The Square root of $\mathbf{2 x} \mathbf{2}$ Matrices

Ihab AL Tamimi
Department of Mathematics, Palestine Polytechnique University, Palestine

Abstract:

In this study we introduce a new method for finding the square root of a $2 x 2$ matrix A using Cayley-Hamilton theorem, provided that the matrix A has distinct eigenvalues (diagonalizable) and it is positive definite or semi-positive definite.
Also we introduce a general form for $(\sqrt{A})^{n}$ where $n \in N$, with its proof in two ways, the new thing here is when n is even the result is true by Cayley-Hamilton theorem. If we have a square matrix A such that $A . A=B$, then we say that the square root of the matrix B is the matrix A. i.e $\sqrt{B}=A$, where two matrices A and B have the same order.

