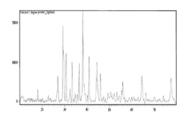
Poster Presentations

Kinetics and synthesis of Ag₂O nanoparticles by calcination and γ-irradiation of silver acetate

Refaat M. Mahfouzb, Ismail Warad


¹Chemistry Department, Faculty of Science, Assiut University – AUN, Assiut 71516, Egypt

²Department of Chemistry, AN-Najah National University P.O. Box 7, Nablus, Palestine

rmhfouz@science.au.edu.eg

Abstract

Kinetic studies for the non-isothermal decomposition of unirradiated and γ -irradiated silver acetate with 10^3 kGy total γ -ray doses were carried out in air. The results showed that the decomposition proceeds in one major step in the temperature range of (180–270 °C) with the formation of Ag2O as solid residue. The non-isothermal data for un-irradiated and γ -irradiated silver acetate were analyzed using Flynn-Wall-Ozawa (FWO) and nonlinear Vyazovkin (VYZ) isoconversional methods. These free models on the investigated data showed a systematic dependence of Ea on γ indicating a simple decomposition process. No significant changes in the thermal decomposition behavior of silver acetate were recorded as a result of γ -irradiation. Calcinations of γ -irradiated silver acetate (CH3COOAg) at 200 °C for 2 hours only led to the formation of pure Ag2O monodispersed nanoparticles. X-ray diffraction, FTIR and SEM techniques were employed for characterization of the synthesized nanoparticles

Fig 1. XRD pattern for synthesized silver oxide NPS.

Fig. 2. SEM image of sliver oxide NPS.

Keywords: non-isothermal decomposition; γ -irradiation; silver oxide; nanoparticles

References

[1] Mohmmed H. Siddiqui, Saad Alshehri , Ismail Warad , Naser M. Abd El-Salam and Refaat M. Mahfouz, Model Free Approach for Non-Isothermal Decomposition of Un-Irradiated and γ -Irradiated Silver Acetate: New Route for Synthesis of Ag2O Nanoparticles, *Int. J. Mol. Sci.* 2010, *11*, 3600-3609