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Abstract 

Fractional calculus is a current research topic in applied sciences such as 

applied mathematics, physics, biophysics, aerodynamics, control theory, 
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solutions of fractional differential equation. also characterize ECG graph 

and compare normal ECG with ( LVH,RVH) ECG by finding P.T. values 

at the non-differentiable point. 
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Chapter 1

Introduction
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1.1 Basic definition of fractional derivative

1.1.1 Riemann-Liouvellie (R-L) fractional derivative

• Riemann- Liouvellie definition [4][5]

The left R-L definition of fractional derivative is

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− τ)n−1−αf(τ)dτ

The Right R-L definition of fractional derivative is

tD
α
b f(t) =

1

Γ(n− α)

(
− d
dt

)n ∫ b

t

(τ − t)n−1−αf(τ)dτ

Where n− 1 ≤ α < n n:is positive integer.

• Example of Riemann-Liouvellie fractional derivative

1. The constant function

Let a = 0 , n− 1 < α < n

Applying the Left R-L definition for f(t) = C, C ∈ R

0D
α
t [C] =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)n−1−αCdτ

=
C

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)n−1−αdτ

=
C

Γ(n− α)

(
d

dt

)n
tn−α

n− α
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Using this formula
(
d
dt

)n
tk = Γ(k+1)

Γ(k−n+1)t
k−n

0D
α
t [C] = C

Γ(1−α)t
−α

Figure 1.1: R-L fractional derivative of f(t) = 1

This shows that the fractional derivative of a constant C is non-zero

but in classical calculus derivative of a constant is zero .

2. The Power function

Let a = 0 , n− 1 < α < n

Applying the Left R-L definition for f(t) = tk

0D
α
t [tk] =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)n−1−α(τ k)dτ

Using the substitution τ = εt then we have for
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τ = 0, ε = 0 and for τ = t, ε = 1 ,t− τ = t(1− ε) ,dτ = tdε

0D
α
t [tk] =

1

Γ(n− α)

(
d

dt

)n ∫ 1

0

tn−α−1(1− ε)n−α−1εktktdε

=
1

Γ(n− α)

(
d

dt

)n
tn−α+k

∫ 1

0

εk(1− ε)n−α−1dε

Using Beta-function

β(α, γ) =
∫ 1

0 ε
γ−1(1− ε)α−1dε ;Re(α) > 0, Re(γ) > 0

β(α, γ) =
Γ(α)Γ(γ)

Γ(α + γ)

0D
α
t [tk] =

1

Γ(n− α)

(
d

dt

)n
tn−α+k Γ(k + 1)Γ(n− α)

Γ(n− α + k + 1)

0D
α
t [tk] =

Γ(k + 1)

Γ(k + 1− α)
tk−α, (k > −1)

Figure 1.2: R-L fractional derivative of f(t) = t
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Figure 1.3: R-L fractional derivative of f(t) = t2

3. The exponential function

Let a = 0 , n− 1 < α < n

Applying the Left R-L definition for f(t) = ect, c ∈ C

ect =
∞∑
k=0

(ct)k

Γ(k + 1)
= 1 +

ct

Γ(2)
+
c2t2

Γ(3)
+

c3t3

Γ(4)+
+ ...

Dα(ect) = Dα[1 +
ct

Γ(2)
+
c2t2

Γ(3)
+ ...]

=
t−α

Γ(1− α)
+

c

Γ(2)

Γ(2)t1−α

Γ(2− α)
+

c2

Γ(3)

Γ(3)t2−α

Γ(3− α)
+ ...

=
t−α

Γ(1− α)
+

ct1−α

Γ(2− α)
+

c2t2−α

Γ(3− α)
+ ...

= t−α
∞∑
k=0

(ct)k

Γ((1− α) + k)

= t−αE1,1−α(ct)

0D
α
t [ect] = t−αE1,1−α(ct)
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where E1,1−α(ct) is two parameter Mittag-Leffler Function given

in(1.8)

Figure 1.4: R-L fractional derivative of f(t) = et

4. The cos(ct),sin(ct)function,

Let a = 0 , n− 1 < α < n

Applying the Left R-L definition for f(t) = cos(ct)

cos(ct) =
∞∑
k=0

(−1)k
(ct)2k

Γ(2k + 1)
= 1− (ct)2

Γ(3)
+

(ct)4

Γ(5)
− ...

0D
α
t [cos(ct)] =0 D

α
t [1− (ct)2

Γ(3)
+

(ct)4

Γ(5)
− ...]

=
t−α

Γ(1− α)
− c2

Γ(3)

Γ(3)t2−α

Γ(3− α)
+

c4

Γ(5)

Γ(5)t4−α

Γ(5− α)
− ...
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=
t−α

Γ(1− α)
− c2t2−α

Γ(3− α)
+

c4t4−α

Γ(5− α)
− ..

= t−α
∞∑
k=0

(−1)k
(ct)2k

Γ((1− α) + 2k)

= t−αcos1,1−α(ct)

0D
α
t [cos(ct)] = t−αcos1,1−α(ct)

Similarly we can get

0D
α
t [sin(ct)] = t−αsin1,1−α(ct)

where cos1,1−α(ct) and sin1,1−α(ct) is two parameter fractional sine

and cosine function given in(1.9,1.10).

Figure 1.5: R-L fractional derivative of f(t) = cos(at)
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Figure 1.6: R-L fractional derivative of f(t) = sin(t)

1.1.2 Caputo fractional derivative

• Caputo definition[4]

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−1−αf (n)(τ)dτ

Where n− 1 ≤ α < n n:is positive integer.

f(t), must be differentiable n-times, if the function is non-differentiable

then this definition is not applicable

• Example of Caputo fractional derivative

1. The constant function

Let a = 0 , n− 1 < α < n

Applying the Caputo definition for f(t) = C,C ∈ R

c
aD

α
t [C] =

1

Γ(n− α)

∫ t

a

(t− τ)n−1−α0dτ = 0

c
aD

α
t [C] = 0
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Caputo derivative of a constant is zero

2. The Power function

Let a = 0 , n− 1 < α < n

Applying the Caputo definition for f(t) = tk

c
0D

α
t [tk] =

1

Γ(n− α)

∫ t

0

(t− τ)n−1−α(τ k)(n)dτ

=
1

Γ(n− α)

∫ t

0

(t− τ)n−1−α Γ(k + 1)

Γ(k − n+ 1)
τ k−ndτ

=
1

Γ(n− α)

Γ(k + 1)

Γ(k − n+ 1)

∫ t

0

(t− τ)n−1−ατ k−ndτ

Using the substitution τ = εt then we have for

τ = 0, ε = 0 and for τ = t, ε = 1 ,t− τ = t(1− ε) ,dτ = tdε

c
0D

α
t [tk] =

Γ(k + 1)

Γ(n− α)Γ(k − n+ 1)
tk−α

∫ 1

0

(1− ε)n−α−1εk−ndε

=
Γ(k + 1)

Γ(k − α + 1)
tk−α

c
0D

α
t f(t) =


Γ(k+1)

Γ(k+1−α)t
k−α k > n− 1

0 k ≤ n− 1
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Figure 1.7: Caputo derivative off(t) = t

3. The exponential function

The relation between Caputo fractional derivative and Riemann-

Liouvellie fractional derivative [7]

c
0D

α
t f(t) =0 D

α
t f(t)−

n−1∑
k=0

(t)k−α

Γ(k + 1− α)
fk(0)

Let a = 0 , n− 1 < α < n

Applying this Property for f(t) = ect, c ∈ C

c
0D

α
t [ect] =0 D

α
t [ect]−

n−1∑
k=0

(t)k−αck

Γ(k + 1− α)

= t−αE1,1−α(ct)−
n−1∑
k=0

(t)k−αck

Γ(k + 1− α)

= t−α
∞∑
k=0

(ct)k

Γ(k + 1− α)
−

n−1∑
k=0

(t)k−αck

Γ(k + 1− α)
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=
∞∑
k=n

cktk−α

Γ(k + 1− α)

=
∞∑
k=0

ck+ntk+n−α

Γ(k + n+ 1− α)

= cntn−α
∞∑
k=0

cktk

Γ(k + n+ 1− α)

= cntn−αE1,n+1−α(ct)

c
0D

α
t [ect] = cntn−αE1,n+1−α(ct)

Figure 1.8: Caputo derivative of f(t) = et

4. The cos(ct),sin(ct) function

Let a = 0 , n− 1 ≤ α < n

using the following interpretation of cos(ct),sin(ct)

cos(ct) =
eict + e−ict

2
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sin(ct) =
eict − e−ict

2i

c
0D

α
t [cos(ct)] = 1

2
c
0D

α
t (eict + e−ict)

=
1

2

(
(ic)ntn−αE1,n+1−α(ict) + (−ic)ntn−αE1,n+1−α(−ict)

)
c
0D

α
t [cos(ct)] =

(ic)ntn−α

2
(E1,n+1−α(ict) + (−1)nE1,n+1−α(−ict))

similarly we can get

c
0D

α
t [sin(ct)] =

(ic)ntn−α

2i
(E1,n+1−α(ict)− (−1)nE1,n+1−α(−ict))

1.1.3 Jumarie modified fractional derivative

• Jumarie modified definition ,[4][5]

The left Jumarie modified definition is

J
aD

α
t f(t) =


1

Γ(−α)

∫ t
a(t− τ)−α−1f(τ)dτ α < 0

1
Γ(1−α)

d
dt

∫ t
a(t− τ)−α[f(τ)− f(a)]dτ 0 < α < 1

(fα−n(t)))n n ≤ α < n+ 1

(1.1)
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The right Jumarie modified definition is

J
tD

α
b f(t) =


−1

Γ(−α)

∫ b
t (τ − t)−α−1f(τ)dτ α < 0

−1
Γ(1−α)

d
dt

∫ b
t (τ − t)−α[f(b)− f(τ)]dτ 0 < α < 1

(fα−n(t)))n n ≤ α < n+ 1

(1.2)

Where n− 1 ≤ α < n n:is positive integer.

• Example of Jumarie modified fractional derivative

1. The constant function

Let a = 0

Applying The left Jumarie modified definition for

f(t) = c c ∈ R, when α < 0

J
0D

α
t [c] =

1

Γ(−α)

∫ t

0

(t− τ)−α−1cdτ

=
c

Γ(−α)

∫ t

0

(t− τ)−α−1dτ

=
ct−α

Γ(1− α)

when 0 < α < 1

J
0D

α
t [c] =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α[c− c]dτ = 0
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when n ≤ α < n+ 1, n ≥ 1

J
0D

α
t [c] =

(
fα−n(c))

)n
= 0

J
0D

α
t [c] =


ct−α

Γ(1−α) α < 0

0 α > 0

2. The power function

Let a = 0

Applying The left Jumarie modified definition for

f(t) = tk when 0 > α

J
0D

α
t [tk] =

1

Γ(−α)

∫ t

0

(t− τ)−α−1τ kdτ

Using the substitution τ = εt then we have for

τ = 0, ε = 0 and for τ = t, ε = 1 ;t− τ = t(1− ε) ;dτ = tdε

J
0D

α
t [tk] =

1

Γ(−α)

∫ 1

0

t−α−1(1− ε)−α−1εktktdε

=
t−α+k

Γ(−α)

∫ 1

0

εk(1− ε)−α−1dε

=
Γ(k + 1)

Γ(k − α + 1)
tk−α

J
0D

α
t [tk] =

Γ(k + 1)

Γ(k − α + 1)
tk−α, (k > −1), (α < 0)
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when 0 < α < 1

J
0D

α
t [tk] =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−ατ kdτ

Using the substitution τ = εt then we have for

τ = 0, ε = 0 and for τ = t, ε = 1 ;t− τ = t(1− ε) ;dτ = tdε

J
0D

α
t [tk] =

1

Γ(1− α)

d

dt

∫ 1

0

t−α(1− ε)−αεktktdε

=
1

Γ(1− α)

d

dt
tk−α+1

∫ 1

0

εk(1− ε)−αdε

=
Γ(k + 1)

Γ(k − α + 1)
tk−α

J
0D

α
t [tk] =

Γ(k + 1)

Γ(k − α + 1)
tk−α, (k > 0), (0 < α < 1)

when n < α < n+ 1

J
0D

α
t [tk] =

(
fα−n[tk])

)n
=

(
Γ(k + 1)

Γ(k − α + n+ 1)
tk−α+n

)(n)

=
Γ(k + 1)

Γ(k − α + n+ 1)

Γ(k − α + n+ 1)

Γ(k − α + 1)
tk−α

=
Γ(k + 1)

Γ(k − α + 1)
tk−α

J
0D

α
t [tk] =

Γ(k + 1)

Γ(k − α + 1)
tk−α , (k > 0) (1.3)
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Figure 1.9: Jumarie modified derivative of f(t) = t

3. The exponential function

Let a = 0 , Applying the left Jumarie modified definition for f(t) =

ect, c ∈ C

ect =
∞∑
k=0

(ct)k

Γ(k + 1)
= 1 +

ct

Γ(2)
+
c2t2

Γ(3)
+
c3t3

Γ(4)
+ ...

J
0D

α
t (ect) = Dα[1 +

ct

Γ(2)
+
c2t2

Γ(3)
+
c3t3

Γ(4)
+ ...]

= 0 +
c

Γ(2)

Γ(2)t1−α

Γ(2− α)
+

c2

Γ(3)

Γ(3)t2−α

Γ(3− α)
+ ...

=
ct1−α

Γ(2− α)
+

c2t2−α

Γ(3− α)
+

c3t3−α

Γ(4− α)
+ ...

= ct1−α
∞∑
k=0

(ct)k

Γ((2− α) + k)

= ct1−αE1,2−α(ct)
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J
0D

α
t [ect] = ct1−αE1,2−α(ct)

Figure 1.10: Jumarie modified derivative of f(t) = et

4. cos(ct),sin(ct) function Let a = 0 Applying The left Jumarie mod-

ified definition for f(t) = cos(ct)

cos(ct) =
∞∑
k=0

(−1)k
(ct)2k

Γ(2k + 1)

J
0D

α
t cos(ct) = Dα[1− (ct)2

Γ(3)
+

(ct)4

Γ(5)
− (ct)6

Γ(7)
+ ...]

= 0− c2

Γ(3)

Γ(3)t2−α

Γ(3− α)
+

c4

Γ(5)

Γ(5)t4α

Γ(5− α)
...

= − c2t2−α

Γ(3− α)
+

c4t4−α

Γ(5− α)
− c6t6−α

Γ(7− α)
+ ...

= −ct1−α
∞∑
k=0

(−1)k
(ct)2k+1

Γ((2− α) + 2k + 1)
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= −ct1−αsin1,2−α(t)

J
0D

α
t cos(ct) = −ct1−αsin1,2−α(t)

similarly we can get

J
0D

α
t sin(ct) = ct1−αcos1,2−α(ct)

Figure 1.11: Jumarie modified derivative of f(t) = cos(t)

Figure 1.12: Jumarie modified derivative of f(t) = sin(t)
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1.1.4 Properties of fractional derivatives

• Riemann-Liouvellie fractional derivative

Let n− 1 < α < n, n,m ∈ N, λ, µ ∈ C and the functions f(t) and

g(t) be such that both aD
α
t f(t)and aD

α
t g(t) exist. Then [14],[20]

1. Linearity

aD
α
t (λ f(t) + µ g(t)) = λ aD

α
t f(t) + µ aD

α
t g(t)

2. Non-commutation

Dm
a D

α
t f(t) =a D

α+m
t f(t) 6=a D

α
t D

mf(t) (1.4)

The inequalities in equation 1.4 become equalities under the

the following additional condition

Dm
a D

α
t f(t) =a D

α+m
t f(t) = Dα

t D
mf(t)

f (s)(0) = 0 , s = 0, 1, ...,m

3. Leibniz rule

If f(t) and g(t) and all it’s derivatives are continuous in [0,t],then

the following holds

0D
α
t (f(t)g(t)) =

∞∑
k=0

(
α

k

)
Dα−k
t f(t) gk(t)
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4. Let 0 < αi < 1 ,i = 1, 2, .., n, then the following equality

holds,

aD
α
t f(t) = aD

α1
t aD

α2
t ... aD

αn
t

α = α1 + α2 ... αn

• Caputo fractional derivative

Let n − 1 < α < n, n,m ∈ N, λ, µ ∈ C and the functions f(t)

and g(t) be such that both c
aD

α
t f(t)and c

aD
α
t g(t) exist. Then[7],[20]

1. Linearity

c
aD

α
t (λ f(t) + µ g(t)) = λ c

aD
α
t f(t) + µ c

aD
α
t g(t)

2. Non-commutation

c
aD

α
t D

mf(t) = c
aD

α+m
t f(t) 6= Dm c

aD
α
t f(t) (1.5)

The inequalities in equation 1.5 become equalities under the

the following additional condition

c
aD

α
t D

mf(t) = c
aD

α+m
t f(t) = Dm c

aD
α
t f(t)

f (s)(0) = 0 , s = n, n+ 1...m

3. Leibniz rule

If f(t) and g(t) and all its derivatives are continuous in [0,t],then
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the following holds

c
0D

α
t (f(t)g(t)) =

∞∑
k=0

(
α

k

)
Dα−k
t f(t)g(k)(t)−

n−1∑
k=0

tk−α

Γ(k + 1− α)

(
(f(t)g(t))k(0)

)

4. Let 0 < αi < 1 ,i = 1, 2, .., n, then the following equality

holds,

c
aD

α
t f(t) = c

aD
α1
t

c
aD

α2
t ... caD

αn
t

α = α1 + α2 ... αn

• Jumarie modified fractional derivative

Let n− 1 < α < n, n,m ∈ N, λ, µ ∈ C and the functions f(t) and

g(t) be such that both J
aD

α
t f(t)and J

aD
α
t g(t) exist. Then[10],[11],[8]

1. Linearity

J
aD

α
t (λ f(t) + µ g(t)) = λJaD

α
t f(t) + µ J

aD
α
t g(t)

2. Non-commutation

J
aD

α
t D

mf(t) 6= Dm J
aD

α
t f(t)

3. Leibniz rule

Let 0 < α < 1, and the functions f(t) and g(t) are two non-
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differentiable functions in [0,t],then the following holds

J
aD

α
t (f(t)g(t)) = f(t) JaD

α
t g(t) + g(t) JaD

α
t f(t)

4. For any positive integer n and ,0 < αi < 1,i = 1, 2, .., n, then

the following equality holds,

J
aD

α
t f(t) = J

aD
α1
t

J
aD

α2
t ... JaD

αn
t

α = α1 + α2 ... αn

1.2 Mittag-Leffler Function

The applications of the Mittag-Leffler function and its extensions are

discussed recently in a rapidly increasing number of papers, related to

Fractional Calculus and fractional order differential equations.

1.2.1 One Parameter Mittag-Leffler Function

The one parameter Mittag-Leffler function was defined by

Eα(z) =
∞∑
k=0

zk

Γ(1 + αk)
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This function play important role in fractional calculus like exponential

function in classical calculus [3, 4]

E1(z) = 1 +
z

Γ(1 + 1)
+

z2

Γ(1 + 2)
+ ... = ez

E2(z) = 1 +
z

Γ(1 + 2)
+

z2

Γ(1 + 4)
+ ... = cosh

√
z

We now rewrite the Mittag-Leffler function in the following form by an

infinite

Eα(atα) =
∞∑
k=0

(atα)k

Γ(1 + αk)
= 1 +

atα

Γ(1 + α)
+

a2t2α

Γ(1 + 2α)
+ ...

Then we find Jumarie fractional derivative of order α for Mittag-Leffler

function Eα(atα)

J
0D

α
t (Eα(atα)) = Dα[1 +

atα

Γ(1 + α)
+

a2t2α

Γ(1 + 2α)
+

a3t3α

Γ(1 + 3α)
+ ...]

= 0 +
a

Γ(1 + α)

Γ(1 + α)

Γ(1)
+

a2tα

Γ(1 + 2α)

Γ(1 + 2α)

Γ(1 + α)
+ ...

= [a+
a2tα

Γ(1 + α)
+

a3t2α

Γ(1 + 2α)
+ ...]

= a[1 +
atα

Γ(1 + α)
+

a2t2α

Γ(1 + 2α)
+ ...]

= aE(atα)
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J
0D

α
t (Eα(atα)) = aE(atα) (1.6)

This shows that AEα(atα) is a solution of the fractional differential equa-

tion

J
0D

α
t y = ay (1.7)

Where A is arbitrary constant.

Therefore 1.7 with using the initial condition y(0)=1 has solution

y = Eα(atα)

1.2.2 Two parameter Mittag-Leffler function

The two parameter Mittag-Leffler function [3] was defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(β + kα)
(1.8)

E1,1(z) =
∞∑
k=0

zk

Γ(1 + k)
= ez

E1,2(z) =
∞∑
k=0

zk

Γ(k + 2)
=

1

z

∞∑
k=0

zk + 1

Γ(k + 2)
=

1

z
(ez − 1)

E2,1 (z2) =
∞∑
k=0

z2k

Γ(2k + 1)
= cosh z

now we find Jumarie fractional derivative of order β for Mittag-Leffler
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function Eα(atα)

Dβ(Eα(atα)) = Dβ[1 +
atα

Γ(1 + α)
+

a2t2α

Γ(1 + 2α)
+ ...]

= 0 +
a

Γ(1 + α)

tα−βΓ(1 + α)

Γ(1 + α− β)
+ ...

=
a

Γ(1 + α− β)
tα−β +

a2

Γ(1 + 2α− β)
t2α−β + ...

= atα−β[
1

Γ(1 + α− β)
+

atα

Γ(1 + 2α− β)
+ ...]

= atα−β
∞∑
k=0

(atα)k

Γ((1 + α− β) + kα)

= atα−βEα,1+α−β(atα)

J
0D

β
t (Eα(atα)) = atα−βEα,1+α−β(atα)

1.2.3 Complex Mittag-Leffler Function and Its Properties

Jumarie [9] defined the one parameter fractional sine and cosine function

in the following form,

cosα(tα) =
Eα(itα) + Eα(−itα)

2
=

∞∑
k=0

(−1)k
t2kα

Γ(1 + 2kα)

sinα(tα) =
Eα(itα)− Eα(−itα)

2
=

∞∑
k=0

(−1)k
t(2k+1)α

Γ(1 + 2kα + α)

with this definition and with definition of one parameter Mittag-

Leffler function we get the following identity
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Eα(itα) = 1 +
itα

Γ(1 + α)
+

i2t2α

Γ(1 + 2α)
+

i3t3α

Γ(1 + 3α)
...

= [1− t2α

Γ(1 + 2α)
+ ...] + i[

tα

Γ(1 + α)
− t3α

Γ(1 + 3α)
+ ...]

=
∞∑
k=0

(−1)k
t2kα

Γ(1 + 2kα)
+ i

∞∑
k=0

(−1)k
t(2k+1)α

Γ(1 + 2kα + α)

Thus

Eα(itα) = cosα(tα) + isinα(tα)

From figure 1.13 and figure 1.14 can be observed both the fractional

trigonometric functions cosα(tα), sinα(tα):

• for α < 1 is fade oscillatory motion

• for α = 1 harmonic motion with sustained oscillations

• for α > 1 is increase oscillatory motion
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Figure 1.13: cosα(tα)

Figure 1.14: sinα(tα)
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The series presentation of cosα(tα) is

cosα(tα) = 1− t2α

Γ(1 + 2α)
+

t4α

Γ(1 + 4α)
− ...

Taking term by term Jumarie fractional derivative of order α we get

J
0D

α
t (cosα(tα)) = Dα[1− t2α

Γ(1 + 2α)
+

t4α

Γ(1 + 4α)
− ...]

= 0− 1

Γ(1 + 2α)

tαΓ(1 + 2α)

Γ(1 + α)
+ ...

= − tα

Γ(1 + α)
+

t3α

Γ(1 + 3α)
− ...

= −[
tα

Γ(1 + α)
− t3α

Γ(1 + 3α)
+ ...]

= −
∞∑
k=0

(−1)k
t(2k+1)α

Γ(2kα + α + 1)

= −sinα(tα)

JDα(cosα(tα)) = −sinα(tα)

The series presentation of sinα(tα) is

sinα(tα) =
tα

Γ(1 + α)
− t3α

Γ(1 + 3α)
+

t5α

Γ(1 + 5α)
− ...
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Taking term by term Jumarie derivative of order α we get

J
0D

α
t sinα(tα) =J

0 D
α
t [

tα

Γ(1 + α)
− t3α

Γ(1 + 3α)
+

t5α

Γ(1 + 5α)
− ...]

= 1− t2α

Γ(1 + 2α)
+

t4α

Γ(1 + 4α)
− ...

=
∞∑
k=0

(−1)k
t2kα

Γ(2kα + 1)

= cosα(tα)

J
0D

α
t (sinα(tα)) = cosα(tα)

Also Jumarie [9] defined the two parameter fractional sine and cosine

function in the following form,

cosα,β(tα) =
∞∑
k=0

(−1)k
t2kα

Γ(β + 2kα)
(1.9)

sinα,β(tα) =
∞∑
k=0

(−1)k
t(2k+1)α

Γ(β + 2kα + α)
(1.10)

with this definition and with definition of two parameter Mittag-

Leffler function we get the following identity

Eα,β(itα) = cosα,β(tα) + isinα,β(tα)
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Chapter 2

Linear Fractional Differential Equation

with Jumarie Derivative
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A linear nα-order fractional differential equation of the form [14]

an
JDnαy(t) + an−1

JD(n−1)αy(t) + ...+ a0y(t) = g(tα) (2.1)

where the coefficients ai, i = 0..n are real constants and

an 6= 0,0 < α < 1

From now we indicate Jumarie fractional derivative with the starting

point of differentiation as 0 as JDnαy(t) insteadJ0D
nα
t y(t)

2.1 linear homogeneous fractional differential equation

an
JDnαy(t) + an−1

JD(n−1)αy(t) + ...+ a0y(t) = 0 (2.2)

The above differential equation is said to be linear homogeneous frac-

tional differential equation when g(tα) identically zero in(2.1), otherwise

it is non-homogeneous.

Theorem 2.1 let y1, y2, ..., yk be solutions of the homogeneous nα-order

fractional differential equation (2.2) . Then the linear combination

A1y1(t) + A2y2(t) + ...Akyk(t)

where the Ai, i = 1...k are arbitrary constants, is also a solution

Proof. let L(y(t)) = an
JDnαy(t) + an−1

JD(n−1)αy(t) + ...+ a0y(t)

and let y1(t), y2(t), ..., yk(t) be solutions of the homogeneous equation

L(y1(t)) = 0, L(y2(t)) = 0, ..., L(yk(t)) = 0 If we define
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y(t) = A1y1(t) + A2y2(t) + ... + Akyk(t), then by linearity of L we have

L[A1y1(t) + A2y2(t) + ...+ Akyk(t)]

= A1L(y1(t)) + A2L(y2(t)) + ...+ AkL(yk(t))

= A1.0 + A2.0 + ...+ Ak.0 = 0

A1y1(t) + A2y2(t) + ...+ Akyk(t) is also solution

We begin by considering the special case of the second order fractional

differential equation

a2
JD2αy(t) + a1

JDαy(t) + a0y(t) = 0 (2.3)

where a0, a1, a2 are real constant

(JDα −m1)(
JDα −m2)y(t) = 0

where m1 =
−a1+
√
a21−4a2a0

2a2
,m2 =

−a1−
√
a21−4a2a0

2a2

there will be three forms of the general solution of (2.3) corresponding

to the three cases [5]:

• Case I : m1,m2 are real and distinct

The fractional differential equation

JD2αy(t)− (m1 +m2)
JDαy(t) + (m1m2)y(t) (2.4)
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has solution of the form

y(t) = A1Eα(m1t
α) + A2Eα(m2t

α)

where A1 and A2 are constants

Proof. Let y(t) = A1Eα(m1t
α) + A2Eα(m2t

α).

Differentiating α and 2α times with Jumarie derivative we get

JDαy(t) = A1m1Eα(m1t
α) + A2m2Eα(m2t

α) and

JD2αy(t) = A1m1
2Eα(m1t

α)+A2m2
2Eα(m2t

α) Substituting JDαy(t)

and JD2αy(t) into the fractional differential equation(2.4) we get

[A1m1
2−A1m1(m1+m2)+A1(m1m2)]Eα(m1t

α)+[A2m2
2−A2m2(m1+

m2) + A2(m1m2)]Eα(m2t
α) = 0

This shows that the fractional differential equation

JD2αy(t)− (m1 +m2)
JDαy(t) + (m1m2)y(t) = 0

has solution in the form

y(t) = A1Eα(m1t
α) + A2Eα(m2t

α)

On the other hand consider the fractional differential equation

JD2αy(t)− (m1 +m2)
JDαy(t) + (m1m2)y(t) = 0
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it can be expressed in the following form

(JDα −m1)(
JDα −m2)y(t) = 0 (2.5)

Let, x(t) = (JDα −m2)y(t) then equation (2.5) reduce to the

form

(JDα −m1)x(t) = 0 or JDαx(t) = m1x(t)

Solution of the above equation is same as the solution of the equa-

tion (1.2) which is

x(t) = AEα(m1t
α)

(JDα −m2)y(t) = AEα(m1t
α)

multiply both sides by Eα(−m2t
α)

Eα(−m2t
α)JDαy(t)− Eα(−m2t

α)m2y(t) = AEα(m1t
α)Eα(−m2t

α)

JDα[y(t)Eα(−m2t
α)] =

A

m1 −m2

JDα[Eα(m1t
α)Eα(−m2t

α)]

On integrating both sides and applying JD−α on both sides of

above, we get

y(t)Eα(−m2t
α) =

A

m1 −m2
[Eα(m1t

α)Eα(−m2t
α) + A2
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y(t) =
A

m1 −m2
[Eα(m1t

α) + A2Eα(m2t
α)

Let A1 = A
m1−m2

Therefore y(t) = A1Eα(m1t
α) +A2Eα(m2t

α) is

a solution of the fractional differential equation (2.5)

• Case II: m1 = m2 are real and equal

The fractional differential equation

JD2αy(t)− 2mJDαy(t) +m2y(t)

has solution of the form

y = A1Eα(mtα) + A2t
αEα(mtα)

where A1 and A2 are constants

Proof. Let y(t) = A1Eα(mtα) + A2t
αEα(mtα) . Differentiating α

and 2α times with Jumarie derivative we get

JDαy(t) = A1mEα(mtα)+A2mt
αEα(mtα)+A2Γ(α+1)Eα(mtα) and

JD2αy(t) = A1m
2Eα(mtα)+2A2mΓ(α+1)Eα(mtα)+A2m

2tαEα(mtα)

Substituting JDαy(t) and JD2αy(t) into the fractional differential

equation we get

[A1m
2 + 2A2mΓ(α + 1) + A2m

2tα]Eα(mtα) − 2mEα(mtα)[A1m +

A2mt
α + A2Γ(α + 1)] +m2Eα(mtα)[A1 + A2t

α] = 0
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This shows that the fractional differential equation

JD2αy(t)− 2mJDαy(t) +m2y(t) = 0

has solution in the form

y(t) = A1Eα(mtα) + A2t
αEα(mtα)

On the other hand consider the fractional differential equation

JD2αy(t)− 2mJDαy(t) +m2y(t)

it can be expressed in the following form

(JDα −m)(JDα −m)y(t) = 0 (2.6)

Let, x(t) = (JDα − m)y(t) then equation (2.6) reduce to the

form

(JDα −m)x(t) = 0 or JDαx(t) = mx(t)

Solution of the above equation is same as the solution of the equa-

tion (1.2) which is

x(t) = AEα(mtα)

(JDα −m)y(t) = AEα(mtα)
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multiply both side by Eα(−mtα)

Eα(−mtα)JDαy(t)− Eα(−mtα)m y(t) = AEα(mtα)Eα(−mtα)

JDα[y(t)Eα(−mtα)] =
A

Γ(α + 1)
JDα[tα]

On integrating both sides and applying JD−α on both sides of

above, we get

y(t)Eα(−mtα) =
A

Γ(α + 1)
tα + A2

Let A1 = A
Γ(α+1) Therefore y = A1t

αEα(mtα) + A2Eα(mtα) is a

solution of the fractional differential equation (2.6)

• Case III: m1 = p+ iq,m2 = p− iq are complex

JD2αy(t)− 2pJDαy(t) + (p2 + q2)y(t) = 0

has solution of the form

y(t) = Eα(ptα)[A1cosα(qtα) + A2sinα(qtα)]

Proof. The given fractional differential equation can be written in the

following form

[JDα − (p+ iq)][JDα − (p− iq)]y(t) = 0 (2.7)
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Using Case I we get the solution of the fractional differential (2.7) can

be written in the following form

y(t) = a1Eα((p− iq)tα) + a2Eα((p+ iq)tα)

y(t) = a1Eα(ptα)Eα(−iqtα) + a2Eα(ptα)Eα(iqtα)

y(t) = a1Eα(ptα)[cosα(−qtα) + isinα(−qtα)]

+a2Eα(ptα)[cosα(qtα) + isinα(qtα)]

Since cosα(−qtα) = cosα(qtα) and sinα(−qtα) = −sinα(qtα)

Therefore

y(t) = Eα(ptα)[(a1 + a2)cosα(qtα) + (−a1 + a2)isinα(qtα)]

let A1 = a1 + a2 and A2 = (−a1 + a2)i

y(t) = Eα(ptα)[A1cosα(qtα) + A2sinα(qtα)]

Example 2.1. 2α-order FDEs

Solve the following fractional differential equations.

1. 2 JD2αy(t)− 5 JDαy(t)− 3y(t) = 0

2. JD2αy(t)− 4 JDαy(t) + 4y(t) = 0
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3. JD2αy(t) + 4y(t) = 0

Solution

1. (JDα + 1
2)(JDα − 3)y(t) = 0

From(Case I) y(t) = A1Eα(−1
2 ) + A2Eα(3tα)

2. (JDα − 2)(JDα − 2)y(t) = 0

From(Case II) y(t) = A1Eα(2tα) + A2t
αEα(2tα)

3. (JDα − 2i)(JDα + 2i)y(t) = 0

From(Case III) y(t) = A1cosα(2tα) + A2sinα(2tα)

Example 2.2. An Initial-Value Problem

Solve JD2αy(t)− 3JDαy(t) + 2y(t) = 0, y(0) = −1, JDαy(0) = 2

Solution

(JDα − 2)(JDα − 1)y(t) = 0

From(Case I) the general solution is

y(t) = A1Eα(2tα) + A2Eα(tα)

Putting the initial condition.y(0) = −1, JDαy(0) = 2

y(0) = A1 + A2 = −1

JDαy(0) = 2A1 + A2 = 2 and solving we get A1 = 3,A2 = −4

Hence the solution is,

y(t) = 3Eα(2tα)− 4Eα(tα)
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Figure 2.1: Solution curve of IVP in Example 2.2 for different values of
α = 1

4
, 2
4
, 3
4

In ref [5] had solved Linear Second Order Fractional Differential Equa-

tion , Now we will see that the foregoing procedure can produce solutions

for homogeneous linear higher Order Fractional Differential Equation

HIGHER-ORDER EQUATIONS

In general, to solve an nth-order differential equation

an
JDnαy(t) + an−1

JD(n−1)αy(t) + ...+ a0y(t) = 0 (2.8)

where ai, i = 0..n are real constants. we must solve an nth -degree

polynomial equation

anm
n + an−1m

n−1 + ...a2m
2 + a1m+ a0 = 0 (2.9)

If all the roots of (2.9) are real and distinct, then the general solution of

(2.8) is

y(t) = A1Eα(m1t
α) + A2Eα(m2t

α) + ...+ AnEα(mnt
α)
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It is somewhat harder to summarize the analogues of Cases II and III

because the roots of (2.9) of degree greater than two can occur in many

combinations.

When m1 is a root of multiplicity k of (2.9) equation (that is, k roots

are equal to m1), it can be shown that the general solution of (2.8) must

contain

A1Eα(m1t
α) + A2Eαt

α(m1t
α) + ...+ Ant

(k−1)αEα(m1t
α)

Finally, when the coefficients are real, complex roots of (2.9) always

appear in conjugate pairs.

Example 2.3. Third-Order FDE

Solve JD3αy(t) + 3JD2αy(t)− 4y(t) = 0

Solution

to solve a third degree polynomial equation

m3 + 3m2 − 4 = (m− 1)(m+ 2)2 = 0

so the roots are m1 = 1,m2 = m3 = −2

Thus the general solution of the FDE is

y(t) = A1Eα(tα) + A2Eα(−2tα) + A3t
αEα(−2tα)

Example 2.4. Fourth-Order FDE

Solve JD4αy(t) + 2JD2αy(t) + y(t) = 0

Solution

solve a Fourth degree polynomial equation
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m4 + 2m2 + 1 = (m2 + 1)2 = 0

so the roots are m1 = i,m2 = −i,m3 = i,m3 = −i

Thus the general solution of the FDE is

y(t) = A1cosα(tα) + A2sinα(tα) + tα[A3cosα(tα) + A4sinα(tα)]

2.2 linear non-homogeneous fractional differential equation

Any function yp, free of arbitrary parameters, that satisfies (2.1) is said

to be a particular solution or particular integral of the equation.

Theorem 2.2 Let yp be any particular solution of the non-homogeneous

linear nα-order fractional differential equation (2.1) and let y1, y2, ..., yn

be a set of solutions of the associated homogeneous fractional differential

equation (2.2) . Then the general solution of the equation(2.1) is

A1y1(t) + A2y2(t) + ...Anyn(t) + yp(t)

where the Ai, i = 1...n are arbitrary constants, is also a solution

Proof. let L(y(t)) = an
JDnαy(t) + an−1

JD(n−1)αy(t) + ...+ a0y(t)

and let Y (t) and yp(t)be particular solutions of the non-homogeneous

fractional differential equation,L(Y (t)) = g(tα) and L(yp(t)) = g(tα). If

we define

u(t) = Y (t)− yp(t) then by linearity of L we have

L(u(t)) = L(Y (t)− yp(t)) = L(Y (t))− L(yp(t)) = g(tα)− g(tα) = 0

This shows that u(t) is a solution of the homogeneous equation



43

L(u(t)) = 0. Hence by Theorem 2.1

u(t) = A1y1(t) + A2y2(t) + ...Anyn(t) and so

Y (t)− yp(t) = A1y1(t) + A2y2(t) + ...Anyn(t)

or Y (t) = A1y1(t) + A2y2(t) + ...Anyn(t) + yp(t)

We see in Theorem 2.6 that the general solution of a non-homogeneous

linear fractional differential equation consists of the sum of two functions:

Y (t) = A1y1(t) + A2y2(t) + ...Anyn(t) + yp(t) = yc(t) + yp(t)

The linear combination yc(t) = A1y1(t) + A2y2(t) + ...Anyn(t) which is

the general solution of (2.2), is called the complementary function for

equation (2.1). Thus the general solution will be

y = yp + yc

Method of Undetermined Coefficients can be used to find a particular

solution to a non-homogeneous differential equation.

any
(n) + an−1y

(n−1) + ...+ a1y
(1) + a0 = g(t) (2.10)

The method is quite simple. All that we need to do is look at g(t) and

make a guess as to the form of yp leaving the coefficients undetermined .

Plug the guess into the differential equation and see if we can determine

values of the coefficients. If we can determine values for the coefficients
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then our guess is correct, if we cant find values for the coefficients then

our guess is incorrect. The general method is limited to linear differential

equation such as (2.10) where g(t) is a polynomial function, an exponen-

tial function ect, a sine or cosine function sin(ct), cos(ct), or finite sums

and products of these functions [12].

Now we will use the same idea of undetermined coefficients to find a

particular solution to a non-homogeneous fractional differential equa-

tion(2.1). where g(tα) is fractional polynomial function, a Mittag - Leffer

function Eα(ctα), a fractional sine or cosine function sinα(ct), cosα(ct),or

finite sums and products of these functions.

Example 2.5. g(tα) is a fractional polynomial function

Solve

JD2αy(t)− 2JDαy(t)− 3y(t) = 3t2α + 4tα − 5 (2.11)

Solution

We first solve the associated homogeneous equation

JD2αy(t) − 2JDαy(t) − 3y(t) = 0. From the quadratic formula we find

that the roots of the equation m2− 2m− 3 = 0 are m1 = 3 and m2 = −1.

Hence the complementary function is

yc = A1Eα(3tα) + A2Eα(−tα)

Now, because the function g(tα) is fractional polynomial of degree 2α,
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let us assume a particular solution that is also in the form of fractional

polynomial of degree 2α

yp = At2α +Btα + C

We seek to determine specific coefficients A, B, and C for which yp is a

solution of (2.11).Substituting yp and the Jumarie Fractional Derivative

JDαyp = AΓ(2α+1)
Γ(α+1) t

α +BΓ(α + 1) and JD2αyp = AΓ(2α + 1)

into the given fractional differential equation (2.11), we get

AΓ(2α+1)−2(AΓ(2α+1)
(Γ(α+1) t

α+BΓ(α+1))−3(At2α+Btα+C) = 3t2α+4tα−5

The coefficients of like powers of t must be equal, That is

−3A = 3, −2AΓ(2α+1)
Γ(α+1) − 3B = 4, AΓ(2α+ 1)− 2BΓ(α+ 1)− 3c = −5

Solving this system of equations leads to the values

A = −1, B = −4
3 + 2Γ(2α+1)

3Γ(α+1) , C = 15+8Γ(α+1)−7Γ(2α+1)
9

yp = −t2α +

(
−4

3
+

2Γ(2α + 1)

3Γ(α + 1)

)
tα +

15 + 8Γ(α + 1)− 7Γ(2α + 1)

9

The general solution of the given equation(2.11) is

y = A1Eα(3tα) + A2Eα(−tα)− t2α +
(
−4
3 + 2Γ(2α+1)

3Γ(α+1)

)
tα

+15+8Γ(α+1)−7Γ(2α+1)
9

Example 2.6. g(tα) fractional sine function

Find a particular solution of

JD2αy(t)− JDαy(t) + y(t) = 2sinα(3tα) (2.12)
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Solution

because JD2αandJDα of sinα(3tα) produce sinα(3tα) and cosα(3tα), we

are assume a particular solution that includes both of these terms:

yp = Acosα(3tα) +Bsin(3tα)

Substituting yp and the Jumarie fractional derivative

JDαyp = −3Asinα(3tα) + 3Bcosα(3tα) and

JD2αyp = −9Acosα(3tα)− 9Bsinα(3tα)

into the given fractional differential equation (2.12), we get

(−8A− 3B)cosα(3tα) + (3A− 8B)sinα(3tα) = 2sinα(3tα)

From the resulting system of equations,

−8A− 3B = 0 and 3A− 8B = 2

we get A = 6
73 and B = −16

73 . A particular solution of the equation is

yp =
6

73
cosα(3tα)− 16

73
sin(3tα)

As we mentioned, the form that we assume for the particular solution

yp is an educated guess. This educated guess must take into consideration

not only the types of functions that make up g(tα) but also, as we shall

see in Example (2.7), the functions that make up the complementary

function yc
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Example 2.7. g(tα) is a Mittag - Leffer

solve

JD2αy(t)− (a+ b)JDαy(t) + (ab)y(t) = Eα(ctα) (2.13)

Solution

• a 6= b 6= c

We first solve the associated homogeneous equation

JD2αy(t)− (a+ b)JDαy(t) + (ab)y(t) = 0

the complementary function is

yc = A1E(atα) + A2E(btα)

Now, because the function g(tα) is a Mittag - Leffer, let us assume

a particular solution that is also in the form of a Mittag - Leffer

yp = AEα(ctα)

We seek to determine specific coefficients A which ypis a solution

of (2.13).Substituting yp and the Jumarie Fractional Derivative

JDαyp = AcEα(ctα) and JD2αyp = Ac2Eα(ctα)

into the given fractional differential equation (2.13), we get

Ac2Eα(ctα)− (a+ b)AcEα(ctα) + (ab)AEα(ctα) = Eα(ctα)
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That is, Ac2 − (a + b)Ac + (ab) = 1 we get A = 1
(c−a)(c−b) Thus a

particular solution is

yp =
1

(c− a)(c− b)
Eα(ctα)

The general solution of the given equation is

y = A1E(atα) + A2E(btα) +
1

(c− a)(c− b)
Eα(ctα)

• c = a 6= b

the complementary function is

yc = A1E(atα) + A2E(btα)

Observe that our assumption AE(atα) is already present in yc. This

means that E(atα) is a solution of the associated homogeneous frac-

tional differential equation, and AE(atα) when substituted into the

fractional differential equation necessarily produces zero. Inspired

by Case II of Section 2.1, lets see whether we can find a particular

solution of the form

yp = AtαEα(atα)

Substituting JDαyp = AatαE(atα) + AΓ(α + 1)E(atα) and

JD2αyp = Aa2tαE(atα) + 2AaΓ(α + 1)E(atα)
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into the fractional differential equation and simplifying gives

A(a− b)Γ(α + 1)Eα(atα) = Eα(atα)

From the last equality we see that the value of A is now determined

as A = 1
(a−b)Γ(α+1) Therefore a particular solution is

yp =
tα

(a− b)Γ(α + 1)
Eα(atα)

The general solution of the given equation is

y = A1E(atα) + A2E(btα) +
tα

(a− b)Γ(α + 1)
Eα(atα)

• c = a = b

the complementary function is

yc = A1E(atα) + A2t
αE(atα)

we can find a particular solution of the form

yp = At2αEα(atα)

Substituting JDαyp = Aat2αE(atα) + AΓ(2α+1)
Γ(α+1) t

αE(atα) and

JD2αyp = Aa2t2αE(atα) + 2AaΓ(2α+1)
Γ(α+1) t

αE(atα) +AΓ(2α+ 1)E(atα)

into the fractional differential equation and simplifying gives

AΓ(2α + 1)Eα(atα) = Eα(atα)
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From the last equality we see that the value of A is now determined

as A = 1
Γ(2α+1) Therefore a particular solution is

yp =
t2α

Γ(2α + 1)
Eα(atα)

The general solution of the given equation is

y = A1E(atα) + A2t
αE(atα) +

t2α

Γ(2α + 1)
Eα(atα)

When g(tα) is a sum of several terms

When g(tα) = g1(t
α) + g2(t

α) + ... + gn(t
α), we can break the equation

into n parts and solve them separately.

JD2αy(t) + a1
JDαy(t) + a0y(t) = g1(t

α) + g2(t
α) + ...+ gn(t

α) (2.14)

If y1 is a solution of the equation

JD2αy(t) + a1
JDαy(t) + a0y(t) = g1(t

α)

and y2 is a solution of the equation

JD2αy(t) + a1
JDαy(t) + a0y(t) = g2(t

α)



51

and so on yn is a solution of the equation

JD2αy(t) + a1
JDαy(t) + a0y(t) = gn(t

α)

Then, yp = y1 + y2 + ...+ yn is a solution of the equation (2.14)

Example 2.8.

JD2αy(t)− 2JDαy(t)− 3y(t) = 3t2α + 4tα − 5 + Eα(2tα) + cosα(tα)

Solution

Solve each of the sub-parts:

• JD2αy(t)− 2JDαy(t)− 3y(t) = 3t2α + 4tα − 5

y1(t) = −t2α +
(
−4
3 + 2Γ(2α+1)

3Γ(α+1)

)
tα + 15+8Γ(α+1)−7Γ(2α+1)

9

• JD2αy(t)− 2JDαy(t)− 3y(t) = Eα(2tα)

y2(t) = −1
3 Eα(2tα)

• JD2αy(t)− 2JDαy(t)− 3y(t) = cosα(tα)

y3(t) = −cosα(tα)− 1
10sinα(tα)

Then yp(t) = −t2α +
(
−4
3 + 2Γ(2α+1)

3Γ(α+1)

)
tα

+15+8Γ(α+1)−7Γ(2α+1)
9 − 1

3Eα(2tα)− cosα(tα)− 1
10sinα(tα)

The general solution is

y(t) = A1Eα(3tα) + A2Eα(−tα)− t2α +
(
−4
3 + 2Γ(2α+1)

3Γ(α+1)

)
tα

+15+8Γ(α+1)−7Γ(2α+1)
9 − 1

3Eα(2tα)− cosα(tα)− 1
10sinα(tα)



52

When g(tα) is a product of several terms :

when g(tα) is a product of basic functions, yp(t) is chosen based on:

1. yp(t) is a product of the corresponding choices of all the parts of

g(tα)

2. There are as many coefficients as the number of distinct terms in

yp(t)

3. Each distinct term must have its own coefficient, not shared with

any other term.

Example 2.9.

JD2αy(t)− 2JDαy(t)− 3y(t) = Eα(2tα)cosα(3tα) (2.15)

Solution

The corresponding homogeneous equation JD2αy(t)−2JDαy(t)−3y(t) = 0

Therefore, the complementary solution is

yc = A1Eα(3tα) + A2Eα(−tα)

Now,start with the basic forms of the corresponding functions g(tα)that

are to appear in the product, without assigning any coefficient. In the

above example, they are Eα(2tα) and cosα(3tα) + sinα(3tα)
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Multiply them together to get all the distinct terms in the product:

cosα(3tα)Eα(2tα) + sinα(3tα)Eα(2tα) Then we insert the undetermined

coefficients into the expression, one for each term:

yp(t) = Acosα(3tα)Eα(2tα) +Bsinα(3tα)Eα(2tα)

We seek to determine specific coefficients A, B for which yp is a solution

of (2.15). Substituting yp and the Jumarie fractional derivatives,

JDαyp(t) = [(2A+ 3B)cosα(3tα) + (−3A+ 2B)sinα(3tα)]Eα(2tα)and

JD2αyp(t) = [(−5A+ 12B)cosα(3tα) + (−12A− 5B)sinα(3tα)]Eα(2tα)

into the given differential equation (2.15), we get

[(−12A+ 6B)cosα(3tα) + (−6A− 12B)sinα(3tα)]Eα(2tα)

= Eα(2tα)cosα(3tα) From the resulting system of equations,

−12A+ 6B = 1 and − 6A− 12b = 0

we get A = −1
15 and B = 1

30. A particular solution of the equation is

yp(t) =
−1

15
cosα(3tα)Eα(2tα) +

1

30
sinα(3tα)Eα(2tα)

The general solution of the given equation is

y(t) = A1Eα(3tα)+A2Eα(−tα)
−1

15
cosα(3tα)Eα(2tα)+

1

30
sinα(3tα)Eα(2tα)
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The Rules-of the Method of Undetermined Coefficients

1. If g(tα) = AEα(atα) is a Mittag-Leffler function , the starting choice

for yp(t) is a Mittag-Leffler function.yp(t) = A1Eα(atα)

2. If a fractional polynomial function appears in g(tα), the starting

choice for yp(t) is a generic fractional polynomial of the same degre

3. If either fractional cosine Acosα(atα) or fractional sine

Bsinα(atα) appears in g(tα), the starting choice for yp(t) needs to

contain both fractional cosine and fractional sine yp = A1cosα(atα)+

A2sinα(atα)

4. If g(tα) is a sum of several functions, g(tα) = g1(t
α) + g2(t

α) + ...+

gn(t
α),separate it into n parts and solve them individually.

5. If g(tα) is a product of basic functions, the starting choice for yp(t)

is chosen based on:

(a) yp(t) is a product of the corresponding choices of all the parts

of g(tα)

(b) There are as many coefficients as the number of distinct terms

in yp(t)

(c) Each distinct term must have its own coefficient, not shared

with any other term.
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6. Before finalizing the choice of yp(t), compare it against yc(t). If

there is any shared term between the two, the present choice of

yp(t) needs to be multiplied by tα. Repeat until there is no shared

term.

2.3 Systems of linear α-order fractional differential equations

2.3.1 Homogeneous linear systems

Ref [4] had solved systems of two linear first α-order fractional differential

equations in two unknowns,but now we illustrate how to solve of n linear

first α-order fractional differential equations in n unknowns of the form

JDα x1 = f1(t, x1, x2, ..., xn)

JDα x2 = f2(t, x1, x2, ..., xn)

.

.

JDα xn = fn(t, x1, x2, ..., xn)

(2.16)

LINEAR SYSTEMS When each of the functions fi , i = 1..n is a linear

function with constant coefficients,in the dependent variables x1, x2, ..., xn,

then the system of equations has the general form
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JDα x1 = a11x1(t) + a12x2(t) + ...+ a1nxn(t) + g1(t
α)

JDα x2 = a21x1(t) + a22x2(t) + ...+ a2nxn(t) + g2(t
α)

.

.

JDα xn = an1x1(t) + an2x2(t) + ...+ annxn(t) + gn(t
α)

(2.17)

When gi(t
α) = 0 , i = 1, 2, ..., n, the linear system (2.17) said to be ho-

mogeneous; otherwise, it is nonhomogeneous.

MATRIX FORM OF A LINEAR SYSTEM

If X ,A ,G denote the respective matrices

X =



x1(t)

x2(t)

.

.

.

xn(t)


, A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. .

. .

. .

an1 an2 . . . ann


, G =



g1(t
α)

g2(t
α)

.

.

.

gn(t
α)


then the system of linear first-α-order fractional differential equations

(2.17) can be written as
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JDα



x1(t)

x2(t)

.

.

.

xn(t)


=



a11 a12 . . . a1n

a21 a22 . . . a2n

. .

. .

. .

an1 an2 . . . ann





x1(t)

x2(t)

.

.

.

xn(t)


+



g1(t
α)

g2(t
α)

.

.

.

gn(t
α)


or simply

JDαX = AX +G

If the system is homogeneous, its matrix form is

JDαX = AX (2.18)

then to solve the system of fractional differential equation (2.18) we use

the method similar to as used in classical differential equations.

To construct a general solution to (2.18), assume a solution of the form

X = KEα(λtα) , where the λ and the constant K vector are to be

determined. Substituting X = KEα(λtα) into JDαX = AX , we obtain

λKEα(λtα) = AKEα(λtα) .
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After dividing out Eα(λtα) and rearranging, we obtain

(A− λI)K = 0 (2.19)

Thus to solve the homogeneous system of fractional differential equa-

tions JDαX = AX, we must find the eigenvalues and eigenvectors of A.

Therefore KEα(λtα) is a solution of JDαX = AX provided that λ is an

eigenvalue and K is an eigenvector of the coefficient matrix A. In the dis-

cussion that follows we examine three cases: real and distinct eigenvalues

, repeated eigenvalues, and, finally, complex eigenvalues.

• Case I: Distinct real eigenvalues

Let λ1, λ2, ..., λn be n distinct real eigenvalues of the coefficient

matrix A of the homogeneous system (2.18) and let K1, K2, ..., Kn

be the corresponding eigenvectors. Then the general solution of

(2.18) is given by

X = A1K1Eα(λ1t
α) + A2K2Eα(λ2t

α) + ...+ AnKnEα(λnt
α)

• Case II: Repeated eigenvalues

we have following cases:

1. For some n×n matrices A it may be possible to find m linearly

independent K1, K2, ..., Km corresponding to an eigenvalue λ1

of multiplicity m ≤ n eigenvectors.In this case the general



59

solution of the system is

X = [A1 K1 + A2 K2 + ...+ Am km]Eα(λ1t
α)

2. If there is only one eigenvector corresponding to the eigenvalue

λ1 of multiplicity m, then m linearly independent solutions of

the form

x1 = k1Eα(λ1t
α)

x2 = [k1
tα

Γ(α+1) + k2]Eα(λ1t
α)

.

.

xm = [k1
t(n−1)α

Γ((n−1)α+1) + k2
t(n−2)α

Γ((n−2)α+1) + ...+ km]Eα(λ1t
α)

(2.20)

where ki i = 1, 2, ...,m are column vectors, can always be found.we

must have

(A− λ1I)k1 = 0 (2.21)

(A− λ1I)k2 = k1 (2.22)

.

(A− λ1I)km = km−1

k1 must be an eigenvector of A associated with λ1. By solving

(2.21), we find one solution x1 = k1Eα(λ1t
α). To find the second

solution x2, we need only solve the additional system (2.22) for the
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vector k2 and so on. In this case the general solution of the system is

X = A1 x1 + A2 x2 + ...+ Am xm

• Case III: Complex eigenvalue

Let A be the coefficient matrix having real entries of the homo-

geneous system (2.18), and let k1 be an eigenvector correspond-

ing to the complex eigenvalue λ1 = p + iq, p and q real, and let

B1 = Re(k1) and B2 = Im(k1)). Then

x1 = [B1cosα(qtα)−B2sinα(qtα)]Eα(ptα)

x2 = [B2cosα(qtα) +B1sinα(qtα)]Eα(ptα)
(2.23)

the general solution of the system

X = A1x1 + A2x2



61

Example 2.10. Distinct Eigenvalues

Solve the initial-value problem

JDαx = 2x+ y

JDαy = x+ 2y 0 < α ≤ 1 with x(0) = 2, y(0) = 0

Solution

We first find the eigenvalues and eigenvectors of the matrix of coefficients.

From the characteristic equation

det(A− λI) =

∣∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 3)(λ− 1) = 0

we see that the eigenvalues are λ1 = 1 and λ2 = 3

Now for λ1 = 1 , (2.19)is equivalent to

k1 + k2 = 0

k1 + k2 = 0

Thus k1 = −k2. When k1 = 1, the related eigenvector is

k1 =

 1

−1
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For λ2 = 3 we have

−k1 + k2 = 0

k1 − k2 = 0

so k1 = k2 ;therefore with k1 = 1 the corresponding eigenvector is

k2 =

1

1


The general solution of the system is

X = A1

 1

−1

Eα(tα) + A2

1

1

Eα(3tα)

Putting the initial condition.x(0) = 2, y(0) = 0

A1 + A2 = 2

−A1 + A2 = 0

and solving we get A1 = A2 = 1. Hence the solution is,

x(t) = Eα(3tα) + Eα(tα)

y(t) = Eα(3tα)− Eα(tα)
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Figure 2.2: solutions of fractional differential equation in Example 2.10 for
x(t) and y(t) for different values of α = 1

3
, 2
3
, 1
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Example 2.11. Distinct Eigenvalues

Solve

JDαx = x+ 4z

JDαy = 2y

JDαz = 3x+ y − 3z 0 < α ≤ 1

Solution

Using the cofactors of the third row, we find

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣
1− λ 0 4

0 2− λ 0

3 1 −3− λ

∣∣∣∣∣∣∣∣∣∣
= (λ− 2)(λ− 3)(λ+ 5) = 0

For λ1 = 2 we have the corresponding eigenvector is

k1 =


1

−7
4

1
4


For λ2 = 3 we have the corresponding eigenvector is

k2 =


1

0

1
2





65

And for λ3 = −5 we have the corresponding eigenvector is

k3 =


1

0

−3
2


The general solution is

Y = A1


1

−7
4

1
4

Eα(2tα) + A2


1

0

1
2

Eα(3tα)

+ A3


1

0

−3
2

Eα(−5tα)

Example 2.12. Repeated Eigenvalues

Find solution of the system

JDαx = 4x− y

JDαy = x+ 2y 0 < α ≤ 1 with x(0) = 2, y(0) = 1

Solution

We first find the eigenvalues and eigenvectors of the matrix of coefficients.
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det(A− λI) =

∣∣∣∣∣∣4− λ −1

1 2− λ

∣∣∣∣∣∣ = (λ− 3)(λ− 3) = 0

For λ1 = λ2 = 3 we have the corresponding eigenvector is K1 =

1

1

Thus

from (2.20) we find

x1 =

1

1

Eα(3tα)

We find from (2.22) that we must

(A− 3I)k2 = K11 −1

1 −1

a1

a2

 =

1

1


The row of the last matrix means a1 − a2 = 1 or a1 = a2 + 1 by choosing

a1 = 1, we find a2 = 0. Hence k2 =

1

0

 Thus from (2.20) we find

x2 =

1

1

 tα

Γ(α + 1)
Eα(3tα) +

1

0

Eα(3tα).

The general solution is

x
y

 = A1

1

1

Eα(3tα) + A2

1

1

 tα

Γ(α + 1)
+

1

0

Eα(3tα)
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Putting the initial condition.x(0) = 2, y(0) = 1

A1 + A2 = 2

A1 = 1

and solving we get A1 = A2 = 1. Hence the solution is,

x(t) =

[
tα

Γ(1 + α)
+ 2

]
Eα(3tα)

y(t) =

[
tα

Γ(1 + α)
+ 1

]
Eα(3tα)
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Figure 2.3: solutions of fractional differential equation in Example 2.12 for
x(t) and y(t) for different values of α = 1

3
, 2
3
, 1

Example 2.13. Repeated Eigenvalues

Find the general solution of the system

JDαx = x− 2y + 2z

JDαy = −2x+ y − 2z

JDαz = 2x+−2y + z 0 < α ≤ 1

Solution

We first find the eigenvalues and eigenvectors of the matrix of coefficients.

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣
1− λ −2 2

−2 1− λ −2

2 −2 1− λ

∣∣∣∣∣∣∣∣∣∣
= (λ+ 1)2(λ− 5) = 0
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We see thatλ1 = λ2 = −1 and λ3 = 5

2k1 − 2k2 + 2k3 = 0

−2k1 + 2k2 − 2k3 = 0

2k1 − 2k2 + 2k3 = 0

Thus k1 − k2 + k3 = 0 or k1 = k2 − k3.The choices k2 = 1 , k3 = 0 and

k2 = 1 , k3 = 0 yield, in turn,k1 = 1 and k1 = 0.Thus two eigenvectors

corresponding to λ1 = −1 are

K1 =


1

1

0

 and K2 =


0

1

1


we have found two linearly independent solutions,

x1 =


1

1

0

Eα(−tα) and x2 =


0

1

1

Eα(−tα)
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corresponding to the same eigenvalue. Last, forλ3 = 5

−4k1 − 2k2 + 2k3 = 0

−2k1 − 4k2 − 2k3 = 0

2k1 − 2k2 − 4k3 = 0

Thus k2 = −k3 and k1 = k3. Picking k3 = 1 gives k1 = 1, k2 = −1; thus

a third eigenvector is

K3 =


1

−1

1

 .

We conclude that the general solution of the system is


x

y

z

 = A1


1

1

0

Eα(−tα) + A2


0

1

1

Eα(−tα) + A3


1

−1

1

Eα(5tα)

Example 2.14. Complex Eigenvalues

Solve the initial-value problem

JDαx = 3x+ 2y

JDαy = −5x+ y 0 < α ≤ 1 with x(0) = 2, y(0) = 1
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Solution

First we obtain the eigenvalues from.

det(A− λI) =

∣∣∣∣∣∣3− λ 2

−5 1− λ

∣∣∣∣∣∣ = λ2 − 4λ+ 13 = 0

The eigenvalues are λ1 = 2 + 3i and λ2 = λ1 = 2− 3i. For λ1 the system

(1− 3i)k1 + 2k2 = 0

−5k1 − (1 + 3i)k2 = 0

gives k1 = −1−3i
5 k2.By choosing k2 = 1, we get

K1 =

−1−3i
5

1


Now from (2.23) we form

B1 = Re(K1) =

−1
5

1

 and B2 = Im(K1) =

−3
5

0


the general solution of the system isx
y

 = A1

−1
5

1

 cosα(3tα)−

−3
5

0

 sinα(3tα)

Eα(2tα)

+A2

−3
5

0

 cosα(3tα) +

−1
5

1

 sinα(3tα)

Eα(2tα)
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Now the initial condition , x(0) = 2, y(0) = 1 yields the algebraic system

−1
5 A1 + −3

5 A2 = 2 and A1 = 1, whose solution is A1 = 1 and A2 = −11
3 .

Thus the solution to the problem is

x
y

 =

2

1

 cosα(3tα) +

 4
3

−11
3

 sinα(3tα)

Eα(2tα)
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Figure 2.4: solutions of fractional differential equation in Example 2.14 for
x(t) and y(t) for different values of α = 1

3
, 2
3
, 1

2.3.2 Non-Homogeneous linear systems

The general solution of a non-homogeneous linear system

JDαX = AX + G is X = Xc + Xp ,Xc is the complementary func-

tion or general solution of the associated homogeneous linear system

JDαX = AX and Xp is any particular solution of the non-homogeneous

system. In Section 2.3.1 we show how to obtain Xc when the coefficient

matrix A was an n× n matrix.In this section we used methods of Unde-

termined coefficients for obtainingXp.

Method of Undetermined Coefficients

As in Section 2.2, the method of undetermined coefficients consists of

making an educated guess about the form of a particular solution vector

Xp, the guess is motivated by the types of functions that make up the

entries of the column matrix G. Not surprisingly, the matrix version of
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undetermined coefficients is applicable to JDαX = AX+G only when the

entries G are fractional polynomials, Mittag-Leffler function, fractional

sines and cosines, or finite sums and products of these functions.

Example 2.15. Solve the system

JDα

x1

x2

 =

6 1

4 3

x1

x2

+

 6tα

−10tα + 4


Solution

The eigenvalues and corresponding eigenvectors of the associated homo-

geneous system JDα

x1
x2

 =

6 1

4 3

x1
x2

are found to be λ1 = 2,λ2 = 7,

K1 =

 1

−4

,K2 =

1

1

 . Hence the complementary function is

Xc = A1

 1

−4

Eα(2tα) + A2

1

1

Eα(7tα)

Now because G can be written G =

 6

−10

 tα +

0

4

, we shall try to

find a particular solution of the system that possesses the same form:

Xp =

a2

b2

 tα +

a1

b1
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Substituting this last assumption into the given system yields

a2

b2

Γ(1 + α) =

6 1

4 3

a2

b2

 tα +

a1

b1

+

 6

−10

 tα +

0

4


From the last identity we obtain four algebraic equations in four un-

knowns

6a2 + b2 + 6 = 0 6a1 + b1 − a2Γ(α + 1) = 0

4a2 + 3b2 − 10 = 0 4a1 + 3b1 − b2Γ(α + 1) + 4 = 0

Solving the first two equations simultaneously yields a2 = −2,b2 = 6. We

then substitute these values into the last two equations and solve for a1

and b1. The results are a1 = −6
7 Γ(α + 1) + 2

7 , b1 = 22
7 Γ(α + 1)− 12

7 . It

follows, therefore, that a particular solution vector is

Xp =

−2

6

 tα +

 −6
7 Γ(α + 1) + 2

7

22
7 Γ(α + 1)− 12

7


The general solution of the system

X = A1

 1

−4

Eα(2tα)+A2

1

1

Eα(7tα)+

−2

6

 tα+

 −6
7 Γ(α + 1) + 2

7

22
7 Γ(α + 1)− 12

7


Example 2.16. Determine the form of a particular solution vector Xp
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for the system

JDαx = 5x+ 3y − 2Eα(tα) + 1

JDαy = −x+ y + Eα(tα)− 5tα + 7

Solution

The eigenvalues and corresponding eigenvectors of the associated homo-

geneous system JDα

x1
x2

 =

 5 3

−1 1

x1
x2

are found to be λ1 = 4,λ2 = 2,

K1 =

−3

1

,K2 =

−1

1

 . Hence the complementary function is

Xc = A1

−3

1

Eα(4tα) + A2

−1

1

Eα(2tα)

Because G can be written in matrix terms as

G =

−2

1

Eα(tα) +

 0

−5

 tα +

1

7


an assumption for a particular solution would be

Xp =

a3

b3

Eα(tα) +

a2

b2

 tα +

a1

b1



The method of undetermined coefficients for linear systems is not as
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straight forward as the last examples would seem to indicate. In Example

(2.16) if we replace Eα(tα) in G by Eα(2tα) (λ is an eigenvalue of A),then

the correct form of the particular solution vector is

Xp =

a4

b4

 tαEα(2tα) +

a3

b3

Eα(2tα) +

a2

b2

 tα +

a1

b1
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Chapter 3

Fractional Shifted Legendre Polynomials
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Legendre polynomials are defined on the interval [−1, 1] and can be

determined with the aid of the following recurrence formula[19]

Lj+1 (z) =
2j + 1

j + 1
z Lj(z)− j

j + 1
Lj−1(z) j = 1, 2, ...

where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the

interval t ∈ [0, L] we define the so called shifted Legendre polynomials by

introducing the change of variable z = 2t
L − 1 . Let the shifted Legendre

polynomials LJ(2t
L − 1) be denoted by Pj(t). Then Pj(t) can be obtained

as follows:

Pj+1(t) =
(2j + 1)(2t

L − 1)

j + 1
Pj(t)−

j

j + 1
Pj−1(t)

where P0(t) = 1 and P1(t) = 2t
L − 1 . The analytic form of the shifted

Legendre polynomials Pj(t) of degree j given by:

Pj(t) =

j∑
i=0

(−1)j+i
(j + i)!ti

Li(j − i)!(i!)2

The first few shifted Legendre polynomials are:

P0 = 1

P1 = 2
t

L
− 1
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P2 = 6

(
t

L

)2

− 6
t

L
+ 1

p3 = 20

(
t

L

)3

− 30

(
t

L

)2

+ 12

(
t

L

)
− 1

Note that Pj(0) = (−1)k and Pj(L) = 1. The orthogonality condition is

[2]: ∫ L

0

Pi(t)Pj(t)dt =


L

2i+1 for i = j

0 for i 6= j

The function x(t), which is a square integrable in [0, L], may be expressed

in terms of shifted Legendre polynomials as:

X(t) =
∞∑
i=0

CiPi(t)

where the coefficients Ci are given by:

Ci = (2i+ 1)

∫ 1

0

X(t)Pi(t)dti = 1, 2, ...

In practice, only the first (m+1)-terms shifted Legendre polynomials are

considered. Then we have:

Xm(t) =
m∑
i=0

CiPi(t) (3.1)

Now,we will approximate the Jumarie modified fractional derivative by
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shifted Legendre polynomial.

Xm(t) =
m∑
i=0

CiPi(t) (3.2)

JDα(Xm(t)) =
m∑
i=0

Ci
JDαPi(t)

=
m∑
i=0

Ci

i∑
k=0

(−1)k+i (k + i)!

Lk(i− k)!(k!)2
JDα tk

=
m∑
i=0

i∑
k=0

Ci(−1)k+i (k + i)!

Lk(i− k)!(k!)2

Γ(k + 1)

Γ(k + 1− α)
tk−α

=
m∑
i=0

i∑
k=0

Ci(−1)k+i (k + i)!

Lk(i− k)!(k!)Γ(k + 1− α)
tk−α

Thus

JDα(Xm(t)) =
m∑
i=0

i∑
k=0

Ci w
α
i,k t

k−α (3.3)

Where wα
i,k is given by :

wα
i,k = (−1)k+i (k + i)!

Lk(i− k)!(k!)Γ(k + 1− α)
tk−α

Example 3.1. Consider the case when x(t) = t3 , m = 3 and α = 0.5,

the series of t3 is:
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t3 =
3∑
i=0

CiPi(t) =
1

4
P0(t) +

9

20
P1(t) +

1

4
P2(t) +

1

20
P3(t)

JDαt3 =
3∑
i=0

i∑
k=0

Ci w
1
2

i,k t
k− 1

2

w
1
2
0,0 =

1

Γ(1
2)
, w

1
2
1,0 =

−1

Γ(1
2)
, w

1
2
1,1 =

2

Γ(3
2)
, w

1
2
2,0 =

1

Γ(1
2)
, w

1
2
2,1 =

−6

Γ(3
2)

w
1
2
2,2 =

12

Γ(5
2)
, w

1
2
3,0 =

−1

Γ(1
2)
, w

1
2
3,1 =

12

Γ(3
2)
, w

1
2
3,2 =

−60

Γ(5
2)
, w

1
2
3,3 =

120

Γ(7
2)

Therefore :

JDαt3 =
6

Γ(7
2)
t
5
2

JDαt3 approximated by shifted Legendre polynomial equal the analytic

fractional derivative JDαt3 = Γ(4)

Γ( 7
2 )
t
5
2 = 6

Γ( 7
2 )
t
5
2 by(1.3)

3.1 Numerical solution of Nonlinear α-Order Fractional Dif-

ferential Equation Using Shifted Legendre polynomial

In this section, we will use the shifted Legendre polynomials to approxi-

mate solution of nonlinear fractional α-order differential equation

Example 3.2. Consider the following fractional differential equation:

JDαu(t) = −u2(t) + 1 u(0) = 0, 0 < α ≤ 1 (3.4)
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The exact solution, when α = 1, is

u(t) =
e2t − 1

e2t + 1

In order to use the shifted Legendre polynomials method, we first ap-

proximate u(t) as

u(t) =
m∑
i=0

CiPi(tp) (3.5)

From Eqs.(3.4) and (3.3), we have

m∑
i=0

i∑
k=0

Ci w
α
i,k t

k−α = −

(
m∑
t=0

CiPi(t)

)2

+ 1 (3.6)

We now collocate Eqs.(3.6) at m points as:

m∑
i=0

i∑
k=0

Ci w
α
i,k t

k−α
p = −

(
m∑
i=0

CiPi(tp)

)2

+ 1 (3.7)

For suitable collocation points we use the roots of shifted Legendre poly-

nomial Pm(t). Also, by substituting Eq.(3.5) in the initial conditions

u(0) = 0, we can find
m∑
i=0

(−1)ici = 0 (3.8)

Equations (3.7) and (3.8), give (m + 1) of non-linear algebraic equations

which can be solved using the Newton iteration method, for the unknowns

ai , i = 0, 1, ...,m This is a nonlinear system of algebraic equations.

The numerical solution, for m = 8, is shown in Figure (3.1).
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Figure 3.1: The behavior of the exact and approximate solution of example
with m = 8

We can see the numerical solution is in very good agreement with the

exact solution when α = 1(max error= 1.212 10−7).Therefore, we hold

that the solution for α = .5 and α = .75 is also credible.

Example 3.3. Consider the following fractional differential equation:

JDαu(t) = 2u(t)− u2(t) + 1 u(0) = 0, 0 < α ≤ 1 (3.9)
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The exact solution, when α = 1, is

u(t) =
−1

2

(
−
√

2 + 2 tanh(
1

2
(
√

2 arctanh(
1

2

√
2)− 2t)

√
2)

) √
2

The numerical solution, for m = 8, is shown in Figure (3.2).

Figure 3.2: The behavior of the exact and approximate solution of example
with m = 8

We can see the numerical solution is in very good agreement with the

exact solution when α = 1(max error= 1.248 10−6).Therefore, we hold

that the solution for α = .5 and α = .75 is also credible.

All numerical results are obtained by using Maple 2017
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3.2 Optimization problem using fractional Shifted Legendre

Polynomials

In this section, we apply fractional shifted Legendre polynomial method

to approximate the optimal policy for a non-linear optimization problem

and its corresponding system of the fractional differential equations.

Consider the non-linear programming problem with equality constraints

defined by

minf(x)

s.t gi(x) = 0 , i = 1..n
(3.10)

To obtain solution of 3.10, One of the most effective methods for solv-

ing is the quadratic penalty function method.Which turns a constrained

optimization problem to an unconstrained [1]. The quadratic penalty
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function for this problem is given by [19]

minF (x, β) = f(x) +
β

2

n∑
i=1

(gi(x))2 (3.11)

Consider the unconstrained optimization problem 3.11, an approach based

on fractional dynamic system can be described by the following FDEs

JDαx(t) = −OxF (x, β) 0 < α ≤ 1 (3.12)

With initial conditions x(t0) = ci , i = 1, 2, ..., n

Algorithm to choose β (an auxiliary penalty variable)

1. Given β0 > 0, and a tolerance (tol)

2. For k=0,1,2,...

3. If |OβF (x, β)| ≤ tol stop

4. Else, βk+1 > βk and find a new xk+1

Example 3.4. optimization problem

Consider the following non-linear programming problem

minimize f(x) = 2u+ 5v + 3u2 + 3uv + 2v2 (3.13)

subject to g(x) = u− v − 2 (3.14)

The optimal solution is (u = 0.4375, v = −1.5625).
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For solving the above problem, we convert it to an unconstrained op-

timization problem with quadratic penalty function (3.11), then we have

F (x, β) = 2u+ 5v + 3u2 + 3uv + 2v2 +
β

2
(u− v − 2)2

The system of FDEs from (3.12) is defined as

JDα u = −6u− 3v − 2− β(u− v − 2)

JDα v = −3u− 4v − 5 + β(u− v − 2)
(3.15)

u(t) and v(t) be approximated by shifted Legendre polynomial as (3.2)

u(t) =
m∑
i=0

aiPi(t) v(t) =
m∑
i=0

biPi(t) (3.16)

From Eqs.(3.15) and (3.3), we have

m∑
i=0

i∑
k=0

ai w
α
i,k t

k−α = −6
m∑
t=0

aiPi(t)− 3
m∑
t=0

biPi(t)− 2

− β(
m∑
t=0

aiPi(t)−
m∑
t=0

biPi(t)− 2) (3.17)

m∑
i=0

i∑
k=0

bi w
α
i,k t

k−α = −3
m∑
t=0

aiPi(t)− 4
m∑
t=0

biPi(t)− 5

+ β(
m∑
t=0

aiPi(t)−
m∑
t=0

biPi(t)− 2) (3.18)
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We now collocate Eqs.(3.17)and (3.18) at m points tp (p = 0, 1, ...,m) as:

m∑
i=0

i∑
k=0

ai w
α
i,k t

k−α
p = −6

m∑
t=0

aiPi(tp)− 3
m∑
t=0

biPi(tp)− 2

− β(
m∑
t=0

aiPi(tp)−
m∑
t=0

biPi(tp)− 2) (3.19)

m∑
i=0

i∑
k=0

bi w
α
i,k t

k−α
p = −3

m∑
t=0

aiPi(tp)− 4
m∑
t=0

biPi(tp)− 5

+ β(
m∑
t=0

aiPi(tp)−
m∑
t=0

biPi(tp)− 2) (3.20)

For suitable collocation points we use the roots of shifted Legendre poly-

nomial Pm(t). Also, by substituting Eq.(3.5) in the initial conditions

u(0) = 0 v(0) = 0, we can find

m∑
i=0

(−1)iai = 0
m∑
i=0

(−1)ibi = 0 (3.21)

Equations (3.19) ,(3.20)and (3.21), give (2m + 2) of non-linear algebraic

equations which can be solved using the Newton iteration method, for the

unknowns ai and bi ,i = 0, 1, ...,m.

Now we use the algorithm to choose β,and we use the shifted Legendre

polynomial with m = 12 at α = 1 , t = 1
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β u v |OβF (x, β)|

2 0.4445140271 −1.568818815 8.888193790 10−5

4 0.4432596091 −1.569007361 7.52392765 10−5

6 0.4416799708 −1.567233662 3.972642663 10−5

8 0.4407959401 −1.56617236 2.427860244 10−5

10 0.4404486199 −1.56548312 1.759276972 10−5

12 0.43978238 −1.56506230 1.173546215 10−5

14 0.43924356 −1.564678701 7.692065675 10−6

16 0.4401927101 −1.564876371 1.284779109 10−5

18 0.43909649 −1.564509911 6.503064085 10−6

20 0.4397366899 −1.562921089 3.531894606 10−6

21 0.4390099799 −1.562884609 1.794733740 10−6

22 0.4371246199 −1.56437798 1.128903380 10−6

23 0.4373339701 −1.56052865 2.284196632 10−6

24 0.43659889 −1.559938081 5.996284925 10−6

25 0.43630631 −1.559749569 7.77804523 10−6

Best β = 22 when |OβF (x, β) = 1.128903380 10−6|

Now we use the Algorithm to choose β,and we use the shifted Legen-

dre polynomial with m = 12 at α = .8 , t = 1
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Figure 3.3: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at α = 1 at β = 22

β u v OβF (x, β)|

1 0.3941391146 1.460271379 0.01059815213

2 0.420906271 −1.496528909 0.003408474751

3 0.431636597 −1.51182914 0.001598061446

4 0.4362763401 −1.519029559 0.0009987813320

5 0.4402324501 −1.521178839 0.0007445443085

6 0.44135513 −1.523260809 0.0006260158865

7 0.4415458699 −1.52597994 0.0005272865080

8 0.4402697699 −1.52325607 0.0006651821740

9 0.43404604 −1.52347114 0.0009023949975

10 0.43487325 −1.521203091 0.0009646439100

Best β = 7 when |OβF (x, β)| = 0.0005272865080
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Figure 3.4: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at α = .8 , β = 7

The numerical comparison among (α = .8) with (α = 1) this shows

that (α = .8) perform rapid convergency to the optimal solutions of the

optimization problems.

Example 3.5. optimization problem

Consider the following non-linear programming problem

minimizef(x) = 100
(
u2 − v)2 + (u− 1

)2
(3.22)

subject to g(x) = u(u− 4)− 2v + 12 = 0 (3.23)

The optimal solution is (u = 1.99937524420685, v = 4.00000019515963).

For solving the aboveproblem, we convert it to an unconstrained opti-

mization problem with quadratic penalty function (3.11), then we have

F (x, β) = 100(u2 − v)2 + (u− 1)2 +
β

2
(u(u− 4)− 2v + 12)2
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Figure 3.5: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at α = 1,β = 99

Figure 3.6: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at α = .9 , β = 130

The numerical comparison among (α = .8) with (α = 1) this shows

that (α = .8) perform rapid convergency to the optimal solutions of the

optimization problems.

In this section, we implemented numerical methods for solving the sys-

tem of fractional differential equations which generated from the NLP

problem. Our proposed methods using Jumarie modified , in Ref [19]

proposed methods using Caputo . The properties of the Legendre poly-

nomials are used to reduce the system of fractional differential equations
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to the solution of system of algebraic equations. From illustrative exam-

ples, it can be seen that the proposed numerical approaches can obtain

accurate and satisfactory results. All numerical results are obtained us-

ing Maple 2017.
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Chapter 4

Non-Differentiable Points of a Function
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4.1 Characterization of Non-Differentiable Points of a Func-

tion by Jumarie modified Fractional Derivative

For differentiable functions the Jumarie modified definition (both left

and right) of the fractional derivative gives the same value at any par-

ticular point but for functions having non differentiability at some point

gives different value for the left and right Jumarie modified. The differ-

ence in values of the fractional derivative at the non differentiable points

indicates the Phase transition at the non-differentiable points [13].

Example 4.1.

f(t) = t+ 3 a ≤ t ≤ b

By using the Jumarie modified definition we obtain for The left Jumarie

modified definition(1.1)

J
aD

α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−α[τ + 3− (a+ 3)]dτ 0 < α < 1

=
1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−α[τ − a]dτ

=
1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−α[−(t− τ) + (t− a)]dτ

=
1

Γ(1− α)

d

dt

[∫ t

a

−(t− τ)−α+1dτ +

∫ t

a

(t− τ)−α(t− a)dτ

]
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=
1

Γ(1− α)

d

dt

[
−(t− a)2−α

2− α
+

(t− a)2−α

1− α

]
=

1

Γ(1− α)

d

dt

[
(t− a)2−α

(1− α)(2− α)

]
=

1

Γ(1− α)

[
(t− a)2−α

(1− α)

]
=

(t− a)1−α

Γ(2− α)

Therefore

J
aD

α
t f(

a+ b

2
) =

((a+b
2 )− a)1−α

Γ(2− α)
=

(b−a2 )1−α

Γ(2− α)

Again using our right Jumarie modified definition 1.2 we obtain

J
tD

α
b f(t) =

−1

Γ(1− α)

d

dt

∫ b

t

(τ − t)−α[(b+ 3)− (τ + 3)]dτ 0 < α < 1

=
−1

Γ(1− α)

d

dt

∫ b

t

(τ − t)−α[b− τ ]dτ

=
−1

Γ(1− α)
ddt

∫ b

t

(τ − t)−α[(b− t)− (τ − t)]dτ

=
−1

Γ(1− α)

d

dt

[∫ b

t

−(τ − t)−α+1dτ +

∫ b

t

(τ − t)−α(b− t)dτ
]

=
−1

Γ(1− α)

d

dt

[
−(b− t)2−α

2− α
+

(b− t)2−α

1− α

]
=

−1

Γ(1− α)

d

dt

[
(b− t)2−α

(2− α)(1− α

]
=

1

Γ(1− α)

[
(b− t)1−α

(1− α)

]
=

(b− t)1−α

Γ(2− α)
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Therefore

J
tD

α
b f(

a+ b

2
) =

(b− (a+b
2 ))1−α

Γ(2− α)
=

(b−a2 )1−α

Γ(2− α)

Thus in both the cases (for left and right Jumarie modified fractional

derivative) value of f(a+b
2 ) is equal. Thus for continuous and differen-

tiable functions both the values are equal, and is equal to
( b−a2 )1−α

Γ(2−α)

Example 4.2.

f(t) =

 8t+2 0 ≤ t ≤ .5

12t .5 ≤ t ≤ 1
(4.1)

The fractional order derivative using left Jumarie modified definition is

• When 0 ≤ t ≤ .5

J
0D

α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α[(8τ + 2)− 2]dτ 0 < α < 1

=
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α[8τ ]dτ

=
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α[−8(t− τ) + 8t]dτ

=
1

Γ(1− α)

d

dt

[∫ t

0

−8(t− τ)−α+1dτ +

∫ t

0

(t− τ)−α(8t)dτ

]
=

1

Γ(1− α)

d

dt

[
−8t2−α

2− α
+

8t2−α

1− α

]
=

1

Γ(1− α)

d

dt

[
8t2−α

(1− α)(2− α)

]
=

1

Γ(1− α)

[
8t2−α

(1− α)

]
=

8t1−α

Γ(2− α)
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• When .5 ≤ t ≤ 1

J
0D

α
t f(t) =

1

Γ(1− α)

d

dt

[∫ .5

0

(t− τ)−α[8τ ]dτ +

∫ t

.5

(t− τ)−α[12τ − 2]dτ

]

=
1

Γ(1− α)

d

dt

 ∫ .5
0 (t− τ)−α[−8(t− τ) + 8t]dτ

+
∫ t
.5(t− τ)−α[12t− 2− 12(t− τ)]dτ



=
1

Γ(1− α)

d

dt

8(t−.5)2−α−8t2−α

2−α + −8t(t−.5)1−α+8t2−α

1−α

+ (12t−2)(t−.5)1−α

1−α − 12(t−.5)2−α

2−α


=

8t1−α + 4(t− .5)1−α

Γ(2− α)

Therefore

J
0D

α
t f(t) =


8t1−α

Γ(2−α) 0 ≤ t ≤ .5

8t1−α+4(t−.5)1−α

Γ(2−α) .5 ≤ t ≤ 1
(4.2)

The function f(t) is not differentiable at t = 1
2 but α−order left Jumarie

modified derivative at t = 1
2 exists and equal to

8( 1
2 )1−α

Γ(2−α) The graphical pre-

sentation of J
0D

α
t f(t) for different values of alpha is shown in the figure-

[4.1], from the figure it clear that J
0D

α
t f(t) exists at the non-differentiable

point t = 1
2
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Figure 4.1: Graph of the function J
0D

α
t f(t) for different values of alpha.

The fractional order derivative using right Jumarie modified Frac-

tional Derivative definition is

• When 0 ≤ t ≤ .5

J
tD

α
1 f(t) =

−1

Γ(1− α)

d

dt

 ∫ .5
t (τ − t)−α[10− 8τ ]dτ

+
∫ 1

.5(τ − t)
−α[12− 12τ ]dτ


=

−1

Γ(1− α)

d

dt

 ∫ .5
t (τ − t)−α[−8(τ − t)− 8t+ 10]dτ

+
∫ 1

.5(τ − t)
−α[−12(τ − t)− 12t+ 12]dτ



=
−1

Γ(1− α)

d

dt


−8(.5−t)2−α

2−α + −8t(.5−t)1−α
1−α + 10(.5−t)1−α

1−α

+−12(1−t)2−α+12(.5−t)2−α
2−α + −12t(1−t)1−α+12t(.5−t)1−α

1−α

+12(1−t)1−α−12(.5−t)1−α
1−α


=
−4(.5− t)1−α + 12(1− t)1−α

Γ(2− α)
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• When .5 ≤ t ≤ 1

J
tD

α
1 f(t) =

−1

Γ(1− α)

d

dt

∫ 1

t

(τ − t)−α[12− 12τ ]dτ 0 < α < 1

=
−1

Γ(1− α)

d

dt

∫ 1

t

(τ − t)−α[−12(τ − t)− 12t+ 12]dτ

=
−1

Γ(1− α)

d

dt

 ∫ 1

t −12(τ − t)−α+1dτ

+
∫ 1

t (τ − t)−α(−12t+ 12)dτ


=

−1

Γ(1− α)

d

dt

[
−12(1− t)2−α

(2− α)
+

(−12t+ 12)(1− t)1−α

(1− α)

]
=

12(1− t)1−α

Γ(2− α)

Therefore

J
tD

α
1 f(t) =


−4(.5−t)1−α+12(1−t)1−α

Γ(2−α) 0 ≤ t ≤ .5

12(1−t)1−α
Γ(2−α) .5 ≤ t ≤ 1

(4.3)

From figure [4.2] it is clear that the right Jumarie modified derivative

exist at t = 1
2 and equal to

12( 1
2 )1−α

Γ(2−α) Thus; though the considered function

is not differentiable at t = 1
2 but its right modified fractional derivative

exists and its value is J
tD

α
1 f( 1

2) =
12( 1

2 )1−α

Γ(2−α) which differ from the value

J
0D

α
t f( 1

2) =
8( 1

2 )1−α

Γ(2−α) of the derivative at t = 1
2 obtained by left Jumarie mod-

ified derivative . Here the difference indicates there is a phase transition

from the left hand to the right hand side about the point t = 1
2 and the

degree of phase transition is
4( 1

2 )1−α

Γ(2−α)
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Figure 4.2: Graph of the function J
tD

α
1 f(t) for different values of alpha.

Example 4.3.

f(t) =

 at+b p ≤ t ≤ q

ct+ d q ≤ t ≤ r
(4.4)

The function f(t) is continuous at t=q such that aq+b = cq+d but not

differentiable at that point [16].

• Left Jumarie modified 0 < α < 1

J
pD

α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α[(aτ + b− (ap− b)]dτ

=
1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α[a(τ − p)]dτ

=
1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α[−a(t− τ) + a(t− p)]dτ

=
1

Γ(1− α)

d

dt

[∫ t

p

−a(t− τ)−α+1dτ +

∫ t

p

(t− τ)−α[a(t− p)]dτ
]
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=
1

Γ(1− α)

d

dt

[
−a(t− p)2−α

2− α
+
a(t− p)2−α

1− α

]
=

1

Γ(1− α)

d

dt

[
a(t− p)2−α

(1− α)(2− α)

]
=
a(t− p)1−α

Γ(2− α)

• Right Jumarie modified

J
tD

α
r f(t) =

−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α[(cr + d− (cτ + d)]dτ 0 < α < 1

=
−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α[c(r − τ)]dτ

=
−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α[−c(τ − t) + c(r − t)]dτ

=
−1

Γ(1− α)

d

dt

[∫ r

t

−c(τ − t)−α+1dτ +

∫ r

t

(τ − t)−α[c(r − t)]dτ
]

=
−1

Γ(1− α)

d

dt

[
−c(r − t)2−α

2− α
+
c(r − t)2−α

1− α

]
=

−1

Γ(1− α)

d

dt

[
c(r − t)2−α

(1− α)(2− α)

]
=
c(r − t)1−α

Γ(2− α)

• phase transition at point t = q

P.T =
a(q − p)1−α − c(r − q)1−α

Γ(2− α)
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Example 4.4.

f(t) =

 at2 + bt+ c p ≤ t ≤ q

gt2 + ht+m q ≤ t ≤ r
(4.5)

The function f(t) is continuous at t=q such that aq2+bq+c = gq2+hq+m

but not differentiable at that point [16] .

• Left Jumarie modified 0 < α < 1

J
pD

α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α[(aτ 2 + bτ + c− (ap2 + bp+ c)]dτ

=
1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α[aτ 2 + bτ − ap2 − bp]dτ

=
1

Γ(1− α)

d

dt

∫ t

p

(t− τ)−α

a(t− τ)2 − (b+ 2at)(t− τ)

+bt− ap2 − bp+ at2

 dτ

=
1

Γ(1− α)

d

dt

[
a(t−p)3−α

3−α − (b+2at)(t−p)2−α
2−α + (bt−ap2−bp+at2)(t−p)1−α

1−α

]
=

1

Γ(1− α)

[
−aα(t−p)2−α

2−α + α(b+2at)(t−p)1−α
1−α + (at+ ap+ b)(t− p)1−α

]

• Right Jumarie modified 0 < α < 1

J
tD

α
r f(t) =

−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α[gr2 + hr +m− (gτ 2 + hτ +m)]dτ

=
−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α[gr2 + hr − gτ 2 − hτ ]dτ
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=
−1

Γ(1− α)

d

dt

∫ r

t

(τ − t)−α
−g(τ − t)2 − (h+ 2gt)(τ − t)

+hr + gr2 − ht− gt2

 dτ
=

−1

Γ(1− α)

d

dt

[
−g(r−t)3−α

3−α − (h+2gt)(r−t)2−α
2−α + (hr+gr2−ht−gt2)(r−t)1−α

1−α

]
=

1

Γ(1− α)

[
gα(r−t)2−α

2−α + α(2gt+h)(r−t)1−α
1−α + (gt+ gr + h)(r − t)1−α

]

• phase transition at point t = q

P.T =
1

Γ(1− α)

 −aα(q−p)2−α
2−α + α(b+2aq)(q−p)1−α

1−α + (aq + ap+ b)(q − p)1−α

−gα(r−q)2−α
2−α − α(2gq+h)(r−q)1−α

1−α − (gq + gr + h)(r − q)1−α



Example 4.5.

f(t) =

 at+ b p ≤ t ≤ q

gt2 + ht+m q ≤ t ≤ r
(4.6)

The function f(t) is continuous at t=q such that ap+ b = gq2 + hq +m

but not differentiable at that point [16].

• Left Jumarie modified

J
pD

α
t f(t) =

a(t− p)1−α

Γ(2− α)

• Right Jumarie modified

J
tD

α
r f(t) =

[
gα(r−t)2−α

2−α + α(2gt+h)(r−t)1−α
1−α + (gt+ gr + h)(r − t)1−α

]
• phase transition at point t = q
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P.T = 1
Γ(1−α)

a(q−p)1−α
1−α − gα(r−q)2−α

2−α − α(2gq+h)(r−q)1−α
1−α

-(gq+gr+h)(r-q)1−α


Example 4.6.

f(t) =

 at2 + bt+ c p ≤ t ≤ q

ht+m q ≤ t ≤ r
(4.7)

The function f(t) is continuous at t=q such that ap+ b = gq2 + hq +m

but not differentiable at that point

• Left Jumarie modified

J
pD

α
t f(t) =

1

Γ(1− α)

−aα(t−p)2−α
2−α + α(b+2at)(t−p)1−α

1−α

+(at+ ap+ b)(t− p)1−α


• Right Jumarie modified

J
tD

α
r f(t) =

h(r − t)1−α

Γ(2− α)

• phase transition at point t = q

P.T = 1
Γ(1−α)

a(q−p)1−α
1−α − gα(r−q)2−α

2−α − α(2gq+h)(r−q)1−α
1−α

−(gq + gr + h)(r − q)1−α



4.2 Application of Jumarie modified Fractional Derivatives in

Characterization of Electrocardiogram (ECG) graphs

In this section we shall characterize non-differentiable points of ECG

graphs using left and right Jumarie modified definitions of half order
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fractional derivatives and the Phase Transition (P.T.) at that point. In

this section we also find the mean and standard deviation of all non-

differentiable points of ECG to get a better solution to interpret this

type of ECGs.ECG is the pictographic representation of electrical charge

depolarization and repolarization of the heart muscle.There are several

types of heart diseases such as right ventricular hypertrophy, left ventric-

ular hypertrophy, right bundle branch block etc.Which can be detected

by finding level of phase transition at some particular leads of patients

ECGs. Our main objective find some measures which will help the med-

ical experts to diagnose right ventricular hypertrophy (RVH) and left

ventricular hypertrophy (LVH) from patients ECG [16],[17]

An ECG lead is a graphical description of the electrical activity of

the heart and it is created by analysing several electrodes. The standard

ECG which is referred to as a 12-lead ECG . These 12 leads consists of

two sets of ECG leads: I, II, III, AVR, AVL, AVF are obtained from the

limb leads and V1,V2, V3,V4, V5, V6 are obtained from the chest leads.

Leads I, II and VL look at the left lateral surface of the heart, leads III

and VF at the inferior surface, and lead VR looks at the right atrium [6].
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The six V leads (V1V6) look at the heart in a horizontal plane, from

the front and the left side. Thus, leads V1 and V2 look at the right

ventricle, V3 and V4 look at the septum between the ventricles and the

anterior wall of the left ventricle, and V5 and V6 look at the anterior

and lateral walls of the left ventricle [6].
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Right ventricular hypertrophy (RVH)

Right ventricular hypertrophy is a heart disorder characterized by thick-

ening of the walls of the right ventricle. It can be caused by excessive

stress on the right ventricle [16].

The limb lead criteria of RVH in ECG are as follows [18]:

1. R wave in V1 lead + S wave in V5 and V6 lead is>10.5mm

2. R wave in V1 lead > 7 mm

3. R/S ratio in V1 lead > 1 mm

4. S wave in V5 or V6 lead > 7 mm

5. R/S ratio in V5 or V6 lead <1 mm

Left ventricular hypertrophy (LVH)

Left ventricular hypertrophy is a heart disorder characterized by thick-

ening of the walls of the left ventricle.

The limb lead criteria of LVH in ECG are as follows[18]:

1. R in V5 or V6 + S in V1 or V2 >35 mm

2. R in V5 or V6 >25 mm

3. S in V1 or V2 >25 mm

Application of fractional derivative in ECG Graph:

Now we have to study the non-differentiable points of the QRS com-

plex in ECG leads with the help of fractional derivatives to compare
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normal ECGs with abnormal ECGs (RVH,LVH).Here we have to find

out the half-order fractional derivative (both left and right) and cal-

culate the corresponding Phase Transition values(P.T) by using exam-

ple(4.3,4.4,4.5,4.6).

If Q or S point smooth at QRS complex of any lead of the ECGs

under consideration then we cannot find the Left and Right Fractional

Derivative at that point. We have denoted those cases by ’NA’ i.e. ’Not

Arise’ [16].

• compare normal ECGs with abnormal ECGs (RVH).

Since RVH is characterized by R and S wave in V1, V5 and V6 leads.

Thus we compute P.T. values at non-differentiable points only at those

leads.So our concern is to find any distinguishing measurements of P.T

values at non-differentiable points on those leads ,to compare the prob-

lematic ECG (in our case RVH) with normal ECG.
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Examples (4.7,4.8,4.10,4.11) Taken from [16],But these examples(4.9,4.12)

of my work.

Example 4.7. Normal ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 4 9.5 18 21 14.5 15

2 4.5 10.5 18 21 14.5 15

3 18 20.5 13.5 14

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6

> 7 mm whereas R
S in V1 < 1, and in V5 and V6 < 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.1: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

6.383076

21.542883

25.532306

30.244018

62.234996

36.896290

25.489442

40.064340

20.117226

2

Q

R

S

5.077706

21.833282

24.734422

30.319613

52.419806

28.483269

21.243420

42.829167

25.239477

3

Q

R

S

31.915382

61.437111

35.534215

25.239477

23.823144

37.340191

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.2: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

5.730391

30.82633767

23.51866867

0.923035979

0.943897145

2.139323404
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R point

V1 lead

V5 lead

V6 lead

21.6880825

58.69730433

40.07789933

0.205343102

5.451091094

2.744513121

S point

V1 lead

V5 lead

V6 lead

25.133364

33.63792467

21.182555

0.564189187

4.515713494

3.643018712

Example 4.8. Normal ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 2.8 19.7 17.9 17.6 19.2 18

2 3.1 18.8 19.4 19.6 19.5 18.2

3 3.2 19.5 18.6 18.3 19.9 18.6

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6 >

7 mm whereas R
S in V1 < 1, and in V5 and V6 > 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.3: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

NA

33.7053

38.4275

23.4741

53.9826

32.0749

27.7903

62.0691

NA

2

Q

R

S

NA

34.3529

36.2674

30.0893

60.7762

34.6120

27.4551

63.7091

NA

3

Q

R

S

NA

31.8500

38.4311

24.4952

50.1233

26.6582

30.2656

51.7140

NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.4: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

NA

26.01953

28.50367

NA

3.561308

1.535056
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R point

V1 lead

V5 lead

V6 lead

33.30273

54.9607

59.16407

1.299104

5.393383

6.503847

S point

V1 lead

V5 lead

V6 lead

37.70867

31.11503

NA

1.248175

4.062849

NA

Example 4.9. Normal ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 2.8 19.7 17.9 18.2 19.2 18

2 3.1 18.8 19.4 19.6 19.5 18.2

3 3.2 19.5 18.6 18.9 19.9 18.6

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6 >

7 mm whereas R
S in V1 < 1, and in V5 and V6 > 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right

Fractional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.5: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

4.468153541

26.69722313

57.04525099

28.56426728

49.10076812

21.15453956

32.23453626

58.51775171

NA

2

Q

R

S

4.946884276

26.16041262

38.92908126

30.95792096

53.07415263

22.34190750

32.71326699

59.29738355

NA

3

Q

R

S

3.610813335

34.72831120

57.12853455

20.98785251

51.14788891

30.63876714

23.81681957

51.00273835

NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.6: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

4.341950383

26.83668025

29.58820761

0.676917142251348

5.20470786251155

5.00389704933024
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R point

V1 lead

V5 lead

V6 lead

29.19531565

51.10760323

56.27262453

4.79922610408714

1.98699857037973

5.00389704933024

S point

V1 lead

V5 lead

V6 lead

51.03428893

24.71173807

NA

10.4835000667114

5.16717678073229

NA

Example 4.10. RVH ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 10.7 8.1 7.8 15.2 6.5 10.6

2 10 8 8.8 17.8 7.1 11.1

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm, R
S

in V1 > 1, and in V5 and V6 < 1mm. So from Doctors point of view this

patient has cardiac problem which called Right Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG
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Table 4.7: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

26.0803932

36.4947865

14.7037186

NA

33.2203698

25.7151588

NA

25.1153

23.6948

2

Q

R

S

17.4327977

26.8886555

16.333122

NA

39.3007419

35.4445989

NA

20.8981

20.3390

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.8: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

21.7566

NA

NA

6.114773

NA

NA

R point

V1 lead

V5 lead

V6 lead

31.69172

36.26056

23.0067

6.79256

4.299472

2.982054
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S point

V1 lead

V5 lead

V6 lead

15.51842

30.57988

22.01692

1.152162

6.879753

2.372916

Example 4.11. RVH ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 10.7 8.8 9.1 19.2 8.6 15.6

2 10.1 9.3 10.3 19.4 8.8 15.3

3 11 9 9.1 17.1 8.1 14

4 10.9 8.9 10 19.8 8.8 15.2

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm,

R
S in V1 > 1, and in V5 and V6 < 1. So from Doctors point of view this

patient has cardiac problem which called Right Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.9: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

21.210452

30.1310726

15.7002922

NA

37.1478021

34.5669156

NA

31.2891687

25.1595267

2

Q

R

S

16.7788313

24.4743855

13.7510722

NA

44.5219585

36.6391728

NA

38.9823975

21.4870607

3

Q

R

S

19.5922919

32.0811607

16.05711705

NA

34.5425282

25.9435303

NA

24.6282722

22.9338048

4

Q

R

S

19.4358294

20.4990607

8.199727814

NA

47.6872047

30.6882091

NA

39.3608674

21.7925225

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.10: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

19.25435

NA

NA

1.834999

NA

NA

R point

V1 lead

V5 lead

V6 lead

26.79642

40.97487

33.56518

5.294556

6.155181

7.023408

S point

V1 lead

V5 lead

V6 lead

13.42705

31.95946

22.84323

3.629269

4.708362

1.664994

Example 4.12. RVH ECG

QRS R in V1 S in V1 R in V5 S in V5 R in V6 S in v6

1 10.7 8.8 9.1 19.2 8.6 15.6

2 10.1 9.3 10.3 19.4 8.8 15.3

3 11 9 9.1 17.1 8.1 14

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm, R
S

in V1 > 1, and in V5 and V6 < 1. So from Doctors point of view this
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patient has cardiac problem which called Right Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.11: Phase transition at the non-differentiable points Q,R,S of V1,V5
and V6 leads

P.T of V1 P.T of V5 P.T of V6

1

Q

R

S

18.67049872

27.80235083

9.929736670

NA

35.35588057

42.47218369

NA

30.54146279

32.02361855

2

Q

R

S

17.71303725

27.40907894

10.49392625

NA

37.38696307

36.41205485

NA

30.50385016

27.63670055

3

Q

R

S

13.77424498

27.33828251

14.36192209

NA

48.20745346

34.33893603

NA

39.47414698

41.64957407

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.12: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V5 lead

V6 lead

16.71926032

NA

NA

2.59499896272331

NA

NA

R point

V1 lead

V5 lead

V6 lead

27.51657076

40.31676570

33.50648663

0.250011439602452

6.9085844443570

5.16817966965665

S point

V1 lead

V5 lead

V6 lead

11.595195

37.74105820

33.76996440

2.41260472303617

4.22635975551328

7.16780638445059

It is clear from tables values P.T values at S is higher than the P.T.

values at R of V1 lead of normal ECGs whenever the opposite case holds

for RVH ECGs. Also we see that for V5 and V6 leads the difference

between P.T. values at R and S point is small (i.e. less than 20 ) for

RVH ECG whereas these difference is large for normal ECGs. Also From

tables it is cleared that maximum mean P.T. values are higher for normal

ECG where as they are small for RVH ECG.
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• compare normal ECGs with abnormal ECGs (LVH).

Since LVH is characterized by deep S wave in V1 and V2 leads and

long R wave in V5 and V6 leads. Thus we compute P.T. values at non-

differentiable points only at those leads.So our concern is to find any

distinguishing measurements of P.T values at non-differentiable points

on those leads ,to compare the problematic ECG (in our case LVH) with

normal ECG.

Examples (4.13,4.15) Taken from [17],But these examples

(4.14,4.16) of my work.

Example 4.13. Normal ECG

QRS S in V1 S in V2 R in V5 R in v6

1 9.5 21.5 18 14.5

2 10.5 23 18 14.5

3 18 13.5

Here, we see that in table R in V5 and V6 <25 mm, S in V1 and V2

<25 mm and R in V5 or V6 + S in V1 or V2 are not all greater than 35

mm . So from Doctors point of view this graph is normal ECG .
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In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.13: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads

P.T of V1 P.T of V2 P.T of V5 P.T of V6

1

Q

R

S

6.3831

21.5429

25.5323

NA

34.4156

44.2073

30.2440

62.2350

36.8963

25.4894

40.0643

20.1172

2

Q

R

S

5.0777

21.8333

24.7344

10.1554

46.8581

57.4477

30.3196

52.4198

28.4833

21.2434

42.8292

25.2395

3

Q

R

S

31.9154

61.437

35.5342

23.8231

37.3402

18.1910

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.14: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V2 lead

V5 lead

V6 lead

5.7304

NA

30.8263

23.5187

0.9230

NA

0.9439

2.1393

R point

V1 lead

V2 lead

V5 lead

V6 lead

21.6881

40.6368

58.6973

40.0779

0.2053

8.7982

5.4511

2.7445

S point

V1 lead

V2 lead

V5 lead

V6 lead

25.1334

50.8275

33.6379

21.1826

0.5642

9.3624

4.5157

3.6430

Example 4.14. Normal ECG
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QRS S in V1 S in V2 R in V5 R in v6

1 9.5 20.7 17.9 19.2

2 11 22.1 19.4 19.5

3 18.6 19.9

Here, we see that in table R in V5 and V6 <25 mm, S in V1 and V2

<25 mm and R in V5 or V6 + S in V1 or V2 are not all greater than 35

mm . So from Doctors point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.15: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads

P.T of V1 P.T of V2 P.T of V5 P.T of V6

1

Q

R

S

5.5851919

16.304794

23.080376

13.244883

36.123601

50.139126

28.564267287

49.10076812

21.1545395639

32.23453626

58.51775171

NA

2

Q

R

S

7.1809610

19.5931318

19.746635

12.446999

37.224601

48.0758318

30.9579209

53.0741526

22.3419075

32.71326699

59.29738355

NA
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3

Q

R

S

20.98785251

51.14788891

30.63876714

23.8168195

51.0027383

NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.16: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V2 lead

V5 lead

V6 lead

6.383076485

12.84594143

26.83668025

29.58820761

1.12837916737430

0.564189582980045

5.20470786251155

5.00389704933024

R point

V1 lead

V2 lead

V5 lead

V6 lead

17.94896296

36.67410178

51.10760323

56.27262453

2.32520600670953

0.778524636797067

1.98699857037973

5.00389704933024



129

S point

V1 lead

V2 lead

V5 lead

V6 lead

21.41350599

49.1074793

24.71173807

NA

2.35731095267244

1.45896982951975

5.16717678073229

NA

Example 4.15. LVH ECG

QRS S in V1 S in V2 R in V5 R in v6

1 34.2 46.7 27.5 36.8

2 35.2 49 27.7 38

3 36.1 50.2 28.8 37

Here, we see that in table R in V5 and V6 >25 mm, S in V1 and V2

>25 mm and R in V5 or V6 + S in V1 or V2 are all greater than 35 mm

. So from Doctors point of view this patient with problematic ECG has

cardiac problem which called Left Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.17: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads

P.T of V1 P.T of V2 P.T of V5 P.T of V6

1

Q

R

S

NA

45.7081

89.5825

NA

64.5818

123.3424

NA

116.4704

NA

NA

100.9253

NA

2

Q

R

S

NA

42.6324

108.3481

NA

65.4877

146.1234

NA

55.5799

NA

NA

74.1328

NA

3

Q

R

S

NA

44.8548

81.5230

NA

71.4775

106.5454

NA

58.2417

NA

NA

113.1625

NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.18: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V2 lead

V5 lead

V6 lead

NA

NA

NA

NA

NA

NA

NA

NA

R point

V1 lead

V2 lead

V5 lead

V6 lead

44.3984

67.1823

76.7640

96.0735

1.5878

3.7472

34.4125

19.9621

S point

V1 lead

V2 lead

V5 lead

V6 lead

93.1512

125.3371

NA

NA

13.7640

19.8642

NA

NA

Example 4.16. LVH ECG
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QRS S in V1 S in V2 R in V5 R in v6

1 34.2 46.7 27.4 34

2 35.6 49 27.8 38

3 36 50.2 28.6 42

Here, we see that in table R in V5 and V6 >25 mm, S in V1 and V2

>25 mm and R in V5 or V6 + S in V1 or V2 are all greater than 35 mm

So from Doctors point of view this patient with problematic ECG has

cardiac problem which called Left Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.19: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads

P.T of V1 P.T of V2 P.T of V5 P.T of V6

1

Q

R

S

NA

40.9842211

91.8892561

NA

57.7485759

121.1538024

NA

77.6601805

NA

NA

96.36664735

NA

2

Q

R

S

NA

41.6330867

84.95590061

NA

60.3438480

112.3133742

NA

78.7939057

NA

NA

107.703900

NA



133

3

Q

R

S

NA

59.8366445

108.114128

NA

79.0437638

147.408593

NA

81.0613563

NA

NA

119.0411526

NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.20: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD

Q point

V1 lead

V2 lead

V5 lead

V6 lead

NA

NA

NA

NA

NA

NA

NA

NA

R point

V1 lead

V2 lead

V5 lead

V6 lead

47.48465080

65.71206260

79.17181417

107.7039

10.7020590779060

11.6182852416726

1.73179395786860

11.337252625
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S point

V1 lead

V2 lead

V5 lead

V6 lead

94.98642827

126.9585899

NA

NA

11.8857153835199

18.2535001546237

NA

NA

From table it is clearly show that the P.T at the non differentiable

points is higher for LVH ECG than normal ECG . The P.T. values at the

non-differentiable points for normal ECG is less than 65 . The patient

having LVH problem that P.T. value can be exceed 100. Also From tables

it is cleared that maximum mean P.T. value and maximum standard

deviation of the P.T. values are higher for LVH ECG.
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Conclusions

Here we develop an analytical method to find the solutions of linear frac-

tional differential equation and system of fractional differential equations,

composed by Jumarie modified fractional derivative in terms of one pa-

rameter Mittag-Leffler function. The solutions obtained are similar as

the solutions obtained usual calculus, in terms the exponential function.

we find the approximate solution of fractional derivative using Legendre

polynomials and implementing it to solve the nonlinear fractional dif-

ferential equations. Illustrative example is included to demonstrate the

validity and applicability of the presented technique.

In this thesis we have to characterize graph ECG and compare nor-

mal ECG with ( LVH,RVH) ECG by finding P.T. values at the non-

differentiable points and mean, standard deviation of the P.T. values of

the non-differentiable points of considerable ECG samples.
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