulton 

Predictor- 
Corrector 

Adams-
Bashforth 

Milne 

1 9.6474E-06 
Runge- 
Kutta 

1 
    

 

2 2.1029E-04 Taylor 21.798 1 
   

 

3 9.2199E-04 
Adams- 
Moulton 

95.569 4.384 1 
  

 

4 3.0423E-03 
Predictor- 
Corrector 

315.349 14.467 3.300 1 
 

 

5 2.6018E-02 
Adams-

Bashforth 
2696.897 123.723 28.219 8.552 1  

6 5.8328E-02 Milne 6045.966 
277.36

4 
63.263 19.172 2.242 1 

 

 
Figure (4.8): Error accumulated at the last step in the methods under study in Example (4.1) 
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  Table (4.8) shows that the error ratio is  for Adams-

Moulton, Predictor-Corrector and Adams-Bashforth methods respectively. 

This means, using the implicit Adams-Moulton method as a corrector for the 

explicit Adams-Bashforth method has reduced the error by 8.552 times. 

Surprisingly, both Table (4.8) and Figure (4.8) shows that one-step methods 

(RK and Taylor) are supreme to multistep methods of the same order.   

 To confirm our results, we will solve another example, using exact values at 

the first four steps as we done in the previous example. 

Example (4.2) 

Using step size , approximate the solution to the IVP 

 

This initial value problem has the exact solution 

 

 We represented global errors generated by the methods in Table (4.9), plotted 

this data in Figure (4.9) and calculated error ratios in Table (4.10). 

Table (4.9): Global error generated in Example (4.2) 

 

Adams-
Bashforth 

Milne 
Predictor-
Corrector 

Adams-
Moulton 

Taylor RK 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9204E-05 

3.9721E-04 

8.4929E-04 

1.2234E-03 

1.4192E-03 

1.4510E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.9552E-05 

3.4727E-04 

3.9845E-04 

3.5059E-04 

2.0552E-04 

3.8881E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.5176E-05 

7.3954E-05 

1.2262E-04 

1.5530E-04 

1.6775E-04 

1.6374E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.4057E-05 

6.0292E-05 

9.1653E-05 

1.0972E-04 

1.1415E-04 

1.0876E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1170E-05 

2.3500E-05 

3.2397E-05 

3.6408E-05 

3.6282E-05 

3.3558E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.3123E-07 

8.4084E-07 

1.1590E-06 

1.3584E-06 

1.4462E-06 

1.4472E-06 
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1.5 1.3660E-03 2.7794E-04 1.4979E-04 9.8060E-05 2.9654E-05 1.3900E-06 

 
Figure (4.9): (a) Propagation of GE by the methods under study for Example 

(4.2) 

 
Figure (4.9): (b)  Closer look into the first 4 methods with least error 

 
Figure (4.9): (c)  Closer look into the 2 methods with greatest error 

Table (4.10): Error ratios of the methods under study for Example (4.2) 

order 
error at 

t=1.5 
method RK Taylor 

Adams-
Moulton 

Predictor-
Corrector 

Milne 
Adams-

Bashforth 

1 1.39E-06 RK 1 
     

2 2.97E-05 Taylor 21.334 1 
    

3 9.81E-05 
Adams-
Moulton 

70.547 3.307 1 
   

4 1.50E-04 
Predictor-
Corrector 

107.761 5.051 1.528 1 
  

5 2.78E-04 Milne 199.956 9.373 2.834 1.856 1 
 

6 1.37E-03 
Adams-

Bashforth 
982.730 46.064 13.930 9.120 4.915 1 

  Table (4.10) and Figure (4.9) confirm the results we got in Example (4.1)  
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with one exception; Adams-Bashforth method has generated the greatest error 

instead of Milne’s method. 

   Finally, we will compare these methods according to CPU time. We 

measured CPU time for these methods used in Example (4.2) with different 

step sizes and represented the results in Table (4.11). We found that the CPU 

time for the Taylor method is the highest, and that is due to the time cost of 

constructing Taylor expansion of  We noted also, that with 

decreasing step size the CPU time differences between Taylor method and 

other methods decreases in favor of Taylor method. 

Table (4.11) Comparing CPU time 

Step size 
RK  

CPU time/s 
Taylor 

CPU time/s 

Adams-
Moulton 

CPU time/s 

Predictor-
Corrector 

CPU time/s 

Milne 
CPU time/s 

Adams-
Bashforth 

CPU time/s 

h=0.5 0.0017888 0.0481321 0.0017486 0.0020422 0.002092 0.0022194 

h=0.2 0.0049428 0.049220 0.0041848 0.0079606 0.005129 0.0060896 

h=0.1 0.0127556 0.052088 0.0103906 0.0215922 0.010619 0.0155052 

h=0.05 0.0290058 0.057133 0.0228816 0.0477258 0.024353 0.0305398 

4.2 Error by Higher Order Taylor Methods 

  In this section, we will compare global error generated by different higher 

order Taylor methods . We will see how error is 

reduced by increasing Taylor’s order. 

  Table (4.11) contains errors accumulated after each step using Taylor 

methods . We plotted this data in Figure (4.10). Figure (4.10) 

contains the methods (a) for , (b) for  and (c) for 

. We intentionally repeated the method  in (b) and the 

method  in (c), to have better comparison.  
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Table (4.12): Global error generated by  Taylor (n=4,…,10) methods   

ti Taylor4 Taylor5 Taylor6 Taylor7 Taylor8 Taylor9 Taylor10 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

0.000E+00 

1.881E-05 

2.682E-05 

2.228E-05 

9.768E-06 

4.070E-06 

1.454E-05 

2.011E-05 

2.147E-05 

2.014E-05 

1.751E-05 

0.000E+00 

1.188E-06 

3.179E-06 

4.810E-06 

5.356E-06 

4.882E-06 

3.897E-06 

2.885E-06 

2.096E-06 

1.574E-06 

1.266E-06 

0.000E+00 

1.881E-07 

2.273E-07 

1.167E-07 

3.884E-08 

1.432E-07 

1.708E-07 

1.469E-07 

1.056E-07 

6.816E-08 

4.195E-08 

0.000E+00 

1.188E-08 

3.248E-08 

4.421E-08 

4.104E-08 

2.994E-08 

1.966E-08 

1.380E-08 

1.163E-08 

1.124E-08 

1.126E-08 

0.000E+00 

1.881E-09 

1.854E-09 

2.971E-10 

1.056E-09 

1.341E-09 

9.182E-10 

4.060E-10 

9.640E-11 

1.170E-11 

1.164E-11 

0.000E+00 

1.188E-10 

3.232E-10 

3.790E-10 

2.780E-10 

1.628E-10 

1.120E-10 

1.098E-10 

1.193E-10 

1.221E-10 

1.166E-10 

0.000E+00 

1.881E-11 

1.442E-11 

3.108E-12 

1.087E-11 

6.638E-12 

5.711E-13 

1.982E-12 

1.796E-12 

8.697E-13 

1.859E-13 

  Generally, the higher the Taylor’s order, the better results we get. Exceptions 

are possible. We see that the results for  are better than for .   

 
Figure (4.10) (a)  Error propagation for Taylor Methods n=4,…,6 for Example (4.2) 

 
Figure (4.10): (b)  Error propagation for Taylor Methods n=6,…,8 for Example (4.2) 

 
Figure (4.10): (c)  Error propagation for Taylor Methods n=8,…,10 for Example (4.2) 
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  Finally, we can say that Taylor methods are a good choice to approximate the 

solution of initial value problem ordinary differential equations, since with 

algorithms we developed, all we need is to enter a higher value of  to get 

more accurate solutions to a single first order IVP, a system of first order 

IVP’s or a higher order IVP’s.  

4.3 Conclusions 

  The main aim of this thesis was to develop algorithms to get highly accurate 

approximations to the solution of initial value problem 

 

 and to study the concepts of stability and error propagation when a numerical 

method is applied to an initial value problem. Through our work, we found 

that higher order Taylor’s methods give highly accurate approximations. 

However, the main obstacle was the tedious work of finding higher order 

derivatives of the initial value problem. We managed to write algorithms to 

find higher order derivatives of initial value problems and to construct 

Taylor’s methods for solving these problems numerically. We also managed 

to develop these algorithms to deal in the same way with systems of first order 

initial value problems. In addition, we wrote an algorithm to convert higher 

order initial value problems into systems of first order initial value problems 

and to solve these systems. We translated all of these algorithms into Matlab 

programs. For these programs, all we need is to enter the problem, choose the 

desired order (n), and step size (h).  
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  We wrote also algorithms, which we translated into Matlab programs for the 

fourth order Runge-Kutta, Adams-Bashforth, Adams-Moulton, Milne’s and 

predictor-corrector (4-step fourth order Adams-Bashforth method as predictor 

and 3-step fourth order Adams-Moulton method as corrector) methods. We 

used these programs to compare errors generated by these methods and the 

fourth order Taylor’s method. We found that single step methods (Runge-

Kutta and Taylor) generated the best results. Since we can increase accuracy 

of Taylor’s methods only by selecting a higher value of n, we concluded that 

with the programs we developed, higher order Taylor’s methods could be a 

good choice for approximating the solution of initial value problems. 

  We used the test initial value problem (2.29) 

 

to study absolute stability of Taylor’s methods. For this purpose, we wrote a 

Matlab program to find the error amplification functions and to plot the 

boundaries of stability regions of any Taylor’s method. 

   To compare stability of Taylor’s methods with other single step methods, we 

also wrote the Matlab Program (2.11) to find the error amplification functions 

and to plot the boundaries of stability regions of any explicit Runge-Kutta 

method. In addition, we wrote the Matlab Program (2.9) to plot the boundaries 

of stability regions of any explicit method given we have the error 

amplification functions. Matlab Program (2.10) plots the boundaries of 
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stability regions of implicit methods (only of orders less than five) given we 

have the error amplification functions. 

 Using results of these programs, we found that Taylor’s methods, compared 

with other explicit methods, have similar stability regions. The most part of 

these stability regions lies at the imaginary axis and in the left part of the 

complex plane. That means, with enough small step size h and with non 

positive real part of , Taylor’ methods are stable. 

 Finally, we conclude that we can get higher accuracy of a wide range of 

initial value problems applying Taylor’s methods to them. 
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Appendices 

Appendex (A) 

My Matlab Programs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

function Euler_2_1 
% =============================================== 
% Entering The IVP 
%================================================ 
a=1; 
b=2; 
y(1)=1; 
fyp=inline('y/t-(y/t)^2','t','y');  %y'=f(t,y) 
fy=inline('t/(log(t)+1)','t'); %Exact Solution 
h=.1; 
%================================================ 
% Initializing For Euler 
%================================================ 
N=(b-a)/h; 
t(1)=a; 
w(1)=y(1); 
wHat(1)=y(1); 
%=================================================== 
% Euler Method 
%=================================================== 
for i=1:N; 
w(i+1)=w(i)+h*fyp(t(i),w(i));% Approximated Solution 
wHat(i+1)=y(i)+h*fyp(t(i),y(i));% w hat 
t(i+1)=t(i)+h; 
y(i+1)=fy(t(i+1));% Exact y 
end 
%=================================================== 
% Finding Global And LTEs 
%=================================================== 
gEr=abs(y-w);% Absolute Value of Global Error 
locEr=abs(y-wHat);% Absolute Value of LTE 
%=================================================== 
% Displaying And Plotting The Results 
%=================================================== 
format long 
disp(single([t' y' w' gEr' wHat' locEr' ])) 
plot(t,y,'k+-',t,w,'ks-') 
legend('y','w') 

Program (2.1) Euler’s Method 

 
function ExplicitRK  
%===============   IVP  ========================== 
f=inline('-2*t*y^2','t','y');% y'(t) 
a=0;  b=1;% end points 
alpha=1; % initial condition 
%================================================= 
yEx=inline('1/(1+t^2)','t');% Actual solution y(t) 
h=.1;% Step size 
%================ Butcher tableau ================ 
s=4 
A=[ 0    0   0  ; 
   1/2   0   0  ; 
    0   1/2  0  ; 
    0    0   1 ]; 
B=[1/6 1/3 1/3 1/6]; 



108 
 

 
 

C=[0 1/2 1/2 1]; 
%================================================= 
 
w(1)=alpha; 
y(1)=alpha; 
t(1)=a; 
N=(b-a)/h; 
%================= RK method ===================== 
for n=1:N 
 sum=0; 
    for i=1:s; 
        m=0; 
        for j=1:i-1 
          m=m+A(i,j)*k(j); 
        end 
        k(i)=h*f(t(n)+C(i)*h,w(n)+m); 
        sum=sum+B(i)*k(i); 
    end 
  w(n+1)=w(n)+sum; 
  t(n+1)=t(n)+h; 
  y(n+1)=yEx(t(n+1)); 
end 
 
error=abs(y-w); 
 
 format long ; 
 plot(t,y,'k+-',t,w,'ko-') 
 legend('y','w') 
 out=single([t' y' w' error']) 
 xlswrite('test.xls',out,'sheet1','d2'); 
Program 2.2 Fourth order Runge-Kutta method 

 

function CoeffAdam_Bashforth 
syms s 
k=10; 
x=1; 
y(1)=sym('1'); 
fac=1; 
for i=1:1:k 
    x=x*(s+i-1); 
    fac=fac*i; 
   y(i+1)=(int(x,0,1)/fac ); 
end 
y' 

Program (2.3) Coefficients of Adam-Bashforth methods 

 

 
function Adams_Bashforth 
f=inline('y-t^2+1','t','y'); 
yEx=inline('(t+1)^2-0.5*exp(t)','t'); 
a=1; b=3 
alpha=4-0.5*exp(1); 
h=.1 
 
N=(b-a)/h 
t(1)=a 
w(1)=alpha; 
y(1)=alpha; 
 
for i=1:3 
     k1=f(t(i),w(i)) 
     k2=f(t(i)+.5*h,w(i)+.5*h*k1) 
     k3=f(t(i)+.5*h,w(i)+.5*h*k2) 
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     k4=f(t(i)+h,w(i)+h*k3) 
     w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4) 
     t(i+1)=t(i)+h 
     y(i+1)=yEx(t(i+1)) 
end 
 
for i=4:N 
    w(i+1)=w(i)+h/24*(55*f(t(i),w(i))-59*f(t(i-1),... 
      w(i-1))+37*f(t(i-2),w(i-2))-9*f(t(i-3),w(i-3))) 
     t(i+1)=t(i)+h 
     y(i+1)=yEx(t(i+1)) 
end 
 error=abs(y-w);     
         
format long 
out=single([t' y' w' error' ]); 
disp(out) 
plot(t,y,'k+-',t,w,'ks-') 
legend('y','w') 
xlswrite('test.xls',out,'sheet1','d2') 

Program (2.4) Fourth order Adams-Bashforth method   

 

function CoeffMilne 
syms s x 
k=4; 
x=1; 
y(1)=sym('4'); 
fac=1; 
for i=1:1:k 
    x=x*(s+i-1); 
    fac=fac*i; 
   y(i+1)=(int(x,-3,1)/fac ); 
end 
y' 
Program (2.5) Coefficients of the four step Milne’s method  

 

function Milne 
f=inline('y-t^2+1','t','y'); 
yEx=inline('(t+1)^2-0.5*exp(t)','t'); 
a=1; b=3 
alpha=4-0.5*exp(1); 
h=.1 
 
N=(b-a)/h 
t(1)=a 
w(1)=alpha; 
y(1)=alpha; 
 
for i=1:3 
     k1=f(t(i),w(i)) 
     k2=f(t(i)+.5*h,w(i)+.5*h*k1) 
     k3=f(t(i)+.5*h,w(i)+.5*h*k2) 
     k4=f(t(i)+h,w(i)+h*k3) 
     w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4) 
     t(i+1)=t(i)+h 
     y(i+1)=yEx(t(i+1)) 
end 
 
for i=4:N 
    w(i+1)=w(i-3)+4*h/3*(2*f(t(i),w(i))-f(t(i-1),w(i-1))... 
                 +2*f(t(i-2),w(i-2))) 
     t(i+1)=t(i)+h 
end 
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format long 
out=single([t' y' w' error' ]); 
disp(out) 
plot(t,y,'k+-',t,w,'ks-') 
legend('y','w') 
xlswrite('test.xls',out,'sheet1','d2') 

Program (2.6) Fourth order Milne’s method  

 
function CoeffMoulton 
syms s x 
k=10; 
x=1; 
y(1)=sym('1'); 
fac=1; 
for i=1:1:k 
    x=x*(s+i-2); 
    fac=fac*i; 
   y(i+1)=(int(x,0,1)/fac ); 
end 
y' 

Program (2.7) Coefficients of .Adams-Moulton methods 

 
function Moulton 
f=inline('y-t^2+1','t','y'); 
yEx=inline('(t+1)^2-0.5*exp(t)','t'); 
a=1; b=3 
alpha=4-0.5*exp(1); 
h=.2 
N=(b-a)/h 
t(1)=a 
w(1)=alpha; 
y(1)=alpha; 
for i=1:2 
     k1=f(t(i),w(i)) 
     k2=f(t(i)+.5*h,w(i)+.5*h*k1) 
     k3=f(t(i)+.5*h,w(i)+.5*h*k2) 
     k4=f(t(i)+h,w(i)+h*k3) 
     w(i+1)=w(i)+(h/6)*(k1+2*k2+2*k3+k4) 
     t(i+1)=t(i)+h 
     y(i+1)=yEx(t(i+1)) 
end 
for i=3:N 
       t(i+1)=t(i)+h 
      w(i+1)=24/(24-9*h)*(w(i)+h/24*(9*(-(t(i+1))^2+1)… 
                    +19*f(t(i),w(i))-5*f(t(i-1),w(i-1))+f(t(i-2),w(i-2)))) 
    y(i+1)=yEx(t(i+1)) 
end 
error=abs(y-w);         
format long 
out=single([t' y' w' error' ]); 
disp(out) 
plot(t,y,'k+-',t,w,'ks-') 
legend('y','w') 
xlswrite('test.xls',out,'sheet1','d2') 
Program (2.8) 3-step Adams-Moulton method  
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function ImplicitStabilityRegions 
syms   z th  
%===================================================== 
 
Gz='z*(1/(z-1))'; 
 
%===================================================== 
 
B=strcat(Gz,'-exp(i*th)=0'); 
s=0; 
for th=0:.1:2*pi 
         clear z 
         z=solve(B,'z'); 
         for j=1:length(z) 
            s=s+1; 
            y(s)=eval(z(j));    
         end          
end 
hand =plot(real(y),imag(y),'k.'); 
set(hand, 'MarkerSize', 5); 
Program (2.10) Plots the boundary of stability regions for implicit methods 

 
function ExplicitRK_StabilityRegions 
syms   sum m z th  
%===============   IVP  ========================== 
f=inline('z*y','y','z');% y'(t) 
s=3; 
%================ Butcher tableaux ================ 
 
switch s 
   case 1 
B=[1]; 
case 2 
A=[1/2]; 
B=[0 1];% midpoint method 
case 3 
A=[1/2   0 ; 
    -1   2]; 
B=[1/6 2/3 1/6]; 

function OtherExplicitStabilityRegions 
syms   z th Gz 
%===================================================== 
Gz=1+z+z^2/2+z^3/6+z^4/24+z^5/120; 
 
%===================================================== 
 HHH=sym2poly(Gz); 
 order=length(HHH)-1; 
 HHH=sym(HHH); 
 HHH(order+1)=HHH(order+1)-exp(i*th); 
 
%================   Finding roots and plottig ========= 
count=0; 
for th=0:.01:2*pi 
         clear z 
         z=roots(eval(HHH)); 
         for j=1:length(z) 
            count=count+1; 
            y(count)=(z(j));    
         end          
end 
hand =plot(real(y),imag(y),'k.'); 
set(hand, 'MarkerSize', 5); 
hold all 
Program (2.9) Plots the boundary of stability regions of explicit methods 
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case 4 
A=[1/2   0   0  ; 
    0   1/2  0  ; 
    0    0   1 ]; 
B=[1/6 1/3 1/3 1/6]; 
end 
%=====================  Find Gz  ======================== 
format rat 
 Gz=1; 
    for p=1:s; 
        m=0; 
        for j=1:p-1 
          m=m+A(p-1,j)*k(j); 
        end 
        k(p)=f(1+m,z); 
        Gz=Gz+B(p)*k(p); 
    end 
char(simplify(Gz))     
     
 HHH=sym2poly(Gz); 
 HHH=sym(HHH); 
 HHH(s+1)=HHH(s+1)-exp(i*th); 
 
%================   Finding roots and plottig ========= 
count=0; 
for th=0:.01:2*pi 
         clear z 
         z=roots(eval(HHH)); 
         for j=1:length(z) 
            count=count+1; 
            y(count)=(z(j));    
         end          
end 
hand =plot(real(y),imag(y),'k.'); 
set(hand, 'MarkerSize', 5); 
hold all 
Program (2.11) Finds G(z) for RK1,…,RK4 and plots the boundary of the stability regions 

 
function TaylorStabilityRegions 
 
kk=5; 
kkk=8; 
 
%============ ====   Finding G(z)   ============= 
for k=kk:kkk 
n=k; 
clear B 
Gzz=sym('Gzz'); 
clear th 
th=sym('th','real'); 
Gzz(n+2)=1-exp(i*th); 
fact=1; 
for j=1:n+1 
    fact=fact*j; 
    Gzz(n+2-j)=1/fact; 
end 
Gzz 
 
%=============Finding the roots and plotting=========== 
s=0; 
for th=0:.05:2*pi 
         clear z 
         z=roots(eval(Gzz)); 
         for j=1:length(z) 
            s=s+1; 
            y(k,s)=(z(j));    
         end          
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end 
end 
colors = hsv(kkk); 
for v=kk:kkk 
hand =plot(real(y(v,:)),imag(y(v,:)),'.','color',colors(v,:)); 
legendmatrix{v-kk+1,1}=strcat('Taylor ',num2str(v)); 
hold on 
end 
set(hand, 'MarkerSize', 5); 
legend(legendmatrix) 
Program (2.12) Finds G(z) for any Taylor method and plots the boundary of stability regions 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

function Taylor_3_1 
syms t y  
%============================================= 
% This Program finds the first n derivatives 
%  of y, yp(i)refers to y prime(i) 
%============================================= 
n=input('n=');  
yp(1)=input('y''=');  %ODE y'(t,y). 
% To find the derivatives of y' 
for i=2:n 
    pt=diff(yp(i-1),t);    
    py=diff(yp(i-1),y); 
    yp(i)=simplify(pt+py*yp(1)); 
end 
yp 

Program (3.1) Finds the first n derivatives of  y  in  

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

function Taylor_3_2 
syms t y h 
%=============================================================== 
%This Program finds the first n derivatives of y' yp(i) 
%refers to y prime(i)and construct Taylor series of order n 
%=============================================================== 
n=input('n=');  
yp(1)=input('y''=');  %ODE y'(t,y). 
%=============================================================== 
%Finding the derivatives of y'and constructing Taylor expantion 
%=============================================================== 
fac=1; 
T=yp(1); 
for i=2:n 
     pt=diff(yp(i-1),t);   
     py=diff(yp(i-1),y); 
     yp(i)=simplify(pt+py*yp(1)); 
     fac=fac*i; 
     T=T+h^(i-1)/fac*yp(i); 
end 
yp 
T 

Program (3.2) Finds the first n derivatives of  y  in  and constructs  

 

 



114 
 

 
 

 

 

 

 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

function Taylor_3_3  
syms t y h 
%================================================================= 
%Entering the IVP and saving it with the ability to solve it with 
%different order and step size of Taylor method 
%================================================================= 
Q=input('Do you want to enter a new problem y/n: ','s'); 
if Q=='y'|Q=='Y' 
yp(1)=input('ODE y''(t)= ');% yp(i)is the i-th derivative of y                              
yExact=inline(input('exact solution of ODE y(t)=','s')); 
a=input('start of interval a= '); 
b=input('end of interval b= '); 
yN(1)=input('initial condition y(a)= '); 
  save data_mat yp yExact a b  yN 
else  
    load data_mat yp yExact a b  yN 
end  
n=input('Taylor order n='); 
hN=input('step size h= '); 
%================================================================= 
% Constructing Taylor Expansion of f(t,y) 
%================================================================= 
fac=1; %factorial 
T=yp(1);% Taylor series  
for i=2:n 
     pt=diff(yp(i-1),t);% partial derivative of y prime(i-1) 
                        % with respect to t 
     py=diff(yp(i-1),y);% partial derivative of y prime(i-1) 
                        % with respect to y 
     yp(i)=simplify(pt+py*yp(1));% construct y prime(i) 
     fac=fac*i; 
     T=T+h^(i-1)/fac*yp(i);% construct Taylor series 
end 
%================================================================= 
%Taylor Method 
%================================================================= 
N=(b-a)/hN; 
tN(1)=a; 
w(1)=yN(1); 
h=hN; 
for i=1:N; 
    t=tN(i); 
    y=w(i); 
    w(i+1)=w(i)+h*eval(T); 
    tN(i+1)=tN(i)+h; 
    yN(i+1)=yExact(tN(i+1)); 
end  
error=abs(yN- w) 
format long  
plot(tN,yN,'k+-',tN,w,'ko-') 
legend('y','w') 
out=single([tN'  yN' w' error']) 
xlswrite('test.xls',out,'sheet1','d2') 

 Program (3.3)  Finds the first n derivatives of  y  in  , constructs  and solves the IVP 
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7 
8 
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11 
12 
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14 
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16 
17 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

function SystTaylorConstr  
syms t  h  
%========================================================== 
%Entering the System of First Order  ODEs and saving it for 
%further use 
%========================================================== 
Q=input('Do you want to enter a new problem y/n: ','s');    
if Q=='y'|Q=='Y' 
   k=input('No. of Equations k='); 
  for j=1:k 
      u(j)=sym(strcat('u',num2str(j)),'real'); 
  end 
     for j=1:k 
       up(j,1)=input( strcat('ODE',num2str(j),' u',num2str(j),... 
                  'prime(t)=') );% up(i)is the i-th derivative of  
     end 
  save data_mat up  u k  
else  
 load data_mat up u k 
end 
%================================================================= 
%Finding the derivatives of u(j)' and constructing Taylor expansion 
%================================================================= 
n=input('Taylor order n='); 
for j=1:k 
T(j)=up(j,1);% Taylor series  
end 
fac=1; %factorial 
for i=2:n 
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35 

function SystDerivFind 
syms t 
%=============================================================== 
%Entering the System of First Order  ODEs and saving it for 
%further use 
%=============================================================== 
Q=input('Do you want to enter a new problem y/n: ','s');    
if Q=='y'|Q=='Y' 
   k=input('No. of Equations k='); 
  for i=1:k 
      u(i)=sym(strcat('u',num2str(i)),'real'); 
  end 
  for z=1:k 
       up(z,1)=input( strcat('ODE',num2str(z),' u',num2str(z),... 
                  'prime(t)=')); 
  end     
  save data_mat up  u k  
else  
    load data_mat up u  k   
end 
%=============================================================== 
%Finding the derivatives of (uj)' 
%=============================================================== 
n=input('Taylor order n='); 
for i=2:n 
    for j=1:k 
      up(j,i)= diff(up(j,i-1),t); 
        for p=1:k 
         pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of           
                                      %u prime(i-1) with respect to u 
         up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i) 
        end   
    end      
end 
disp(up) 

Program (3.4)  Finds the first n derivatives every    in  and constructs   
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    fac=fac*i;    
    for j=1:k   
      up(j,i)= diff(up(j,i-1),t); 
         for p=1:k 
            pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of           
                                   % u prime(i-1) with respect to u 
            up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i) 
         end   
      T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i)); 
    end      
end 
disp(T) 

Program (3.5) Finds the first n derivatives every    in  and constructs   
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function SystTaylorSolve  
syms t  h  
%================================================================= 
%Entering the IVP system and saving it with the ability to   
%solve it with different Taylor order and step size  
%================================================================= 
Q=input('Do you want to enter a new problem y/n: ','s');    
if Q=='y'|Q=='Y' 
   k=input('No. of Equations k='); 
  for i=1:k 
      u(i)=sym(strcat('u',num2str(i)),'real'); 
     end   
     for z=1:k 
       up(z,1)=input( strcat('ODE',num2str(z),' u',num2str(z),... 
                  'prime(t)=') );% up(i)is the i-th derivative of  
     end  
    for e=1:k 
       uN(e,1)=input(strcat('initial condition u',num2str(e),'(a)= ')); 
    end  
for i=1:k 
 uExact(i)=input(strcat('exact solution of ODE u',num2str(i),'(t)=')); 
end  
 a=input('start of interval a= '); 
 b=input('end of interval b= '); 
 save data_mat up  a b u k uN uExact 
else  
    load data_mat up u a b k  uN uExact 
end 
n=input('Taylor order n='); 
hN=input('step size h ='); 
%================================================================= 
%Finding the derivatives of u' and constructing Taylor expansion 
%================================================================= 
fac=1; %factorial 
for i=1:k 
T(i)=up(i,1);% Taylor series  
end 
for i=2:n 
    fac=fac*i;    
    for j=1:k   
      pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1) 
      up(j,i)=pt(j); 
        for p=1:k 
         pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of           
                                      %u prime(i-1) with respect to u 
         up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i) 
        end   
       T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i));% construct Taylor series 
    end      
end 
D=cell(1,k); 
for i=1:k 
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  D(i)=(T(i)); 
  for j=k:-1:1 
  D{i}=strrep(D{i},strcat('u',num2str(j)),strcat('v(',num2str(j),')')); 
  end 
end 
%================================================================= 
%Taylor Method 
%================================================================= 
N=(b-a)/hN; 
tN(1)=a; 
w(1:k,1)=uN(1:k,1); 
h=hN; 
 t=tN(1); 
for i=1:N; 
    v(1:k)=w(1:k,i); 
    for s=1:k   
    w(s,i+1)=w(s,i)+h*eval(D{s}); 
    end 
    tN(i+1)=tN(i)+h; 
    t=tN(i+1); 
    for s=1:k 
          uN(s,i+1)=eval(uExact(s)); 
         (s,i+1)=abs(uN(s,i+1)-w(s,i+1));      
    end    
  error=abs(uN-w); 
end  
 out=[tN]'; 
 for i=1:k 
  out=[out uN(i,:)' w(i,:)' error(i,:)']; 
 end 
format long e 
 single(out) 
plot(tN,uN(1,:),'ko-',tN,w(1,:),'k+-',tN,uN(2,:),'ks-',... 
       tN,w(2,:),'kx-') 
legend('u1','w1','u2','w2') 
xlswrite('test.xls',out,'sheet1','d2') 

Program (3.6) Finds the first n derivatives every    in  and constructs  and solves the system of  IVP 
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% ============================================================ 
%       THIS PROGRAM APPROXIMATES IVP ODE's OF ORDER k  BY  
%      CONVERTING THE ODE INTO A SYSTEM OF FIRST ORDER ODE's 
% ============================================================ 
function TaylorForHighOrderODEs 
syms t     
%============================================================= 
%                  Entering The IVP  ODE 
%       Transforming It Into A System Of First Order ODEs 
%         Saving It With The Ability To Solve 
%    It with Different Order and step size of Taylor method 
%============================================================= 
Q=input('Do you want to enter a new problem y/n: ','s'); 
 
if Q=='y'|Q=='Y' 
    k=input('order of ODE='); 
     
       for j=1:k 
         u(j)=sym(strcat('u',num2str(j)),'real'); 
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       end 
        
       y=u(1); 
       for j=2:k 
           yp(j-1)=u(j); 
       end 
        
       for j=1:k-1 
           up(j,1)=u(j+1); 
       end 
       up(k,1)=input( strcat('ODE y prime',... 
                               num2str(k),'(t)=') ); 
                                  
       uN(1)=input(strcat('initial condition y','(a)= ')); 
       for e=2:k 
          uN(e)=input(strcat('initial condition y prime',... 
                                     num2str(e-1),'(a)= ')); 
       end  
 
  uExact=input(strcat('exact solution of ODE y(t)=')); 
   
  a=input('start of interval a= '); 
  b=input('end of interval b= '); 
   
  save data_mat u up  a b k uN    uExact 
else  
    load data_mat u up  a b k  uN  uExact 
end 
% ============================================================= 
%              Displaying The Generated System 
% ============================================================= 
disp('The generated System') 
for j=1:k    
 sys=['u' num2str(j) '''=' char(up(j))]; 
 init=[';    u'  num2str(j) '(' num2str(a) ')=' num2str(uN(j))]; 
 
out1=strcat(sys,init); 
disp(out1)  
end 
%============================================================= 
%              Constructing Taylor expansion 
%============================================================= 
n=input('Taylor order n='); 
h=input('step size h= '); 
fac=1; %factorial 
for i=1:k 
T(i)=up(i,1);% Taylor series  
end 
for i=2:n 
 fac=fac*i;    
  for j=1:k   
   pt(j)=diff(up(j,i-1),t);% partial derivative of u prime(i-1) 
   up(j,i)=pt(j); 
    
   for p=1:k 
     pu(j,p)=diff(up(j,i-1),u(p));% partial derivative of           
                               %u prime(i-1) with respect to u 
        up(j,i)= up(j,i)+pu(j,p)*up(p,1);% construct u prime(i) 
   end 
   T(j)=T(j)+h^(i-1)/fac*simplify(up(j,i));%construct Taylor 
    end      
end 
 
D=cell(k,1); 
for i=1:k 
    D(i)=(T(i)); 
    for j=k:-1:1 
        D{i}=strrep(D{i},strcat('u',num2str(j)),... 
                        strcat('v(',num2str(j),')')); 
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    end 
end 
%=========================================================== 
%                      Taylor Method 
%=========================================================== 
N=(b-a)/h; 
tN(1)=a; 
w(1:k,1)=uN(1:k); 
t=tN(1); 
yN(1)=uN(1); 
for i=1:N; 
    v(1:k)=w(1:k,i); 
    for s=1:k   
    w(s,i+1)=w(s,i)+h*eval(D{s}); 
    end 
    tN(i+1)=tN(i)+h; 
    t=tN(i+1); 
    yN(i+1)=eval(uExact); 
    error(i+1)=abs(yN(i+1)-w(1,i+1));        
end  
%============================================================ 
%                     Results Output 
%============================================================ 
out=[tN' yN' w' error']; 
format short 
single(out) 
plot(tN,yN,'ks-',tN,w(1,:),'kx-',tN,w(2:k,:),'ko-') 
legend('y','w1', 'w>1') 
xlswrite('test.xls',out,'sheet1','d2') 

Program (3.7) Solves higher order IVP’s 
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 إعداد

 عماد عمر فارس كايد

 

 

 إشراف

 ناجي قطناني. د. أ

 

 

 

قدمت هذه الاطروحة استكمالا لمتطلبات الحصول على درجة الماجستير في الرياضيات المحوسبة 
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 تحليل الأخطاء والثباتية للطرق العددية

 لحل مسائل القيم الابتدائية 

 إعداد

 عماد عمر فارس كايد

 إشراف

 ناجي قطناني. د .أ

 الملخص

 
إن حل مسائل القيم . رياضياتهي ظواهر طبيعية كتبت بلغة ال هامعظم  مسائل القيم الابتدائية في     

 .علماء الرياضياتللدقة عند الابتدائية هو أحد اكثر حقول الرياضيات تحديا بسبب الرغبة المستمرة 

يركز هذا العمل بشكل أساسي على تطوير خوارزميات وبرامج لتكوين طرق تيلر العليا لتقريب      

ب حل انظمة مسائل القيم الابتدائية من الدرجة حل مسائل القيم الابتدائية من الدرجة الاولى ولتقري

بالاضافة إلى ذلك يركز هذا العمل على . الاولى ولتقريب حل مسائل القيم الابتدائية من الدرجات العليا

ولهذا الغرض قمنا بتطوير برامج . الأخطاء والثباتية للطرق العددية لحل مسائل القيم الابتدائيةدراسة 

ولرسم حدود مناطق الثباتية  كتا الصريحة-لايجاد اقترانات تكبير الاخطاء لطرق تيلر وطرق رنجي

 .لهذه الطرق وطرق أخرى

أن تكون طرق تيلر العليا خيارا جيدا لتقريب  يمكن لقد استنتجنا انه وباستخدام البرامج التي طورناها    

 .مجموعة واسعة من مسائل القيم الابتدائيةحلول 




