HK Spaces with AD Property
 By
 Abdallah A. Hakawati Department of Mathematics
 An-Najah N. University

Abstract

If H is an HK space which has AD property, then we define the matrix $A(H)=\left(a_{m n}\right)$ as $a_{m n}=<e_{m}, e_{n}>H$. We prove that $A(H)$ is uniquely determined by H , and hence conclude that there is a one - to - one map between the collection of all HK spaces which have $A D$, and that of all matrices which are positive definite and Hermitian. Finally, we calculate $A\left(H^{2} \mid W\right)$ where $W=\left\{d_{n}\right\}$ is an interpolating sequence.

ملخص

 لفضاءات (HK). يمثل هده الرابطة اقتران تقدمه لأول مرة بين فضاءات (HK) والتي تحقـق خاصهية وبين المصفوفات الثرمشية محقة الايجابية ـ ثم نبني المصفوفة التي يعينها مدا الالاتران للفضاء (AD) (متـلسلة توليديه. $\mathrm{H}=\left\{\mathrm{H}_{\mathrm{n}}\right.$ |W

1. Introduction and Preliminaries: The Hardy space H^{2} is the space of analytic function f on $\{\mathrm{z}:|\mathrm{z}|<1\}$ for which the integrals

$$
\left\|f_{r}\right\|=\left\{\frac{1}{2 \Pi} \int_{-\Pi}^{\mathrm{II}}\left|\mathrm{f}\left(r e^{1 \sigma}\right)\right|^{2} \mathrm{~d} \sigma\right\}^{\frac{1}{2}}
$$

are bounded as $\mathrm{r} \rightarrow 1$. It is well-known that H^{2} is a Banach space under the norm

$$
\begin{aligned}
\|\mathrm{f}\|_{2} & =\lim _{\mathrm{r} \rightarrow 1-\mathrm{l}}\|\mathrm{f}\|_{2} \\
& =\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\mathrm{f}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|^{2} \mathrm{~d} \theta\right\}^{2}
\end{aligned}
$$

where $f\left(e^{i \theta}\right)$ is defined almost everywhere by

$$
f\left(e^{i \theta}\right)=\operatorname{limf}_{r \rightarrow 1-}\left(\mathrm{re}^{\mathrm{i} \theta}\right)
$$

H^{2} is usually identified as a a closed subspace of the lebesgue class $L_{2}([-\pi, \pi])$ by means of

$$
f(\theta)=\lim _{\tau \rightarrow 1-} f\left(\mathrm{re}^{\mathrm{i} \theta}\right)
$$

Specifically, for $f \varepsilon L_{2}$, we have

$$
\mathrm{f} \varepsilon \mathrm{H}^{2} \text { iff } \int_{-\pi}^{\pi} \mathrm{f}(\theta) \mathrm{e}^{\min \theta} \mathrm{d} \theta=0 \text { for } \mathrm{n}=1,2, \ldots
$$

Finally, H^{2} is a Banach space of functions on the open unit disk . Indeed, for $\mathrm{f} \varepsilon \mathrm{H}^{2}$, evaluations π^{z} defined as

$$
\pi^{2}(\mathrm{f})=\mathrm{f}(\mathrm{z})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{i \mathrm{t}}\right) \cdot \frac{1}{1-\mathrm{ze}} \mathrm{e} d \mathrm{t}
$$

are all contrinuous on H^{2}.
Let $W=\left\{z_{n}\right\}$ be a sequence which satisfies $\sum_{n}\left(1-\left|z_{n}\right|\right)<\infty$, for
example, let W be an interpolating sequence, $S=\left\{f \varepsilon H^{2}: f\left(z_{n}\right)=0 \forall n\right\}$ and for $f, g, \varepsilon H^{2}$ let $\langle f, g\rangle \mathrm{H}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}(\mathrm{t}) \overline{\mathrm{g}(\mathrm{t})}$ dt (this is the inner product for H^{2}. Then $\mathrm{H}^{2} \mid \mathrm{W}\left(\mathrm{H}^{2}\right.$ restercted toW) is a Hilbert space of sequences
congruent to the orthogonal complement $S^{\perp}=\left\{f \varepsilon H^{2}:<f, g>H^{2}=0\right.$ for all $g \varepsilon S\}$ of S in H^{2} [The congruence can be chosen to be the map : $f \rightarrow$ $\left.\left\{f\left(\mathrm{z}_{\mathrm{n}}\right)\right\}\right]$. Also $\mathrm{S}=\mathrm{BH}^{2}$ where

$$
B(z)=\prod_{k} \frac{z_{k}}{\left|z_{k}\right|} \frac{z_{k}-z}{1-z_{k} z}[\text { see }[1], 3.1] .
$$

It follows that, for each $\mathrm{f} \varepsilon \mathrm{H}^{2}$ there is a unique $\mathrm{F} \varepsilon \mathrm{H}^{2}$ of minmal norm such that $\|f\|_{\mathrm{H}^{2} \mid \mathrm{W}}=\|\mathrm{F}\|_{\mathrm{H}^{2}} ; F$ is orthogonal to each function in H^{2} which vanishes on W.

It is also known [[2] , theorem 4, cor. 1] that $\mathrm{H}^{2} \mid \mathrm{W}$ is an AK space (i.e. each $x \in H^{2} \mid w$ has the representation $x=$ $\sum_{k} x_{k} e^{k}$ where $e_{j}^{k}=\left\{\begin{array}{l}1 ; j=k \\ 0 ; j j \neq k\end{array}\right\}[[1], 5.1]$.

The auther figured that there corresponed a unique matrix, possibly infinite of special type to any preassigned HK space which has AD. This, somehow, makes up a converse of the completion process obtained in [3].

One of the problems in mathematics is the existence of pathological examples; and our case is , of course, not an exception.

This paper includes lengthy calculations, the main part of which explicitly gives the matrix which corresponds to the space $\mathrm{H}^{2} \mid \mathrm{w}$.

In what follows, and for each n, let

$$
B_{n}(z)=\prod_{k \neq n} \frac{\overline{z_{k}}}{\left|z_{k}\right|} \frac{z_{k}-z}{1-\overline{z_{k} z}},
$$

and let P_{n} be the nth coordinate projection. 1^{2} will stand for the space of all square summable sequences with norm $\|x\|=\left(\sum_{k}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}$

2. HK Spaces and infinite matrices

Let H be an HK space. It is a known fact that coordinate projections can be identified with reproducing kernels. Specificaly, for each n, there is a unique element π^{n}, called the nth reproducing kernel, of H with $P_{n}(x)=<$ $x, \pi^{n_{>}}(x \in H)$.

It is the aim of this section to associate, to each HK space H which has AD , a unique matrix $\mathrm{A}(\mathrm{H})$ which is Hermetian and positive definite. We begin with the following :

2.1 Lemma :

Let X and Y be two BK spaces (i.e Banach space of sequences which is locally convex, Frechet space and on which P_{n} is continuous for each n)) Suppose that S is a dense subspace of X and of Y with the property that $\|x\|_{X}=\|x\|_{Y}$ for all $x \in S$. Then $X=Y$.

Proof:

Let $\mathrm{x} \varepsilon \mathrm{X}$ be arbitrary and $\left\{\mathrm{x}^{\mathrm{n}}\right\}$ be Cauchy in X . Hence, for each $\varepsilon>0$, there exists an integer $\mathrm{N}>0$ with $\left\|x^{m}-x^{n}\right\|_{x}<\varepsilon$ when $m \geq N, n \geq N$.

$$
\text { Now, }\left\|x^{m}-x^{n}\right\|_{Y}=\left\|x^{m}-x^{n}\right\|_{x} \prec \varepsilon \text { for } m \geq N, n \geq N
$$

So, $\left\{x^{\mathbf{n}}\right\}$ is Cauchy in Y, hence convergers in Y to some $y \varepsilon Y$. It remains to prove that $x=y$. To this end, $x^{n} \rightarrow X \in X$. So, for each $k, X_{k}^{n} \rightarrow X_{k}$. Also , $\mathrm{x}^{\mathbf{n}} \boldsymbol{x} \boldsymbol{x}$ Y. So, for each $k, x_{k}^{n} \rightarrow y_{k}$.

Therefore $\mathrm{x}_{\mathbf{k}}=\mathbf{y}_{\mathbf{k}}$ for each k , hence $\mathrm{x}=\mathrm{y}$. //

Suppose that H is an HK space which has the AD property.
Let $A(H):\left(a_{m n}\right)$ be matrix defined by:

$$
a_{m n}=\left\langle e^{m}, e^{n}\right\rangle_{H}
$$

we prove

2.2 Theorem :

With H and $A(H)$ as above, $A(H)$ is unquely determined by H.
Proof : Suppose that X and Y are two HK spaces wich have AD, and suppose that $A(X)=A(Y)$.

$$
<\mathrm{e}^{\mathrm{m}}, \mathrm{e}^{\mathrm{n}}>\mathrm{X}=<\mathrm{e}^{\mathrm{m}}, \mathrm{e}^{\mathrm{n}}>\mathrm{Y} \text { for all } \mathrm{m}, \mathrm{n}
$$

Let $x=\sum_{i=1}^{r} x_{i} e^{i}, y=\sum_{j=1}^{5} y_{j} e^{j}$ be arbitrary elements in ϕ. Then ;

$$
\begin{aligned}
<x, y & >_{x}
\end{aligned}=<\sum_{i=1}^{\mathrm{r}} \mathrm{x}_{\mathrm{i}} \mathrm{e}^{\mathrm{i}}, \sum \mathrm{y}_{\mathrm{j}} \mathrm{e}^{\mathrm{j}}>_{\mathrm{H}} .
$$

It follows that, if $x \in \phi$ then $\|x\|_{x}=\|x\|_{y}$. But ϕ is dense in X and in Y, therefore, by lemma (1.2), $X=Y$

2.3 Cor. :

(a) Theorem 2.2 says that there is one-to-one map between the collection of all HK spaces which have AD , and that of all matrices which are positive definite and Hermetian.

Proof:

$$
\begin{gathered}
\text { Let } 0 \neq x \varepsilon \phi \text { be arbitrary. } \\
x *\|x\|_{A}>0 . \text { Therefore } A \text { is positive definite. } \\
\text { Now, }(A(H))^{*}=\left(\overline{<_{e} m} \cdot e^{n}>H\right)^{T}
\end{gathered}
$$

$$
\begin{gathered}
=\left(<e^{n}, e^{m}>H\right)^{T} \\
=\left(<e^{m}, e^{n_{>}}+H\right) \\
=A(H)
\end{gathered}
$$

Therefore, $\mathrm{A}(\mathrm{H})$ is Hermetian.
(b) The map $\mathrm{H} \rightarrow \mathrm{A}(\mathrm{H})$ is not onto.
[Let B be a positive definite Hermetian matrix with the property that ($\phi,\|\cdot\|_{B}$) has no HK completion [see [3], 2.2].]. However, if $\mathrm{M}=\operatorname{diag}$ ($\mathrm{M} 1, \mathrm{M} 2, \ldots .$.), where, for each n, M_{n} is of dimesion $s_{n} s_{n} \times s_{n}$, then there is aunque HK space H with AD such the $\mathrm{A}(\mathrm{H})=\mathrm{M}[[3], 2.10]$. This , of course leads to :

Remark: (question) : How big can the range of this map be?

2.4 Example :

I^{2} is an HK space under the inner product:

$$
\langle x, y\rangle_{i}=\sum_{i} x_{i} \bar{y}_{i}
$$

$\left[\left|x_{n}\right| \leq\left(\sum\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}=\|x\|_{1^{2}}\right.$ for each n. Hence by $([3], 2.1), P_{n}$ is continuous. It is not hard to see that $\mathrm{A}\left(1^{2}\right)=\mathrm{I}$, the identity matrix.

Other than the foregoing example, it seems unusual to calculate $\mathrm{A}(\mathrm{H})$ for arbitrary HK spaces H . The auther found it interesting to calculate $\mathrm{A}\left(\mathrm{H}^{2} \mid \mathrm{W}\right)$ where $\mathrm{W}=\{$ is any interpolating sequence. Togather with this assumption, let S, B and $\stackrel{\perp}{\mathrm{S}}$ be as defined in section (1). We first prove .
2.5 Lemma: $B_{n}-\left|z_{n}\right| B \varepsilon \stackrel{1}{\mathrm{~S}}$

Proof: \quad Note that $B_{n}=\left(B_{n}-\left|z_{n}\right| B\right)+\left|z_{n}\right| B$, and

$$
\begin{aligned}
<\left|z_{n}\right| B, B_{n}\left|z_{n}\right| B & >H^{2}=\left|z_{n}\right|<B, \cdot B_{n}>H^{2}-\left|z_{n}\right|^{2}<B, B>H^{2} \\
& =\left|z_{n}\right| \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{z_{n}}{z_{n}} \frac{z_{n}-e^{\frac{1}{n}}}{1-\frac{z_{n}}{1-2} n^{e^{n}}} d t-\left|z_{n}\right|^{2} \\
& =\left|z_{n}\right|^{2} \cdot\left|z_{n}\right|^{2} \\
& =0
\end{aligned}
$$

Therefore, since $\mathrm{S}=\mathrm{BH}^{2}, \mathrm{~B}_{\mathrm{n}}-\left.\right|_{\mathrm{z}_{\mathbf{n}}} \mid \mathrm{B} \in \mathrm{S}\left[\right.$ for $\mathrm{z}^{=} \mathrm{e}^{\mathrm{it}},\left(\mathrm{B}_{\mathrm{n}}-\left.\right|_{\mathrm{Z}_{\mathrm{n}}}\right.$ B) $\perp \mathrm{Be} \mathrm{e}^{\text {int }}$ for $\mathrm{n}=0$. This is what was just shown.

$$
\begin{aligned}
\int B e^{\text {mit }}\left(B_{n}-\left|z_{n}\right| \bar{B}\right) d t=\int & e^{\text {imt }} g(t) d t, \text { say } \\
& =0 \text { since } g \text { is analytic }] .
\end{aligned}
$$

With this at hand, we now calculate $A\left(\mathrm{H}^{2} \mid W\right)$.
2.6 Example : Let, for each $n, f_{n}=\frac{B_{n}-\left|z_{n}\right| B}{B_{n}\left(z_{n}\right)}$.

$$
f_{n} \in S^{\perp} \text { and interplates } e^{n} \text { since } \frac{B_{n}}{B_{n}\left(z_{n}\right)} \text { does } .
$$

With $z=e^{i t}$, we now therefore have:
$\left\langle\mathrm{e}^{\mathrm{m}}, \mathrm{e}^{\mathrm{I}}\right\rangle_{\mathrm{H}^{2} / \mathrm{W}}=\left\langle\mathrm{f}_{\mathrm{m}}, \mathrm{f}_{\mathrm{D}}\right\rangle_{\mathrm{H}^{2}}$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{B_{m}-\left|Z_{m}\right| B}{B_{n}\left(Z_{n}\right)}\left(\frac{\overline{B_{n}-\left|z_{n}\right| B}}{B_{n}\left(Z_{n}\right)}\right) d t \\
& =\frac{1}{2 \pi B_{m}\left(Z_{m}\right) \overline{B_{k}\left(Z_{k}\right)}} \int_{-\pi}^{\pi}\left(B_{m}\left|z_{m}\right| B\right)\left(\overline{\left.B_{n}-\left|z_{n}\right| B\right) d t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{B_{m}\left(z_{m}\right)} \cdot \frac{1}{\overline{B_{n}\left(z_{n}\right)}} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(B_{m} \overline{B_{n}}-\left|z_{n}\right| B_{m} B-\left|z_{n}\right| B B_{m}+\left|z_{m}\right|\left|z_{n}\right|\right) \\
& =\frac{1}{B_{m}\left(Z_{m}\right)} \cdot \frac{1}{B_{n}\left(Z_{m}\right)} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac { Z _ { m } \overline { Z _ { n } } } { | Z _ { m } Z _ { n } | } \left(\overline{Z_{m}} \cdot \frac{{ }^{2} n^{-2}}{{ }^{1-z^{2}} n^{2}} \cdot \frac{1}{1-2 m^{\bar{z}}}-Z_{n} \cdot \frac{{ }^{2} m^{-\bar{z}}}{1-\bar{z} m^{2}} .\right.\right. \\
& \left.\frac{1}{1^{1-2} n^{2}}+\frac{1}{1-2 m^{2}} \cdot \frac{1}{1-2 n^{2}}\right)-\left|z_{n}\right| \frac{Z_{m}}{\left|Z_{m}\right|} \cdot \frac{{ }^{-} m^{-2}}{1-2} m^{2}-\left|Z_{m}\right| \frac{Z_{m}}{\left|Z_{m}\right|} \frac{{ }^{2} n^{-2}}{{ }^{1-2} n^{2}}+\left|Z_{m} Z_{0}\right| d t \\
& =\frac{1}{B_{m}\left(z_{m}\right)} \cdot \frac{1}{\overline{B_{n}\left(z_{n}\right)}}\left(\frac{z_{m} \overline{z_{n}}}{\left|z_{m} z_{n}\right|} \cdot\left(\frac{z_{m} z_{n}-\left|z_{m}\right|^{2}-\left|z_{n}\right|^{2}+1}{1-z m^{2} n}\right)\right. \\
& \left.-\left|z_{m} z_{n}\right|-\left|z_{m} z_{n}\right|+\left|z_{m} z_{n}\right|\right) \\
& =\frac{z_{m} \overline{z_{n}}}{B_{m}\left(z_{m}\right) \overline{B_{n}\left(z_{n}\right)}}\left(\frac{\left(1-\left|z_{m}\right|^{2}\right)\left(1-\left|z_{n}\right|^{2}\right)}{\left.\left|z_{m} z_{n}\right|^{1-z_{m}} \overline{z_{n}} n\right)}\right) \\
& =\frac{\mu_{m} \bar{\mu}_{r}}{1-z_{m} \bar{z}_{n}}, \text { where } \mu_{m}=\frac{z_{m}}{\left|z_{m}\right|} \cdot \frac{1-\left|z_{m}\right|^{2}}{B_{m}\left(z_{m}\right)}
\end{aligned}
$$

References

1. A. K. Snyder, "Sequence spaces and interpolation problems for analyticfunctions", Studia Math. 39(1971), PP. 137-153.
2. "Multipliers and Nevanlinna-pick thm.", Indiana Univ. Math. J. 25 (1976) , PP. 1159-1170.
3. A. Hakawati and A. K. Snyder, "On the HK completions of Normed Sequence Spaces.
