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On Fractional Differential Equations and Linear Fractional
systems: An ECG Implementation

By
Rahaf Bilal Mahmod Hamzah

Supervisor

Dr. Mohammad Ass’ad

Abstract

Fractional calculus is a current research topic in applied sciences such as
applied mathematics, physics, biophysics, aerodynamics, control theory,
capacitor theory, electrical circuit, description of memory and hereditary
properties etc. used the fractional models instead of classical models.

In this work, we develop analytical and numerical method to find the
solutions of fractional differential equation. also characterize ECG graph
and compare normal ECG with ( LVH,RVH) ECG by finding P.T. values
at the non-differentiable point.
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Chapter 1

Introduction



1.1 Basic definition of fractional derivative

1.1.1 Riemann-Liouvellie (R-L) fractional derivative

e Riemann- Liouvellie definition [4][5]

The left R-L definition of fractional derivative is

D) = s (£ [t s

The Right R-L definition of fractional derivative is

D350 = s () [ =@

Where n — 1 < a < n n:is positive integer.
e Example of Riemann-Liouvellie fractional derivative

1. The constant function
Leta=0,n—1<a<n

Applying the Left R-L definition for f(¢t) = C, C € R

\D[C] = ﬁ (%) /0 (= riecdr

. C a\"
" T'(n—a)\dt) n—a




Using this formula (%)n th = Fgﬁ—:ﬂl)tk—”

0D C) = eyt
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Figure 1.1: R-L fractional derivative of f(t) =1

This shows that the fractional derivative of a constant C is non-zero

but in classical calculus derivative of a constant is zero .

. The Power function
Leta=0,n—1<a<n

Applying the Left R-L definition for f(t) = t*

D] = s (%) / 7y

Using the substitution 7 = et then we have for



T=0,e=0andfort=t,e=1,t—7=1t(1—¢) ,dr =tde

1 d\" [
DY tk _ it tn—a—l 1 — n—a—1 k;tk:td
DI = gy () ) ot mae e

B 1

d\" 1
— it tnfoﬂrk k 1 — nfozfld
['(n— ) (dt) /0 e(1—e) .

Using Beta-function

Bla,y) = fol 7711 —e)*lde ;Re(a) > 0, Re(vy) > 0

arkl 1 d\" o oirx Tk+1DI(n— a)
ODt[tk]_r(n—a)(£>t T etk D)

DRI = s 0 (> <)
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Figure 1.2: R-L fractional derivative of f(t) =t
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Figure 1.3: R-L fractional derivative of f(t) = t?

3. The exponential function

Leta=0,n—1<a<n

Applying the Left R-L definition for f(t) = e%,c € C

v () ct c*t? At
. kz:% thern e Tre tras T
ar ety ma ct ct?
D(e) = DL+ i+ gy * ]
ot c L2t @ T(3)t*
fl—a) T@QTC-—a) TETE-a)
@ Ctl—a 02t2—a
“Tl-a) T@-a) TB-—a
_ 4o S (ct)”
2T((1—a) + k)

= t_aELl_a (Ct)

QD?[BCt] = t_aELlfa(Ct)

+ ..



where Fj_,(ct) is two parameter Mittag-Lefler Function given

in(5)

Figure 1.4: R-L fractional derivative of f(t) = e’

4. The cos(ct),sin(ct)function,

Leta=0,n—1<a<n

Applying the Left R-L definition for f(t) = cos(ct)

oDy [cos(ct)] = D1 — 3 + — .

t=° & TR & TEp
Ti—a) TO)TG-—a) TGTG—a)




1 02t2—a N C4t4_a
'(l-—a) TB—-a) TI'(G-a)

_ t—a i 1 k (Ct)%
- M(_ ) (1 —a)+ 2k)

=1""cos11-a(ct)

0Df[cos(ct)] =t cos11-a(ct)

Similarly we can get

oDf'[sin(ct)] =t “sing 1_q(ct)

where cosy 1_q(ct) and sing1_o(ct) is two parameter fractional sine

and cosine function given in([L.9[I.10).

Figure 1.5: R-L fractional derivative of f(t) = cos(at)



Figure 1.6: R-L fractional derivative of f(t) = sin(t)

1.1.2 Caputo fractional derivative

e Caputo definition[4]

1

c Mo _ ' _Tn—l—oz (n)T .
DL = s [ (=

Where n — 1 < a < n n:is positive integer.
f(t), must be differentiable n-times, if the function is non-differentiable

then this definition is not applicable
e Example of Caputo fractional derivative

1. The constant function
Leta=0,n—1<a<n
Applying the Caputo definition for f(t) = C,C € R
' 1
‘DYCl = ——— t—7)""%0dr =0
a t[] F(TL—OZ)/Q( T) T

LrC=0



Caputo derivative of a constant is zero

2. The Power function
Leta=0,n—1<a<n

Applying the Caputo definition for f(t) = t*
k 1 ' 1 ky (n)
CDO[ t — t _ n—1—o n d
D) = ey [ (=

1 I'(k+1)

- - ! _Tn—l—a Tk—nT
_F(n—cv)/o(t T L

_ 1 F(k + 1) ' _ \n—1-a,_k—n
N F(n—a)F(k—nJrl)/O(t Ty

Using the substitution 7 = et then we have for

T=0,e=0andforTr=t,e=1t—7=1t(1—¢) ,dr =tde

I'(k+1)
I'(n—a)l'(k—n+

1
(C)D?[tk] _ tka/ (1 i €)nfa71€k—nd€
1) 0

. F(k + 1) tk—oz
CT(k—a+1)
LEHD) gha L5 p ]
PDpf(t) =g T

0 k<n-—1
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Figure 1.7: Caputo derivative off(t) =t

. The exponential function
The relation between Caputo fractional derivative and Riemann-

Liouvellie fractional derivative [7]

n—1 k—o
¢ Do — Da k 0
oDi f(t) =0 D f(t) Fk+1—af()
k=0
Leta=0,n—1<a<n
Applying this Property for f(t) = e%,c e C
n—1
t)k—ozck‘
cDoz[ ct] — Da[ ct] (
po I'k+1-a)
n—1
(t)k—ack
=t “E1_a(ct) —
Lialct) Th+1—a)
k=0
ey (D §_ (f e
F'(k+1—a) I'k+1—a)
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Figure 1.8: Caputo derivative of f(t) = e*

. The cos(ct),sin(ct) function

Leta=0,n—-1<a<n

using the following interpretation of cos(ct),sin(ct)

6zct + e—zct

cos(ct) = 5



D¢ [cos(ct)] =

((ic)"t" By py1—alict) + (—ic)"t" "By pi1-a(—ict))

(Zc)ntn—a

5 (Erns1-alict) + (=1)"E1 pt1-a(—ict))

similarly we can get

§ D¢ [sin(ct)] =

(Z'C)ntn—a

5 (Ern1-alict) = (=1)"Eypy1-a(—ict))

1.1.3 Jumarie modified fractional derivative

e Jumarie modified definition ,[4][5]

The left Jumarie modified definition is

IDYf(t) = S

o ot — 1) f(7)dr 0 <0
L [l =) ()~ fl@ldr  0<a<]
(fe ()" n<a<n+l

(1.1)
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The right Jumarie modified definition is

(

oy = e f(r)dr o <0
IDVF() = ritd [N = Uf0) — f())dr 0<a<]
(fo@))" n<a<n+l1

(1.2)

Where n — 1 < a < n n:is positive integer.

e Example of Jumarie modified fractional derivative

1. The constant function
Let a =0
Applying The left Jumarie modified definition for

f(t) =cceR, when a <0

IDpld = - (ia) /O (t — 7)-edr

when 0 < a < 1

I D[] :mafo (t—7)%e—c]dr =0
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whenn <a<n+1,n>1

o Dflc] = (f*7"())" =0

2 D] =

2. The power function
Let a =0
Applying The left Jumarie modified definition for

f(t) =t* when 0 >

0 P[] =

L t — ) kg
ey [, (-7

Using the substitution 7 = et then we have for

T=0e=0andfort=t,e=1;t—7=1t(1—¢);dr =tde

TDO[tM] = o) /Olt—“—l(l — &) Rt tde
otk 1 o
:F(_&)/()a(l—s) de
_ T(k+1) fh—a
I'k—a+1)

DY) = Lk +1) th= (k> —1), (a < 0)

I'k—a+1)
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when 0 < aa <1

{Dﬂﬁ]:——QL——g:/Qt—TfﬂTﬁh
0 F(l—()é)dt 0

Using the substitution 7 = et then we have for

T=0,e=0andforTr=t,e=1;t—7=1t(1—¢);dr =tde

1 d [t
J narpk —« —a _kik
Dt | = ————— t (1 — t"td
I = e | e e e
1 d, ! _
:—_t—a—i-l kl_ P
['(1—a«)dt /06( e)"de
F(k+1) tk—a
I'(k—a+1)

T(k+1)

JDatk _
o D1t (k—a+1)

th (k> 0),(0<a<1)

when n < a<n+1

(n)
JDR) = (fo[E))" = (F(k E(z i 711)+ 1)tk_a+n)
- T'(k+1) F(k—a+n+1)tkfa
CTk—a+n+1) Tk—-a+1)

F(k + 1) tk—a
Pk —a+1)

TDO[tM] = th=e (k> 0) (1.3)
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Figure 1.9: Jumarie modified derivative of f(t) =t

3. The exponential function

Let a = 0, Applying the left Jumarie modified definition for f(t) =

et,ceC
_i 14 ct n 22 + A3 n
N —~T(k+1) N 2 T(3) T4
2,42 343
T mos ot o ct ct c’t
D = D1 +

)
2)t1 o 2 F(3)t2_a

B c I
e - >+ NOIEETN
tl « 2t2 o C3t3foz

“T2—a) TB-a) T@—a

_ l—« S (Ct)k
=« ZF((Q—@)Jrk)

k=0

= Ctl_aEl’Q_a(Ct)
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JD e = et Eya_qo(ct)

2 3
—— = ===
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[
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Figure 1.10: Jumarie modified derivative of f(t) = e’

4. cos(ct),sin(ct) function Let a = 0 Applying The left Jumarie mod-
ified definition for f(t) = cos(ct)

cos(ct) = ioj(—l)]C (ct)™
— I'(2k + 1)
J o arg () ()t (ct)’
o Dicos(ct) = D1 — I 3) + )~ T +..]
- A T(3)t* N ct T(5)th
rrld—-—a) I'G)TG-—a)"
B CQtha C4t4fa CGtha
T T TB-a) Th-a T(—a
0 (Ct)2k+1

= ;(—1)1}((2 )12k D)
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= —ctlfo‘sml,g_a(t)

JD%cos(ct) = —ct'“sing o _q(t)

similarly we can get

I Dsin(ct) = ct'*cos1 o o(ct)

Figure 1.11: Jumarie modified derivative of f(t) = cos(t)

':'D?[sinl 8] Df—:[lf‘-'

Figure 1.12: Jumarie modified derivative of f(t) = sin(t)
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1.1.4 Properties of fractional derivatives

e Riemann-Liouvellie fractional derivative
Let n —1 < a<n,nméeN, A\ € C and the functions f(¢) and
g(t) be such that both D¢ f(t)and ,Dfg(t) exist. Then [14],[20]

1. Linearity
oD (M) + 1 g(t) = AaDPf(E) + 1 oD g(t)
2. Non-commutation
Dy Dy f(t) =o D™ f(t) #a D D™ f(2) (1.4)

The inequalities in equation [I.4]become equalities under the

the following additional condition

DDff(t) =a D™ f(t) = DED™ f(t)
f0)=0,5s=0,1,...m
3. Leibniz rule

If f(t) and g(t) and all it’s derivatives are continuous in [0,t],then

the following holds

DS i( )or-t70 60

k=0
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4. Let0 < a; < 1 o = 1,2,..,n, then the following equality
holds,

JDEf(t) = (D (DE? L D

a=0o1+0y...0n

e Caputo fractional derivative
Let n—1<a<mn, nméeN, \puec C and the functions f(t)

and ¢(t) be such that both ;D¢ f(t)and ¢ Df*g(t) exist. Then[7],[20]

1. Linearity

oD (N f(#) +1g(t) =MD f(t) + g Difg(t)

2. Non-commutation

Di Df(t) = GDPTTf(t) £ DT IDYf(t) (15)

The inequalities in equation [I.5become equalities under the

the following additional condition
cDf DM f(t) = (D f(t) = D™ DR f(¢)
fE0)=0,s=n,n+1..m

3. Leibniz rule
If f(t) and g(t) and all its derivatives are continuous in [0,t],then
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the following holds

s0E (/0 =3 ()8 g kzomﬂ_a) (F(B91) ()

k=0

4. Let0 < oy < 1 7 = 1,2,..,n, then the following equality
holds,

D7 () = QD LD LD

a=0o1t+ 0.«

e Jumarie modified fractional derivative
Let n —1 <a<n,nméeN, \ € C and the functions f(¢) and

g(t) be such that both /D¢ f(t)and / D¢g(t) exist. Then[10],[11],[8]

1. Linearity

aDF (A F() + 1g(t)) = NiDf(t) + ny D g(t)

2. Non-commutation
2Dy D™ f(t) # D™D f(t)

3. Leibniz rule

Let 0 < a < 1, and the functions f(t) and g(t) are two non-
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differentiable functions in [0,t],then the following holds
JDP(f(t)g(t) = F(1) aDRg(t) + g(t) s D f (1)

4. For any positive integer n and ,0 < o; < 1,0 = 1,2,..,n, then

the following equality holds,

JDRf(t) = JDf Dy . D

=1+ Q... 0y

1.2 Mittag-Leffler Function

The applications of the Mittag-Leffler function and its extensions are
discussed recently in a rapidly increasing number of papers, related to

Fractional Calculus and fractional order differential equations.

1.2.1 One Parameter Mittag-Leffler Function

The one parameter Mittag-Leffler function was defined by
E.(z) = _
(2) ; T(1+ ak)
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This function play important role in fractional calculus like exponential

function in classical calculus [3, [4]

VA 22

VA 22

Ez(z):1+F(1+2)+F(1—|—4) .. = cosh v/z

We now rewrite the Mittag-Lefller function in the following form by an

infinite

@ at® a’t’o

- (at®)
(at®) —1
(a ;%F1+ak Tit+a) Ta+2a)

Then we find Jumarie fractional derivative of order a for Mittag-Leffler

function F,(at®)

at® N a2t2a N a3t3a N
T1+a) T+2a)  T(+3a)

0 D (Ba(at®)) = D*[1 +

a T'(1+a«) a’t®  T(1+2a)

=0t rar T Tt T+ a)

a2ta a3t20z

=l vy T

+ .

[1 N at® N a2t2a N ]
=a
T(l+a)  I(+2a)

= aFE(at™)
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IDYE,(at™)) = aFE(at®) (1.6)

This shows that AF,(at®) is a solution of the fractional differential equa-
tion

0Dy = ay (1.7)

Where A is arbitrary constant.

Therefore [1.7] with using the initial condition y(0)=1 has solution
y = Eq(at®)

1.2.2 Two parameter Mittag-Leffler function

The two parameter Mittag-Leffler function [3] was defined by

Eap(z) =) NCET) (1.8)

k=0 k=0
9 = 2*k
Esq (29) Z NETE = cosh z
k=0

now we find Jumarie fractional derivative of order § for Mittag-Leffler
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function E,(at®)

D’(E,(at®)) = D[1 + at’ + @t + ...
a\a =
I'(1+a) T(1+20a)

a t*FT(1+a)

Frl+a)T'(1+a-—05)
2
a a
— P 4 2h 4
T(1+a—f) T'(1+2a—f)
1 t
= at*™"[ + . +...]

F(1+oz—6) [(1+2a — pB)

_ a8 (at®)*
= al Z (1+a—B)+ ka)

— at® P Ey1 - plat®)
1D} (Bulat®)) = at" By y_afat®)

1.2.3 Complex Mittag-Leffler Function and Its Properties

Jumarie [9] defined the one parameter fractional sine and cosine function

in the following form,

E,(itY) + E,(—it") < L tke
ay — —1
cosal(t") 2 kz:%( ST+ 2ka)
. o E,(itY) — E,(—it® > +(2k+1)a
sin, (1) = (it") 5 ( ) = Z(_l)k

I'(1+2ka+ «)
with this definition and with definition of one parameter Mittag-

Leffler function we get the following identity
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E (-ta) B 1 N ita N Z'2t2a N Z'3t3oz
AT T Ay o) T T(1+2a)  T(+3a)"

—[1—t2—a+ ] 44 r " + ..
B [(1+2a) I'l+a) T(1+3a)
o0 L t2k‘0¢ o0 L t(?k-ﬁ-l)a

= (D) i) (~1
2_(=1) T(1 + 2ka) i) (1) T(1+ 2ka + a)

k=0

=~
|

0

Thus

EL(it%) = cosq(tY) + ising (t*)

From figure and figure can be observed both the fractional

trigonometric functions cos, (t%), sin, (t*):
e for a < 1 is fade oscillatory motion
e for & = 1 harmonic motion with sustained oscillations

e for o > 1 is increase oscillatory motion
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104 1 1
0.9+
08
0.8 0.8
0.7+ 06
064 06 e (2]
) 04
s=(d g5] cos,( F)
i 0.4 i
0.3+ P
0
02 02 TR
¢
0.1 02
T T | 0
0 s 10 15 13
04

1
300+
20
s (F) 03
con [ £) 2004
0 cos(7)
0
t /\ 1004
3 10 18}
05 t
0
3 10 13
10 ¢
g

0.8
0.6
05 07
054 06
04 04l 05
sin () sin | ) 04
< i 034
. 03
027} 02
02
01 0.1
0 T . \
- T ] 10 15
5 10 13 o 5 10 13 i t
t ¢ N

1
304 300

sn \F) 03
() 20 in F 200

10 - 100

-

<
—
>
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The series presentation of cos,(t%) is

t?oz t4a
(tY)=1-— + — ...
0% T(1+2a)  I(1+4a)

Taking term by term Jumarie fractional derivative of order o we get

t2a t40¢
J na « «
D (cos, (7)) = D°[1 — _
o Dr'(cosa(t%)) S TP TR e S

1 t*T'(1 + 2a)
T(1+2a) T(1+a)

B o N tSOz
- TI(1+a) T(1+3a)
o t3a
. - b
T1+a) T(1+3a)
o N t(2k+1)a

a Z(_l) I'2ka+a+1)

= —sing (1)
TD(cos, (1)) = —sing ()
The series presentation of sin,(t%) is

‘ (ta) to t30¢ N t50¢
SNy, = — — ...
T(1+a) D(1+3a) T(1+5q)
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Taking term by term Jumarie derivative of order o we get

o t3oz t5a
J o a J pa
Dy'sing (t%) =4 D — — ...
oDisina(t) = Dilpa=5 ~ T30y T T x50)
t2a t40z
(1+2a) I'(1+4a)
o t2]€0¢
kzzg ['(2ka+ 1)
= 084(t%)

T D (5inq(tY)) = cosy(tY)

Also Jumarie [9] defined the two parameter fractional sine and cosine

function in the following form,

> tQka
a.p(t") — 1.
0S4 4( z; T(B + 2ka) (1.9)
o0 " {2kt 1)a 0
Na.g(t") = — .
$ima,5() Z( ) ['(8 + 2ka + «) (1.10)

e
|

0

with this definition and with definition of two parameter Mittag-

Leffler function we get the following identity

Eq p(it") = cosq5(t") + ising g(t)
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Chapter 2

Linear Fractional Differential Equation

with Jumarie Derivative
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A linear na-order fractional differential equation of the form [14]

an” D"y (t) + an_y" DV (t) 4+ .+ agy(t) = g(t%) (2.1)

where the coefficients a;,7 = 0..n are real constants and
a, #00<a<1
From now we indicate Jumarie fractional derivative with the starting

point of differentiation as 0 as 7 D"y(t) instead] Di*y(t)

2.1 linear homogeneous fractional differential equation

an? D"y(t) + an_ " DOV () + .+ agy(t) = 0 (2.2)

The above differential equation is said to be linear homogeneous frac-
tional differential equation when g(¢*) identically zero in(2.1)), otherwise
it is non-homogeneous.

Theorem 2.1 let y1,vs, ..., yi be solutions of the homogeneous na-order

fractional differential equation (2.2) . Then the linear combination

Ay (t) + Ay (t) + ... Ay (2)

where the A;,7 = 1...k are arbitrary constants, is also a solution

Proof. let L(y(t)) = a,” D"y(t) + a,_1/ D" Voy(t) + ... + agy(t)
and let y1(t), y2(t), ..., yx(t) be solutions of the homogeneous equation
L(y1(t)) =0, L(ya2(t)) =0, ..., L(yx(t)) = 0 If we define
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y(t) = Ayyi(t) + Asyo(t) + ... + Agyr(t), then by linearity of L we have
LAy (t) + Asyo(t) + ... + Agyr(t)]

= A1L(y1(t)) + AsL(3y2(t)) + ... + AxL(yi(t))

=A.0+ A0+ ...+ 4,0=0

Ayyr(t) + Agya(t) + ... + Agye(t) is also solution O

We begin by considering the special case of the second order fractional

differential equation

ay’ D**y(t) + ay” Dy(t) + agy(t) = 0 (2.3)

where ag, a1, as are real constant

(D% —m) ("D — ma)y(t) = 0

—a1++/a3—4azag _ —a1—y/ai—4asag

2&2 7m2 _ 2(12

there will be three forms of the general solution of (2.3]) corresponding

where my =

to the three cases [5]:

e Case I : m;, my are real and distinct

The fractional differential equation

TD%y(t) — (my +mo) DOy(t) + (mima)y(t)  (2.4)
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has solution of the form
y(t) = AlEa(mlto‘) + AQEa(mQta)

where A; and A, are constants

Proof. Let y(t) = A1 Ey(mat®) + Ao By (mat®).

Differentiating o and 2 times with Jumarie derivative we get
TD%(t) = Aymy E,(mit®) + AgmaE,(mat®)  and

TD?y(t) = Aym 2 Eq(mat®)+Asme®E, (mot®) Substituting 7 Dy (t)
and 7 D?>"y(t) into the fractional differential equation(2.4)) we get
[Aymi?—Army (my+ma)+ A (mims)| By (myt®)+][Aame® — Agma (my+
mz) + Ag(mims)| Eo(mat®) = 0

This shows that the fractional differential equation
TD*y(t) — (ma +ma)” Dy(t) + (mama)y(t) = 0
has solution in the form
y(t) = A1 Eo(mat®) + AyEL(mot®)
On the other hand consider the fractional differential equation

TD*y(t) — (m1 +ma)? Dy(t) + (mama)y(t) = 0
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it can be expressed in the following form

("D* — my)(YD* — my)y(t) = 0 (2.5)

Let, z(t) = (D* —mg)y(t) then equation (2.5) reduce to the

form
("D* —my)x(t) =0 or TD%(t) = myz(t)

Solution of the above equation is same as the solution of the equa-
tion (1.2) which is
z(t) = AE,(mqt?)

(7D — mo)y(t) = AE,(mt®)

multiply both sides by FE,(—mst®)

E,(—mat®)? D% (t) — Eq(—mat®)may(t) = AE,(mit®) Eq(—mat®)

TDy(t) Eo(—mat®)] = ﬁJDa[Ea<mlta)Ea(_m2ta)]

On integrating both sides and applying D~ on both sides of

above, we get

A
y(t)Ea(—mgta) = m[Ea(mlta)Ea(—mQta) + AQ
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A
t) = —|FEy(mit™) + A E, t*
y(t) ml_m2[ (mat®) + Ao Eo(mot”)
Let A; = = Therefore y(t) = A1 E (mat®) + AyE,(maot®) s
a solution of the fractional differential equation ([2.5)) ]

Case II: my; = my are real and equal

The fractional differential equation

Dy (t) — 2m? D(t) + m>y(t)

has solution of the form

y = A1 E,(mt®) + Agt® E,(mt®)

where A; and Ay are constants

Proof. Let y(t) = A1E.(mt®) + Ast®E,(mt®) . Differentiating o
and 2o times with Jumarie derivative we get

TD%(t) = AymE,(mt®)+Aomt® B, (mt®)+ Aol (a+1) B, (mt®) and
TD?%y(t) = Aym?Eo(mt®)+2AomI (a+1) B, (mt®)+Aym*t* B, (mt®)
Substituting / D%(t) and 7 D?>*y(t) into the fractional differential
equation we get

[Aim?® + 2AomI (o + 1) + Aam*t®| Eo(mt®) — 2mE,(mt®)[Aym +
Aomt® + AsT(a + 1)] + m2E,(mt®)[A; + Ast?] = 0
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This shows that the fractional differential equation
TD*y(t) — 2m”’ D(t) + m*y(t) =0

has solution in the form

y(t) = ALE,(mt®) + Agt®E,(mt®)
On the other hand consider the fractional differential equation

D>y (t) — 2m? Dy(t) + m>y(t)
it can be expressed in the following form

("D —=m)("D* —m)y(t) = 0 (2.6)

Let, z(t) = (/D% —m)y(t) then equation (2.6) reduce to the
form

("D* —m)x(t) = 0 or TD%(t) = ma(t)

Solution of the above equation is same as the solution of the equa-

tion (1.2) which is
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multiply both side by E,(—mt®)
E,(=mt®) D(t) — E,(—mt™) m y(t) = AE,(mt®)E,(—mt®)

Dy(0) Eal-mt)] = o D

On integrating both sides and applying 7D~® on both sides of

above, we get

Y(t) Ea(—mt®) = ﬁt@ + Ay

Let A; = ﬁ Therefore y = Ajt*E,(mt®) + AsE,(mt®) is a

solution of the fractional differential equation (|2.6)) []

e Case III: my =p+iq,my =p —iq are complex
TD*y(t) = 20" Dy(t) + (0° + ¢*)y(t) = 0

has solution of the form
y(t) = Eo(pt®)[A1cos.(qt) + Agsing(qt®)]

Proof. The given fractional differential equation can be written in the

following form

"D = (p+ig))[' D" — (p — iq)]y(t) = 0 (2.7)
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Using Case I we get the solution of the fractional differential (2.7)) can
be written in the following form

y(t) = a1 Eo((p —iq)t") + aaBu((p + iq)t")

y(t) = a1 Ea(pt®) Eo(—iqt®) + a2 Ea (pt®) Eo(igt®)
y(t) = ar Ea(pt®)[cosa(=ql") + isina(—qt")]
+as B, (pt®)[cosq (qt®) + ising(qt®)]
Since oS, (—qtY) = cosa(qt®) and  sing(—qt®) = —sing(qt®)
Therefore
y(t) = Ea(pt®)[(a1 + az)cosa(qt®) + (—a1 + az)isina(qt")]

let Ay =a1+ay and Ay,= (—a1 -+ ag)i

y(t) = Eo(pt®)[A1cosa(qt®) + Agsing(qt®)]

Example 2.1. 2a-order FDEs

Solve the following fractional differential equations.
1. 27Dy (t) — 57 D%(t) — 3y(t) = 0

2. ID%y(t) — 47 D(t) + dy(t) = 0
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8. TD*y(t) + 4y(t) = 0
Solution

1. (D + H(ID* - 3)y(t) =0
From(Case 1) y(t) = A1E.(F) + A2E.(3t)

2. (YD* —2)("D* — 2)y(t) =0
From(Case II) y(t) = A1 E,(2t%) + Agt® E,(2t%)

3. (DY —2i) ("D + 2i)y(t) = 0
From(Case III) y(t) = A1c08,(2t*) + Agsing(2t*)

Example 2.2. An Initial-Value Problem

Solve ? D**y(t) — 37 D%(t) + 2y(t) = 0,5(0) = —1, ' D%(0) = 2
Solution

(7D — 2" D — 1)y(t) = 0

From(Case I) the general solution is

y(t) = ALEL(2t%) + Ao B, (tY)

Putting the initial condition.y(0) = —1, 7 D%(0) = 2

y(0) = A1+ Ay = —1

TD%(0) = 2A; + Ay = 2 and solving we get A} = 3,A5 = —4

Hence the solution 1is,

y(t) - SEa(Qta) - 4Eoz(ta)
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Figure 2.1: Solution curve of IVP in Example for different values of
12 3
O=111

In ref [5] had solved Linear Second Order Fractional Differential Equa-
tion , Now we will see that the foregoing procedure can produce solutions
for homogeneous linear higher Order Fractional Differential Equation

HIGHER-ORDER EQUATIONS

In general, to solve an nth-order differential equation
J nna J nn—1)a _
an” D"y(t) + ap—1" D"y (t) + ... + agy(t) = 0 (2.8)

where a;,7 = 0..n are real constants. we must solve an nth -degree

polynomial equation
apm” + ap_ym" "t + agm® + aym + ag =0 (2.9)

If all the roots of (2.9)) are real and distinct, then the general solution of

29 is

y(t) = AlEa(mlta) + AQEa(mQta) + —|— AnEa(mntO‘)
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It is somewhat harder to summarize the analogues of Cases II and III

because the roots of (2.9)) of degree greater than two can occur in many

combinations.

When m; is a root of multiplicity k of (2.9) equation (that is, k roots

are equal to my), it can be shown that the general solution of (2.8]) must

contain

AlEa(mlto‘) -+ AQEatO‘(mlto‘) + ...+ Ant(k_l)aEa(mlta)

Finally, when the coefficients are real, complex roots of (2.9) always

appear in conjugate pairs.

Example 2.3. Third-Order FDE

Solve 7 D3y (t) + 37 D?*y(t) — 4y(t) = 0
Solution

to solve a third degree polynomial equation
m3+3m?—4=(m—-1)(m+2)?=0

so the roots are m; = 1,my = mg = —2

Thus the general solution of the FDE 1is

y(t) = ALEL (1Y) + Ao By (—2t%) 4+ A3t E,(—2t%)

Example 2.4. Fourth-Order FDE
Solve 7 DYy (t) + 27 D*y(t) + y(t) = 0
Solution

solve a Fourth degree polynomial equation
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mt4+2m?+1=(m?>+1)2=0
so the roots are my =1, my = —1,M3g =1, M3 = —1
Thus the general solution of the FDE is

y(t) = A1c084 (1Y) + Agsing (14) + t*[Azcos, (t*) + Agsing (t*)]

2.2 linear non-homogeneous fractional differential equation

Any function y,, free of arbitrary parameters, that satisfies is said

to be a particular solution or particular integral of the equation.
Theorem 2.2 Let y, be any particular solution of the non-homogeneous

linear na-order fractional differential equation and let y1, yo, ..., Yn

be a set of solutions of the associated homogeneous fractional differential

equation (2.2)) . Then the general solution of the equation(2.1)) is

Ay (t) + Agya(t) + - Apyn(t) + yp(t)

where the A;,7 = 1...n are arbitrary constants, is also a solution

Proof. let L(y(t)) = a,” D" y(t) 4 ap_1? DV%(t) + ... + agy(t)

and let Y (¢) and y,(t)be particular solutions of the non-homogeneous
fractional differential equation,L(Y (t)) = ¢(t*) and L(y,(t)) = g(t*). If
we define

u(t) =Y (t) — y,(t) then by linearity of L we have

L(u(t)) = LY () = (1)) = LOY(£)) — Lyy(t)) = g(t%) — g(t*) = 0

This shows that u(t) is a solution of the homogeneous equation
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L(u(t)) = 0. Hence by Theorem 2.1
u(t) = Ayyr(t) + Asya(t) + ... Apy,(t) and so
Y (t) = yp(t) = Argn(t) + Ay () + ... Apyn(t)
or Y(t) = Ayyi(t) + Asyo(t) + ... Ayyn(t) + yp(t) ]

We see in Theorem 2.6 that the general solution of a non-homogeneous

linear fractional differential equation consists of the sum of two functions:

The linear combination y.(t) = Ayy:1(t) + Asya(t) + ... Ayyn(t) which is
the general solution of (2.2)), is called the complementary function for
equation (2.1)). Thus the general solution will be

y:yp+yc

Method of Undetermined Coefficients can be used to find a particular

solution to a non-homogeneous differential equation.

any(”) + an_ly(”*l) + o+ aly(l) + ap = g(1) (2.10)

The method is quite simple. All that we need to do is look at g(t) and
make a guess as to the form of y, leaving the coefficients undetermined .
Plug the guess into the differential equation and see if we can determine

values of the coefficients. If we can determine values for the coefficients
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then our guess is correct, if we cant find values for the coefficients then
our guess is incorrect. The general method is limited to linear differential
equation such as where ¢(t) is a polynomial function, an exponen-
tial function e, a sine or cosine function sin(ct), cos(ct), or finite sums
and products of these functions [12].

Now we will use the same idea of undetermined coefficients to find a
particular solution to a non-homogeneous fractional differential equa-
tion(2.1)). where g(¢*) is fractional polynomial function, a Mittag - Leffer
function E,(ct®), a fractional sine or cosine function sin,(ct), cos,(ct),or

finite sums and products of these functions.

Example 2.5. g(t%) is a fractional polynomial function

Solve
J M2« J o _ 2 «
D*y(t) — 27 D%(t) — 3y(t) = 32 + 4> — 5 (2.11)

Solution
We first solve the associated homogeneous equation
TD?y(t) — 27 D(t) — 3y(t) = 0. From the quadratic formula we find
that the roots of the equation m*> —2m —3 =0 are m; = 3 and my = —1.

Hence the complementary function is

Ye = AlEa(?)ta) + AQEQ(—Yfa)

Now, because the function g(t*) is fractional polynomial of degree 2«
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let us assume a particular solution that is also in the form of fractional

polynomial of degree 2c
y, = At** + Bt* + C

We seek to determine specific coefficients A, B, and C for which y, is a

solution of Substituting y, and the Jumarie Fractional Derivative
o I'2a+1) 4o o

IDy, = AL 4 BT (a + 1) and /Dy, = AT(20 + 1)

into the given fractional differential equation (2.11]), we get

I' 2« a « o a «
AF(2a+1)—2(A(F<%aﬂ)>t + Bl (a+1))=3(At**+ Bt*+C') = 3t**+4t*—5

The coefficients of like powers of t must be equal, That is

I'(2a+1
—3A=3, 2472 3B =4, AI'(2a+1)—-2BT(a+1)—3c=—5

Solving this system of equations leads to the values

— _ =4 2I'(2a+1) _ 15480 (a+1)—7T(2a+1)
A=-—1, B—T+3r(a+1)7 C= 9

—4  2I'2a+1) 154+ 8Na+1)—MT(2a+1)
— _tQOé tO[
Up +(3 +3F(oz—|—1)> T 9

The general solution of the given equation(2.11]) is
o o a — 2T (2a+1 a
y = A1 E,(3t%) + AgE,(—t) — 2 + (74 + 3F<(aj1)>>t

15481 (a+1)—7T'(2a+1)
+ 9

Example 2.6. g(t*) fractional sine function

Find a particular solution of

TD*y(t) — 7 D(t) + y(t) = 2sing (3t (2.12)
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Solution
because * D**and’ D® of sin.(3t) produce sin.(3t%) and cos,(3tY), we

are assume a particular solution that includes both of these terms:
Yp = Acos,(3t") + Bsin(3t)

Substituting y, and the Jumarie fractional derivative
Dy, = —3Asin,(3t*) + 3Bcos,(3t*) and
T D%y, = —9Acos,(3t*) — 9Bsin, (3t
into the given fractional differential equation , we get
(—8A — 3B)cos,(3t*) + (3A — 8B)sing(3t*) = 2sin,(3t*)

From the resulting system of equations,
—8A—-3B=0 and 3A -8B =2
we get A = % and B = _7—? . A particular solution of the equation is

6 16
Yy = 7—3005a(3t0‘) — 7—33in(3t0‘)

As we mentioned, the form that we assume for the particular solution
Yy is an educated guess. This educated guess must take into consideration
not only the types of functions that make up g(¢*) but also, as we shall
see in Example , the functions that make up the complementary

function .
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Example 2.7. g(t*) is a Mittag - Leffer

solve
‘]D2ay(t) — (a + b)JDO‘y(t) + (ab)y(t) = Ey(ct®) (2.13)
Solution
e a#b#c

We first solve the associated homogeneous equation
TD*y(t) — (a +b)"Dy(t) + (ab)y(t) =0

the complementary function is

Yo = A1 E(at®) + A2 E(bt")

Now, because the function g(t*) is a Mittag - Leffer, let us assume

a particular solution that is also in the form of a Mittag - Leffer

yp = AE,(ct”)

We seek to determine specific coefficients A which yyis a solution
of .Substitutmg yp and the Jumarie Fractional Deriwative
TDY%, = AcE,(ct®) and D%y, = Ac*E,(ct®)

into the given fractional differential equation (2.15), we get

ACE,(ct®) — (a+ b)AcE,(ct®) + (ab)AE,(ct®) = Eq(ct®)
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That is, Ac® — (a+b)Ac+ (ab) =1 we get A = (C_a)l(c_b) Thus a

particular solution s

W= e aye—p o)

The general solution of the given equation is

« « 1 o
v =AMB(at?) + ABG) + s Ba(et?)
c=a#b

the complementary function is

Yo = A1E(at®) + A2 E(bt?)

Observe that our assumption AE(at®) is already present in y.. This
means that E(at®) is a solution of the associated homogeneous frac-
tional differential equation, and AE(at®) when substituted into the
fractional differential equation necessarily produces zero. Inspired
by Case II of Section 2.1, lets see whether we can find a particular
solution of the form

y, = At E,(at®)

Substituting 7 D%y, = Aat®E(at®) + AT (a + 1)E(at®) and
D%y, = Ad*t*E(at®) + 2Aal (o + 1) E(at®)
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into the fractional differential equation and simplifying gives
Ala — b)) (a+ 1)Ey(at®) = Eq(at®)
From the last equality we see that the value of A is now determined

as A = Wm Therefore a particular solution is

tCk
(et 1)

E.(at®)

The general solution of the given equation 1s

tO{
(a—0)(a+1)

y = A1E(at”) + Ay E(bt") + E.(at®)

c=a=25b

the complementary function is

Ye = AlE(CLtQ) + AgtaE(CLta)

we can find a particular solution of the form

Yy, = At** E,(at®)

Substituting 7 D%y, = Aat**E(at®) + Arr(fjjll)) t*E(at") and

D%y, = Ad** E(at®) + 2Aa it E(at®) + AT (20 + 1) E(at®)

into the fractional differential equation and simplifying gives

AT 2a+ 1) E,(at®) = E,(at®)
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From the last equality we see that the value of A is now determined

as A = m Therefore a particular solution is
t20¢
=——F,(at"
Y%= Taa 1y elet)

The general solution of the given equation s

2

— A E(at®) + At B(at®) + ——o
y = A E(at®) + Agt (at>+r(2a+1)

E.(at®)

When ¢(t%) is a sum of several terms

When g(t*) = g1(t*) + g2(t*) + ... + gn(t*), we can break the equation

into n parts and solve them separately.
TD*y(t) + ar’ Dy(t) + aoy(t) = g1(t*) + g2 (t%) + ... + gu(t*)  (2.14)
If y; is a solution of the equation
TD*y(t) + ar’ Dy(t) + aoy(t) = g1 (1*)
and 15 is a solution of the equation

TD*y(t) 4+ a1 D*y(t) + agy(t) = go(t)
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and so on ¥, is a solution of the equation
TD*y(t) + a1’ Dy(t) + aoy(t) = ga(t*)

Then, vy, =11 +y2+ ...+ y, isasolution of the equation (2.14]

Example 2.8.
TD?*y(t) — 27 D%(t) — 3y(t) = 3t + 4t* — 5 + E,(2tY) + cosa(t)

Solution

Solve each of the sub-parts:

o 'D%y(t) — 27 Dy(t) — 3y(t) = 3> + 4t — 5

oy (=4 | 2W2a+1)\ 4o | 15480(a+1)—T0(2a+1
n(t) = - +(?4+ 31‘((5:1)))t o P

o 'D2%y(t) — 27 D(t) — 3y(t) = E.(2t%)
yo(t) = %Ea(%a)
o TD2y(t) — 27 D%(t) — 3y(t) = cosa(t)

y3(t) = —cos, (1Y) — %sina(to‘)

hen ) =+ (4 + 52

+15+8F(a+13—7F(20‘+1) — %Eoz(2ta) — 08, (1Y) — %Sina(ta)

The general solution is

(0) = M EL(3) + AgBo(—%) — 0 4 (51 4 B go

3
Jr15+8F(oa+13—7F(2oz+1) — 1B, (2t%) — cosa (1) — Esing (t*)
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When ¢(t%) is a product of several terms :

when ¢(t“) is a product of basic functions, y,(t) is chosen based on:

1. y,(t) is a product of the corresponding choices of all the parts of

g(t%)
2. There are as many coefficients as the number of distinct terms in

Yp (t)

3. Each distinct term must have its own coefficient, not shared with

any other term.

Example 2.9.

D>y (t) — 27 D% (t) — 3y(t) = Eo(2t*)cos, (3t (2.15)

Solution
The corresponding homogeneous equation ” D**y(t)—27 D%y (t)—3y(t) = 0

Therefore, the complementary solution is

Ye = AlEa(3ta) + AQEQ(—Zfa)

Now,start with the basic forms of the corresponding functions g(t“)that
are to appear in the product, without assigning any coefficient. In the

above example, they are E,(2tY) and cos,(3t") + sin,(3t*)
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Multiply them together to get all the distinct terms in the product:
0S4 (3tY) Eo(2t%) + sing(3t*)E,(2t*) Then we insert the undetermined

coefficients into the expression, one for each term:

Yp(t) = Acosa(3t") Eq(2tY) + Bsing(3t%) E,(2t%)

We seek to determine specific coefficients A, B for which y, is a solution
of . Substituting y, and the Jumarie fractional derivatives,
TDY%,(t) = [(2A 4 3B)cosa(3t*) + (—3A + 2B)sin, (3t*)]| E.(2t*) and
TD*y,(t) = [(—5A + 12B)cos,(3t*) + (—12A — 5B)sin, (3t*)| E,(2t%)
into the given differential equation , we get

[(—12A + 6B)cos,(3t*) + (—6A — 12B)sin.(3t*)] E,(2t*)

= F,(2t")cos,(3t*) From the resulting system of equations,

—12A+6B=1 and —6A—-12b=0

we get A= 1—51 and B = %. A particular solution of the equation is
—1 a a L a a
yp(t) = ECOSQ(3t VEL(2tY) + %szna(?ﬂf VEL(2tY)

The general solution of the given equation is

—1 1
y(t) = A1 E4(3tY) +A2Ea(—ta)Ecosa(Sta)Ea(Qto‘) +%sina(3t°‘)Ea(2to‘)



54
The Rules-of the Method of Undetermined Coefficients

1. If g(t*) = AE,(at®) is a Mittag-Leffler function , the starting choice

for y,(t) is a Mittag-LefHler function.y,(t) = A; E,(at®)

2. If a fractional polynomial function appears in g(t%), the starting

choice for y,(t) is a generic fractional polynomial of the same degre

3. If either fractional cosine Acos,(at®) or fractional sine
Bsin,(at®) appears in g(t“), the starting choice for y,(t) needs to
contain both fractional cosine and fractional sine y, = A;cos,(at®)+

Assing (at®)

4. Tf g(t%) is a sum of several functions, g(t*) = g1 (t*) + g2(t*) + ... +

gn(t®),separate it into n parts and solve them individually.

5. If g(t“) is a product of basic functions, the starting choice for y,(t)

is chosen based on:

(a) yp(t) is a product of the corresponding choices of all the parts
of g(t%)

(b) There are as many coefficients as the number of distinct terms
in y,(t)

(c) Each distinct term must have its own coefficient, not shared

with any other term.
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6. Before finalizing the choice of y,(t), compare it against y.(t). If
there is any shared term between the two, the present choice of
Yp(t) needs to be multiplied by ¢“. Repeat until there is no shared

term.

2.3 Systems of linear a-order fractional differential equations

2.3.1 Homogeneous linear systems

Ref [4] had solved systems of two linear first a-order fractional differential
equations in two unknowns,but now we illustrate how to solve of n linear

first a-order fractional differential equations in n unknowns of the form

‘]Da r, = f1<t,331,$2,...,f£n>
JDa T9 — fg(t,ﬁlil,l'Q,...,xn)

(2.16)
TDx, = fo(t,x1,29,...,7,)

LINEAR SYSTEMS When each of the functions f;, ¢ = 1..n is a linear
function with constant coefficients,in the dependent variables x1, xo, ..., T,

then the system of equations has the general form
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J De ry = anxl(t) + a12£€2(t) + ...+ alnxn(t) + gl(to‘)
Dy = anzi(t) + anas(t) + ... + azxy(t) + g2 (t?)
(2.17)

TDYx, = amzi(t) + apazo(t) + ... + appry(t) + g, (tY)
When ¢;(t*) =0, i = 1,2,...,n, the linear system ([2.17)) said to be ho-

mogeneous; otherwise, it is nonhomogeneous.

MATRIX FORM OF A LINEAR SYSTEM
If X, A, G denote the respective matrices
(xl(t)\ (au aip . . . Gln\ (gl(ta)\

To(t) as1 @ . . . Gy go(t)

\ (1)) \@nt @z o \9:(t) )

then the system of linear first-a-order fractional differential equations

(2.17)) can be written as
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(xl(t)\ /an a12

To(t) as1 92

\xn(t)/ Kanl apa

or simply

DX = AX + G

. afln\

. QAon

)

If the system is homogeneous, its matrix form is

TDYX = AX

then to solve the system of fractional differential equation (2.18]) we use

(gl(ta)\

g2(t%)

(2.18)

the method similar to as used in classical differential equations.

To construct a general solution to (2.18]), assume a solution of the form
X = KE,(AtY) , where the A\ and the constant K vector are to be

determined. Substituting X = KE,(\t%) into 7D*X = AX , we obtain

MK E, (M) = AK E,(\M?) .
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After dividing out F,(A\t*) and rearranging, we obtain

(A—ADK =0 (2.19)

Thus to solve the homogeneous system of fractional differential equa-
tions " D*X = AX, we must find the eigenvalues and eigenvectors of A.
Therefore K E,(At%) is a solution of DX = AX provided that \ is an
eigenvalue and K is an eigenvector of the coefficient matrix A. In the dis-
cussion that follows we examine three cases: real and distinct eigenvalues

, repeated eigenvalues, and, finally, complex eigenvalues.

e Case I: Distinct real eigenvalues
Let Ay, A9, ..., A, be n distinct real eigenvalues of the coefficient
matrix A of the homogeneous system (2.18)) and let K7, Ko, ..., K,

be the corresponding eigenvectors. Then the general solution of

(2.18) is given by

X = A1 K1 Ey(Mt®) + AsKoEy(Aat®) + .. + AyKpEa(At®)

e Case II: Repeated eigenvalues

we have following cases:

1. For some n xn matrices A it may be possible to find m linearly
independent K7, Ko, ..., K{;;, corresponding to an eigenvalue \;

of multiplicity m < n eigenvectors.In this case the general
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solution of the system is
= [Al Ki+Ay Ky + ...+ A, km]Ea()\lta>

2. If there is only one eigenvector corresponding to the eigenvalue
A1 of multiplicity m, then m linearly independent solutions of

the form

rT = k’lEa(Alta)

To = [klI‘(a—H —l—]{ZQ]E ()\115 )
(2.20)

t(n—l)oc t(n—Q)a

Tm = e T R gar T T Fml Ea(Mt?)

where k; i = 1,2, ..., m are column vectors, can always be found.we

must have

(A =MDk =0 (2.21)

(A= MDky = &y (2.22)

(A= MDDk = ks

k1 must be an eigenvector of A associated with A\;. By solving
(2.21)), we find one solution x; = k1 E,(A\tY). To find the second

solution x2, we need only solve the additional system ([2.22)) for the
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vector ko and so on. In this case the general solution of the system is

X:A1x1+A2x2+...+Am5L’m

Case III: Complex eigenvalue
Let A be the coefficient matrix having real entries of the homo-
geneous system ([2.18]), and let k; be an eigenvector correspond-

ing to the complex eigenvalue A\; = p + iq, p and ¢ real, and let

B1 = Re(ky) and By = Im(ky)). Then

11 = [Bi1cosa(qt") — Basina(qt®)] Ea(pt®) (2.23)

To = [Bycosy(qt®) + Bising(qt®)] Ea.(pt®)

the general solution of the system

X = Alxl + AQ.’,UQ
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Example 2.10. Distinct Eigenvalues

Solve the initial-value problem

TD% =2z +y
TD% =z 4 2y 0 <a<lwithz(0)=2,9(0)=0
Solution

We first find the eigenvalues and eigenvectors of the matriz of coefficients.

From the characteristic equation

2\ 1
det(A — ) = =X A +3=(A—3)(A—1)=0
1 2—A

we see that the eigenvalues are Ay = 1 and Ay = 3

Now for \y =1, z's equivalent to

ki+ ke =0

ki + ko =10

Thus ki = —ko. When ki = 1, the related eigenvector is
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For Ay = 3 we have

—k1+ k=0

kl—kgzo

so k1 = ko ;therefore with ky = 1 the corresponding eigenvector is

1
ko =
1
The general solution of the system is
1 1
X =A4A EL(t%) + Ay E,(3t%)
—1 1

Putting the initial condition.x(0) = 2,y(0) =0

A+ Ay =2

—A1+A,=0

and solving we get Ay = Ay = 1. Hence the solution is,

2(t) = Eo(3t%) + Eq(t%)

y(t) = Ea(3t") — Ea(t?)
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Figure 2.2: solutions of fractional differential equation in Example for

x(t) and y(t) for different values of a = %, %, 1
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Example 2.11. Distinct Eigenvalues

Solve
TDY = o + 4z
DYy =2y
TDY% =3z +y — 32
Solution

O<a<l

Using the cofactors of the third row, we find

1—A
det(A—X)=| 0

3

0
2—A
1

4
0
—3—-A

A —2)(A—3)(A+5) =0

For A\ = 2 we have the corresponding eigenvector is

k1

N L

BN

For Ay = 3 we have the corresponding eigenvector is

o =

DO —
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And for A3 = —5 we have the corresponding eigenvector is
1
ks= 1 0

The general solution 1is

EN

Ea(2t%) + Ay | 0 | E(3t)

P 4>||
NO|—

+ A3 0 Ea(—5ta)

Example 2.12. Repeated Eigenvalues

Find solution of the system

TD% =4z —y
TD% =z + 2y 0 < a < 1withz(0) =2,y(0) =1
Solution

We first find the eigenvalues and eigenvectors of the matrix of coefficients.
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4 -\ -1
det(A— M) = =A=-3)(A=3)=0
1 2—-A
1
For Ay = Ay = 3 we have the corresponding eigenvector is K1 = Thus
1
from we find
1
T1 — Ea(Bta)
1

We find from that we must

(A — 3Dk, = K,
1 —1 ai 1
1 -1 as 1

The row of the last matriz means a1 — as = 1 or ay = as + 1 by choosing

1
a1 = 1, we find as = 0. Henceky = Thus from (2.20) we find
0
g [ RACNCYO N i WoNETD
To = —F,(3t%) + o (3tY).
1] Dla+1) 0
The general solution is
x 1 1 o 1
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Putting the initial condition.x(0) = 2,y(0) =1

and solving we get Ay = Ay = 1. Hence the solution 1is,

- ]
He=|—" 49| E.(3t°
z(t) Tot+a) (3¢%)
2 .
H=|—"" 41| E. (3t
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t t
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Figure 2.3: solutions of fractional differential equation in Example|2.12| for

x(t) and y(t) for different values of a = %, %, 1

Example 2.13. Repeated Figenvalues

Find the general solution of the system

TD% =2 — 2y + 22
TDY% = =22 +y — 22

TD% =22 4+ =2y + 2 0<a<l

Solution

We first find the eigenvalues and eigenvectors of the matriz of coefficients.

1-X -2 2
det(A—X)=| —2 1-x —2|=0Q+1)*A-5)=0




69
We see that\i = Ay = —1land A3 =5
2ky — 2ko + 2k3 =0

—2k1 + 2ky — 2k3 =0

2k1 — 2ky + 2k3 =0

Thus ki — ko + k3 = 0or ki = ko — ks.The choices ks =1, k3 = 0 and

ko =1, ks = 0 yeeld, in turn,k; = 1 and k1 = 0.Thus two eigenvectors

corresponding to Ay = —1 are
1 0
Ki=11 and  Ky=]1
0 1

1= |1| Ea(—tY) and xo = | 1| Eao(—1t)
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corresponding to the same eigenvalue. Last, forA3 =5

—4ky — 2y + 2k =0
— k) — dky — 2y =0

2ky — 2ky —4k3 =0

Thus ko = —ks and ki = k3. Picking ks = 1 gives ki = 1, ky = —1; thus

a third eigenvector s

Example 2.14. Complexr Eigenvalues

Solve the initial-value problem

TD% = 3z + 2y

TDY% = 5z +y 0 < a < 1withz(0) =2,y(0) =1
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Solution

First we obtain the eigenvalues from.

3-A 2
det(A — \I) = = A2 —4X4+13=0
—5 1-—)\

The ergenvalues are \y = 2+ 31 and Ay = A = 2—3i. For )\ the system

(1= 3i)ky + 2ky = 0

—5k; — (14 3i)ky =0

—1-3¢
)

gives k1 = ko.By choosing ko = 1, we get

K= °
1
Now from we form
-1 -3
B; = Re(Ky) = | ° and ~ By=Im(Ky)=|°
1 0

the general solution of the system is

T = 5
= A * | cosa(3t%) = | 7| sina(3t) | Ea(2t%)
y 1 0
-3 —1

+ A, * | cosa(3tY) + | P | sina(3t%) | E.(2t)
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Now the initial condition , x(0) = 2,y(0) = 1 yields the algebraic system
%Al + %3142 = 2and Ay = 1, whose solution is A; = 1 and Ay = _TH

Thus the solution to the problem is

2 4
x (6% § N « (6%
= 054 (3t%) + sing (3tY) | Eo(2t%)
—11
Y 1 =5
1074
1074
K
15x%107
(9
. (g
1.x 10
3.x10%
o . . = ,
0 0.5 1 13 2
3
— =L
73
100
300
=1 -100
200 i
100 -1304
0 7 200
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-800+

-1000+

— o=l — ol

Figure 2.4: solutions of fractional differential equation in Example|2.14| for

x(t) and y(t) for different values of a = %, %, 1

2.3.2 Non-Homogeneous linear systems

The general solution of a non-homogeneous linear system

DX = AX +Gis X = X, + X, , X, is the complementary func-
tion or general solution of the associated homogeneous linear system
TD*X = AX and X, is any particular solution of the non-homogeneous
system. In Section 2.3.1 we show how to obtain X, when the coefficient
matrix A was an n x n matrix.In this section we used methods of Unde-

termined coefficients for obtainingX,.

Method of Undetermined Coefficients

As in Section 2.2, the method of undetermined coefficients consists of
making an educated guess about the form of a particular solution vector
X,, the guess is motivated by the types of functions that make up the

entries of the column matrix G. Not surprisingly, the matrix version of
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undetermined coefficients is applicable to 7 D*X = AX+G only when the
entries GG are fractional polynomials, Mittag-Leffler function, fractional

sines and cosines, or finite sums and products of these functions.

Example 2.15. Solve the system

x 6 1 x 6t
JDa 1 — L +
) 4 3 ) —10t* + 4

Solution

The eigenvalues and corresponding eigenvectors of the associated homo-

6 1
geneous system D )= ) are found to be Ay = 2,M9 =7,
) 4 3 )

1 1
K, = ( ),Kz = ( ) . Hence the complementary function is
4 1

1 1
X.= A4 E,(2t%) + Ay E,(Tt%)
—4 1
6
Now because G can be written G = t* + , we shall try to
—10 4

find a particular solution of the system that possesses the same form:
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Substituting this last assumption into the given system yields

From the last identity we obtain four algebraic equations in four un-

knowns
6as + by +6 =0 6a1+b1—a2F(a+1):0
4as + 3by — 10 =0 4a1—|—3b1—bzr(04+1)+4:0
Solving the first two equations simultaneously yields as = —2,bo = 6. We

then substitute these values into the last two equations and solve for a,
and by. The results are ay = (v + 1)+ 2, by = Z[(a+1) — 2 . It

follows, therefore, that a particular solution vector is

—2 SP(a+1)+2
X, = P
6 2—72F(04+1)—1—72

The general solution of the system

1 1 —2 ST(a+1)+ 2
X =A E,(2t")+ A, E,(Tt%)+ "+
—4 1 6 Zl(a+1) — 2

Example 2.16. Determine the form of a particular solution vector X,
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for the system

D% = 52 + 3y — 2E,(t*) + 1

D% = —x +y+ E,(t%) — 5t + 7

Solution

The eigenvalues and corresponding eigenvectors of the associated homo-

5 3
geneous system 7 D? )= ) are found to be A\ = 4, g = 2,
) -1 1 T

-3 —1
K, = ( ),K2 = ( ) . Hence the complementary function is
1

3 —1
X, = A B (4t) + Ay E,(2t)
1 1

Because G can be written in matrixz terms as

bg b2 b 1

The method of undetermined coefficients for linear systems is not as
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straight forward as the last examples would seem to indicate. In Example
(2.16)) if we replace E,(t*) in G by E,(2t*) (X is an eigenvalue of A),then

the correct form of the particular solution vector is
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Chapter 3

Fractional Shifted Legendre Polynomials
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Legendre polynomials are defined on the interval [—1,1] and can be

determined with the aid of the following recurrence formula[l9]

J .
L; —— L =1,2, ..
< ](Z) ]"‘1 7 1(25) J ) &

where Ly(z) = 1 and Li(z) = z. In order to use these polynomials on the

interval ¢t € [0, L] we define the so called shifted Legendre polynomials by

introducing the change of variable z = % — 1. Let the shifted Legendre

polynomials L;(2 — 1) be denoted by P;(t). Then P;(t) can be obtained

as follows:
27+ D(EF - 1) j
Pia(t) = j +i Py(t) — mpj—l(t)
where Py(t) = 1 and P(t) = % — 1 . The analytic form of the shifted

Legendre polynomials P;(t) of degree j given by:
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2
t t
P=6(~) —6=-+1
2 6(L> 6

3 2
t t t
—20(~) —30(~) +12(~) -1
m=0(z) 0 (z) o2 (7)
Note that P;(0) = (—=1)* and P;(L) = 1. The orthogonality condition is
[2]:

for 1=
0 for 1+#£j

The function x(t), which is a square integrable in [0, L], may be expressed

in terms of shifted Legendre polynomials as:

X(t) - Z Cipi(t)

1=0

where the coefficients C; are given by:
1
C;=(2i+ 1)/ X()P(t)dti = 1,2, ...
0

In practice, only the first (m+1)-terms shifted Legendre polynomials are

considered. Then we have:

Xo(t) =) CiPi(t) (3.1)

Now,we will approximate the Jumarie modified fractional derivative by
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shifted Legendre polynomial.

Xn(t) =) CiP(t)

1=0

TDY( X, (1)) = i C; "D Pi(t)
1=0

m 7

+i k+1i)! o
=2 G (-1 L’f(z'(—Z)!)(k!)Q e

1=0 k=0

Thus

Where wf is given by :

wf‘k — (—1)k+i Lk(i _ k)!(k!)F(k +1-— oz) !

(3.2)

(3.3)

Example 3.1. Consider the case when z(t) =3 , m = 3 and a = 0.5,

the series of 3 is:
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3
1 9 1 1
2 =Y CPi(t) = ~Py(t) + =—Py(t) + = Po(t) + —Ps(t
> CiPlt) = R0 + 5Pl + PO + 3P0
3 X 1
I =33 O,
1=0 k=0
L 1 L —1 ! 2 ! 1 ! —6
Woo = /1y Wio = ~1yv Wil = 73y Woo = 1y Wa1 = 3y
rip)" 7 T Y TG I'(3) r'(3)
1 12 1 —1 1 12 1 —60 1 120
22 = v W30 = 1y Wi T » W39 = v W33 = =7y
r'G3) I'(3) r'(3) L) L(3)
Therefore :
I'(3)
TD approxzimated by shifted Legendre polynomial equal the analytic
fractional derivative Y Dt = gg;‘))t% = %té by(1.5
2 2

Numerical solution of Nonlinear a-Order Fractional Dif-

ferential Equation Using Shifted Legendre polynomial

In this section, we will use the shifted Legendre polynomials to approxi-

mate solution of nonlinear fractional a-order differential equation

Example 3.2. Consider the following fractional differential equation:

TD(t) = —u®(t)+1  w(0)=0, 0<a<l (3.4)
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The exact solution, when o =1, s

et — 1

:e2t+1

u(t)

In order to use the shifted Legendre polynomials method, we first ap-

prozimate u(t) as

u(t) =Y CiBi(ty) (3.5)
From Eqgs.(3.4)) and (3.3), we have

1=0 k=0

We now collocate Eqs.(@ at m points as:

m ) m 2
DY Crufth =— (Z CZ-B(tp)) +1 (3.7)
i=0

1=0 k=0

For suitable collocation points we use the roots of shifted Legendre poly-
nomial Py (t). Also, by substituting Eq.(3.5) in the initial conditions
u(0) =0, we can find

Z(—l)ici =0 (3.8)

Equations and @, give (m + 1) of non-linear algebraic equations
which can be solved using the Newton iteration method, for the unknowns
a; ,1 =0,1,...,m This is a nonlinear system of algebraic equations.

The numerical solution, for m = 8, is shown in Figure .



84

T
[} 02

T T
04 06

— Numerical solmtionfor o= 5 — = Numerical solmionfor o.= 75
Numerical solutionfora=1 *

= Exact solution for a=1

Figure 3.1: The behavior of the exact and approximate solution of example

with m = 8
t a=25 a=.75 a=1 Eract s — Un|error

1| 0.3381606335 | 0.1899465355 | 0.09966790365 | 0.09966799462 | 9.097 107°
.2 | 0.4241413039 | 0.3071555379 | 0.1973754023 | 0.1973753202 8.2110°°
3 | 0.5088055209 | 0.4033754164 | 0.2913126467 | 0.2913126125 3.4210°°%
A 0.5591782979 | 0.481450290 | 0.37994858411 | 0.3799489623 1.212107°
5 | 0.5840484209 | 0.543860843 | 0.4621171644 | 0.4621171573 711077
6 [ 0.6169471519 | 0.596465471 | 0.5370496876 | 0.5370495670 | 1.206 1077
T 0.6521833639 | 0.6416953329 | 06043677308 | 0.60436T777T1 463107%
81 0.6646549159 | 0.678526912 | 0.6640366921 | 0.6640367703 7.8210-%
0106791947179 | 0.709265802 | 0.7162979656 | 0.7162978702 9.5410°%
1 | 0.6902414599 | 0.736244942 | 0.7615941560 | 0.7615941560 0

We can see the numerical solution is in very good agreement with the

exact solution when o =

that the solution for a« = .5 and o = .75 s also credible.

1(maz error= 1.212 1077). Therefore, we hold

Example 3.3. Consider the following fractional differential equation:

TDu(t) =

2u(t) — u?(t) + 1

u(0)

=0, O<a<l

(3.9)
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The exact solution, when o =1, s

u(t) = _71 (—\/§ + 2 tcmh(% (V2 a,rctanh(% V2) — 2t) \/§)> V2

The numerical solution, for m = 8, is shown in Figure (3.3).

ufg)

0 02 04 0.6 08 1
t

Niumerical solutionfor o=.5 — — Numerical solutionfor v=75
Numerical solutionfor o=1 + - Exact for 0=1

Figure 3.2: The behavior of the exact and approximate solution of example
with m = 8

We can see the numerical solution is in very good agreement with the
ezact solution when o = 1(mazx error= 1.248 107%). Therefore, we hold

that the solution for a = .5 and o = .75 is also credible.

All numerical results are obtained by using Maple 2017
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! = .5 a =79 a=1 Eract lua — un|error
1| 0.5930405854 | 0.2435496386 | 0.1102958617 | 0.1102951980 | 6.637 107
21 0.919158542 | 04706262447 | 0.2419759117 | 02419768004 88871077
3| 1172138698 | 0.7062798847 | 0.3951044304 | 0.3951048494 | 4.190 1077
A | 1347573710 | 0.935667539 | 0.5678141860 | 0.5678121670 | 2.0190 10~°
5| 1467139243 | 1.145767479 | 0.7560142262 | 0.7560143945 | 1.683 1077
6| 1566199492 | 1.331260760 | 9535634551 | 0.9535662170 | 0.27619 10~°
T L649424880 | 1489969269 | 1.152950216 | 1.1520948968 1.248 10°°
A LT0488TO49 | 1.621252974 | 1346365887 | 1.346363656 2,231 107°
A | LTH288TI8T | 1728783296 | 1.526908275 | 1.526911314 3.03910°°

1| 1.791528286 | 1.817121395 | 1.GBO498390 | 1.GRD498392 21077

3.2

Optimization problem using fractional Shifted Legendre

Polynomials

In this section, we apply fractional shifted Legendre polynomial method
to approximate the optimal policy for a non-linear optimization problem
and its corresponding system of the fractional differential equations.

Consider the non-linear programming problem with equality constraints

defined by
(@) (3.10)
st gi(x)=0,i=1.n
To obtain solution of [3.10, One of the most effective methods for solv-
ing is the quadratic penalty function method.Which turns a constrained

optimization problem to an unconstrained [I]. The quadratic penalty
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function for this problem is given by [19]

minF(x,B) = f(x) +

N

> (0i@))?

(3.11)

Consider the unconstrained optimization problem(3.11} an approach based

on fractional dynamic system can be described by the following FDEs

TDY%(t) = =V, F(x,B) 0<a<l
With initial conditions z(ty) =¢;,i =1,2,....,n
Algorithm to choose 8 (an auxiliary penalty variable)
1. Given By > 0, and a tolerance (tol)
2. For k=0,1,2,...
3. If [VgF(z, )| < tol stop
4. Else, Brr1 > Br and find a new x4

Example 3.4. optimization problem

Consider the following non-linear programming problem

minimize f(z) = 2u + 5v + 3u® + 3uv + 20

subject to g(x) =u — v — 2

The optimal solution is (u = 0.4375,v = —1.5625).

(3.12)

(3.13)

(3.14)
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For solving the above problem, we convert it to an unconstrained op-

timization problem with quadratic penalty function , then we have

F(m,ﬁ):2u+5@+3u2+3uv—|—21}2—|—g(u—v—2)2

The system of FDFEs from 15 defined as

Dy = —6u—3v—2—pF(u—v—2
g ) (3.15)
D = —3u—4v -5+ B(u—v—2)

u(t) and v(t) be approrimated by shifted Legendre polynomial as

u(t) = Z a;P(t)  v(t) = Z bi (1) (3.16)

From Eqs. and , we have

zm: ZZ: a; wiy, th—a _ g zm: a; Pi(t) — 3 zm: b Pi(t) — 2
i=0 k=0 P —
—BQ_aPi(t) = Y biP(t) ~2) (3.17)
t=0 t=0
i ) blw?ktk—a:_giaiﬂ(t)—4ibzpl(t)_5
1=0 k=0 +—0 —0
+ B aibi(t) = Y _biP(h) - 2) (3.18)
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We now collocate Egs. (3.17)and at m pointst,(p =0,1,...,m) as:

DY aiuw i =—6> aiP(t,) —3> biPi(t,) —2
1=0 k=0 t=0 t=0
— B aiP(ty) = > biRi(t,) —2)  (3.19)
t=0 t=0
biwdy i = =3 " a;Pi(t,) —4) bPi(t,) — 5
i=0 k=0 t=0 t=0
+ B0 aiP(t,) = Y biPi(t,) —2)  (3.20)
t=0 t=0

For suitable collocation points we use the roots of shifted Legendre poly-
nomial Py (t). Also, by substituting Eq.(3.5) in the initial conditions
u(0) =0wv(0) =0, we can find

i(—lm =0 i(_l)ibi =0 (3.21)
i=0 i=0

FEquations (3.19) ,(3.20)and , give (2m + 2) of non-linear algebraic

equations which can be solved using the Newton iteration method, for the
unknowns a; and b; 1 =0,1,...,m.
Now we use the algorithm to choose (B,and we use the shifted Legendre

polynomial with m = 12 ata=1 ,t=1
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5 u v Vs F(z, B)]
2 10.4445140271 | —1.568818815 | 8.888193790 10~°

4 1 0.4432596091 | —1.569007361 | 7.52392765 10>

6 | 0.4416799708 | —1.567233662 | 3.972642663 10~°

8 | 0.4407959401 | —1.56617236 | 2.427860244 10~°

10 | 0.4404486199 | —1.56548312 | 1.759276972 10~°

12| 0.43978238 | —1.56506230 | 1.173546215107°

14 | 0.43924356 | —1.564678701 | 7.692065675 10~°

16 | 0.4401927101 | —1.564876371 | 1.284779109 10~°

18 | 0.43909649 | —1.564509911 | 6.503064085 107°

20 | 0.4397366899 | —1.562921089 | 3.531894606 10~

21 | 0.4390099799 | —1.562884609 | 1.794733740 105

22 | 0.4371246199 | —1.56437798 | 1.128903380 10~

23 | 0.4373339701 | —1.56052865 | 2.284196632 10~

24 | 0.43659889 | —1.559938081 | 5.996284925 105

25 | 0.43630631 | —1.559749569 | 7.77804523 10~°

Best 3 = 22 when |V3F (z,8) = 1.128903380 10~°]
Now we use the Algorithm to choose [3,and we use the shifted Legen-

dre polynomial with m = 12 at o= .8 ,t =1



Figure 3.3: The behavior of approximate solution of example using shifted
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T J 1
0.8 1

PEICRTY v

Legendre polynomial with m = 12 at a =1 at 3 = 22

B u v VF(z,B)|
0.3941391146 | 1.460271379 0.01059815213

2 | 0.420906271 | —1.496528909 | 0.003408474751
3 | 0.431636597 | —1.51182914 | 0.001598061446
4 10.4362763401 | —1.519029559 | 0.0009987813320
5 | 0.4402324501 | —1.521178839 | 0.0007445443085
6 | 0.44135513 | —1.523260809 | 0.0006260158865
7 10.4415458699 | —1.52597994 | 0.0005272865080
8 10.4402697699 | —1.52325607 | 0.0006651821740
9 | 0.43404604 | —1.52347114 | 0.0009023949975
10 | 0.43487325 | —1.521203091 | 0.0009646439100

Best § =T when |VzF (z, 8)| = 0.0005272865080
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Figure 3.4: The behavior of approximate solution of example using shifted
Legendre polynomial withm =12 at a = .8, 3 =7

The numerical comparison among (o = .8) with (o = 1) this shows
that (a = .8) perform rapid convergency to the optimal solutions of the

optimization problems.

Example 3.5. optimization problem

Consider the following non-linear programming problem

minimize f(z) = 100 (u? — 0)? + (u — 1) (3.22)

subject to g(z) = u(u —4) —2v+12=10 (3.23)

The optimal solution is (u = 1.99937524420685, v = 4.00000019515963).
For solving the aboveproblem, we convert it to an unconstrained opti-

mization problem with quadratic penalty function (3.11), then we have

F(x,8) = 100(u* — v)? + (u — 1)* + g(u(u —4) — 20+ 12)?
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0 0.003 0.010 0.013 0.020

Figure 3.5: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at « = 1,8 = 99

T T T T T : T T T T T T T T T T T T 1
] 0.003 0.010 0.013 0.020

Figure 3.6: The behavior of approximate solution of example using shifted
Legendre polynomial with m = 12 at «a = .9 , 3 = 130

The numerical comparison among (« = .8) with (o = 1) this shows
that (o = .8) perform rapid convergency to the optimal solutions of the
optimization problems.

In this section, we implemented numerical methods for solving the sys-
tem of fractional differential equations which generated from the NLP
problem. Our proposed methods using Jumarie modified , in Ref [19]
proposed methods using Caputo . The properties of the Legendre poly-

nomials are used to reduce the system of fractional differential equations
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to the solution of system of algebraic equations. From illustrative exam-
ples, it can be seen that the proposed numerical approaches can obtain
accurate and satisfactory results. All numerical results are obtained us-

ing Maple 2017.
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Chapter 4

Non-Differentiable Points of a Function
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4.1 Characterization of Non-Differentiable Points of a Func-

tion by Jumarie modified Fractional Derivative

For differentiable functions the Jumarie modified definition (both left
and right) of the fractional derivative gives the same value at any par-
ticular point but for functions having non differentiability at some point
gives different value for the left and right Jumarie modified. The differ-
ence in values of the fractional derivative at the non differentiable points

indicates the Phase transition at the non-differentiable points [13].

Example 4.1.

fit)y=t+3 a<t<b

By using the Jumarie modified definition we obtain for The left Jumarie
modified definition(1.1)

JDa _ — — 1
f(t) = T — o)t t 7)) *[T+3—(a+3)dr 0<a<
1 d
l—ad_ (t —7) %1 —aldr
1 d af
T —ajd ), (t—T —(t—=7)+ (t —a)ldr



_ (t . a/)lfoz

['(2 - «)
Therefore ) + , sty _ gy (bseyine
DI = M=o TC-a

Again using our right Jumarie modified definition we obtain

-1 d
F(l — a) dt

IDY (L) = /b(T—t)_a[(b—l—3)—(T—|—3)]dT 0<ax<l

b

1—adt (T—t “b—Tl|d

b
1_adﬁ/17—t b—1)— (r — 1)]dr

:F(l_——loz)di /tb (1 —1)" a+1dr+/tb(7—t)‘a(b—t)d7
—1 d[-0b-t)* (b-t)*
T(l—a)dt| 2—a i 1—04}
-1 d[ (-t
i |

X

F(l—a) (2—a)(l —«
b—tl a]
(1—a)

:Fl—a
_(b—t)l a
CT(2-0a)
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Therefore
a+b) (b— (GTH)))l_ ( 2 49
['2— ) F(2 «)

Dy f(

Thus in both the cases (for left and right Jumarie modified fractional

(“TH)) s equal. Thus for continuous and differen-

b—a\l1—«a
tiable functions both the values are equal, and is equal to (Fé)a)

derivative) value of f

Example 4.2.

8t+2 0<t<.5
ft) = (4.1)
12t 5<t<1

The fractional order derivative using left Jumarie modified definition is

o When 0<t<.5

O"Df‘f(t):r(ll_a)%/o(t—f) o[(Sr42)—2dr 0<a<1
_ ml_&)%/o (t — 7)[8r]dr
:F(ll_a)%/o(t—ﬂ -8(t — 7) + 8t]d
1 d -8 s
T T(l—a)dt | 2—« +1—04]

I 8t*
T T(1-a)dt _(1—04)(2—@)}
_ 1 [ 82— ]
I'l—a) |(1-a
8t17a
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o When .5 <t<1

1 d rr.5 t
J pHa — —
DAf(t) = ——— t— 87)d t— 127 — 2]d
S0 = ey || €=+ [ = nepze 2
1 d | [P —71)0=8(t — 1)+ 8t]dr
PL—a)dt || 11— ry=a[120 — 2 — 12(1 — 7))dr
- 1 d 8(t—.5)2::8t —a 4 f8t(t—.51)_;a+8t —a
B ['(1—«)dt +(12t—2)(t—.5)1_“ _12(t-5)
11—« 2—a
8t 4 4(t — 5)
B ['(2—«)
Therefore
R 0<t< .5
6] I'2—a - -
DR =1 (42)
e 5<t<1

The function f(t) is not differentiable at t = % but a—order left Jumarie

1I\l1-«
modified deriwative at t = % exists and equal to ?ﬁ(é)i ) The graphical pre-

sentation of { D} f(t) for different values of alpha is shown in the figure-
, from the figure it clear that { DS f(t) exists at the non-differentiable

- _ 1
pont t =3
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Figure 4.1: Graph of the function J D¢ f(t) for different values of alpha.

The fractional order derivative using right Jumarie modified Frac-

tional Derivative definition is

o When 0<t<.h

[ Dg f(t)

405 — B 4 12(1 — ¢yl

[2(r = t)=°[10 — 87)dr

|+ [5(7 — )12 — 127]dr

_ f;B(T —t)"[=8(1 —t) — 8t + 10]dr
|+ [e(r =) [=12(7 — t) — 12t 4 12]dr

—8(.5—t)2~«
2—«

—8t(.5—t)l—«
11—«

10(.5—t)t—«
11—«

_|_

—12(1-1)*7*+12(.5—t)*
2—«a

_|_

—12t(1—t) *+12¢(5-t)'
-«

+

+

12(1—t)=>—12(.5—¢)1

_|_

11—«

['2-—a)
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o When .5 <t<1

1 d !
JDa :——/ —t) 412 — 12 1
T Do f(#) el t<T )7 Tldr 0<a<
B —1 d /1( t)ia[ 12( t) 12t + 12]d
- T(1—a)dt ), ' ' '
) 4 q ftl _12(7_ . t)—a+1d7_
P(1—a)dt | [ =) (=12t + 12)dr
_ b o df-0-nre (12641201 -5
CTl-a)dt| (2-a) 1-a)
12(1 — )=
I'2—«)
Therefore
e ) e 2 € ) W WP R AP
T D0 F (1) = . 132—04) (4.3)
12(1-t)" = 2<t<1

r'(2—a)

From figure it is clear that the right Jumarie modified derivative
12(3)'~

erist at t = 5 and equal to ﬁ Thus; though the considered function
1s not differentiable at t = = but its right modified fractional derivative
exists and its value is tDO‘f(l) = 12§ 2" hich differ from the value

a)
ng‘f(T) = 8<(1)1 aof the derivative at t = % obtained by left Jumarie mod-

ified derivative . Here the difference indicates there is a phase transition

from the left hand to the right hand side about the point t = 5 and the

131
degree of phase transition is 11{((22)_05)
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Figure 4.2: Graph of the function ] D¢ f(t) for different values of alpha.

Example 4.3.

at+b p<t<gq
f(t) = (4.4)
cd+d g<t<r

The function f(t) is continuous at t=q such that aq+b = cq+d but not
differentiable at that point [16].

o Left Jumarie modified 0 < a <1

LDR10) = et [ €= 1)l 40 = 0o
- / (=) la(r - p)ldr
- L N % /pt(t — ) —a(t — 1) + a(t — p)ldr
- 1_ a)% [/pt —a(t — 1) dr + /pt(t —7)"la(t — p)ldr
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1 df-a(t—-p)  alt—p)*°
T Tl-a)dt| 2-a L ]
B 1 dJ[ alt—p?**° ]
CT(l—a)dt |[(1—-a)?2—a)
_a(t—p)'
['2 - a)
e Right Jumarie modified
700 F(t) F(l_—l n % /tT(T O er +d— (cr+d)]dr 0<a<l
= F(l_—l o) % /tT(T —t) *c(r —7)|dr
_ F(l_—l a)% [ /t e(r — )y /t (v — £y e(r — t)]dT]
I [—c(r —t)> %  c(r —t)? @
T T(l-a)dt| 2-a L ]
=1 d [ oe(r—t)Fe
_Fﬂ—aﬂﬁjl—®@—aJ
_ c(r —t)l-
['(2—«)

e phase transition at point t = q

¢—p) " —clr—g""

_
P1= I['2-—a)
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Example 4.4.

at? +bt+c p<t<yg
f(t) = (4.5)
g’ +ht+m qg<t<r

The function f(t) is continuous at t=q such that ag*+bq+c = g¢*+hq+m

but not differentiable at that point [16] .

o Left Jumarie modified 0<a <1

1 d [
P‘{Df‘f(t) :—F(l—a)af (t — 1) *[(a* + br + ¢ — (ap® + bp + ¢)|dT
p
1 d ' - 2 2
:ma (t —71) “at® + br — ap” — bp|dr
p

1 t a(t —7)2 — (b4 2at)(t — T
) ‘f/u—Tra (t=r) = (b+2at)t =7)|
P +bt — ap® — bp + at?

__t 4 [ e T S e TR
F(l — a) dt 3—a 2—a -«
1 ] ]
— —aa(t—p)?—@ a(b+2at)(t—p)t—2 —a
= Py [P OB (g ap ) (¢~ )]

o Right Jumarie modified 0 <a <1

a —1 d ' —a
Z]Drf(t) = ma/t (T—t) [g?“2+h7“—|—m— (972+h7'+m)]d7'
-1 d

- - = )@ 2 hr — 2—h d
F(l—oz)dt/t(T )" “gr® + hr — g1 Tldr
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dr

1 i/r(T—t)_o‘ —g(t —t)> = (h+2gt)(T — t)
)dt J; +hr + gr® — ht — gt?

_ _—1i [—Q(T—t dme (h2gt)(r—t)* + (hTJrg?“z—ht—th)(?“—t)l_a}
F(l _ @) dt 3—« 2—a 1—a
1 2—« 11—«
— o(r— a(2gt+h)(r— —a
= Ty S AU (gt gt ) 1)1

1| TR S o ag e ) (g - )
o — a(r—gq)%— « r—g)l—@ -
'l—a) | g (2_2 _ (2gq+f)_(a D (gq+ gr+h)(r — q)!
Example 4.5.
at +b p=t=<gq
f(t) = (4.6)

g +ht+m q<t<r

The function f(t) is continuous at t=q such that ap +b = gq*> + hq + m
but not differentiable at that point [16].

o Left Jumarie modified
a(t —
D7 f(t) = e —n -

e Right Jumarie modified

le} 11—«

[ D f(t) = |geb72 | o@D (gt 4 g+ h)(r — t)l—a}

e phase transition at point t = q



106

alg—p)'~*  ga(r—¢)*~*  a(2gq+h)(r—q)'~“

o 1 11—« 2—« 11—«
PT = i o
-(9q+gr+h)(r-q)

Example 4.6.

at>? +bt+c p<t<gq
f(t) = (4.7)
ht +m g<t<r

The function f(t) is continuous at t=q such that ap +b = gq*> + hq + m

but not differentiable at that point

e Left Jumarie modified

1 —aoz(Qt:é))z_a + af

['(1—«)

b+2at)(t—p)t—2
l1-a

ZDIf(t) =
t +(at 4+ ap + b)(t — p)t~°

e Right Jumarie modified

h(r —t)t-@

e phase transition at point t = q

alg=p)'~*  ga(r—¢)**  a(29q+h)(r—q)'~“

PT _ 1 11—« 2—« 11—«
—(9q+ gr + h)(r —g)'

4.2 Application of Jumarie modified Fractional Derivatives in

Characterization of Electrocardiogram (ECG) graphs

In this section we shall characterize non-differentiable points of ECG

graphs using left and right Jumarie modified definitions of half order
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fractional derivatives and the Phase Transition (P.T.) at that point. In
this section we also find the mean and standard deviation of all non-
differentiable points of ECG to get a better solution to interpret this
type of ECGs.ECG is the pictographic representation of electrical charge
depolarization and repolarization of the heart muscle.There are several
types of heart diseases such as right ventricular hypertrophy, left ventric-
ular hypertrophy, right bundle branch block etc. Which can be detected
by finding level of phase transition at some particular leads of patients
ECGs. Our main objective find some measures which will help the med-
ical experts to diagnose right ventricular hypertrophy (RVH) and left

ventricular hypertrophy (LVH) from patients ECG [16],[17]

An ECG lead is a graphical description of the electrical activity of
the heart and it is created by analysing several electrodes. The standard
ECG which is referred to as a 12-lead ECG . These 12 leads consists of
two sets of ECG leads: I, II, ITI, AVR, AVL, AVF are obtained from the
limb leads and V1,V2, V3,V4, V5, V6 are obtained from the chest leads.

Leads I, IT and VL look at the left lateral surface of the heart, leads III

and VF at the inferior surface, and lead VR looks at the right atrium [6].



The six V leads (V1V6) look at the heart in a horizontal plane, from
the front and the left side. Thus, leads V1 and V2 look at the right
ventricle, V3 and V4 look at the septum between the ventricles and the
anterior wall of the left ventricle, and V5 and V6 look at the anterior

and lateral walls of the left ventricle [6].
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Right ventricular hypertrophy (RVH)
Right ventricular hypertrophy is a heart disorder characterized by thick-
ening of the walls of the right ventricle. It can be caused by excessive

stress on the right ventricle [16].

The limb lead criteria of RVH in ECG are as follows [18]:

1. R wave in V1 lead + S wave in V5 and V6 lead is>10.5mm

2. R wave in V1 lead > 7 mm

w

. R/S ratio in V1 lead > 1 mm

4. S wave in Vb or V6 lead > 7 mm

Ot

. R/S ratio in V5 or V6 lead <1 mm

Left ventricular hypertrophy (LVH)
Left ventricular hypertrophy is a heart disorder characterized by thick-

ening of the walls of the left ventricle.

The limb lead criteria of LVH in ECG are as follows[1§]:
1. Rin V5 or V6 + S in V1 or V2 >35 mm
2. Rin V5 or V6 >25 mm

3. Sin V1 or V2 >25 mm

Application of fractional derivative in ECG Graph:
Now we have to study the non-differentiable points of the QRS com-

plex in ECG leads with the help of fractional derivatives to compare
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normal ECGs with abnormal ECGs (RVH,LVH).Here we have to find
out the half-order fractional derivative (both left and right) and cal-

culate the corresponding Phase Transition values(P.T) by using exam-

ple(@ 3|44 5|1.6).

If Q or S point smooth at QRS complex of any lead of the ECGs
under consideration then we cannot find the Left and Right Fractional
Derivative at that point. We have denoted those cases by 'NA’ i.e. 'Not

Arise’ [16].
e compare normal ECGs with abnormal ECGs (RVH).

Since RVH is characterized by R and S wave in V1, V5 and V6 leads.
Thus we compute P.T. values at non-differentiable points only at those
leads.So our concern is to find any distinguishing measurements of P.T

values at non-differentiable points on those leads ,to compare the prob-

lematic ECG (in our case RVH) with normal ECG.
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Examples (4.7[4.8][4.10[4.11]) Taken from [16],But these examples(4.9}4.12)

of my work.

Example 4.7. Normal ECG

{71 | ' '
. (EEIEHREE ’ | { V5 |
Ry Y | 1] .

l l -J"';."/rll‘hml’f"‘-‘-—-ﬂ\Jr’; ._.m\:_',.,f\\ A"\:.""J‘ \ .,f’j’

QRS RinV1|SinV1|RinV5|SinV5|Rin V6 |Sin v6

1 4 9.5 18 21 14.5 15
2 4.5 10.5 18 21 14.5 15
3 18 20.5 13.5 14

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6
> 7 mm whereas % in V1 < 1, and in V5 and V6 < 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.



Table 4.1: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads
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P.T of VI | P.T of V5 | P.T of V6

Q | 6.383076 | 30.244018 | 25.489442
LIR | 21542883 | 62231996 | 40.064340
S | 25.532306 | 36.896290 | 20.117226

Q | 5.077706 | 30.319613 | 21.243420

21 R | 21.833282 | 52.419806 | 42.820167
S | 24.734422 | 28.483269 | 25.230477
Q B 31.915382 | 25.239477
‘IR B 61.437111 | 23.823144
S 35.534215 | 37.340191

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG
graph.

Table 4.2: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1lead | 5.730391 0.923035979
«Q point V5 lead | 30.82633767 | 0.943897145
V6 lead | 23.51866867 | 2.139323404
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V1lead | 21.6880825 | 0.205343102
Rpoint | vr5 1004 | 5869730433 | 5.451001004
V6 lead | 40.07789933 | 2.744513121
V1lead | 25.133364 | 0.564189187
SPOt |y qaq | 33.63792467 | 4.515713494
V6 lead | 21.182555 | 3.643018712

Example 4.8. Normal ECG

e e
i . i AT R AT | e
QRS|RinV1|SinV1|RinV5|SinV5|Rin V6 |S in v6
1 2.8 19.7 17.9 17.6 19.2 18
2 3.1 18.8 194 19.6 19.5 18.2
3 3.2 19.5 18.6 18.3 19.9 18.6

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6 >

7 mm whereas % in V1 < 1, and in V5 and V6 > 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.




Table 4.3: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads
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P.T of V1 | P.T of V5 | P.T of V6

Q NA 23.4741 27.7903
R 33.7053 53.9826 62.0691
S 38.4275 32.0749 NA

Q NA 30.0893 27.4551
R 34.3529 60.7762 63.7091
S 36.2674 34.6120 NA

Q NA 24.4952 30.2656
R 31.8500 50.1233 51.7140
S 38.4311 26.6582 NA

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG
graph.

Table 4.4: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead NA NA
Q point
V5 lead 26.01953 3.561308
V6 lead 28.50367 1.535056
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V1lead | 33.30273 | 1.209104
Rpoint | v 1004 | 54.9607 | 5.393383
V6 lead | 59.16407 | 6.503847
V1lead | 37.70867 | 1.248175
SPOt |y qad | 3111503 | 4.062849
V6 lead NA NA
Example 4.9. Normal ECG
B 0+ i
QRS | Rin V1| Sin V1| Rin V5| SinV5|RinV6|Sinv6
1| 28 | 197 | 179 | 182 | 192 18
2 | 31 188 | 194 | 196 | 195 | 182
3 | 32 | 195 | 186 | 189 | 199 | 186

Here, we see that in R wave in V1 <7mm but S wave in V5 and V6 >

7 mm whereas % in V1 < 1, and in V5 and V6 > 1. So from Doctors

point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right

Fractional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.




Table 4.5: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads
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P.T of V1

P.T of V5

P. T of V6

Q | 4.468153541

28.56426728

32.23453626

9]

26.69722313

49.10076812

58.51775171

S 57.04525099

21.15453956

NA

Q | 4.946884276 | 30.95792096 | 32.71326699
2 R | 26.16041262 | 53.07415263 | 59.29738355

S 38.92908126 | 22.34190750 NA

Q | 3.610813335 | 20.98785251 | 23.81681957
3 R | 34.72831120 | 51.14788891 | 51.00273835

S 57.12853455

30.63876714

NA

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG
graph.

Table 4.6: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1lead | 4.341950383 | 0.676917142251348
«Q point V5 lead | 26.83668025 | 5.20470786251155
V6 lead | 29.58820761 | 5.00389704933024




117

V1 lead | 29.19531565 | 4.79922610408714

Ropoint | yo100d | 5110760323 | 1.98699857037973
V6 lead | 56.27262453 | 5.00389704933024
V1lead | 51.03428893 | 10.4835000667114
S point

Vb lead | 24.71173807 | 5.16717678073229

V6 lead NA NA

Example 4.10. RVH ECG

QRS RinV1|SinV1|RinV5|SinV5|Rin V6 |Sin v6

1 10.7 8.1 7.8 15.2 6.5 10.6

2 10 8 8.8 17.8 7.1 11.1

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm, %
in VI > 1, and in V5 and V6 < Imm. So from Doctors point of view this
patient has cardiac problem which called Right Ventricular Hypertrophy.
In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG



Table 4.7: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads
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PTofVl | P.TofV5 |P.T of V6
Q | 26.0803932 NA NA

VIR | 36.4947865 | 33.2203698 | 25.1153
S | 14.7037186 | 25.7151588 | 23.6948
Q | 17.4327977 NA NA

21 R | 26.8836555 | 39.3007419 | 20.8981
S | 16.333122 | 35.4445989 | 20.3390

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.8: Mean and Standard Deviation of Phase transition at the non-

differentiable points Q,R.,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead 21.7566 6.114773
«Q point V5 lead NA NA
V6 lead NA NA
V1 lead 31.69172 6.79256
R point
V5 lead 36.26056 4.299472
V6 lead 23.0067 2.982054
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S point

V1 lead | 15.51842 1.152162
Vb5 lead | 30.57988 | 6.879753
V6 lead | 22.01692 | 2.372916

Example 4.11. RVH ECG

ot Tl e
QRS RinV1|SinV1|RinV5|SinV5|Rin V6 |Sin v6
1 10.7 8.8 9.1 19.2 8.6 15.6
2 10.1 9.3 10.3 19.4 8.8 15.3
3 11 9 9.1 17.1 8.1 14
4 10.9 8.9 10 19.8 8.8 15.2

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm,

% in V1 > 1, and in V5 and V6 < 1. So from Doctors point of view this

patient has cardiac problem which called Right Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.




Table 4.9: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads
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P.T of VI PTof V5 | P.T of V6
Q | 21.210452 NA NA
VR | 301310726 | 37.1478021 | 31.2801687
S | 15.7002922 | 34.5669156 | 25.1595267
Q | 16.7788313 NA NA
21 R | 244743855 | 44.5219585 | 38.9823975
S | 13.7510722 | 36.6391728 | 21.4870607
Q | 19.5922919 NA NA
31 R | 320811607 | 345425282 | 24.6282722
S | 16.05711705 | 25.9435303 | 22.9338048
Q | 19.4358294 NA NA
YR | 204990607 | 47.6872047 | 39.3608674
S | 8199727814 | 30.6882091 | 21.7925225

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG

graph.



Table 4.10: Mean and Standard Deviation of Phase transition at the non-
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differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1lead | 19.25435 | 1.834999
«Q point Vslead | NA NA
V6 lead NA NA
V1lead | 26.79642 | 5.294556
R point V5 lead | 40.97487 | 6.155181
V6 lead | 33.56518 | 7.023408
V1lead | 13.42705 | 3.629269
S point V5 lead | 31.95946 | 4.708362
V6 lead | 22.84323 | 1.664994
Example 4.12. RVH ECG
QRS RinV1|SinV1|RinV5|SinV5|Rin V6 |Sin v6
1| 107 | 88 9.1 192 | 86 | 15.6
2> | 101 | 93 | 103 | 194 | 88 | 153
3 1 9 9.1 171 | 8.1 14

Here, we see that in R wave in V1 >7mm , S wave in V5,V6 > 7 mm, £

in VI > 1, and in V5 and V6 < 1. So from Doctors point of view this
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patient has cardiac problem which called Right Ventricular Hypertrophy.
In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.11: Phase transition at the non-differentiable points Q,R,S of V1,V5

and V6 leads

P.T of V1 P. T of V5 P. T of V6

Q | 18.67049872 NA NA

L R | 27.80235083 | 35.35588057 | 30.54146279
S 9.929736670 | 42.47218369 | 32.02361855
Q | 17.71303725 NA NA

2 R | 27.40907894 | 37.38696307 | 30.50385016
S 10.49392625 | 36.41205485 | 27.63670055
Q | 13.77424498 NA NA

3 R | 27.33828251 | 48.20745346 | 39.47414698
S 14.36192209 | 34.33893603 | 41.64957407

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.12: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V5and V6 leads

Non-differentiable Points Leads Mean SD

V1 lead | 16.71926032 2.59499896272331

Q point V5 lead NA NA

V6 lead NA NA

V1 lead | 27.51657076 | 0.250011439602452

R point V5 lead | 40.31676570 6.9085844443570
V6 lead | 33.50648663 | 5.16817966965665
V1 lead 11.595195 2.41260472303617
S point

Vb5 lead | 37.74105820 4.22635975551328

V6 lead | 33.76996440 7.16780638445059

It is clear from tables values P.T values at S is higher than the P.T.
values at R of V1 lead of normal ECGs whenever the opposite case holds
for RVH ECGs. Also we see that for V5 and V6 leads the difference
between P.T. values at R and S point is small (i.e. less than 20 ) for
RVH ECG whereas these difference is large for normal ECGs. Also From
tables it is cleared that maximum mean P.T. values are higher for normal

ECG where as they are small for RVH ECG.
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e compare normal ECGs with abnormal ECGs (LVH).

Since LVH is characterized by deep S wave in V1 and V2 leads and
long R wave in V5 and V6 leads. Thus we compute P.T. values at non-
differentiable points only at those leads.So our concern is to find any
distinguishing measurements of P.T values at non-differentiable points
on those leads ,to compare the problematic ECG (in our case LVH) with
normal ECG.

Examples (4.13}4.15)) Taken from [I7],But these examples
(4.14}4.16)) of my work.

Example 4.13. Normal ECG

& & i Ivs| '
QRS |SinV1|SinV2|Rin V5| R in v6
1 9.5 21.5 18 14.5
2 10.5 23 18 14.5
3 18 13.5

Here, we see that in table R in V5 and V6 <25 mm, S in V1 and V2
<25 mm and R in V5 or V6 + S in V1 or V2 are not all greater than 35

mm . So from Doctors point of view this graph is normal ECG .
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In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.13: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads
P.T of V1 | P.T of V2 | P.T of V5 | P.T of V6
Q | 63831 | NA | 302440 | 25.4804
VR | 215420 | 344156 | 62.2350 | 40.0643
S | 255323 | 442073 | 36.8063 | 20.1172
Q | 50777 | 101554 | 303196 | 21.2434
2| R | 21.8333 | 468581 | 52.4198 | 42.8292
S | 247344 | 574477 | 284833 | 25.2395
Q| | 319154 | 238231
SR B 61.437 | 37.3402
S 35.5342 | 18.1910

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG

graph.
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Table 4.14: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead 5.7304 0.9230
Q point V2 lead NA NA
V5 lead 30.8263 0.9439
V6 lead 23.5187 2.1393
V1 lead 21.6881 0.2053
: V2 lead 40.6368 8.7982
R point
V5 lead 58.6973 5.4511
V6 lead 40.0779 2.7445
V1 lead 25.1334 0.5642
) V2 lead 50.8275 9.3624
S point
V5 lead 33.6379 4.5157
V6 lead 21.1826 3.6430

Example 4.14. Normal ECG

i e R 1\]
|
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QRS |SinV1|Sin V2| Rin V5| R in v6
1 9.5 20.7 17.9 19.2
2 11 22.1 19.4 19.5
3 18.6 19.9

Here, we see that in table R in V5 and V6 <25 mm, S in V1 and V2
<25 mm and R in V5 or V6 + S in V1 or V2 are not all greater than 35

mm . So from Doctors point of view this graph is normal ECG .

In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.15: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads
P.T of V1 P.T of V2 P.T of V5 P.T of V6
Q 5.5851919 13.244883 28.564267287 32.23453626
! R 16.304794 36.123601 49.10076812 58.51775171
S 23.080376 50.139126 21.1545395639 NA
Q 7.1809610 12.446999 30.9579209 32.71326699
2 R 19.5931318 37.224601 53.0741526 59.29738355
S 19.746635 48.0758318 22.3419075 NA
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O

R

S

20.98785251 | 23.8168195
51.14788891 | 51.0027383
30.63876714 NA

Now we construct a table with mean and standard deviation of phase

transition values at the non-differentiable points of considerable ECG

graph.

Table 4.16: Mean and Standard Deviation of Phase transition at the non-

differentiable points Q,R.,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead 6.383076485 1.12837916737430
) V2 lead 12.84594143 0.564189582980045
Q point
V5 lead 26.83668025 5.20470786251155
V6 lead 29.58820761 5.00389704933024
V1 lead 17.94896296 2.32520600670953
) V2 lead 36.67410178 0.778524636797067
R point
V5 lead 51.10760323 1.98699857037973
V6 lead 56.27262453 5.00389704933024
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V1 lead | 21.41350599 | 2.35731095267244

V2 lead 49.1074793 1.45896982951975

S point
Vb lead | 24.71173807 | 5.16717678073229

V6 lead NA NA

Example 4.15. LVH ECG

ZE(EeEiRas S W!i ' I |

QRS |SinV1|SinV2|Rin V5| R in v6

1 34.2 46.7 27.5 36.8

2 35.2 49 27.7 38

3 36.1 50.2 28.8 37

Here, we see that in table R in V5 and V6 >25 mm, S in V1 and V2
>25 mm and R in V5 or V6 4+ S in V1 or V2 are all greater than 35 mm
. So from Doctors point of view this patient with problematic ECG has
cardiac problem which called Left Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-
tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.
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Table 4.17: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads
PTof V1 | PTof V2 | P.T of V5 | P.T of V6
Q NA NA NA NA
! R 45.7081 64.5818 116.4704 100.9253
S 89.5825 123.3424 NA NA
Q NA NA NA NA
2 R 42.6324 65.4877 55.5799 74.1328
S 108.3481 146.1234 NA NA
Q NA NA NA NA
3 R 44.8548 71.4775 58.2417 113.1625
S 81.5230 106.5454 NA NA

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG

graph.



Table 4.18: Mean and Standard Deviation of Phase transition at the non-
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differentiable points Q,R,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead NA NA
Q point V2 lead NA NA
V5 lead NA NA
V6 lead NA NA
V1 lead 44.3984 1.5878
) V2 lead 67.1823 3.7472
R point
V5 lead 76.7640 34.4125
V6 lead 96.0735 19.9621
V1 lead 93.1512 13.7640
) V2 lead 125.3371 19.8642
S point
V5 lead NA NA
V6 lead NA NA

Example 4.16. LVH ECG
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QRS |SinV1|Sin V2 |Rin V5 |Rin v6
1 | 342 | 467 | 274 34
2 | 356 49 27.8 38
3 36 50.2 | 28.6 42

Here, we see that in table R in V5 and V6 >25 mm, S in V1 and V2

>25 mm and R in V5 or V6 + S in V1 or V2 are all greater than 35 mm

So from Doctors point of view this patient with problematic ECG has

cardiac problem which called Left Ventricular Hypertrophy.

In the following tables we have presented the the Left and Right Frac-

tional Derivative and phase transition values of the non-differentiable

points of different leads of ECG.

Table 4.19: Phase transition at the non-differentiable points Q,R,S of
V1,V2,V5and V6 leads
P.T of V1 P.T of V2 P.T of V5 P.T of V6
Q NA NA NA NA
! R 40.9842211 57.7485759 77.6601805 96.36664735
S 91.8892561 121.1538024 NA NA
Q NA NA NA NA
2 R 41.6330867 60.3438480 78.7939057 107.703900
S 84.95590061 112.3133742 NA NA
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Q NA NA NA NA
3| R | 50.8366445 | 79.0437638 | 81.0613563 | 119.0411526
S | 108.114128 | 147.408593 NA NA

Now we construct a table with mean and standard deviation of phase
transition values at the non-differentiable points of considerable ECG

graph.

Table 4.20: Mean and Standard Deviation of Phase transition at the non-
differentiable points Q,R.,S of V1,V2,V5and V6 leads

Non-differentiable Points Leads Mean SD
V1 lead NA NA
Q point V2 lead NA NA
V5 lead NA NA
V6 lead NA NA
V1 lead 47.48465080 10.7020590779060
) V2 lead 65.71206260 11.6182852416726
R point
V5 lead 79.17181417 1.73179395786860
V6 lead 107.7039 11.337252625
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V1 lead | 94.98642827 11.8857153835199
. V2 lead 126.9585899 18.2535001546237
S point
V5 lead NA NA
V6 lead NA NA

From table it is clearly show that the P.T at the non differentiable
points is higher for LVH ECG than normal ECG . The P.T. values at the
non-differentiable points for normal ECG is less than 65 . The patient
having LVH problem that P.T. value can be exceed 100. Also From tables

it is cleared that maximum mean P.T. value and maximum standard

deviation of the P.T. values are higher for LVH ECG.
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Conclusions

Here we develop an analytical method to find the solutions of linear frac-
tional differential equation and system of fractional differential equations,
composed by Jumarie modified fractional derivative in terms of one pa-
rameter Mittag-Leffler function. The solutions obtained are similar as
the solutions obtained usual calculus, in terms the exponential function.
we find the approximate solution of fractional derivative using Legendre
polynomials and implementing it to solve the nonlinear fractional dif-
ferential equations. Illustrative example is included to demonstrate the
validity and applicability of the presented technique.

In this thesis we have to characterize graph ECG and compare nor-
mal ECG with ( LVH,RVH) ECG by finding P.T. values at the non-
differentiable points and mean, standard deviation of the P.T. values of

the non-differentiable points of considerable ECG samples.
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