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Abstract 

We focus our attention on the analytical and numerical methods for solving 

the fuzzy linear system (FLS) and fully fuzzy linear system ( FFLS). 

For the analytical solution of the fuzzy linear system we have presented the 

following methods: Friedman's proposal, S. Abbasbandy and M. Alavi 

method,  Fuzzy Solution by Using Fuzzy Center, Algorithmic Approach, 

Embedding method , ܷܮ decomposition method, and  ܷܮ-Decomposition 

method  of  Mansouri and Asady. The analytical methods  presented for the 

fully fuzzy linear system include:  matrix inversion method, Cramer’s rule 

and ܷܮ	decomposition method. 

For the numerical handling of the fuzzy linear system we have implemented 

the following techniques, namely: Iterative Jacobi method, GaussെSidel 

methods,  and  Successive over relaxation iterative method. For the fully 

fuzzy linear system we have used the Gauss -Jacobi and Gauss- Seidel 

methods. 

To show the efficiency of these numerical techniques we have considered 

some numerical examples. Numerical results for both (FLS) and (FFLS) 

have shown to be in a closed agreement with the analytical ones. 



XI 

We strongly believe that, the Successive over relaxation iterative 

method(SOR) is one of the most powerful numerical techniques for solving 

FLS in comparison with other numerical techniques. Moreover, the Gauss- 

Seidel method is more efficient than the Gauss –Jacobi method for solving 

FFLS. 
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Introduction  

The subject of Fuzzy System of Linear Equations with a crisp real coefficient 

matrix and with a vector of fuzzy triangular numbers on the right-hand side 

and   Fully Fuzzy System of Linear Equations where all the parameters of 

the system are fuzzy numbers arise in many branches of science and 

technology such as economics, statistics, telecommunications, image 

processing , physics and even  social sciences. In the year of  1965 L.A. 

Zadeh  [27] introduced and investigated the concept of fuzzy numbers that 

can be used to generalize crisp mathematical concept to fuzzy sets. 

There is a vast literature on the investigation of solutions for fuzzy linear 

systems. Early work in the literature are on to linear equation systems whose 

coefficient matrix is crisp and the right hand vector is fuzzy,  that is known 

as Fuzzy Linear Equation System (FLS), was first proposed by Friedman et 

al. [17]. For computing a solution, they used the embedding method and 

replaced the original fuzzy ݊ ൈ ݊ linear system by a 2݊ ൈ 2݊ crisp linear 

system. Later, several authors studied FLS. Allahviranloo [4-5], used the 

Jacobi and Gauss–Seidel iterative methods to compute an approximate 

solution. He also used the successive over relaxation iterative method for 

solving FLS. Dehghan & Hashemi [12] investigated the existence of a 

solution provided that the coefficient matrix is strictly diagonally dominant 

matrix with positive diagonal entries and then applied several iterative 

methods for solving FLS. Ezzati [15] developed a new method for solving 

FLS by using embedding method and replaced an	݊ ൈ ݊ fuzzy linear system 
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by two ݊ ൈ ݊  crisp linear system. Furthermore, Muzziolia et al. [22] 

discussed fuzzy linear systems in the form of ܣଵݔ	 ൅ ܾଵ 	ൌ 	ݔଶܣ	 ൅	ܾଶ with 

ଵܣ ଶܣ ,  square matrices of fuzzy coefficients and ܾଵ , ܾଶ  fuzzy number 

vectors. Abbasbandy and Jafarian [3] proposed the steepest descent method 

for solving fuzzy system of linear equation.  

The crispness of the coefficient matrix makes the modeling of real life 

problems restricted. Linear systems, whose all the parameters are fuzzy i.e. 

both coefficient matrix and right hand vector are fuzzy, are named Fully 

Fuzzy Linear Equation System (FFLS). The main objective of FFLS is to 

widen the scope of FLS in scientific applications by removing the crispness 

assumption on the entries of coefficient matrix.  

Dehgan et al. [13] have proposed the Adomian decomposition method, 

iterative methods and some computational methods such as Cramer’s rule, 

Gauss elimination method, ܷܮ  decomposition method and linear 

programming approach for finding the solutions of ݊ ൈ ݊ FFLS. Then, they 

applied some iterative iterative techniques such as Richardson, Jacobi, 

Jacobi over relaxation (JOR), Gauss–Seidel, successive over relaxation 

(SOR), accelerated over relaxation (AOR), symmetric and unsymmetric 

SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) ,for 

solving (FFLS). In addition, they proposed methods from nonlinear 

Programming, such as Newton, quasi-Newton and conjugate gradient to 

solve FFLS [14]. 

Besides FLS and FFLS, there exist the dual forms of both systems in the 

literature. Generally, both FLS and FFLS are handled under two main 
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headings: square ሺ݊	ݔ	݊ሻ and nonsquare ሺ݉ݔ	݊ሻ forms. Most of the works in 

the literature deal with square form. For example, Asady et al. [8], extended 

the model of Friedman for ݊	ݔ	݊ fuzzy linear system to solve general ݉	ݔ	݊ 

rectangular fuzzy linear system for ݉	ݔ	݊,where coefficients matrix are crisp 

and the right-hand side column is a fuzzy number vector, they replaced the 

original fuzzy linear system ݉	ݔ	݊ by a crisp linear system 2݉	ݔ	2݊. And 

they investigated conditions for the existence of a fuzzy solution.  

Fuzzy elements of these systems can be taken as triangular, trapezoidal or 

generalized fuzzy numbers in general or parametric form. While triangular 

fuzzy numbers are widely used in earlier works, trapezoidal fuzzy numbers 

are neglected for a long time. Besides, there exist lots of works using the 

parametric and level cut representation of fuzzy numbers. Another 

classification for FFLS can be made also depending on whether FFLS has 

sign restrictions on its parameters. Having sign restrictions for FFLS means 

that all parameters of FFLS are assumed as positive. Since the parameters 

are assumed as positive in the most of the papers, further work is needed for 

FFLS with arbitrary (no restrictions on sign) fuzzy numbers.  

This thesis is organized as follows: 

In chapter one, we introduce some basic concepts of fuzzy sets, crisp sets, 

fuzzy numbers, and fuzzy linear system. 

Chapter two investigates some analytical methods for solving the Fuzzy 

Linear System of Equations. These methods are: Friedman's proposal, S. 

Abbasbandy and M. Alavi Method,  Fuzzy Solution by Using Fuzzy Center, 

Algorithmic Approach, Embedding method, ܷܮ decomposition method, and 
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 Decomposition Method  of  Mansouri and Asady.  For the Fully Fuzzy-ܷܮ

System of Linear Equations we presented the analytical methods:  matrix 

inversion method, Cramer’s rule and ܷܮ	decomposition method. 

In chapter three, we employ some numerical methods to solve fuzzy system 

of linear equations. These are: Iterative Jacobi, GaussെSidel methods, and 

Successive over relaxation iterative method. And we employ Jacobi and 

GaussെSidel methods for fully fuzzy system of linear equations. 

In chapter four, MATLAP software has been used to solve numerical 

examples to demonstrate the efficiency of these numerical schemes 

introduced in chapter three. 

Finally, we draw a comparison between analytical and numerical solutions 

for some numerical examples. 

 

 

 

 

 

 

 

 

\ 
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Chapter One 

Mathematical Preliminaries 

1.1 Crisp Sets 

The concept of a set is fundamental in mathematics and it can be described 

as a collection of objects possibly linked through some properties. 

Definition (1.1) [9]: Characteristic function: 

 Let ߕ  be a set and ܣ  be a subset of ܺሺܣ 	ܺሻ . Then the characteristic 

function of the set ܣ in ܺ is defined by: 

( )A x =	൜
ݔ	݂݅									1 ∈ ,ܣ
ݔ	݂݅								0 ∉  .ܣ	

Classical sets and their operations can be represented by their characteristic 

functions. 

Indeed,Let us consider the union 

ܣ  ∪ ܤ ൌ ሼݔ	 ∈ 	ݔ│ܺ	 ∈ 	ݔ	ݎ݋		ܣ	 ∈  ሽ. Its Characteristic function isܤ	

߯஺∪஻ሺݔሻ ൌ ,ሻݔሼ߯஺ሺݔܽ݉ ߯஻ሺݔሻሽ 

For the intersection  

ܣ ∩ ܤ ൌ ሼ	ݔ ∈ 	ݔ|ܺ ∈ 	ݔ	݀݊ܽ	ܣ	 ∈  the characteristic function is	ሽܤ	

߯஺∩஻ሺݔሻ ൌ ݉݅݊ሼ߯஺ሺݔሻ, ߯஻ሺݔሻሽ. 

If we consider the complement of  ܣ	݅݊	ܺ,  

௖ܣ 	ൌ ሼݔ	 ∈ 	ݔ│ܺ	 ∉   ሽ it has the characteristic functionܣ	

( )cA
x  =1- ( )A x . 
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1.2 Fuzzy Sets 

Zadeh in [27] extended the definition of the characteristic functions by 

replacing the set ሼ0,1ሽ	by the closed interval ሾ0,1ሿwhich is the bases to the 

new definition of fuzzy sets. 

Definition (1.2) [27]: Fuzzy set: 

 A fuzzy set ܣ(fuzzy subset of ܺ) is defined as a mapping  

ܣ ∶ 	ܺ	 	ሾ0,1ሿ, 

where ܣሺݔሻ is the membership degree function of ݔ to the fuzzy set ܣ. We 

denote the collection of all fuzzy subsets of ܺ by Ƒሺܺ). 

In the case of the characteristic function A : ܺ→ {0,1} if ( )A x =0 then; 

the grade of membership is 0; and that means ݔ doesn’t  belong to ܣ, if the 

characteristic function ( )A x =1, then the grade of membership is equal to 1; 

and that means ݔ belongs to ܣ. While, in the case of fuzzy sets: ߤ஺ሺݔሻcould 

be any other number from 0  to 1. 

We identify a fuzzy set with its membership function. Other notations that 

can be used  the following ߤ஺ሺݔሻ ൌ  .ሻݔሺܣ	

 

Example 1.1: 

 0.5=(ݔ஺ሺߤ ஺,  or ifߤ is more likely to be in ݔ ሻ=0.95 may means thatݔ஺ሺߤ

then	ݔ may be half way between belonging to ܣ and  not belonging to ܣ. It 

is clear that regular subsets of ܺ are a special case of fuzzy sets called crisp 

fuzzy sets where ߤ஺ሺݔሻ∈ ሼ0,1ሽ 	⊆ 	 ሾ0,1ሿ .     
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We use different ways to display a fuzzy subset of ܺ.  In the next example 

we describe some of those ways: 

 

Example 1.2: 

Consider the regular set ܺ ൌ ሼܽ, ܾ, ܿ, ݀, ݁ሽ and let	ߤ஺ be the fuzzy subset of 

ܺ that maps ܺ to [0,1] by the following mapping: 

ܽ → 0.2, ܾ → 0.83, ܿ → 0.5, ݀ → 0, ܽ݊݀	݁ → 0.6	

We may write ߤ஺ as the set of ordered pairs: 

஺ߤ ൌ 	 ሼሺܽ, 0.2ሻ, ሺܾ, 0.83ሻ, ሺܿ, 0.5ሻ, ሺ݀, 0ሻ, ሺ݁, 0.6ሻሽ using notation of  regular 

set, or we may represent it as ߤ஺ 		ൌ 	 ሼܽ଴.ଶ, 	ܾ଴.଼ଷ, ܿ଴.ହ, ݀଴, ݁଴.଺ሽ. This last 

form will be mostly used in this manuscript. 

 

Operations on Fuzzy Sets 

Zadeh in his first publication [27], define the operations for fuzzy sets by 

generalize the theoretic operations of crisp sets (the reader should realize that 

the set theoretic operations  intersection, union and complement correspond 

to the logical operators and, inclusive or and negation). 

 

Definition (1.3) [28]: Operations for fuzzy sets: 

 Let ܧ and ܦ be two fuzzy sets, then: 

1) The intersection of ܧ and ܦ  is the fuzzy set ܥ with  

ሻݔሺܥ ൌ ሺܧ ∩ ሻݔሻሺܦ ൌ ݉݅݊ሼܧሺݔሻ, ሻሽݔሺܦ ൌ ,ሻݔሺܦ˄ሻݔሺܧ 	ݔ∀ ∈ 	ܺ.	

2) The union of ܧ and ܦ  is the fuzzy set ܥ, where  

ሻݔሺܥ	     ൌ ሺܧ	ܦሻሺݔሻ ൌ ,ሻݔሺܧሼݔܽ݉ ሻሽݔሺܦ ൌ 	ݔ∀								,ሻݔሺܦ˅ሻݔሺܧ ∈ 	ܺ.	

3) The complement of ܧ is the fuzzy set ܦ, where 

ሻݔሺܦ     ൌ ሻݔ௖ሺܧ	 	ൌ 	1 െ ,ሻݔሺܧ 	ݔ∀ ∈ 	ܺ.	
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4) Difference ሺܧ െ ሻݔሻሺܦ	 	ൌ 	 ሺܧ ∩ ሻݔ௖ሻሺܦ 	ൌ 	݉݅݊ሼ	ܧሺݔሻ,1 െ 	.ሻሽݔሺܦ

5) equilibrium points ܧሺݔሻ 	ൌ 	.ሻݔ௖ሺܧ	

In the following examples we illustrate the previous definitions. 

 

Example 1.3: 

 Consider the following two fuzzy sets: 

 .{ a0.5, b0.7, c0.2, d0.4}=ܤ  and {a1.0, b0.5, c0.3, d0.2}=ܣ         

1. Complement ܣ௖ ={a0.0, b0.5, c0.7, d0.8}. 

2. Complement ܤ௖ ={a0.5, b0.3, c0.8, d0.6}. 

3. Union:  ܣ	ܤ ={a1.0, b0.7, c0.3, d0.4}. 

4. Intersection: ܣ	 ∩  .{a0.5, b0.5, c0.2, d0.2}=	ܤ	

5. Difference ܣ	– 	ܤ	 ൌ ܣ ∩   .=={a0.5, b0.3, c0.3, d0.2}	௖ܤ

 
For the continuous graph case:  

Take ܺ ൌ ሾ0,4ሿ, ܣሺݔሻ and ܤሺݔሻ	are as follows:  

               

 
 
 
 
 
 
 
                                                                 

                                                                               Intersection of fuzzy sets 
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            Union of fuzzy sets                                   Complement of fuzzy sets 

   

Now we  can compare two fuzzy subsets of a set ܺ as one of them containing 

the other as follows: 

 

Definition (1.4) [27]: The containment: 

 Let ܣ, 	ܣ be two fuzzy subsets of ܺ, we say	ܤ ൑ ሻݔሺܣ  to mean  ܤ		 ൑  ሻݔሺܤ

for all ݔ	 ∈ ܺ. 

 

For example: Consider ܺ ൌ ሼܽ, ܾ, ܿ, ݀ሽ and let ܣ={a0.4, b0.8, c0.1, d0 } and 

	ܤ then clearly  ,{ a0.1, b0.8, c0, d0}=ܤ ൑  .ܣ	

 

Definition (1.5) [9]: The support of  the fuzzy set :  

The support of  the fuzzy set ܣ is defined by: 

ሻܣሺ݌݌ݑݏ ൌ ሼݔ ∈ ܺ ∶ 	.0ሽ	˃	ሻݔሺܣ	

Definition (1.6) [18]: ࢻ	–cut: 

An ߙ	–level  set of a fuzzy set ܣ of ܺ is a non-fuzzy set denoted by ܣఈand is 

defined by: 

ఈܣ ൌ ቊ
ݔ ∈ ܺ ∶ ሻݔሺܣ	 ൒ ,									ߙ	 ߙ݂݅ ∈ ሺ0	,1ሿ

݈ܿ൫݌݌ݑݏሺܣሻ൯																			, ߙ݂݅ ൌ 0						
 

where	݈ܿ൫݌݌ݑݏሺܣሻ൯ ൌ  .ܣ	ݐݎ݋݌݌ݑݏ	݄݁ݐ	݂݋	݁ݎݑݏ݋݈ܥ
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Example 1.4:  

The following example displays some ߙ െ levels of some  fuzzy subsets: 

Let ܣ ൌ{ a0.4 , b0.7, c0.3 , d0.2 }be a fuzzy subset of ܺ={a, b, c, d}then the 0.3-

level=ܣ଴.ଷ={a, b, c}, the 0.1-level=ܣ଴.ଵ={a, b, c, d}. And the support of 

ሻܣሺ݌݌ݑݏ	ܣ ൌ ܺ ൌ{a, b, c, d}. 

 

Example 1.5: 

The following represents the graph of a fuzzy subset of ܴ ൌ ሺെ∞,∞ሻ with 

its function representation. 
  

 

 

where ܣሺݔሻ ൌ   

ە
ۖ
۔

ۖ
ۓ
ݔ െ ݔ	݂݅					2 ∈ ሾ2,3ሿ
ݔ	݂݅													1 ∈ ሾ3,5ሿ
଼ି௫

ଷ
	ݔ	݂݅								 ∈ ሾ5,8ሿ

݁ݎ݄݁ݓ݁ݏ݈݁										0
							

 

The 0.4 level of this fuzzy set is, ܣ଴.ସ ൌ ሼݔ	 ∈ ሻݔሺܣ	:ܺ 	൒ 	0.4ሽ 

0.4	 ൑ ݔ		 െ 2 	ݔ	 ൒ 	2.4	

0.4	 ൒ 	
8 െ ݔ
3

	 	ݔ	 ൑ ଴.ସܣ		݋ݏ		6.8	 ൌ ሾ2.4	, 6.8ሿ	

        In  general, the ߙ-level can be found as follows: 



11 

ଵݔ	]=ఈܣ
ఈ			, ଶݔ

ఈ			ሿ 

Now, 	ߙ ൌ ଵݔ
ఈ			 െ 2,	 and this implies that 	ݔଵ

ఈ			 ൌ ߙ ൅ 2 

And ߙ ൌ
଼ି௫మ

ഀ			

ଷ
 which means ݔଶ

ఈ			 ൌ 8 െ  ߙ3

So  ܣఈ ൌ 	 ሾߙ ൅ 2,8 െ  ሿߙ3

For ߙ ൌ ଴.ସܣ  ,0.4 ൌ ሾ2.4	, 6.8ሿ 

 

 

Example 1.6: 

 Let ܣ defined  as the following 
 

 

     

ሻܣሺ݌݌ݑܵ	     	ൌ ሺ1	, 2	ሻሺ2	,∞	ሻ	

ݔ଴.ସ  =ሼܣ     ∈ ܺ ∶ ሻݔሺܣ	 	൒ 	0.4ሽ ൌ ሾ1.8	, 2.2	ሿሾ3.4	, ∞ሻ. 

 

 

 

 

1 

0.5	

					 1 2 3 4 	
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Definition (1.7) [23]: Normal fuzzy set:  

 A fuzzy set ܣ is called normal if there is at least one point ݔ	 ∈ ܴ with 

ሻݔሺܣ ൌ 1. 

 

Definition (1.8) [23]: convex fuzzy set: 

 A fuzzy set ܧ is convex if each of its ߙ െlevel are convex set, 

 i.e.  ܧఈ 	ൌ 	 ሼݔ	 ∈ 	ܺ ∶ ሻݔሺܧ	 	൒  .[∀α ∈ (0,1	ሽ are convex	ߙ	
 

An alternative definition of convexity: we call ܧ convex if and only if 

ݕ	ሺ߬ܧ ൅ ሺ1 െ 	߬ሻ	ݖሻ 	൒ 	݉݅݊	ሼܧሺݕሻ, ,ሻሽݖሺܧ ,ݕ∀ ݖ ∈ ܺ,				߬ ∈ ሾ0,1ሿ. 
 

 

 

 

1.3 Interval Arithmetic [11] 

An interval is a subset of ܴ  such that ܣ ൌ ሾܽଵ, ܽଶሿ ൌ ൛ݐ: ܽଵ ൑ ݐ ൑ ܽଶ,

ܽଵ,ܽଶ ∈ ܴൟ. 

If ܣ ൌ ሾܽଵ, ܽଶሿ	ܽ݊݀	ܤ ൌ ሾܾଵ, ܾଶሿ	 are two intervals, thus the arithmetic 

operations are: 

Addition: 

ሾܽଵ, ܽଶሿ ൅ ሾܾଵ, ܾଶሿ ൌ ሾܽଵ ൅ ܾଵ, ܽଶ ൅ ܾଶሿ 

 

Convex Fuzzy Set                                     Non-convex Fuzzy Set          

 

11	

Figure (1.1) 
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Subtraction 

ሾܽଵ, ܽଶሿ െ ሾܾଵ, ܾଶሿ ൌ ሾܽଵ െ ܾଶ, ܽଶ െ ܾଵሿ 

 

Product 

ሾܽଵ, ܽଶሿ. ሾܾଵ, ܾଶሿ ൌ 

							ሾmin	ሺܽଵܾଵ, ܽଵܾଶ, ܽଶܾଵ, ܽଶܾଶሻ,݉ܽݔ	ሺܽଵܾଵ, ܽଵܾଶ, ܽଶܾଵ, ܽଶܾଶሻሿ 

 

Division 

ሾܽଵ, ܽଶሿ/ሾܾଵ, ܾଶሿ= 

ሾmin	ሺܽଵ/ܾଵ, ܽଵ/ܾଶ, ܽଶ/ܾଵ, ܽଶ/ܾଶሻ,݉ܽݔ	ሺܽଵ/ܾଵ, ܽଵ/ܾଶ, ܽଶ/ܾଵ, ܽଶ/ܾଶሻሿ			 

ܾଵ, ܾଶ ് 0 

1.4 Fuzzy Numbers 

A way to describe the vagueness and lack of precision of data is a fuzzy 

number. The theory of fuzzy numbers is based on the theory of fuzzy sets 

which was introduced by Zadeh [27] in 1965. The concept of a fuzzy number 

was first used by Nahmias in the United States and by Dubois and Prade in 

France in the late 1970's. Our definition of a fuzzy number is illustrating in 

the following. 

Definition (1.9) [16]: fuzzy number: 

 A fuzzy number is a fuzzy set ݒ:	ܴ → ሾ0,1ሿ  which satisfies: 

 ݒ is upper semi continuous. 

  ݒሺݔሻ ൌ 0  outside some interval ሾܽ, ݀ሿ. 

 There are real numbers ܾ, ܿ ∶ 	ܽ ൑ 	ܾ ൑ 	ܿ	 ൑ 	݀ for which 
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   a. ݒሺݔሻ is monotonic increasing on ሾܽ, ܾሿ	, 

   b. ݒሺݔሻ is monotonic decreasing on ሾܿ, ݀	ሿ, 

   c. ݒሺݔሻ ൌ 1, ܾ	 ൑ 	ݔ	 ൑ 	ܿ . 

i.e.  ݒሺݔሻ = 

ە
ۖ
۔

ۖ
ۓ
ݔ																																																																	,	0 ൑ ܽ
	ƒሺxሻ	,																																																				ܽ ൑ ݔ	 ൑ ܾ
1	,																																																								b ൑ x ൑ c
ɡሺxሻ,																																																					ܿ ൑ ݔ	 ൑ ݀
ݔ																																																															,0 ൒ ݀

                  (1.1) 

where ƒ is an increasing function and is called the left side, while ɡ is a 

decreasing function and is called the right side.  

 

 

 
 

 Also ݒ is called symmetric fuzzy number if ݒሺݐ	 ൅ ሻݔ 	ൌ 	ݐሺݒ	 െ  ሻ forݔ	

all ݔ	 ∈ 	ܴ, where ݐ	 ൌ 		
௕ା௖

ଶ
	. 

  The set of all the fuzzy numbers  is denoted by 1ܧ. 

 If ݒሺݔሻ  in the intervals ሾܽ, ܾሿ  and 	ሾܿ, ݀ሿ  is linear then it is called a 

trapezoidal fuzzy number(which we will discuss later) and we write  

ሻݔሺݒ 		ൌ ሺ	ܽ, ܾ, ܿ, ݀	ሻ.	

 

 

	ሻݔሺ	ݒ

	ݔ

 

t

Figure (1.2) 
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Definition (1.10) [24]: Parametric form of fuzzy number: 

 An arbitrary fuzzy number in parametric form is represented by an ordered 

pair of functions 	ቀݒሺݎሻതതതതതത, ,ሻቁݎሺݒ  0	 ൑ 	ݎ	 ൑ 	1,  which satisfy the following 

requirements: 
 
, is a bounded left-continuous non-decreasing function over ሾ0	ሻݎሺݒ .1 1ሿ. 

,ሻതതതതതത  is a bounded left-continuous non-increasing function over ሾ0ݎሺݒ .2 1ሿ. 

	ሻതതതതതത;  0ݎሺݒ ≥ሻݎሺݒ .3 ൑ 	ݎ	 ൑ 	1. 

Remark (1.1) [15]: 

 A crisp number ߙ is simply represented by  

ሻݎሺݒ ൌ ሻതതതതതതݎሺݒ ൌ ,ߙ 0	 ൑ 	ݎ	 ൑ 	1. 

 

Also	ݒ ൌ ሺݒ,  ሻ is called a symmetric fuzzy number in parametric form ifݒ

ሻݎ௖ሺݒ ൌ
௩ሺ௥ሻା௩ሺ௥ሻതതതതതത

ଶ
 is a real constant for all 0	 ൑ 	ݎ	 ൑ 	1. 

 

For example:  

	ݑ  ൌ 	 ሺ2	 ൅ ,ݎ	 5	 െ 	ݒ ሻ is a fuzzy number andݎ2	 ൌ 	 ሺ1	 ൅ ,ݎ	 3	 െ  is a	ሻݎ	

symmetric fuzzy number in parametric form.  

1.4.1. Types of a Fuzzy Number 

Here we will talk about most popular types of fuzzy numbers, namely: 
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1) Triangular Fuzzy Number 

 

 

 

 

   

 

     

A triangular fuzzy number (TFN) as illustrated in Figure (1.3)  is a special 

type and the most common of fuzzy number and its membership function 

 :ሻ  is given byݔ஺ ሺߤ	 

 =   ሻݔ஺ ሺߤ

ە
ۖ
۔

ۖ
ۓ
ݔ																					,			0 ൑ ܽ,
௫ି௔

௕ି௔
	,												ܽ ൑ ݔ ൑ ܾ,

௖ି௫

௖ି௕
	,														ܾ ൑ ݔ ൑ ܿ,

0				,																ܿ ൑ 							.	ݔ
							

 

2) Trapezoidal Fuzzy Number 

 

 

 

 

 

     

      

A trapezoidal fuzzy number (Tr F N) which illustrated in  Figure (1.4)  is a 

special type of fuzzy number and its membership function ߤ஺ ሺݔሻ  is given by 

ܾܽܿݔ

ݔ
ܾ݀ܿܽ

     ሻݔ஺ ሺߤ

   ሻݔ஺ ሺߤ

 

 

Figure (1.3) 

 

Figure (1.4)

ܽ ܾ ܿ
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 =   ሻݔ஺ ሺߤ

ە
ۖ
۔

ۖ
ۓ
ݔ																									,	0 ൑ ܽ,
௫ି௔

௕ି௔
,													ܽ ൑ ݔ ൑ ܾ,

1				,														ܾ ൑ ݔ ൑ ܿ
ௗି௫

ௗି௖
,															ܿ ൑ ݔ ൑ ݀,

0		,															݀ ൑ 						.	ݔ

, 

1.4.2 Conversion from Fuzzy Number to Interval Using Alpha Cut 

The ߙ െcut operation can be also applied to the fuzzy number. If we denote 

ߙ െcut interval for fuzzy number ܣ  as ܣఈ,   the obtained interval ܣఈ  is 

defined as following   

ଵݔ] = ఈܣ
ఈ			, ଶݔ

ఈ			ሿ 

We can also know that it is an ordinary crisp interval 

 

1) Conversion Triangular Fuzzy Number to Interval 

Let, a triangular fuzzy number defined as ൌ ሺܽଵ, ܽଶ, ܽଷሻ , then to find ߙ െcut 

of ܣ  , ߙ∀ ∈ 	 ሾ0, 1ሿ	we first set ߙ  equal to the left and right membership 

function of ܣ . That is, 

ߙ ൌ ௫భ				
ഀ ି௔భ
௔మି௔భ

  and	ߙ ൌ ௔యି௫మ				
ഀ

௔యି௔మ
 

Expressing ݔఈ in terms of	ߙ we have,		ݔଵ
ఈ ൌ ሺܽଶߙ െ ܽଵሻ ൅ ܽଵ and 

ଶݔ 
ఈ ൌ െߙሺܽଷ െ ܽଶሻ ൅ ܽଷ 

Therefore, we can write the fuzzy interval in terms of ߙ	 െcut interval as: 

ሺܽଶߙ]=ఈܣ െ ܽଵሻ ൅ ܽଵ	, െߙሺܽଷ െ ܽଶሻ ൅ ܽଷሿ. 

 

Example 1.7: 

 Let ܣ ൌ ሺ1, 2, 3ሻ, ܤ ൌ ሺെ3,െ2,െ1ሻ	and ܥ ൌ 	 ሺ3, 4, 5ሻ 

Then ܣఈ ൌ	 ሾ1 ൅ ,	ߙ 3 െ ఈ ൌܤ ,ሿߙ ሾെ3 ൅ െ1,ߙ െ ఈܥ ,ሿߙ ൌ ሾ3 ൅ ,ߙ 5 െ  .ሿߙ



18 

Example 1.8: 

 In the case of the triangular fuzzy number ܣ ൌ ሺെ5,െ1, 1ሻ	,  the 

membership function value will be, 

 =  ሻݔ஺ ሺߤ

ە
ۖ
۔

ۖ
ۓ
ݔ																														0 ൑ െ5					
௫ାହ

ସ
														െ 5 ൑ ݔ ൑ െ1							

ଵି௫

ଶ
															െ 1 ൑ ݔ ൑ 	1									

0																				1 ൑ 																	ݔ
							

 

ߙ െcut interval from this fuzzy number is  
௫ାହ

ସ
ൌ ߙ ݔ 	⇒	 ൌ ߙ4	 െ 5	

  
ଵି௫

ଶ
ൌ ݔ  ⇒ߙ ൌ 	െ2ߙ ൅ 1 

ఈ = [ܽଵܣ
ఈ			, ܽଶ

ఈ			ሿ 	ൌ 	 ሾ4ߙ െ 5,െ2ߙ ൅ 1ሿ 

If ߙ	 ൌ 0.5, substituting  0.5	for α, we get ܣ଴.ହ  

଴.ହ=[ܽଵܣ
଴.ହ			, ܽଶ

଴.ହ			]=[-3, 0] 
 

 

2) Conversion Trapezoidal Fuzzy Number to Interval 

Let, a trapezoidal fuzzy number defined as ܣ ൌ ሺܽଵ, ܽଶ, ܽଷ, ܽସሻ 

By following the similar procedure as above, we can write the fuzzy interval 

in terms of ߙ	–cut interval as following: 

ሺܽଶߙ]=ఈܣ െ ܽଵሻ ൅ ܽଵ	, െߙሺܽସ െ ܽଷሻ ൅ ܽସሿ. 

 

Figure (1.5) 
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1.4.3. Fuzzy Arithmetic 

Since  ܣఈ is now interval, so fuzzy addition, subtraction, multiplication and 

division are the same as interval arithmetic. 

Definition (1.11) [20]: 

As discussed above, fuzzy numbers may be transformed into an interval 

through parametric form. So, for any arbitrary fuzzy number ݔ ൌ

ሺݔሺߙሻ, ݕ ,ሻሻߙሺݔ ൌ ሺݕሺߙሻ,  ሻሻ and scalar ݇ ,we have the interval basedߙሺݕ

fuzzy arithmetic as 

 

i.			ݔ ൌ ሻߙሺݔ if and only if ݕ ൌ ሻߙሺݔ ሻ andߙሺݕ ൌ   .ሻߙሺݕ

ii.   ݔ ൅ ݕ ൌ ሺ ݔሺߙሻ ൅ ሻߙሺݔ	,	ሻߙሺݕ ൅  .ሻሻߙሺݕ

iii.   ݔ െ ݕ ൌ ሺݔሺߙሻ െ ,ሻߙሺݕ ሻߙሺݔ െ  .ሻሻߙሺݕ

iv. 	ݔ ൈ ݕ ൌ ሾ݉݅݊	ሺݔሺߙሻݕሺߙሻ, ,ሻߙሺݕሻߙሺݔ 	,ሻሻߙሺݕሻߙሺݔ	,ሻߙሺݕሻߙሺݔ

,ሻߙሺݕሻߙሺݔሺ	ݔܽ݉																					 ,ሻ	ߙሺݕሻߙሺݔ ,ሻߙሺݕሻߙሺݔ  .ሻሻሿߙሺݕሻߙሺݔ

v. 	x/y ൌ ሺሺx	ሺαሻ, x	ሺαሻሻሻ/ሺሺyሺαሻ, yሺαሻሻ ൌ 		 ሺݔሺߙሻ/ݕሺߙሻ,                            .ሻሻߙሺݕ/ሻߙሺݔ

p                                                                 provided yሺαሻ ൌ yሺαሻ ് 0 

vi.  ݇ݔ ൌ ቊ
ൣ݇x	ሺαሻ, kx	ሺαሻ൧						, ݇ ൒ 0
ሾ݇ݔሺߙሻ, ,						ሻሿߙሺݔ݇ ݇ ൏ 0.

 

Definition (1.12) [23]: Positive fuzzy number: 

 A fuzzy number ܣ is called positive, denoted by  ܣ	 ൐ 	0, if its membership 

function ߤ஺	ሺݔሻsatisfies ߤ஺	ሺݔሻ ൌ 0, 	ݔ∀ ൑ 	0.  

Definition (1.13) [23]: Nonnegative fuzzy number: 

 A fuzzy number ܣ  is called nonnegative, denoted by 	൒ 	0  , if its 

membership function ߤ஺	ሺݔሻsatisfies ߤ஺	ሺ0=(ݔ, 	ݔ∀ ൏ 	0.	 
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Definition (1.14) [25]: Equality in fuzzy numbers: 

 Two triangular fuzzy numbers ܰ	 ൌ 	 ሺ݉, ,ߛ 	ܯ	ሻ andߚ ൌ 	 ሺ݊, ,	ߙ  ሻ are saidߜ

to be equal, if and only if	݉	 ൌ ߛ ,݊	 ൌ 	ߚ and 	ߙ ൌ  .ߜ	

1.5 Fuzzy Linear System 

In 1965[27] Lotfi Zadeh was submit fuzzy logic, which has had achieved 

many successful applications in several areas that one can imagine. The 

reason  behind that they are many real-world applications problems are 

involved the systems in which at least some parameters are represented by 

fuzzy numbers rather than crisp numbers. Moreover a system of fuzzy linear 

equations may appear in a wide variety of problems in various areas such as 

engineering, mathematics, physics, statistic and social sciences. 

A linear system of fuzzy equations divided into three categories 

	ݔܣ																																					 ൌ 	ܾ                                                            (1.2) 

– In the first category, the coefficient matrix arrays are crisp numbers, the 

right-hand side column is an arbitrary fuzzy vector and the unknowns are 

fuzzy numbers. 

– In the second category, the coefficient matrix arrays are fuzzy numbers, 

the right-hand side column is an arbitrary fuzzy vector and the unknowns 

are crisp numbers. 

– In the third category, all the coefficient matrix arrays, the right-hand side 

arrays and the unknowns, are fuzzy numbers. 
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Definition (1.15) [1]: Fuzzy linear system: 

  The ݊	 ൈ 	݊ linear system 

ە
ۖ
۔

ۖ
ۓ
ܽଵଵݔଵ ൅ ܽଵଶݔଶ ൅		…		൅ ܽଵ௡ݔ௡ ൌ ܾଵ,
ܽଶଵݔଵ ൅ ܽଶଶݔଶ ൅		…		൅ ܽଶ௡ݔ௡ ൌ ܾଶ,
									.																																								.										.					.			
						.																																								.										.					.
							.																																								.										.					.
ܽ௡ଵݔଵ ൅ ܽ௡ଶݔଶ ൅		…		൅ ܽ௡௡ݔ௡ ൌ ܾ௡,

																																					ሺ1.3ሻ 

where the coefficients matrix ܣ	 ൌ 	 ሺܽ௜௝	ሻ, 1	 ൑ 	݅, ݆	 ൑ 	݊ is a crisp ݊ ൈ

݊	matrix and each ܾ௜ 	 ∈ ,ଵܧ	 1	 ൑ 	݅	 ൑ 	݊, is fuzzy number, is called a fuzzy 

linear system (FLS).  

 

Definition (1.16) [1]: Solution of fuzzy linear system: 

  A fuzzy number vector ܺ	 ൌ 	 ሺݔଵ, ,ଶݔ . . . , ௜ݔ ௡ሻ௧ given byݔ ൌ

൬ݔ௜ሺݎሻ, ሻ൰, 1ݎ௜ሺݔ ൑ ݅ ൑ ݊, 0 ൑ ݎ ൑ 1 is called (in parametric form) a 

solution of the FLS(1.3) if  

෍ ܽ௜௝ݔ௝
௡

௝ୀଵ
ൌ෍ ܽ௜௝ݔ௝

௡

௝ୀଵ
	ൌ ܾ௜, 

  (1.4) 

෍ ܽ௜௝ݔ௝
௡

௝ୀଵ
ൌ෍ ܽ௜௝ݔ௝	

௡

௝ୀଵ
ൌ ܾ௜. 

Following Friedman et al (1998) [17] we introduce the notations below: 

ݔ ൌ ሺݔଵ, …,ଶݔ ,ଵݔ௡,െݔ െݔଶ, …െ  ௡ሻ௧ݔ

ܾ ൌ ሺܾଵ, ܾଶ, … ܾ௡, െܾଵ, െܾଶ, …െ ܾ௡ሻ௧                                         

ܵ ൌ ൫ݏ௜௝൯, 1 ൑ ݅, ݆ ൑ 2݊,  : are determined as follows	௜௝ݏ	݁ݎ݄݁ݓ

ܽ௜௝ ൒ 0 ⇒ ௜௝ݏ ൌ ܽ௜௝, ௜ା௡,௝ା௡ݏ ൌ ܽ௜௝, 

(1.5) 

ܽ௜௝ ൏ 0 ⇒ ௜,௝ା௡ݏ ൌ െܽ௜௝, ௜ା௡,௝ݏ ൌ െܽ௜௝. 
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and any ݏ௜௝ which is not determined by (1.5) is zero. Using matrix notation 

we have 

                                        ܵܺ	 ൌ 	ܾ                                                           (1.6) 

The structure of ܵ implies that ݏ௜௝ ൒ 0 and thus 

                                  ܵ ൌ ቀܤ									ܥ
ܤ									ܥ

ቁ                                                      (1.7) 

where ܤ contains the positive elements of ܣ	,  contains the absolute value ܥ

of the negative elements of ܣ	and	ܣ	 ൌ –	ܤ	  An example in the work of  .ܥ

Friedman et al (1998) shows that the matrix ܵ may be singular even if ܣ is 

nonsingular. 

 

Theorem (1.1) [17]: 

(Friedman et al (1998)) The matrix ܵ is nonsingular matrix  if and only if the 

matrices ܣ	 ൌ 	ܤ	 െ 	ܤ	and ܥ ൅   .are both nonsingular ܥ

 

Proof. By subtracting the ݆th column of ܵ, from its ሺ݊ ൅ ݆ሻth column for 1 ൑

݆ ൑ ݊	we obtain 

ܵ ൌ ቀܤ	
	ܥ
ܥ
ܤ
ቁ → ቀܤ				

				ܥ
ܥ െ ܤ
ܤ െ ܥ

ቁ ൌ ଵܵ.                                                               

Next, we adding the ሺ݊ ൅ ݅ሻ݄ݐ  row of ܵ to its ݅th row for 1 ൑ ݅ ൑ ݊ then 

we obtain 

ଵܵ ൌ ቀܤ				
				ܥ

ܥ െ ܤ
ܤ െ ܥ

ቁ → ቀܤ ൅ 				ܥ
				ܥ

0
ܤ െ ܥ

ቁ ൌ ܵଶ.                                              

Clearly,  |ܵ| ൌ | ଵܵ| ൌ |ܵଶ| ൌ ܤ| ൅ ܤ||ܥ െ |ܥ ൌ ܤ| ൅   .|ܣ||ܥ

Therefore 

|ܵ| ് 0 if and only if |ܣ| ് 0 and |ܤ ൅ |ܥ ് 0, 

Which concludes the proof. 
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Corollary 1.1 [17]: 

If a crisp linear system does not have a unique solution, the associated fuzzy 

linear system does not have one either. 

Definition (1. 17) [7]: Strong solution: 

 If	ܺ ൌ ሺݔଵ, …,ଶݔ ,ଵݔ௡,െݔ െݔଶ, … ,െݔ௡ሻ୘ is a solution of (1.6) and for each 

1 ൑ 	݅	 ൑ 	݊,	when the inequalities ݔ௜ ൑ ௜ݔ  hold, then the solution ܺ ൌ

ሺݔଵ, ,ଶݔ … ,௡ݔ െݔଵ, െݔଶ, … ,െݔ௡ሻ୘ is called a strong solution of the system 

(1.6). 

Definition (1.18) [7]: weak solution: 

 If		ܺ ൌ ሺݔଵ, ,ଶݔ … …,ଶݔଵ,െݔ௡,െݔ ,െݔ௡ሻ୘ is a solution of (1.6) and for some 

݅ ∈ ሾ1, ݊ሿ,  when the inequality ௜ݔ		 ൒ ௜ݔ  hold, then the solution 	ܺ ൌ

ሺݔଵ, ,ଶݔ … ,௡ݔ െݔଵ, െݔଶ, … ,െݔ௡ሻ୘  is called a weak solution of the system 

(1.6). 

Theorem (1.2) [7]: 

 Let ܵ ൌ ቀB									C
C									B

ቁ be a nonsingular matrix. Then the system (1.6) has a 

strong solution if and only if ሺܤ ൅ ሻିଵሺܾܥ െ ܾሻ ൑ 0. 

Theorem (1.3) [7]: 

The FLS (1.3) has a unique strong solution if and only if the following 

conditions hold: 

1) The matrices 

	ܣ         ൌ 	ܤ	 െ 	ܤ and ܥ ൅  . are both invertible matrices ܥ

2) ሺܤ ൅ ሻିଵሺܾܥ െ ܾሻ ൑ 0. 
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1.6 Fully Fuzzy Linear System of Equations 

Definition (1.19) [13]:  

Consider the ݊ ൈ ݊ fully fuzzy linear system of equations: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) .

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

       


      


       

     

     



     

                                                     (1.8) 

the matrix form of the above system is  

ሚܣ ⊗ ෤ݔ ൌ ෨ܾ                                                   (1.9) 

where the coefficient matrix ܣሚ ൌ ൫ ෤ܽ௜௝൯, 1 ൑ ݅, ݆ ൑ ݊  is  an ݊ ൈ ݊  fuzzy 

matrix and ݔ෤௜, ෨ܾ௜ , 1 ൑ ݅ ൑ ݊ are fuzzy vectors. This system is called fully 

fuzzy linear system (FFLS).  

Let us review some important definitions and arithmetic of fuzzy number. 

We symbolically represent the Triangular fuzzy number as ෥݉ ൌ ሺ݉, ,ߙ   .ሻߚ

In addition we denote the set of all Triangular fuzzy number by F(R). 

 

Definition (1.20) [13]: Positive fuzzy number: 

A fuzzy number ෥݉  is said to positive (negative), shows as ෥݉ ൐ 0ሺ ෥݉ ൏ 0ሻ 

where its membership function satisfies ߤ௠෥ ሺݔሻ ൌ 0, ݔ∀ ൏ 0ሺ∀ݔ ൐ 0ሻ. 

Consequently, a Triangular fuzzy number as ෥݉ ൌ ሺ݉, ,ߙ  ሻ  is said to beߚ

positive if and only if ݉ െ ߙ ൒ 0. 
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Definition (1.21) [13]: Arithmetic operations on fuzzy numbers: 

For two fuzzy numbers ෥݉ ൌ ሺ݉, ,ߙ ሻ and ෤݊ߚ ൌ ሺ݊, ,ߛ   ሻ we defineߜ

1. Addition:  ෥݉ ⊕ ෤݊ ൌ ሺ݉, ,ߙ ⊕ ሻߚ ሺ݊, ,ߛ ሻߜ ൌ ሺ݉ ൅ ݊, ߙ ൅ ,ߛ ߚ ൅  .ሻߜ

2. Opposite:	െ ෥݉ ൌ െሺ݉, ,ߙ ሻߚ ൌ ሺെ݉, ,ߚ  .ሻߙ

3. Multiplication of two fuzzy numbers : If ෥݉ ൐ 0 and ෤݊ ൐ 0, then  

ሺ݉, ,ߙ ሻߚ ⊗ ሺ݊, ,ߛ ሻߜ ൌ ሺ݉݊,݉ߛ ൅ ߜ݉,ߙ݊ ൅  .ሻߚ݊

4. Scalar multiplication: 

          ݇ ⊗ ሺ݉, ,ߙ ሻߚ ൌ ൜
ሺ݇݉, ,ߙ݇ ݇									,	ሻߚ݇ ൒ 0
ሺ݇݉,െ݇ߙ,െ݇ߚሻ,					݇ ൏ 0
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Chapter Two 

Analytical Methods for Solving Linear Fuzzy Systems  

We will discuss some analytical methods for solving the first category of 

fuzzy linear systems (1.2) where the coefficient matrix are crisp numbers and 

the right-hand side column is an arbitrary fuzzy vector and the unknowns are 

fuzzy numbers. Moreover, we introduce some analytical methods for solving 

the third category of fuzzy linear systems (1.2) which is called fully fuzzy 

linear system, where all the coefficient matrix arrays, the right-hand side 

arrays and the unknowns are fuzzy numbers. 

2.1 Analytical Methods for Solving Fuzzy Systems of Linear Equations 

(FLS) 

2.1.1 Friedman's Proposal [17] 

The  idea of  this approach is replacing the original system with matrix  ܣ by

   2 2n n   crisp linear system with matrix ܵ which may be  singular matrix 

even if ܣ is nonsingular matrix. 

Consider the	݅th equation of the system (1.3): 

ܽ௜ଵ൫ݔଵ, ଵ൯ݔ ൅ ⋯൅ ܽ௜௜൫ݔ௜, ௜൯ݔ ൅ ⋯൅ ܽ௜௡൫ݔ௡, ௡൯ݔ ൌ ൬ݕ௜ሺݎሻ,  ,ሻ൰ݎ௜ሺݕ

we have 

     ܽ௜ଵݔଵ ൅ ⋯൅ ܽ௜௜ݔ௜ ൅ ⋯൅ ܽ௜௡ݔ௡ ൌ         ሻݎ௜ሺݕ

(2.1) 

     ܽ௜ଵݔଵ ൅ ⋯൅ ܽ௜௜ݔ௜ ൅ ⋯൅ ܽ௜௡ݔ௡ ൌ ,ሻݎ௜ሺݕ 1 ൑ ݅ ൑ ݊, 0 ൑ ݎ ൑ 1. 
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From (2.1) we have two crisp ݊ ൈ ݊ linear systems for all ݅ that means we 

can extended the fuzzy system (1.3) to a   2݊ ൈ 2݊ crisp linear system as 

follows: 

ܵܺ ൌ ܻ,																																																											(2.2) 

where	ݏ௜௝	 are determined as follows: 

ܽ௜௝ ൒ 0 ⇒ ௜௝ݏ ൌ ܽ௜௝, ௜ା௡,௝ା௡ݏ ൌ ܽ௜௝, 

(2.3) 

ܽ௜௝ ൏ 0 ⇒ ௜,௝ା௡ݏ ൌ െܽ௜௝, ௜ା௡,௝ݏ ൌ െܽ௜௝. 

and any ݏ௜௝which is not determined by equation(2.3) is zero and.  

ܺ=

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݔ		
⋮
௡ݔ		
െݔଵ
⋮

െݔ௡ے
ۑ
ۑ
ۑ
ۑ
ې

  	,      ܻ=

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵݕ		
⋮
௡ݕ		
െݕଵ
⋮

െݕ௡ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

  .                                      (2.4) 

The structure of ܵ ൌ ൫ݏ௜௝൯, 1 ൑ ݅, ݆ ൑ 2݊ implies		ݏ௜௝ ൒ 0 and that 

S=ቂ		ܤ		
		ܥ

ܥ
ܤ
	ቃ                                                    (2.5) 

where ܤ contains the positive elements of ܣ, and ܥ	the absolute values of the 

negative entries of ܣ, that is, 	ܣ ൌ 	ܤ	 െ  . ܥ

now the system (2.2) yields to 

ܵܺ ൌ ܻ → ቂ		ܤ		
		ܥ

ܥ
ܤ
	ቃ ൤
			ܺ

െܺ
			൨ ൌ ൤

			ܻ

െܻ
		൨.																																																											(2.6) 

Thus fuzzy linear system (1.3) is extended to a crisp (2.6) which also can 

be written as the following: 

ቊ
ܺܤ ൅ ൫െܺ൯ܥ ൌ ܻ,

ሺെܺሻܥ ൅ ܺܤ ൌ ܻ.
                                                                                 (2.7) 
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Example 2.1: 

Consider the 2ൈ 2 fuzzy linear system 

ଵݔ3 െ ଶݔ4 ൌ  ,ଵݕ

ଵݔ5 ൅ ଶݔ2 ൌ  .ଶݕ

The 4ൈ4 system is  

ଵݔ3 																															൅ 4ሺെݔଶሻ ൌ 		  ,ଵݕ

ଵݔ5 ൅ ଶݔ2 																																					ൌ 			  ,ଶݕ

ଶݔ	4									 ൅ 3ሺെݔଵሻ 																				ൌ െݕଵ, 

                   5ሺെݔଵሻ ൅ 2ሺെݔଶሻ 	ൌ െݕଶ, 

i.e. 

   

3 0 0 4

5 2 0 0

0 4 3 0

0 0 5 2

S

 
 
 
 
 
 

    

  

The linear system of equation(2.2) is now a ሺ2݊ሻ ൈ ሺ2݊ሻ crisp linear system 

and can be uniquely solved for ܺ,  if and only if the matrix	ܵ is non-singular. 

On the other hand, the following example contradicts the notable fact that ܵ 

may be singular even if the original matrix ܣ is not. 

Example 2.2: 

The matrix ܣ of the following fuzzy linear system 

ଵݔ2 ൅ ଶݔ2 ൌ  ,ଵݕ

ଵݔ3 െ ଶݔ3 ൌ  ଶݕ

is nonsingular matrix, while 
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2 2 0 0

3 0 0 3

0 0 2 2

0 3 3 0

S

 
 
 
 
 
 

 

is singular. So a fuzzy linear system represented by a nonsingular matrix 	ܣ 

may have no solution or an infinite number of solutions. 

        The next result eliminate  the possibility of a unique fuzzy solution, 

whenever the crisp system is not uniquely solved, i.e. whenever ܣ  is 

singular. 

 

Theorem 2.1 [17]: 

If  ܵିଵ	exists it must have the same structure as ܵ, i.e. 

ܵିଵ ൌ ቀܦ			
			ܧ

ܧ
ܦ
ቁ                                                                                      (2.8) 

           Now,  to calculate ܧ and ܦ we write 

ܵܵିଵ ൌ ቀܤ			
			ܥ

ܥ
ܤ
ቁ ቀܦ			

			ܧ
ܧ
ܦ
ቁ ൌ ቀI			

0			
0
I
ቁ	 

then we get 

ܦܤ ൅ ܧܥ ൌ I,																												ܦܥ ൅ ܧܤ ൌ 0.                                          (2.9) 

By subtracting  and  adding the two parts of  Equation(2.9) we obtain 

ܦ െ ܧ ൌ ሺܤ െ ܦ															,	ሻିଵܥ ൅ ܧ ൌ ሺܤ ൅                   (2.10)															ሻିଵ,ܥ

then we get, 

 

ܦ ൌ
1
2
ሾሺܤ ൅ 	ሻିଵܥ ൅ ሺܤ െ  ,ሿ	ሻିଵܥ

 (2.11)    

ܧ ൌ
1
2
ሾሺܤ ൅ 	ሻିଵܥ െ ሺܤ െ  .ሿ	ሻିଵܥ
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the solution vector actually is unique but may still not be a suitable fuzzy 

vector. 

The next result provides necessary and sufficient conditions for the unique 

solution to be a fuzzy vector. 

 

Theorem 2.2[17]: 

 The unique solution ܺ of  equation(ܺ ൌ ܵିଵܻ) is a fuzzy vector for arbitrary 

ܻ if and only if  ܵିଵ has nonnegative entries. 

Proof: see [17]. 

 

Theorem 2.3 [17]: 

 The inverse of nonnegative matrix ܣ is nonnegative if and only if ܣ is a 

permutation matrix. 

 

To define the fuzzy solution of the crisp linear system, we consider the 

following theorem: 

Theorem 2.4 [19]: 

 Let ܺ ൌ ቄቀݔ௜ሺݎሻ, െݔ௜ሺݎሻቁ , 1 ൑ ݅ ൑ ݊ቅ	denote the unique solution of the 

2݊ ൈ 2݊  crisp linear system(2.2). The fuzzy number vector ܷ ൌ

ቄቀݑ௜ሺݎሻ, ሻቁݎ௜ሺݑ	 , 1 ൑ ݅ ൑ ݊ቅ defined by 

ሻݎ௜ሺݑ ൌ ݉݅݊ ቄݔ௜ሺݎሻ, ,ሻݎ௜ሺݔ ,௜ሺ1ሻݔ  ,௜ሺ1ሻቅݔ

ሻݎ௜ሺݑ ൌ ݔܽ݉ ቄݔ௜ሺݎሻ, ,ሻݎ௜ሺݔ ,௜ሺ1ሻݔ  ,௜ሺ1ሻቅݔ

is called the fuzzy solution of crisp  system ܵܺ ൌ ܻ.	 If ቀݔ௜ሺݎሻ, െݔ௜ሺݎሻቁ ,

1 ൑ ݅ ൑ ݊, are all fuzzy numbers then		ݑ௜ሺݎሻ ൌ ሻݎ௜ሺݑ 	,ሻݎ௜ሺݔ ൌ ,ሻݎ௜ሺݔ 1 ൑

݅ ൑ ݊ and ܷ	is called a strong fuzzy solution. Otherwise, ܷ is a weak fuzzy 

solution. 
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Example 2.3: 

 Consider the 2 ൈ 2 fuzzy system 

ଵݔ2 ൅ ଶݔ3 ൌ ሺ2 ൅ ,ݎ2 8 െ  ,ሻ	ݎ4

ଵݔ5 െ ଶݔ ൌ ሺ4ݎ, 6 െ  .ሻݎ2

The extended 4 ൈ 4 matrix is 

2 3 0 0

5 0 0 1

0 0 2 3

0 1 5 0

S

 
 
 
 
 
   

and the solution of equation (2.2) is 

ܺ=		

ۏ
ێ
ێ
ۍ
ሻݎଵሺݔ			
ሻݎଶሺݔ			
െݔଵሺݎሻ
െݔଶሺݎሻے

ۑ
ۑ
ې
ൌ ܵିଵܻ ൌ

ۏ
ێ
ێ
ۍ
െ2/221 45/221 െ15/221 6/221
75/221 െ30/221 10/221 െ4/221
െ15/221 6/221 െ2/221 45/221
10/221 െ4/221 75/221 െ30/221ے

ۑ
ۑ
ې
቎

2 ൅ ݎ2
ݎ4

ݎ4 െ 8
ݎ2 െ 6

቏, 

i.e. 

ሻݎଵሺݔ	 ൌ
80 ൅ ݎ128

221
ሻݎଵሺݔ			,	 ൌ

284 െ ݎ76
221

	 

→ ଵݔ ൌ ൬
80 ൅ ݎ128

221
,
284 െ ݎ76

221
൰, 

 

ሻݎଶሺݔ ൌ
94 ൅ ݎ62
221

ሻݎଶሺݔ			,		 ൌ
400 െ ݎ244

221
	 

→ ଶݔ ൌ ൬
94 ൅ ݎ62
221

,
400 െ ݎ244

221
൰. 

Here 	ݔଵ ൑ 	 ,ଵݔ ଶݔ	 ൑ ;ଶݔ	 ,ଵݔ		 ଶݔ		   are monotonic decreasing functions. 

Thus the fuzzy solution		ݔଵ,  .ଶ is a strong fuzzy solutionݔ		
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2.1.2 S. Abbasbandy and M. Alavi Method  

This is an efficient method  for solving an ݊ ൈ ݊ system of fuzzy linear 

equations. The original system with matrix ܣ is replaced by two ݊ ൈ ݊ crisp 

function linear systems (in comparison with Friedman’s procedure [17] ). 

The obtained solution vector will be symmetric solution if the right hand side 

vector is symmetric [1]. 

Now, we will clarify the fuzzy solution 

The	݅௧௛ equation in (1.3) can be represent in the following equivalent form: 

෍ ܽ௜௝ ௝ݔ ൅ ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ ൌ ሺ2.12ܽሻ																																௜ݕ
௔೔ೕ	ஹ଴

 

෍ ܽ௜௝ ௝ݔ ൅ ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ ൌ ሺ2.12ܾሻ																																௜ݕ
௔೔ೕஹ଴

 

thus, 

෍ ܽ௜௝ሺݔ௝ െݔ௝ሻ െ ෍ ܽ௜௝ሺ
௔೔ೕழ଴

௝ݔ െ ௝ሻݔ ൌ ௜ݕ െ ሺ2.13ሻ																						௜ݕ
௔೔ೕ	ஹ଴

 

If  we assume ݓ௝ ൌ ௝ݔ െ ௝ݔ  and ݒ௜ ൌ ௜ݕ െ ௜ݕ  then Equation(2.13) has the 

form 

෍ ܽ௜௝ݓ௝ െ ෍ ܽ௜௝ݓ௝ ൌ ݅																	,௜ݒ ൌ 1,2, … , ݊,
௔೔ೕழ଴௔೔ೕஹ଴

 

and in the matrix form 

ሺܤ ൅ ሻܹܥ ൌ ܸ, 

Where ܹ ൌ ሺݓଵ,ݓଶ,… ,௡ሻ௧ݓ,  ܸ ൌ ሺݒଵ, ,ଶݒ … , ௡ሻ௧ݒ and ܣ ൌ ܤ െ ܥ . Let 

ܺ௖ ൌ ሺݔଵ
௖, ଶݔ

௖, … , ଷݔ
௖ሻ  and ܻ௖ ൌ ሺݕଵ

௖, ଶݕ
௖, … , ଷݕ

௖ሻ  where ݔ௜
௖ ൌ ሺݔ௜ሺݎሻ ൅

௜ݕ ሻሻ/2 andݎ௜ሺݔ
௖ ൌ ሺݕ௜ሺݎሻ ൅ ሻሻ/2 for 1ݎ௜ሺݕ ൑ ݅ ൑ ݊. 
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Theorem 2.5 [1]: 

 Let ܺ  be a fuzzy solution of FLS (1.3) where coefficients matrix ܣ  is 

nonsingular matrix and ܻ is a fuzzy number vector. Then ܺܣ௖ ൌ ܻ௖. 

Proof: Based on the equation (2.12),  we have for each ݅, 1 ൑ ݅ ൑ ݊ 

෍ሺܽ௜௝
ሺݔ௝ሺݎሻ ൅ ሻሻݎ௝ሺݔ

2
ሻ ൅ ෍ ሺܽ௜௝

ሺݔ௝ሺݎሻ ൅ ሻሻݎ௝ሺݔ
2

ሻ ൌ
௔೔ೕழ଴௔೔ೕஹ଴

ሺݕ௜ሺݎሻ ൅ ሻሻݎ௜ሺݕ

2
 

hence, 

෍ ܽ௜௝ݔ௝
௖ ൅ ෍ ܽ௜௝ݔ௝

௖ ൌ ௜ݕ
௖,			

௔೔ೕழ଴௔೔ೕஹ଴

 

i.e., ሺܤ െ ሻܺ௖ܥ ൌ ܻ௖, which conclude the proof. 

Remark 2.1 [1]: 

 In previous Theorem, if ܻ is symmetric fuzzy vector then ܺ	is symmetric 

fuzzy vector. 

 

Remark 2.2 [1]: 

For finding the solution of FLS (1.3), we must solve the following crisp 

linear systems, 

൜
ሺܤ ൅ ሻܹܥ ൌ ܸ,
ሺܤ െ ሻܺ௖ܥ ൌ ܻ௖.

                                                                    (2.14) 

And after solving (2.14), it is enough to take 

௜ݔ                                     ൌ ௜ݔ
௖ െ  ௜ݓ0.5

௜ݔ     ൌ ௜ݔ
௖ ൅ ,݅ ௜                       for eachݓ0.5 1 ൑ ݅ ൑ ݊. 
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Example 2.4: 

 Consider the 2 ൈ 2  symmetric fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 12 െ  ሻݎ3

thus 

ଵݔ െ ଶݔ ൌ ,ݎ2 ଵݔ ൅ ଶݔ2 ൌ 6 ൅  ,ݎ3

ଵݔ െ ଶݔ ൌ 4 െ ଵݔ				,ݎ2 ൅ ଶݔ2 ൌ 12 െ  	,ݎ3

then 

ቊ
൫	ݔଵ െ ଵ൯ݔ ൅ ൫ݔଶ െ ଶ൯ݔ ൌ 4 െ ,ݎ4

൫ݔଵ െ ଵ൯ݔ ൅ 2൫ݔଶ െ ଶ൯ݔ ൌ 6 െ ,ݎ6
 

which is equivalent to 

൜	
ଵݓ ൅ ଶݓ ൌ ,ଵݒ
ଵݓ ൅ ଶݓ2 ൌ ,ଶݒ

                                                                (݅) 

where  ݒଵ ൌ 4 െ ଶݒ and ݎ4 ൌ 6 െ  Another crisp linear system is .ݎ6

൜
ଵݔ
௖ െ ଶݔ

௖ ൌ 2 ൌ ଵݕ
௖,

ଵݔ		
௖ ൅ ଶݔ2

௖ ൌ 9 ൌ ଶݕ
௖,

                                                       (݅݅)      

By solving (݅) and (݅݅), we have ݓଵ ൌ 2 െ ,ݎ2 ଶݓ	 ൌ 2 െ ,ݎ2 ଵݔ	
௖ ൌ

ଵଷ

ଷ
ଶݔ 	,

௖ ൌ
଻

ଷ
  and therefore 

ଵݔ ൌ
13
3
െ
1
2
ሺ2 െ ଵݔ			,ሻݎ2 ൌ

13
3
൅
1
2
ሺ2 െ  ,ሻݎ2

ଶݔ ൌ
7
3
െ
1
2
ሺ2 െ ଶݔ			,ሻݎ2 ൌ

7
3
൅
1
2
ሺ2 െ  .ሻݎ2

Here 	ݔଵ ൑ ,ଵݔ	 ଶݔ	 ൑ 	;ଶݔ	 and ݔଵ, ଶݔ  are monotonic non-increasing 

and ,ଵݔ		 ଶݔ		   are monotonic non-decreasing functions. Thus the obtained 

solution		ݔଵ,  .ଶ is a strong fuzzy solutionݔ		

In case of weak solution, we will take in our consideration Theorem (2. 4),  

a weak fuzzy solution will be obtained in the next example . 
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Example 2.5: 

  Consider the 3 ൈ 3 non-symmetric fuzzy system 

ଵݔ െ ଶݔ2 ൅ ଷݔ3 ൌ ሺ2ݎ, 5 െ  ,ሻݎ3

ଵݔ െ ଶݔ ൅ ଷݔ ൌ ሺെ3,െ2 െ  ,ሻݎ

ଵݔ3 ൅ ଶݔ ൅ ଷݔ ൌ ሺ1 ൅ ,ݎ2 3ሻ. 

The two crisp linear systems are 

൝
ଵݓ ൅ ଶݓ2 ൅ ଷݓ3 ൌ 5 െ ,ݎ5
ଵݓ ൅ ଶݓ ൅ ଷݓ ൌ 1 െ ,ݎ
ଵݓ3 ൅ ଶݓ ൅ ଷݓ ൌ 2 െ ,ݎ2

 

and 

ە
ۖ
۔

ۖ
ଵݔۓ

௖ െ ଶݔ2
௖ ൅ ଷݔ3

௖ ൌ
5 െ ݎ
2

,

ଵݔ
௖െݔଶ

௖ ൅ ଷݔ
௖ ൌ

െ5 െ ݎ
2

,

ଵݔ3
௖ ൅ ଶݔ

௖ ൅ ଷݔ
௖ ൌ 2 ൅ .ݎ

 

The solution vectors in parametric form are 		ܹ ൌ ሺ0.5 െ ,ݎ0.5 െ3 ൅

,ݎ3 3.5 െ  ሻ௧ݎ3.5

And ܺ௖ ൌ ሺെ2.5833 െ ,ݎ0.083 4.8333 ൅ ,ݎ0.833 4.9167 ൅ ሻ௧ݎ0.4167 , 

then we obtain 

ଵݔ ൌ ሺ0.1667ݎ െ 2.833, െ0.333ݎ െ 2.333ሻ, 

ଶݔ ൌ ሺെ0.667ݎ ൅ 6.333, ݎ2.333 ൅ 3.333ሻ, 

ଷݔ ൌ ሺ2.167ݎ ൅ 3.167, െ1.333ݎ ൅ 6.667ሻ. 

The fact that ݔଶ  is not fuzzy number because. ଶܹ is negative, the fuzzy 

solution in this case is a weak solution given by 

ଵݑ ൌ ሺ0.1667ݎ െ 2.833, െ0.333ݎ െ 2.333ሻ, 

ଶݑ ൌ ሺ2.333ݎ ൅ 3.333,െ0.667ݎ ൅ 6.333	ሻ, 

ଷݑ ൌ ሺ2.167ݎ ൅ 3.167,െ1.333ݎ ൅ 6.667ሻ. 
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2.1.3 Fuzzy Solution by Using Fuzzy Center 

This proposed method is based on the use of graphical method for solving a 

system of  ݊	fuzzy linear equations with ݊ variables by using fuzzy center. 

The original system is replaced by a crisp linear system in which the 

graphical method can be used to solve it. This method was applied for both 

symmetric and non-symmetric fuzzy linear system.  In comparison with other 

methods, this method is efficient to obtain the solution, when the number of 

variables in the fuzzy linear system is large [26]. 

Remark 2.3 [26]: 

By Theorem 2.7, the fuzzy center	ݔ௜
௖ satisfies equation(1.3), consequently 

we can find ݔ௜
௖ from the equation (1.3) by using ordinary method. 

 

We can represented the ݅௧௛  equation in (1.3) by the following equivalent 

form 

෍ ܽ௜௝ ௝ݔ ൅ ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ ൌ ሺ2.15ܽሻ																																															௜ݕ
௔೔ೕ	ஹ଴

 

෍ ܽ௜௝ ௝ݔ ൅ ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ ൌ ௜ݕ
௔೔ೕஹ଴

																																														ሺ2.15ܾሻ 

where  ݔ௜
௖ ൌ

௫ೕሺ௥ሻା௫ೕሺ௥ሻ

ଶ
 and	ݕ௜

௖ ൌ
௬ೕሺ௥ሻା௬ೕሺ௥ሻ

ଶ
 for 1 ൑ ݅ ൑ ݊. 

Theorem 2.6 [26] 

The extreme points on the monotonic decreasing solution vector 

ሺݔଵ, ,ଶݔ ……… ,  ௝ by usingݔ ௝ in terms ofݔ ௡ሻ can be obtained by replacingݔ

fuzzy center in (2.15b) at ݎ ൌ 0 and ݎ ൌ 1. 
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Proof:   

As we know ݔ௜
௖ ൌ

௫ೕ	ା	௫ೕ

ଶ
 ,  which yields ݔ௝ ൌ ௝ݔ2

௖ െ  ௝ݔ

Replace ݔ௝ by using the above result in (2.15b) we get 

 

෍ ܽ௜௝ ௝ݔ ൅ ෍ ܽ௜௝
௔೔ೕழ଴

൫2ݔ௝
௖ െ ௝൯ݔ ൌ ௜ݕ

௔೔ೕஹ଴

ሺݎሻ,						݅ ൌ 1,2, … , ݊. 

		which gives, 

෍ ܽ௜௝ ௝ݔ െ ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ ൌ ௜ݕ
௔೔ೕஹ଴

ሺݎሻ െ 2 ෍ ܽ௜௝
௔೔ೕழ଴

௝ݔ
௖				, ݅ ൌ 1,2, … , ݊						ሺ2.16ሻ 

 Obviously the above equations in (2.16) represents a crisp system when ݎ ൌ

0 and ݎ ൌ 1. 

The crisp system can be solved by ordinary method, thus we have a solution 

vector  

ሺݔଵ, ,ଶݔ ……… , ݎ ௡ሻ atݔ ൌ 0 and ݎ ൌ 1. 

 

Theorem 2.7[26]: 

 The extreme points on the monotonic increasing solution vector 

ሺݔଵ, ,ଶݔ ……… ,  ௝ by usingݔ	 ௝  in terms ofݔ		௡ሻ can be obtained by replacingݔ

fuzzy center in (2.15a) at ݎ ൌ 0 and ݎ ൌ 1. 

In similar manner we can prove the theorem (see [26] for more details). 

 

After identifying the points in the graph by using the previous theorems, so 

it is possible to find the equation of straight line joining the points by 

ordinary method. That will give the complete solution to the given system. 

The following examples are used to explain the above method. 



38 

Example 2.6: 

Consider the 2 ൈ 2  symmetric fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 12 െ  ሻݎ3

By using the Theorem 2.7, we have 

ଵݔ                                                    
௖ െ ଶݔ

௖ ൌ 2 

ଵݔ                                                    
௖ ൅ ଶݔ2

௖ ൌ 9 

Solving, we get 

ଵݔ
௖ ൌ

13
3

 

ଶݔ
௖ ൌ

7
3

 

Now, by using equation(2.15a) we write 

ଵݔ                                                 െ ଶݔ ൌ  ݎ2

ଵݔ ൅ ଶݔ2 ൌ 6 ൅  ݎ3

By replacing ݔଶ by 2ݔଶ
௖ െ ଵݔ  ଶ inݔ െ ଶݔ ൌ  and substitute the value of ,ݎ2

ଶݔ
௖	we get  

ଵݔ                                               ൅ ଶݔ ൌ
ଵସ

ଷ
൅  ݎ2

ଵݔ ൅ ଶݔ2 ൌ 6 ൅  ݎ3

Put ݎ ൌ 0, thus the above system reduces to a crisp system that can be solved 

to give 

ݎ	ݐଵܽݔ ൌ 	ݏ݅	0
10
3

 

ݎ	ݐܽ	ଶݔ ൌ 	ݏ݅	0
4
3

 

Similarly, Put ݎ ൌ 1, the above system reduces to a crisp system that gives 

ݎ	ݐଵܽݔ ൌ 	ݏ݅	1
13
3

 

ݎ	ݐܽ	ଶݔ ൌ 	ݏ݅	1
7
3
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Now, by plotting the points (10

3
, 0 ) and (13

3
,1) and finding the equation of 

the straight line joining the two points, we get the required solution for  ݔଵ. 

ଵݔ ൌ ݎ ൅
10
3
	. 

similarly, by plotting the points ( 4

3
, 0 ) and ( 7

3
,1) and finding the equation 

of the straight line joining the two points, we get the required solution for  

 .ଶݔ

ଶݔ ൌ ݎ ൅
4
3
. 

Finally, we use similar method to find  ݔଵ and ݔଶ. 

ଵݔ ൌ
16
3
െ  ݎ

ଶݔ ൌ
10
3
െ  .ݎ

 

The graphical solution is shown below in Figure (2.1). 

 

 

 

 

 

 

 

 

 

 

 
Figure (2.1) : Graphical representation of the solution of example 2.6. 
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Example 2.7: 

  Consider the 2 ൈ 2 non- symmetric fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 13 െ  ሻݎ4

By using the Theorem 2.7, we have 

ଵݔ                                                    
௖ െ ଶݔ

௖ ൌ 2 

ଵݔ
௖ ൅ ଶݔ2

௖ ൌ
19 െ ݎ
2

 

Solving, we get 

ଵݔ
௖ ൌ

27 െ ݎ
6

 

ଶݔ
௖ ൌ

15 െ ݎ
6

 

Now, by using equation (2.18) we write 

ଵݔ െ ଶݔ ൌ  ݎ2

ଵݔ          ൅ ଶݔ2 ൌ 6 ൅  ݎ3

By replacing ݔଶ by 2ݔଶ
௖ െ ଵݔ  ଶ inݔ െ ଶݔ ൌ  and substitute the value of ,ݎ2

ଶݔ
௖we get  

ଵݔ ൅ ଶݔ ൌ
15 ൅ ݎ5

3
 

ଵݔ ൅ ଶݔ2 ൌ 6 ൅  ݎ3

Put ݎ ൌ 0, thus the above system reduces to crisp system and then solve, we 

get 

ݎ	ݐଵܽݔ ൌ  4	ݏ݅	0

ݎ	ݐܽ	ଶݔ ൌ  1	ݏ݅	0

Similarly, Put ݎ ൌ 1, the above system reduces to crisp system and then 

solve, we get 
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ݎ	ݐଵܽݔ ൌ 	ݏ݅	1
13
3

 

ݎ	ݐܽ	ଶݔ ൌ 	ݏ݅	1
7
3

 

Now, by plotting the points ( 4 , 0 )and ሺ	13

3
, 1ሻ and finding the equation of 

the straight line joining the two points, we get the required solution for  ݔଵ. 

ଵݔ ൌ
1
3
ݎ ൅ 4	. 

similarly, by plotting the points (1, 0 ) and( 7

3
,1)  and finding the equation of 

the straight line joining the two points, we get the required solution for  ݔଶ. 

ଶݔ ൌ
4
3
ݎ ൅ 1. 

Finally, we use similar method to find  ݔଵ and ݔଶ. 

ଵݔ ൌ 5 െ
2
3
 ݎ

ଶݔ ൌ 4 െ
5
3
 ݎ

The graphical solution is shown below in Figure (2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.2) : Graphical representation of the solution of example 2.7. 
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2.1.4 Algorithmic Approach  

In this technique the original system is reduced into two equivalent crisp 

linear systems which can be solved by given algorithm. Also we have 

showed that this method is applicable for both symmetric and non-symmetric 

system in addition is suitable to obtain the solution of fuzzy linear system, 

when the number of variables involved in the linear system is large. 

Let's introduce the new technique for getting the solution of linear systems 

in fuzzy environment. Consider the	݅th equation of the system (1.3): 

       11 1, , , ( ), ( ) ,i ni ii i in n ii
a x x a x x a x x y r y r       

we have 

                           ܽ௜ଵݔଵ ൅ ⋯൅ ܽ௜௜ݔ௜ ൅ ⋯൅ ܽ௜௡ݔ௡ ൌ          ሻݎ௜ሺݕ

                       ܽ௜ଵݔଵ ൅ ⋯൅ ܽ௜௜ݔ௜ ൅ ⋯൅ ܽ௜௡ݔ௡ ൌ 1								ሻ,ݎ௜ሺݕ ,i n     0 1.r      

             

As a result of this we have two crisp ݊ ൈ ݊ linear systems ܺܣ ൌ ܻ and ܺܣ ൌ

ܻ for all ݅, 1 ൑ ݅ ൑ ݊. Thus, the above system can be extended to two sets of 

linear systems such as	ܺܣ଴ ൌ ܻ଴, ଵܺܣ ൌ ܻଵand		ܺܣ଴ ൌ ܻ଴, ଵܺܣ ൌ ܻଵ by 

replacing ݎ ൌ 0	and	ݎ ൌ 1.  

 

Remark 2.4 [24]: 

If ܽ௜௝ ൏ 0,	then the method can be continued after replacing ݔ௜  by 2ݔ௖ െ  ௜ݔ

in	ܺܣ ൌ ܻ and ݔ௜ by 2ݔ௖ െ ܺ ௜ inݔ ൌ ܻ . 

We have introduced the following propositions, to solve the above system. 
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Proposition 2.1[24]: 

 The crisp system ܺܣ ൌ ܻcan be divided into two crisp linear systems such 

as ܺܣ଴ ൌ ܻ଴and ܺܣଵ ൌ ܻଵ by replacing ݎ ൌ 0	and	ݎ ൌ 1 respectively. The  

extreme solution ݔ଴ ൌ ሺݔଵ
଴, ଶݔ

଴, … ௡଴ሻݔ  and ݔଵ ൌ ሺݔଵ
ଵ, ଶݔ

ଵ, … ௡ଵሻݔ  can be 

obtained by directly from the above two crisp systems.  

 

Proposition 2.2[24]: 

The crisp system	ܺܣ ൌ ܻ can be divided into two crisp linear systems such 

as ܺܣ଴ ൌ ܻ଴and ܺܣଵ ൌ ܻଵ by replacing ݎ ൌ 0	and	ݎ ൌ 1 respectively. The  

extreme solution ݔ଴ ൌ ሺݔଵ
଴, ଶݔ

଴, … ௡ݔ
଴ሻ  and ݔଵ ൌ ሺݔଵ

ଵ, ଶݔ
ଵ, … ௡ଵሻݔ can be 

obtained by directly from the above two crisp systems.  

 

Proposition 2.3[24]: 

 Letሺݔ଴, ,ଵݔ଴ሻ andሺݔ ݎ ଵሻ be the extreme crisp solution atݔ ൌ 0	and	ݎ ൌ 1 

respectively. Then the solution of the fuzzy linear systems (1.3) is obtained 

by using the extreme solution as ݔ௜ ൌ ቀݔ௜
ଵ െ ௜ݔ

଴ቁ ݎ ൅ ௜ݔ
଴  and ݔ௜ ൌ ቀݔ௜

ଵ െ

௜ݔ
଴ቁ ݎ ൅ ௜ݔ

଴ for ݅ ൌ 1,2, … , ݊. 

 

Now, to find the solution of the fuzzy linear system (1.3) we will introduce 

the following algorithm. First, from the matrix ܺܣ ൌ ܻ by using the fuzzy 

linear system. Extend ݊ ൈ ݊	system ܺܣ ൌ ܻ into two systems such as	ܺܣ ൌ

ܻ	and	 ܺܣ ൌ ܻ. By  replacing ݎ as 0	in the above system, we obtain		ܺܣ଴ ൌ

ܻ଴, ଴ܺܣ ൌ ܻ଴. Now, this crisp system can be solved by the direct method, 

we get the extreme crisp solutions ݔ଴ and ݔ଴. Repeat the same steps for ݎ ൌ
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1, we get	ݔଵ and ݔଵ. We employ the extreme solution  ܺ଴ ൌ ሺݔ଴,   ଴ሻ andݔ

ܺଵ ൌ ሺݔଵ, ܺ ଵሻ to find the solution vectorݔ ൌ ሺݔ, ௜ݔ ሻ byݔ ൌ ቀݔ௜
ଵ െ ௜ݔ

଴ቁ ݎ ൅

௜ݔ
଴ and ݔ௜ ൌ ቀݔ௜

ଵ െ ௜ݔ
଴ቁ ݎ ൅ ௜ݔ

଴ for ݅ ൌ 1,2, … , ݊. 

 

The following flow chart will illustrate the procedure to find the solution of 

FLS  

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Thus, we present an example to illustrate the above algorithm. 

 

 

 

 

Figure (2.3): Procedure to find the solution of FLS 
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Example 2.8: Consider the fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ          ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 12 െ  ሻݎ3

The above system can be written as ܵܺ ൌ ܻ 

where ܵ ൌ ቎

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

቏,   ܺ ൌ ൦

ଵݔ			
ଶݔ			
െݔଵ
െݔଶ

൪ and ܻ ൌ ቎

ݎ2
6 ൅ ݎ3
ݎ2 െ 4
ݎ3 െ 12

቏. 

By replacing ݎ as 0 in the above system, we get the following crisp system 

ܵܺ଴ ൌ ܻ଴, 

where ܵ ൌ ቎

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

቏,   ܺ଴ ൌ

ۏ
ێ
ێ
ێ
ێ
ଵݔ			ۍ

଴

ଶݔ		
଴

െݔଵ
଴

െݔଶ
ଵے
ۑ
ۑ
ۑ
ۑ
ې

 and ܻ଴ ൌ ቎

			0
			6
െ4
െ12

቏. 

From the augmented matrix for the system ܵܺ଴ ൌ ܻ଴ and solve the system 

by Gauss Elimination method, we have 

ଵݔ
଴ ൌ

10
3
	, ଵݔ

଴ ൌ
16
3

 

ଶݔ
଴ ൌ

4
3
, ଶݔ

଴ ൌ
10
3

 

Similarly by replacing ݎ	as 1 in the same system, we get the following crisp 

system 	ܵܺଵ ൌ ܻଵ, 

where ܵ ൌ ቎

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

቏,   ܺଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݔ			

ଵ

ଶݔ		
ଵ

െݔଵ
ଵ

െݔଶ
ଵے
ۑ
ۑ
ۑ
ۑ
ې

 and ܻଵ ൌ ቎

		2
		9
െ2
െ9

቏. 
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Solving the system ܵܺଵ ൌ ܻଵby the same method, we have 

ଵݔ
ଵ ൌ

13
3
	, ଵݔ

ଵ ൌ
13
3

 

ଶݔ
ଵ ൌ

7
3
, ଶݔ

ଵ ൌ
7
3

 

By using the following formula 

௜ݔ ൌ ቀݔ௜
ଵ െ ௜ݔ

଴ቁ ݎ ൅ ௜ݔ
଴ and ݔ௜ ൌ ቀݔ௜

ଵ െ ௜ݔ
଴ቁ ݎ ൅ ௜ݔ

଴ for ݅ ൌ 1,2, … , ݊. 

 

We get the solution of the given system as  

ଵݔ ൌ ݎ ൅
10
3
, ଵݔ ൌ െݎ ൅

16
3
, 

ଶݔ ൌ ݎ ൅
4
3
, ଶݔ ൌ െݎ ൅

10
3
. 

The graphical representation of the obtained solution is shown in Figure (2.4) 

 

 

 

 

 

 

 

 

 

 

 

ଵݔ ൌ ݎ ൅
10
3
  ଵݔ ൌ െݎ ൅

16
3
 

ଶݔ ൌ ݎ ൅
4
3
  ଶݔ ൌ െݎ ൅

10
3
 

Figure (2.4): Graphical representation of the solution of example 2.8 
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2.1.5 Embedding Method  

In the first we are going to define an embedding map to form a new crisp 

system. 

Definition 2.1[6]:  

For an arbitrary fuzzy number ݔ෤ in parametric form the embedding 	ߨ: Թଶ →

Թଶ	is defined as follows 

ߨ ቀݔሺݎሻ, ሻቁݎሺݔ ൌ ቀݔሺݎሻ െ ,ሻݎሺݔ ሻݎሺݔ ൅  ሻቁ.                                    (2.17)ݎሺݔ

Lemma 2.1 [31]: 

Let ුݔ ൌ ቀݔሺݎሻ, ሻቁݎሺݔ ݕු , ൌ ൬ݕሺݎሻ, ሻ൰ݎሺݕ  are arbitrary fuzzy numbers and 

let	݇ be a real number. Then 

ሺ݅ሻ ݔ෤ ൌ ෤ሻݔሺߨ ෤ if and only ifݕ ൌ 	෤ሻݕሺߨ

ሺ݅݅ሻ ߨሺݔ෤ ൅ ෤ሻݕ ൌ ෤ሻݔሺߨ ൅ 	෤ሻݕሺߨ

ሺ݅݅݅ሻߨሺ݇ݔ෤ሻ ൌ ߨ ൬݇ ቀݔሺݎሻ, ሻቁ൰ݎሺݔ ൌ ሺ|݇|൫ݔሺݎሻ െ ,ሻݎሺݔ ݇ሺݔሺݎሻ ൅  ሻሻ൯ݎሺݔ

Proof: see[6]. 

 

By  employ the previous lemma 2.1, system(1.3) can be replaced by the 

following parametric system: 

ቌ෍൬ܽ௜௝ߨ ቀݔ௝ሺݎሻ, ሻቁ൰ݎ௝ሺݔ

௡

௝ୀଵ

ቍ ൌ ߨ ቀܾ௜ሺݎሻ, ܾ௜ሺݎሻቁ , ݅ ൌ 1,2, … , ݊.									ሺ2.18ሻ 

෍ቆߨ൬ܽ௜௝ ቀݔ௝ሺݎሻ, ሻቁ൰ቇݎ௝ሺݔ

௡

௝ୀଵ

ൌ ቀܾ௜ሺݎሻ െ ܾ௜ሺݎሻ, ܾ௜ሺݎሻ ൅ ܾ௜ሺݎሻቁ,	 

݅ ൌ 1,2, … , ݊	.					ሺ2.19ሻ 
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෍ሺหܽ௜௝ห

௡

௝ୀଵ

ቀݔ௝ሺݎሻ െ ሻቁݎ௝ሺݔ , ܽ௜௝ ቀݔ௝ሺݎሻ ൅ ሻቁሻݎ௝ሺݔ

ൌ ቀܾ௜ሺݎሻ െ ܾ௜ሺݎሻ, ܾ௜ሺݎሻ ൅ ܾ௜ሺݎሻቁ , ݅ ൌ 1,2, … , ݊.														ሺ2.20ሻ 

 

ሺ෍หܽ௜௝ห

௡

௝ୀଵ

ቀݔ௝ሺݎሻ െ ሻቁݎ௝ሺݔ ,෍ܽ௜௝

௡

௝ୀଵ

ቀݔ௝ሺݎሻ ൅ ሻቁሻݎ௝ሺݔ

ൌ ቀܾ௜ሺݎሻ െ ܾ௜ሺݎሻ, ܾ௜ሺݎሻ ൅ ܾ௜ሺݎሻቁ , ݅ ൌ 1,2, … , ݊.														ሺ2.21ሻ 

So we have now the following equations: 

෍หܽ௜௝ห

௡

௝ୀଵ

ቀݔ௝ሺݎሻ െ ሻቁݎ௝ሺݔ ൌ ܾ௜ሺݎሻ െ ܾ௜ሺݎሻ,					݅ ൌ 1,2, … , ݊																			ሺ2.22ሻ 

෍ܽ௜௝

௡

௝ୀଵ

ቀݔ௝ሺݎሻ ൅ ሻቁݎ௝ሺݔ ൌ ܾ௜ሺݎሻ ൅ ܾ௜ሺݎሻ,								݅ ൌ 1,2, … , ݊																			ሺ2.23ሻ 

Thus in order to solve the fuzzy linear system (1.3) we 

must solve two ሺ݊ ൈ ݊ሻ crisp linear system of equation 

(2.22) and (2.23). 

the matrix form of systems (2.22) and (2.23) is as following: 

ܷܤ ൌ ܼ, ܻܣ ൌ ܹ                                                      ሺ2.24ሻ	 

where the coefficients matrix ܤ ൌ ൣหܽ௜௝ห൧௜,௝ୀଵ
௡

 and  ܣ ൌ ൣܽ௜௝൧௜,௝ୀଵ
௡

 are crisp 

݊ ൈ ݊ matrices and the right hand side columns are the vectors 

	ܼ ൌ ቀܾଵሺݎሻ െ ܾଵሺݎሻ, ܾଶሺݎሻ െ ܾଶሺݎሻ,… , ܾ௡ሺݎሻ െ ܾ௡ሺݎሻቁ
்
, 

ܹ ൌ ሺܾଵሺݎሻ ൅ ܾଵሺݎሻ, ܾଶሺݎሻ ൅ ܾଶሺݎሻ, … , ܾ௡ሺݎሻ ൅ ܾ௡ሺݎሻሻ். 

ܷ ൌ ቀݔଵሺݎሻ െ ,ሻݎଵሺݔ ሻݎଶሺݔ െ ,ሻݎଶሺݔ … , ሻݎ௡ሺݔ െ ሻቁݎ௡ሺݔ
்

and  

ܻ ൌ ቀݔଵሺݎሻ ൅ ,ሻݎଵሺݔ ሻݎଶሺݔ ൅ ,ሻݎଶሺݔ … , ሻݎ௡ሺݔ ൅ ሻቁݎ௡ሺݔ
்

are the solutions 

of the crisp linear systems of  equation(2.24). 
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Theorem 2.8[6]: 

The fuzzy linear system (1.3) has a unique solution if and only if the matrices 

 .are both nonsingular ܤ and ܣ

For the proof it is obvious. 

 

Hence the solution vector is unique but it is still not an appropriate fuzzy 

number vector. 

So the following theorems will explain guarantied conditions for receiving 

fuzzy number vector solution. 

In order to obtain an appropriate solution we will use the following theorems. 

 

Theorem 2.9[6]: 

The unique solution ܺ of equation(2.22) is nonnegative for arbitrary ܼ if and 

only if ିܤଵ is nonnegative. 

Proof: see [6]. 

 

Theorem 2.10 [6]: 

The inverse of a nonnegative matrix ܣ is nonnegative if and only if ܣ is a 

generalized permutation matrix. 

 

Theorem 2.11 [6]: 

The fuzzy linear system (1.3) has a fuzzy solution if   ିܤଵ, ଵିܤ	 െ

,ଵିܣ ଵିܤ	 ൅  .ଵ are nonnegative matricesିܣ

Proof: let ିܤଵ ൌ ൫ݐ௜௝൯and ିܣଵ ൌ ൫ݏ௜௝൯, 1 ൑ ݅, ݆ ൑ ݊ then 
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ܷ ൌ ,ଵܼିܤ ܻ ൌ  ଵܹ                                          (2.25)ିܣ

௜ݑ ൌ ሻݎ௜ሺݔ െ ሻݎ௜ሺݔ  and ݕ௜ ൌ ሻݎ௜ሺݔ ൅ ,ሻݎ௜ሺݔ 1 ൑ ݅, ݆ ൑ ݊ , are the solution 

of equation (2.22) and equation (2.23) respectively. Thus we can write: ݔ௜ ൌ
ଵ

ଶ
ሺݕ௜ ൅   ௜ሻݑ

௜ݔ ൌ
1
2
ቌ෍ݏ௜௝ݓ௜௝

௡

௝ୀଵ

൅෍ݐ௜௝ݖ௜௝

௡

௝ୀଵ

ቍ																																																		ሺ2.26ሻ 

With replacement ݖ௝ ൌ ቀ ௝ܾሺݎሻ െ ܾ௝ሺݎሻቁ and ݓ௝ ൌ ሺ ௝ܾሺݎሻ ൅ ܾ௝ሺݎሻሻ	 	in 

equation (2.26), then we obtain the next result  

௜ݔ ൌ
1
2
ቌ෍ሺݏ௜௝ ൅ ௜௝ሻݐ ௝ܾ

௡

௝ୀଵ

൅෍ሺݏ௜௝ െ ௜௝ሻܾ௝ݐ

௡

௝ୀଵ

ቍ																																							ሺ2.27ሻ 

Since ௝ܾ is monotonically decreasing and ܾ௝ is monotonically increasing for 

all ݆ , and according to assumptions of theorem, ݔ௜  to be monotonically 

decreasing. In a similar way:  ݔ௜ ൌ
ଵ

ଶ
ሺݕ௜ െ  .௜ሻis monotonically increasingݑ

 

Theorem 2.12 [6]: 

 with notation of theorem (2.11), the fuzzy linear system (1.3) has a fuzzy 

number solution, if and only if  

൝
௜ݑ ൒ 0									

ฬ
௜ݕ݀
ݎ݀

ฬ ൑ െ
௜ݑ݀
ݎ݀

																																																		ሺ2.28ሻ 

where ܷ ൌ ܻ	ଵܼ andିܤ ൌ  .ଵܹିܣ
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Proof: let the fuzzy linear system (1.3) has a fuzzy number solution vector 

ܺ ൌ ሺݔଵ, ,ଶݔ … , ௡ሻ்ݔ which ݔ௜ ൌ ሺݔ௜ሺݎሻ, ሻሻݎ௜ሺݔ . Thus, ݑ௜ ൌ ሻݎ௜ሺݔ െ

ሻݎ௜ሺݔ ൒ 0,			݅ ൌ 1,2, … , ݊.   Since ݔ௜ ൌ
ଵ

ଶ
ሺݕ௜ ൅ ௜ሻݑ  is monotonically 

decreasing and ௜ݔ	 ൌ
ଵ

ଶ
ሺݕ௜ െ ௜ሻݑ is monotonically increasing, then 

ௗ௫೔
ௗ௥

൑ 0 

and 
ௗ௫೔
ௗ௥

൒ 0 . Therefore 
ௗሺ௬೔ା௨೔ሻ

ௗ௥
൑ 0 , 

ௗሺ௬೔ି௨೔ሻ

ௗ௥
൒ 0  i.e. െ

ௗ௨೔
ௗ௥

൒
ௗ௬೔
ௗ௥

 and 

െ
ௗ௨೔
ௗ௥

൒ െ
ௗ௬೔
ௗ௥

. Consequently, ቚ
ௗ௬೔
ௗ௥
ቚ ൑ െ

ௗ௨೔
ௗ௥

. Conversely is obvious. 

 

Example 2.9: 

Consider the 2 ൈ 2 fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 13 െ  ሻݎ4

ሻܣሺݐ݁݀ ൌ 3  and detሺܤሻ ൌ 1 , consequently, equation(2.22) and equation 

(2.23) will have solution as follow: 

 

ܷ ൌ ቀ
ଵݑ
ଶݑ
ቁ ൌ ቆ

ሻݎଵሺݔ െ ሻݎଵሺݔ
ሻݎଶሺݔ െ ሻݎଶሺݔ

ቇ ൌ ଵܼିܤ ൌ ቀ 2
െ1

	െ1
			1

ቁ ቀ4 െ ݎ4
7 െ ݎ7

ቁ ൌ ቀ 1 െ ݎ
3 െ ݎ3

ቁ 

ܻ ൌ ቀ
ଵݕ
ଶݕ
ቁ ൌ ቆ

ሻݎଵሺݔ ൅ ሻݎଵሺݔ
ሻݎଶሺݔ ൅ ሻݎଶሺݔ

ቇ ൌ ଵܹିܣ ൌ ൮
				
2
3
		

െ
1
3

			
			
1
3

				
1
3

		൲ ቀ 4
19 െ ݎ

ቁ

ൌ ൮
9 െ

ݎ
3

5 െ
ݎ
3

൲ 

,ݎ∀ 0 ൑ ݎ ൑ 1, ଵݑ ൌ 1 െ ଶݑ and ݎ ൌ 3 െ  .both are nonnegative 	,ݎ3

Also ∀ݎ, 0 ൑ ݎ ൑ 1, ቚ
ௗ௬೔
ௗ௥
ቚ ൑ െ

ௗ௨೔
ௗ௥
	 , ݅ ൌ 1,2.	 So the result will be 

ଵݔ ൌ
1
2
ሺݕଵ ൅ ଵሻݑ ൌ 5 െ  ,ݎ0.667

ଵݔ ൌ
1
2
ሺݕଵ െ ଵሻݑ ൌ 4 ൅  ,ݎ0.333
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ଶݔ ൌ
1
2
ሺݕଶ ൅ ଶሻݑ ൌ 4 െ  ,ݎ1.667

ଶݔ ൌ
1
2
ሺݕଶ െ ଶሻݑ ൌ 1 ൅  .ݎ1.333

Therefore, the fuzzy number solution is  

ଵݔ ൌ ቀݔଵሺݎሻ, ሻቁݎଵሺݔ ൌ ሺ4 ൅ ,ݎ0.333 5 െ  ,ሻݎ0.667

ଶݔ ൌ ቀݔଶሺݎሻ, ሻቁݎଶሺݔ ൌ ሺ1 ൅ ,ݎ1.333 4 െ  .ሻݎ1.667

A weak fuzzy solution will be obtained in the next example. 

 

Example 2.10: 

consider the 3 ൈ 3 fuzzy system 

െݔଵ ൅ ଶݔ ൅ ଷݔ ൌ ሺെ2,െ1 െ  ,ሻݎ

ଵݔ    െ ଶݔ2 ൅ ଷݔ ൌ ሺ2 ൅ ,ݎ 3ሻ, 

ଵݔ3 ൅ ଶݔ ൅ ଷݔ2 ൌ ሺݎ, 2 െ  ,ሻݎ

ሻܣሺݐ݁݀ ൌ 13 and detሺܤሻ ൌ െ1, consequently, equation (2.22) and equation 

(2.23) will have solution as follow: 

ܷ ൌ ൭
ଵݑ
ଶݑ
ଷݑ
൱ ൌ ቌ

ሻݎଵሺݔ െ ሻݎଵሺݔ
ሻݎଶሺݔ െ ሻݎଶሺݔ
ሻݎଷሺݔ െ ሻݎଷሺݔ

ቍ ൌ ଵܼିܤ ൌ ൭
െ3 	1 	1
െ1 		1 		0
		5 െ2 െ1

൱൭
1 െ ݎ
1 െ ݎ
2 െ ݎ2

൱ ൌ ൭
0
0

1 െ ݎ
൱ 

ܻ ൌ ൭
ଵݕ
ଶݕ
ଷݕ
൱ ൌ ቌ

ሻݎଵሺݔ ൅ ሻݎଵሺݔ
ሻݎଶሺݔ ൅ ሻݎଶሺݔ
ሻݎଷሺݔ ൅ ሻݎଷሺݔ

ቍ ൌ ଵܹିܣ ൌ ൭
െ0.385 െ0.077 0.231
0.077 െ0.385 0.154
0.538 0.308 0.077

		൱ ൭
െ3 െ ݎ
5 ൅ ݎ
2

൱

ൌ ൭
1.232 െ ݎ0.308
െ1.848 െ ݎ0.462
0.08 െ ݎ0.23

൱ 

,ݎ∀ 0 ൑ ݎ ൑ 1, ଵݑ ൌ ଶݑ ,0 ൌ 0 and ݑଷ ൌ 1 െ  .are nonnegative ݎ

Also ∀ݎ, 0 ൑ ݎ ൑ 1, ቚ
ௗ௬భ
ௗ௥
ቚ ൒ െ

ௗ௨భ
ௗ௥
	 , ቚ

ௗ௬మ
ௗ௥
ቚ ൒ െ

ௗ௨మ
ௗ௥
	 , ቚ

ௗ௬య
ௗ௥
ቚ ൑ െ

ௗ௨య
ௗ௥

 

according  to that this (FLS) will not have fuzzy number solution.  
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  Decomposition Method ࢁࡸ 2.1.6

 

Theorem 2.13 [2]: 

 Let ܣ	be an ݊ ൈ ݊ matrix with all non-zero leading principal minors. Then 

 :has a unique factorization ܣ

ܣ ൌ  ,ܷܮ

Where	ܮ is unit lower triangular matrix and	ܷ	is upper triangular matrix. 

In order to decomposition of matrix ܵ, we must find both matrices ܮ and ܷ 

such that ܵ ൌ  where  ,ܷܮ

ܮ									 ൌ ൤
ଵଵܮ 0
ଶଵܮ ଶଶܮ

൨ ,											ܷ ൌ ൤ ଵܷଵ ଵܷଶ
0 ଶܷଶ

൨, 

Where ܮଵଵ  and ܮଶଶ  are lower triangular matrices, ଵܷଵ  and ଶܷଶ  are upper 

triangular matrices. 

Now we suppose that ܣ ൌ ܤ െ   decomposition. So we  have ܷܮ has ܥ

ܵ ൌ ቂܤ ܥ
ܥ ܤ

ቃ ൌ ൤
ଵଵܮ 0
ଶଵܮ ଶଶܮ

൨ ൤ ଵܷଵ ଵܷଶ
0 ܷଶଶ

൨, 

then  

ܤ ൌ ଵଵܮ ଵܷଵ,                                                                                           (2.29) 

ܥ ൌ ଵଵܮ ଵܷଶ ⇒ ଵܷଶ ൌ ଵଵܮ
ିଵܥ,                                                                             

ܥ ൌ ଶଵܮ ଵܷଵ ⇒ ଶଵܮ ൌ ܥ ଵܷଵ
ିଵ, 

ܤ ൌ ଶଵܮ ଵܷଶ ൅  ,ଶଶܷଶଶܮ

Now we can write 

ܤ െ ܥଵିܤܥ ൌ 	ଶଶܷଶଶ.                                                                          (2.30)ܮ

From (2.29) and (2.30) if  ܤ and ܤ െ  ,decomposition ܷܮ both  have ܥଵିܤܥ

then ܵ has ܷܮ decomposition. 
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Theorem 2.14 [2]: 

Let ܵ  be an ݊ ൈ ݊  symmetric positive definite matrix then there exists a 

unique lower triangular matrix ܮ with positive diagonal entries such  that 

ܵ ൌ  .்ܮܮ

Therefore if the matrix ܵ be a symmetric positive definite matrix then we 

have 

ܵ ൌ ቂܤ ܥ
ܥ ܤ

ቃ ൌ ൤
ଵଵܮ 0
ଶଵܮ ଶଶܮ

൨ ቈ
ଵଵܮ
் ଶଵܮ

்

0 ଶଶܮ
் ቉, 

then  

ܤ ൌ ଵଵܮଵଵܮ
் ,                                                                                            (2.31) 

ܥ ൌ ଶଵܮଵଵܮ
் ⇒ ଶଵܮ

் ൌ ଵଵܮ
ିଵܥ,                                                                             

ܥ ൌ ଵଵܮଶଵܮ
் ⇒ ଶଵܮ ൌ ଵଵܮሺܥ

் ሻିଵ, 

ܤ ൌ ଶଵܮଶଵܮ
் ൅ ଶଶܮଶଶܮ

் , 

thus 

ܤ െ ܥଵିܤܥ ൌ ଶଶܮଶଶܮ
் .                                                                           (2.32) 

By using Theorem (2.14) in 	ܷܮ decomposition method, the matrices ܤ and 

ܤ െ  .should be symmetric positive definite ܥଵିܤܥ

 

Example 2.11: 

 Consider the 2 ൈ 2 non- symmetric fuzzy linear system 

ଵݔ2 ൅ ଶݔ3 ൌ ሺ2 ൅ ,ݎ2 8 െ  ,ሻ	ݎ4

ଵݔ5                                            െ ଶݔ ൌ ሺ4ݎ, 6 െ  .ሻݎ2

The extended 4 ൈ 4 matrix is 
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2 3 0 0

5 0 0 1

0 0 2 3

0 1 5 0

S

 
 
 
 
 
 

 

and 
2 3 1 0 5 0

,
5 0 4 1 0 3

B
     

      
     

 

ܤ െ ܥଵିܤܥ ൌ
2 3 1 0 5 0.133

5 0.133 0.4 1 0 2.947

    
    

    
 

and hence 
1 0 0 0 5 0 0 1

0.4 1 0 0 0 3 0 0.4

0 0.333 1 0 0 0 5 0.133

0 0 0.4 1 0 0 0 2.947

S

  
    
  
  
  

 

Now the exact solution is  
ଵݔ ൌ ሺݔଵሺݎሻ, ሻሻݎଵሺݔ ൌ ሺ0.362 ൅ ,ݎ0.579 1.285 െ  ,ሻݎ0.344

 
ଶݔ	 ൌ ሺݔଶሺݎሻ, ሻሻݎଶሺݔ ൌ ሺ0.425 ൅ ,ݎ0.281 1.809 െ  .ሻݎ1.104

The exact and the approximate solution  are show in figure (2.5).  

 
 
 

 

Figure (2.5): Graphical representation of the solution of example 2.11 

	ݎ

0.2ݔ 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

x2 x1
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Example 2.12: 

Consider the 2 ൈ 2  symmetric fuzzy linear system 

ଵݔ െ ଶݔ ൌ ሺ2ݎ, 4 െ  ሻݎ2

ଵݔ ൅ ଶݔ2 ൌ ሺ6 ൅ ,ݎ3 12 െ  ሻݎ3

 

The extended 4 ൈ 4 matrix is 
1 0 0 1

1 2 0 0

0 1 1 0

0 0 1 2

S

 
 
 
 
 
 

 

and 
1 0 1 0 1 0

,
1 2 1 1 0 2

B
     

      
     

 

ܤ െ ܥଵିܤܥ ൌ
1 0.5 1 0 1 0.5

1 2 1 1 0 1.5

    
    

    
 

and hence 
1 0 0 0 1 0 0 1

1 1 0 0 0 2 0 1

0 0.5 1 0 0 0 1 0.5

0 0 1 1 0 0 0 1.5

S

  
    
  
  
  

 

Now the exact solution is  

 

ଵݔ ൌ ሺݔଵሺݎሻ, ሻሻݎଵሺݔ ൌ ሺ3.333 ൅ ,ݎ 5.333 െ  ,ሻݎ

 

ଶݔ	 ൌ ሺݔଶሺݎሻ, ሻሻݎଶሺݔ ൌ ሺ1.333 ൅ ,ݎ 3.333 െ  .ሻݎ
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The exact and the approximate solution using  ܷܮ decomposition are show 

in figure (2.6). 

 

 

 
 

 Decomposition Method  of  Mansouri and Asady-ࢁࡸ 2.1.7

 In this subsection we want to proposed the efficient of this method and 

compared with Abbasbandy [2] for solve a large linear system and extension 

to very large system. 

Theorem 2.15 [21]: 

 Suppose ܣ  is nonsingular square matrix,  then ܣ  has a unique 

decomposition such that 

ܣ ൌ 		ܷܮ

where	ܮ is a unit lower triangular matrix and	ܷ is upper triangular matrix. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

r

5 x1 x2

Figure (2.6): Graphical representation of the solution of example 2.12 

ݔ

	ݎ
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Theorem 2.16 [21]: 

 Let ܣ be an  ݊ ൈ ݊	symmetric positive definite matrix then there exists a 

unique lower triangular matrix ܮ with positive diagonal entries s.t 

ܣ ൌ 	௧ܮܮ

Now as we show in the previous subsection (2.1.6), we can factor the matrix 

using ݈௜௜ ܷܮ into ܣ ൌ 1. Thus to solve the linear system ܷܺܮ ൌ ܾ  

we solve the system ܼܮ ൌ ܾ 

ە
ۖ
۔

ۖ
ۓ
ଵݖ 																																																																								ൌ ܾଵ,
݈ଶଵݖଵ ൅ ݈ଶଶݖଶ 																																																				ൌ ܾଶ,

⋮
݈௞ଵݖଵ ൅ ݈௞ଶݖଶ ൅ ⋯⋯൅ ݈௞ሺ௞ିଵሻݖ௞ିଵ ൅ ௞ݖ 		ൌ ܾ௞,

⋮
݈௡ଵݖଵ ൅ ݈௡ଶݖଶ ൅ ⋯⋯൅ ݈௡ሺ௡ିଵሻݖ௡ିଵ ൅ ௡ݖ 	ൌ ܾ௡.

                               (2.33) 

by forward substitution, and we obtain fuzzy solution ܼ ൌ

ሺݖଵ, ,ଶݖ … , ܷܺ ௡ሻ௧which we put it into upper fuzzy linear systemݖ ൌ ܼ	 

ە
ۖ
۔

ۖ
ۓ
ଵݔଵଵݑ ൅ ଶݔଵଶݑ ൅ ⋯⋯൅ ௡ݔଵ௡ݑ ൌ ,ଵݖ
ଶݔଶଶݑ																 ൅ ⋯⋯൅ ௡ݔଶ௡ݑ ൌ ,ଶݖ

⋮
௞ݔ௞௞ݑ																 ൅ ⋯⋯൅ ௡ݔ௞௡ݑ ൌ ,௞ݖ

⋮
௡ݔ௡௡ݑ																																															 ൌ ,௡ݖ

                                               (2.34) 

and we solve this system using the backward substitution.  

 

Example 2.13: 

  Consider the 3 ൈ 3 non-symmetric fuzzy system 

ଵݔ3   ൅ ଶݔ െ ଷݔ ൌ ሺ2ݎ, 5 െ  ,ሻݎ3

         െ	ݔଵ ൅ ଶݔ	3 ൅ ଷݔ	2 ൌ ሺെ3,െ2 െ  ,ሻݎ

ଵݔ									 ൅ ଶݔ	 ൅ ଷݔ	3 ൌ ሺ1 ൅ ,ݎ2 3ሻ. 
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When we solving this system by using ܷܮ െdecomposition method, we 

obtain 

ܣ ൌ ൥
			3 		1 െ1
െ1 		3 		2
		1 			1 			3

൩ ൌ ൥െ
1 0 0

0.333 1 0
0.333 0.2 1

൩ ൥
3 1 െ1
0 3.333 1.667
0 0 3

൩ 

To solve the given system, we use forward substitution to solve ܼܮ ൌ ܾ, 

that is 

൥
1 0 0

െ0.333 1 0
		0.333 0.2 1

൩ ൥
			ଵݖ
		ଶݖ
	ଷݖ
	൩ ൌ ቎

ሺ2ݎ, 5 െ ሻݎ3
ሺെ3,െ2 െ ሻݎ
ሺ1 ൅ ,ݎ2 3		ሻ

቏ 

This yields, 

ܼ ൌ ൥
			ଵݖ
		ଶݖ
	ଷݖ
	൩ ൌ ቎

ሺ2ݎ, 5 െ ሻݎ3
ሺെ3 ൅ െ0.333,ݎ0.667 െ ሻݎ2
ሺെ0.6 ൅ ,ݎ3.4 3.6 െ ሻ		ݎ0.8

቏ 

Finally, we solve the system ܷܺ ൌ ܼ using backward  substitution, that is  

൥
3 1 െ1
0 3.333 1.667
0 0 3

൩ ൥
			ଵݔ
		ଶݔ
	ଷݔ

	൩=቎
ሺ2ݎ, 5 െ ሻݎ3

ሺെ3 ൅ െ0.333,ݎ0.667 െ ሻݎ2
ሺെ0.6 ൅ ,ݎ3.4 3.6 െ ሻ		ݎ0.8

቏ 

Then, we obtain 

ܺ ൌ ൥
			ଵݔ
		ଶݔ
	ଷݔ

	൩=቎
ሺെ0.0667 ൅ ,ݎ4.933 7.0667 െ ሻݎ2.2

ሺെ15 ൅ ,ݎ3.333 െ1.1667ݎሻ
ሺെ0.2 ൅ ,ݎ1.1333 1.2 െ ሻ		ݎ0.2667

቏ 

In the following example we  will compare Mansouri and Asady methods 

with Abbasbandy method [2]. 
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Example 2.14: 

  Consider the 3 ൈ 3 symmetric fuzzy system 

ଵݔ4     ൅ ଶݔ െ ଷݔ ൌ ሺ1 ൅ ,ݎ 3 െ  ,ሻݎ

െ	ݔଵ ൅	ݔଶ ൅	ݔଷ ൌ ሺ2 ൅ ,ݎ 3ሻ, 

ଵݔ2     ൅ ଶݔ	 ൅ ଷݔ	 ൌ ሺെ2,െ1 െ  .ሻݎ

when we solve this system  using ܷܮ െdecomposition method, we obtain 

ܣ ൌ ൥
			4 		1 െ1
െ1 		1 			1
			2 			1 			1

൩ ൌ ൥െ
1 0 0

0.25 1 0
0.5 0.4 1

൩ ൥
4 1 െ1
0 1.25 0.75
0 0 1.2

൩ 

To solve the given system, we use forward substitution to solve ܼܮ ൌ ܾ, that 

is 

൥െ
1 0 0

0.25 1 0
0.5 0.4 1

൩ ൥
			ଵݖ
		ଶݖ
	ଷݖ
	൩ ൌ ቎

ሺ1 ൅ ,ݎ 3 െ ሻݎ
ሺ2 ൅ ,ݎ 3ሻ

ሺെ2,െ1 െ ሻ		ݎ
቏ 

This yields, 

ܼ ൌ ൥
			ଵݖ
		ଶݖ
	ଷݖ
	൩ ൌ ቎

ሺ1 ൅ ,ݎ 3 െ ሻݎ
ሺ2.25 ൅ ,ݎ1.25 3.75 െ ሻݎ0.25
ሺെ5 ൅ ,ݎ0.6 െ2.4 െ ሻ		ݎ2

቏ 

Finally, we solve the system ܷܺ ൌ ܼ using backward  substitution, that is  

൥
4 1 െ1
0 1.25 0.75
0 0 1.2

൩ ൥
			ଵݔ
		ଶݔ
	ଷݔ

	൩=቎
ሺ1 ൅ ,ݎ 3 െ ሻݎ

ሺ2.25 ൅ ,ݎ1.25 3.75 െ ሻݎ0.25
ሺെ5 ൅ ,ݎ0.6 െ2.4 െ ሻ		ݎ2

቏ 

Then, we obtain 

ܺ ൌ ൥
			ଵݔ
		ଶݔ
	ଷݔ

	൩=቎
ሺെ2.1667 ൅ െ0.5,ݎ0.25 െ ሻݎ1.1667

ሺ3 ൅ ,ݎ2 5.5 െ ሻݎ0.5
ሺെ2.1667 ൅ ,ݎ0.5 െ0.5 െ ሻ		ݎ1.1667

቏ 

Clearly in this example ܣ is nonsingular but the 6 ൈ 6 crisp matrix ܵ in the 

following form 
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ܵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
4 1 0 0 0 1
0 1 1 1 0 0
2
0
1
0

1
0
0
0

1
1
0
0

0
4
0
2

0
1
1
1

0
0
1
ے1
ۑ
ۑ
ۑ
ۑ
ې

 

is a singular matrix, and therefore the proposed methods in (Abbasbandy et 

al) [2] can not be used to solve this system.  

2.2 Analytical Methods for Solving Fully Fuzzy Linear System of 

Equations(FFLS) 

In this section, we will discuss  the third category of fuzzy system of linear 

equations where  all the coefficient matrix arrays, the right-hand side arrays 

and the unknowns, are fuzzy numbers, we will apply the matrix inversion 

method, Cramer’s rule and ܷܮ decomposition method. 

Our target in this section  to obtain a positive solution of a fully fuzzy  linear 

system (1.9) where ܣሚ ൌ ሺܯ,ܣ,ܰሻ ൐ 0, ෨ܾ ൌ ሺܾ, ݃, ݄ሻ ൐ 0  and ݔ෤ ൌ

ሺݔ, ,ݕ ሻݖ ൐ 0. Thus we have   

ሺܯ,ܣ,ܰሻ ⊗ ሺݔ, ,ݕ ሻݖ ൌ ሺܾ, ݃, ݄ሻ.                                      (2.35) 

In this section some direct methods to solve the Equation(1.8) is presented: 

2.2.1  Matrix Inversion Method [13] 

By using  the approximation formula for the extended multiplication of two 

fuzzy numbers Equation(2.35) may be written as  

ሺݔܣ, ݕܣ ൅ݔܯ, ݖܣ ൅ ሻݔܰ ൌ ሺܾ, ݃, ݄ሻ 

Now using definition (1.14), we get 
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ݔܣ ൌ ܾ, 

ݕܣ      ൅ݔܯ ൌ ݃,                                             (2.36) 

ݖܣ                                               ൅ ݔܰ ൌ ݄.  

i.e. 

ݔܣ ൌ ܾ, 

ݕܣ  ൌ ݃ െ(2.37)                                      ,ݔܯ 

ݖܣ        ൌ ݄ െ  .ݔܰ

We assume that ܣ is nonsingular matrix,  thus equation (2.37) may be 

written as 

ݔ ൌ  ,ଵܾିܣ

ݕ ൌ ଵ݃ିܣ െ  (2.38)                            ,ݔܯଵିܣ

ݖ                ൌ ଵ݄ିܣ െ  .ݔଵܰିܣ

Therefore , the fuzzy solution ሺݔ, ,ݕ  ሻcan be easily obtained by using theݖ

above equation (2.38). 

 

 Example 2.15: 

Consider the fully fuzzy linear system of equations: 

ሺ5,1,1ሻ ⊗ ሺݔଵ, ,ଵݕ ଵሻݖ ⊕ ሺ6,1,2ሻ ⊗ ሺݔଶ, ,ଶݕ ଶሻݖ ൌ ሺ50,10,17ሻ	

ሺ7,1,0ሻ ⊗ ሺݔଵ, ,ଵݕ ଵሻݖ ⊕ ሺ4,0,1ሻ ⊗ ሺݔଶ, ,ଶݕ ଶሻݖ ൌ ሺ48,5,7ሻ 

thus we have 

ܣ ൌ ቂ5 6
7 4

ቃ ܯ							, ൌ ቂ1 1
1 0

ቃ , ܰ ൌ ቂ1 2
0 1

ቃ 

	ܾ ൌ ቂ50
48
ቃ ,				݃ ൌ ቂ10

5
ቃ ,				݄ ൌ ቂ17

7
ቃ 

So 

ቂ5 6
7 4

ቃ ቂ
ଵݔ
ଶݔ
ቃ ൌ ቂ50

48
ቃ ⇒ 	 ቂ

ଵݔ
ଶݔ
ቃ ൌ ቂ	4

	5
ቃ 



63 

Similarly  

ቂ5 6
7 4

ቃ ቂ
ଵݕ
ଶݕ
ቃ ൌ ቂ 5

10
ቃ െ ቂ0 1

1 1
ቃ ቂ4
5
ቃ ⇒ 	 ቂ

ଵݕ
ଶݕ
ቃ ൌ ൦	

1
11
1
11

൪ 

and 

ቂ5 6
7 4

ቃ ቂ
ଵݖ
ଶݖ
ቃ ൌ ቂ17

7
ቃ െ ቂ1 2

0 1
ቃ ቂ4
5
ቃ ⇒ 	 ቂ

ଵݖ
ଶݖ
ቃ ൌ ቎

	
	0
1
2

቏ 

 

Therefore the solution is  

෤ݔ ൌ ൦
൬4,

1
11

, 0൰

൬5,
1
11

,
1
2
൰
൪ 

2.2.2   Cramer’s rule [13] 

Cramer’s rule is another method for solving the fully fuzzy linear system of 

equations, which states that each entry ݔ௜ in the solution is a quotient of two 

determinants. 

For solving FFLS (1.9) with this method, consider equation (2.37). So we 

may write  

௜ݔ ൌ
det	ሺܣሺ௜ሻሻ
det	ሺܣሻ

,						݅ ൌ 1,2, … , ݊ 

where ܣሺ௜ሻ denotes the matrix which obtained from ܣ by replacing its ݅௧௛ 

column by ܾ . then using solution ݔ	, we have 

 

௜ݕ ൌ
det	ሺܣ′ሺ௜ሻሻ
det	ሺܣሻ

,						݅ ൌ 1,2, … , ݊ 
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௜ݖ ൌ
det	ሺܣ′′ሺ௜ሻሻ
det	ሺܣሻ

,						݅ ൌ 1,2, … , ݊ 

whereܣ′ሺ௜ሻ and ܣ′′ሺ௜ሻ denotes matrix which obtained from ܣ	by replacing its 

݅௧௛	column by ݃ െݔܯ and ݄ െ   .respectively , ݔܰ

 

Example 2.16: 

 Consider the following fully fuzzy linear system of equations: 

ሺ4,3,2ሻ ⊗ ሺxଵ, yଵ, zଵሻ ⊕ ሺ5,2,1ሻ ⊗ ሺxଶ, yଶ, zଶሻ ⊕ ሺ3,0,3ሻ ⊗ ሺxଷ, yଷ, zଷሻ 

																										ൌ ሺ71,54,76ሻ	

 ሺ7,4,3ሻ ⊗ ሺxଵ, yଵ, zଵሻ ⊕ ሺ10,6,5ሻ ⊗ ሺxଶ, yଶ, zଶሻ ⊕ ሺ2,1,1ሻ ⊗ ሺxଷ, yଷ, zଷሻ 

																										ൌ ሺ118,115,129ሻ 

ሺ6,2,2ሻ ⊗ ሺxଵ, yଵ, zଵሻ ⊕ ሺ7,1,2ሻ ⊗ ሺxଶ, yଶ, zଶሻ ⊕ ሺ15,5,4ሻ ⊗ ሺxଷ, yଷ, zଷሻ

ൌ ሺ155,89,151ሻ					 

In matrix form  

 

቎
ሺ4,3,2ሻ ሺ5,2,1ሻ ሺ3,0,3ሻ
ሺ7,4,3ሻ ሺ10,6,5ሻ ሺ2,1,1ሻ
ሺ6,2,2ሻ ሺ7,1,2ሻ ሺ15,5,4ሻ

቏ ቈ
ݔ
ݕ
ݖ
቉ ൌ ቎

ሺ71,54,76ሻ
ሺ118,115,129ሻ
ሺ155,89,151ሻ

቏ 

 

Thus we have  

 

ܣ ൌ ൥
4 5 3
7 10 2
6 7 15

൩ ܯ				, ൌ ൥
3 2 0
4 6 1
2 1 5

൩ ,				ܰ ൌ ൥
2 1 3
3 5 1
2 2 4

൩ 

 

ܾ ൌ ൥
71
118
155

൩ ,			݃ ൌ ൥
54
115
89

൩ , ݄ ൌ ൥
76
129
151

൩ 

Where ݀݁ݐ	ሺ	ܣሻ ൌ 46	
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Now we calculate ܣଵ ,ܣଶ and ܣଷ which obtained from ܣ by replacing its ݅௧௛ 

column by ܾ . 

ଵܣ ൌ ൥
71 5 3
118 10 2
155 7 15

൩ ⇒ detሺܣଵሻ ൌ 184 

 

ଶܣ ൌ ൥
4 71 3
7 118 2
6 155 15

൩ ⇒ detሺܣଶሻ ൌ 368 

 

ଷܣ ൌ ൥
4 5 71
7 10 118
6 7 155

൩ ⇒ detሺܣଷሻ ൌ 230 

Therefore we have,  ݔଵ ൌ
ଵ଼ସ

ସ଺
ൌ 4, ଶݔ ൌ

ଷ଺଼

ସ଺
ൌ 8  and 	ݔଷ ൌ

ଶଷ଴

ସ଺
ൌ 5 

i.e.                                             ݔ ൌ ൥
4
8
5
൩ 

    Now to calculate ݕ  and ݖ  we first need to calculate  ܣ′ሺ௜ሻ  and ܣ′′ሺ௜ሻ 

denotes matrix which obtained from ܣ	by replacing its ݅௧௛	column by ݃ െ

݄ and ݔܯ െ  .respectively , ݔܰ

 

݃ െݔܯ ൌ ൥
45
115
89

൩ െ ൥
3 2 0
4 6 1
2 1 5

൩ ൥
4
8
5
൩ ൌ ൥

26
46
48
൩ 

 

݄ െ ݔܰ ൌ ൥
76
129
151

൩ െ ൥
2 1 3
3 5 1
2 2 4

൩ ൥
4
8
5
൩ ൌ ൥

45
72
107

൩ 

Now,  

ᇱሺଵሻܣ ൌ ൥
26 5 3
46 10 2
48 7 15

൩ ⇒ det൫ܣᇱሺଵሻ൯ ൌ 92 
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ሺଶሻ′ܣ ൌ ൥
4 26 3
7 46 2
6 48 15

൩ ⇒ det൫ܣᇱሺଶሻ൯ ൌ 138 

 

ሺଷሻ′ܣ ൌ ൥
4 5 26
7 10 46
6 7 48

൩ ⇒ det൫ܣ′ሺଷሻ൯ ൌ 46 

 

ଵݕ ൌ
ଽଶ

ସ଺
ൌ 2, ଶݕ ൌ

ଵଷ଼

ସ଺
ൌ 3  and 	ݕଷ ൌ

ସ଺

ସ଺
ൌ 1 

 

ݕ ൌ ൥		
2
3
	1
൩ 

 

Similarly,       ܣ′ᇱሺଵሻ ൌ ൥
45 5 3
72 10 2
107 7 15

൩ ⇒ det൫ܣᇱᇱሺଵሻ൯ ൌ 92 

 

ሺଶሻ′′ܣ ൌ ൥
4 45 3
7 72 2
6 107 15

൩ ⇒ det൫ܣᇱᇱሺଶሻ൯ ൌ 230 

 

ሺଷሻ′′ܣ					 ൌ ൥
4 5 45
7 10 72
6 7 1073

൩ ⇒ det൫ܣ′′ሺଷሻ൯ ൌ 187 

 

 So, ݖଵ ൌ
ଽଶ

ସ଺
ൌ 2, ଶݖ ൌ

ଶଷ଴

ସ଺
ൌ 5  and 	ݖଷ ൌ

ଵ଼ସ

ସ଺
ൌ 4 

ݖ ൌ ൥
2
5
4
൩ 

Therefore the solution of this problem is 

 

෤ݔ ൌ ቎
ሺ4,2,2ሻ
ሺ8,3,5ሻ
ሺ5, 1,4ሻ

቏ 
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  decomposition method for solving FFLS[13] ࢁࡸ 2.2.3

The coefficients matrix of the linear system of equations in the ܷܮ 

decomposition method is factored into the product of two lower and upper 

triangular matrices. This method is frequently used to solve a large system 

of equations. Consider the system of equation (1.9), where ܣሚ  is a non- 

singular matrix.  we start by writing the matrix ܣሚ as the product of a lower 

triangular matrix ܮ and an upper triangular matrix	ܷ in the  following form 

 

ሚܣ ൌ ෨ܮ ⊗ ෩ܷ, 

Where ܣሚ ൌ ሺܯ,ܣ,ܰሻ, ෨ܮ ൌ ሺܮଵ, ,ଶܮ  and ෩ܷ	ଷሻܮ ൌ ሺ ଵܷ, ܷଶ, ଷܷሻ. 

 

 Thus we have  

ሺܯ,ܣ,ܰሻ ൌ ሺܮଵ, ,ଶܮ ଷሻܮ ⊗ ሺ ଵܷ, ଶܷ, ܷଷሻ 

 

                             ሺܯ,ܣ,ܰሻ ൌ ሺܮଵ ଵܷ, ଵܮ ଶܷ ൅ ଶܮ ଵܷ, ଵܮ ଷܷ ൅ ଷܮ ଵܷሻ 

i.e.          

ܣ ൌ ଵܮ ଵܷ,                                                                     (2.39) 

ܯ ൌ ଵܷଶܮ ൅ ଶܮ ଵܷ,																																																														(2.40) 

ܰ ൌ ଵܷଷܮ ൅ ଷܮ ଵܷ.																																																															(2.41) 

 

In order to obtain the unique solution we either  set all the diagonal elements 

of ܮ	as 1 or all the diagonal elements of ܷ as 1. For ௜ܷ௜ ൌ 1, ݅ ൌ 1,2, … , ݊, 

this method is called the Crout’s ܷܮ decomposition method  and for ܮ௜௜ ൌ 1,
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݅ ൌ 1,2, … , ݊, this is called Doolittle’s method. Here in this chapter we will 

use Doolittle’s factorization method. 

First of all  we calculate ܮଵ and ଵܷ such that ܣ	 ൌ ଵܮ	 ଵܷ, where  ܮଵ is a lower 

triangular crisp matrix, having the diagonal of 1’s and ଵܷ is an upper 

triangular crisp matrix with the general diagonal. 

 

ۏ
ێ
ێ
ێ
ۍ
1 0 0 … 0
݈ଶଵ 1 0 … 0
݈ଷଵ
⋮
݈௡ଵ

݈ଷଶ
⋮
݈௡ଶ

1 … 0
⋮ ⋱ ⋮

݈௡ଷ … ے1
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
ଵଵݑ ଵଶݑ ଵଷݑ … ଵ௡ݑ
0 ଶଶݑ ଶଷݑ … ଶ௡ݑ
0
⋮
0

0
⋮
0
	

ଷଷݑ … ଷ௡ݑ
⋮ 			⋱ 			⋮
0 			… ௡௡ݑ ے

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
ܽଵଵ ܽଵଶ ܽଵଷ ⋯ ܽଵ௡
ܽଶଵ ܽଶଶ ܽଶଷ … ܽଶ௡
ܽଷଵ
⋮
ܽ௡ଵ

ܽଷଶ
⋮
ܽ௡ଶ

ܽଷଷ … ܽଷ௡
⋮ ⋱ ⋮

ܽ௡ଷ … ܽ௡௡ے
ۑ
ۑ
ۑ
ې

 

 

which amounts to  ݊ଶ   equations in the ݊ଶ  unknowns ݈௜௝ and ݑ௜௝ . The 

computations runs as the following: 

ଵ௝ݑ ൌ ܽଵ௝,				݆ ൌ 1,2, … , ݊.                                          (2.42) 

݈௜ଵݑଵଵ ൌ ܽ௜ଵ ⇒ ݈௜ଵ ൌ
௔೔భ
௨భభ

,				݅ ൌ 1,2, … , ݊.                     (2.43) 

Continuing in a recursive way for ݎ	 ൌ 	2,3, . . . , ݊, we alternatively get the 

rows of ଵܷ and corresponding columns of ܮଵto be 

 

௥௝ݑ ൌ ܽ௥௝ െ෍ ݈௥௞ݑ௞௝,							݆ ൌ ,ݎ ݎ ൅ 1,… , ݊.

௥ିଵ

௞ୀଵ

																																					ሺ2.44ሻ 

Each row will  follow by the corresponding column of ܮଵ 

 

݈௥௝ ൌ
ܽ௜௥ െ ∑ ݈௜௞ݑ௞௥

௥ିଵ
௞ୀଵ

௥௥ݑ
					݅ ൌ ,ݎ ݎ ൅ 1,… , ݊,																											ሺ2.45ሻ			 

We place the diagonals of ܮଶ and ܮଷ to be consist of 0’s not 1’s. 
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 By using equation(2.40), and ݈ଶ ൌ ൫݈′௜௝൯ with diagonals of 0’s and ଶܷ ൌ

൫ܷ′௜௝൯ we may write 

 

݉௜௝ ൌ ෍ ݈௜௞ݑ′௞௝,							1 ൑ ݅, ݆ ൑ ݊,			݈′௜௜ ൌ 0	

௡

௞ୀଵ

																																		ሺ2.46ሻ 

 

Since ܮଵ and ଵܷ in hand, we can continue our approach to the second step 

for	ܮଶ and	 ଶܷ as follows: 

ଵ௝′ݑ ൌ ݉ଵ௝,						݆ ൌ 1,2, … , ݊,                                             ሺ2.47ሻ 

 

݈′௜ଵ ൌ
݉௜ଵ െ ݈௜ଵݑ′ଵଵ

ଵଵݑ
,						݅ ൌ 1, … , ݊																																					ሺ2.48ሻ 

 

We continue in a recursive way, for ݎ	 ൌ 	2,3, . . . , ݊ we alternatively find the 

rows of 	 ଵܷ and corresponding columns of ܮଵ to be 

 

௥௝′ݑ ൌ ݉௥௝ െ ∑ ሺ݈௥௞ݑ′௞௝
௥ିଵ
௞ୀଵ ሻ,						݆ ൌ ,ݎ ݎ ൅ 1,… , ݊,                            ሺ2.49ሻ 

 

݈′௜௥ ൌ
݉௜௥ െ ∑ ݈′௜௞ݑ௞௥ െ ∑ ݈௜௞ݑ′௞௥

௥
௞ୀଵ

௥ିଵ
௞ୀଵ

௥௥ݑ
,						݅ ൌ ,ݎ ݎ ൅ 1… , ݊											ሺ2.50ሻ 

  

Similarly by equation(2.41), and	ܮଷ ൌ ሺ݈′′௜௝ሻ and ଷܷ ൌ ሺܷ′′௜௝ሻwe may write 

 

݊௜௝ ൌ ෍ ݈௜௞ݑᇱᇱ௞௝ ൅ ݈ᇱᇱ௜௞ݑ௞௝,						1 ൑ ݅, ݆ ൑ ݊.																												ሺ2.51ሻ
௡

௞ୀଵ
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By continue our approach to the second step for find ܮଷ and ଷܷ as follows: 

 

ᇱᇱଵ௝ݑ                                    ൌ ݊ଵ௝,			݆ ൌ 1, … , ݊,  

ሺ2.52ሻ	

݈′′௜ଵ ൌ
݊௜ଵ െ ݈௜ଵݑ′′ଵଵ

ଵଵݑ
,				݅ ൌ 1, … , ݊.				 

 

Finally we find the rows of ଷܷ and the corresponding columns of ܮଷ for ݎ ൌ

2,3, … , ݊ to be as follow: 

 

ᇱᇱ௥௝ݑ ൌ ݊௥௝ െ෍൫݈௥௞ݑᇱᇱ௞௝ ൅ ݈ᇱᇱ௥௞ݑ௞௝൯

௥ିଵ

௞ୀଵ

,					݆ ൌ ,ݎ ݎ ൅ 1,… , ݊, 

(2.53) 

݈′′௜௥ ൌ
݊௜௥ െ ∑ ݈′′௜௞ݑ௞௥ െ ∑ ݈௜௞ݑ′′௞௥

௥
௞ୀଵ

௥ିଵ
௞ୀଵ

௥௥ݑ
,			݅ ൌ ,ݎ ݎ ൅ 1… , ݊																								 

 

The solution to the problem	ܣሚ ⊗ ෤ݔ ൌ ෨ܾ  could be obtained by a two step 

triangular solve process 

෩ܣ	                                                     ⊗ ෤ݔ ൌ ෨ܾ 

෨ܮ ⊗ ෩ܷ ⊗ ෤ݔ ൌ ෨ܾ 

෨ܮ    ⇒                                           ⊗ ෩′ݔ ൌ ෨ܾ  

                                         Where  ෩ܷ ⊗ ෤ݔ ൌ ෩′ݔ                                       (2.54) 

By solving system (2.54), we obtain the  solution ݔ. 
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Example 2.17: 

 Consider the following FFSLE  

 

቎
ሺ6,1,4ሻ ሺ5,2,2ሻ ሺ3,2,1ሻ
ሺ12,8,20ሻ ሺ14,12,15ሻ ሺ8,8,10ሻ
ሺ24,10,34ሻ ሺ32,30,30ሻ ሺ20,19,24ሻ

቏ ⊗ ቈ
ݔ
ݕ
ݖ
቉ ൌ ቎

ሺ58,30,60ሻ
ሺ142,139,257ሻ
ሺ316,297,514ሻ

቏. 

in matrix form  

෩ܣ	 ⊗ ෤ݔ ൌ ෨ܾ 

where  

ܣ ൌ ൥
6 5 3
12 14 8
24 32 20

൩ ܯ				, ൌ ൥
1 2 2
8 12 8
10 30 19

൩ ,				ܰ ൌ ൥
4 2 1
20 15 10
34 30 24

൩ 

From equations (2.42), (2.43), (2.44)and(2.45), we can calculate the 

elements of ܮଵ and ଵܷ. 

ଵଵݑ ൌ ܽଵଵ ൌ ଵଶݑ										,6 ൌ ܽଵଶ ൌ ଵଷݑ												,5 ൌ ܽଵଷ ൌ 3. 

݈ଵଵ ൌ
ܽଵଵ
ଵଵݑ

ൌ
6
6
ൌ 1,							݈ଶଵ ൌ

ܽଶଵ
ଵଵݑ

ൌ
12
6
ൌ 2,								݈ଷଵ ൌ

ܽଷଵ
ଵଵݑ

ൌ
24
6
ൌ 4.	 

ଶଶݑ ൌ ܽଶଶ െ ݈ଶଵݑଵଶ ൌ 14 െ 2 ൈ 5 ൌ 4, 

ଶଷݑ ൌ ܽଶଷ െ ݈ଶଵݑଵଷ ൌ 8 െ 2 ൈ 3 ൌ 2, 

݈ଶଶ ൌ
ܽଶଶ െ ݈ଶଵݑଵଶ

ଶଶݑ
ൌ
14 െ 2 ൈ 5

4
ൌ 1, 

݈ଷଶ ൌ
ܽଷଶ െ ݈ଷଵݑଵଶ

ଶଶݑ
ൌ
32 െ 4 ൈ 5

4
ൌ 3, 

ଷଷݑ ൌ ܽଷଷ െ ݈ଷଵݑଵଷ െ ݈ଷଶݑଶଷ ൌ 20 െ 4 ൈ 3 െ 3 ൈ 2 ൌ 2, 

݈ଷଷ ൌ 1. 

Thus we have, 

ଵܮ ൌ ൥
1 0 0
2 1 0
4 3 1

൩                                   ଵܷ ൌ ൥
6 5 3
0 4 2
0 0 2

൩ 
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To find the elements of		ܮଶ and ଶܷwe use equations (2.47), (2.48), (2.49) 

and (2.50). 

ଵଵ′ݑ ൌ ݉ଵଵ ൌ ଵଶ′ݑ										,1 ൌ ݉ଵଶ ൌ ଵଷ′ݑ												,2 ൌ ݉ଵଷ ൌ 2. 

݈′ଵଵ ൌ
݉ଵଵ െ ݈ଵଵݑ′ଵଵ

ଵଵݑ
ൌ
0
6
ൌ 0, ݈′ଶଵ ൌ

݉ଶଵെ݈ଶଵݑ′ଵଵ
ଵଵݑ

ൌ
6
6
ൌ 1,

݈′ଷଵ ൌ
݉ଷଵ െ ݈ଷଵݑ′ଵଵ

ଵଵݑ
ൌ
6
6
ൌ 1.	 

ଶଶ′ݑ ൌ ݉ଶଶ െ ݈ଶଵݑ′ଵଶ െ ݈′ଶଵݑଵଶ ൌ 12 െ 4 െ 5 ൌ 3, 

ଶଷ′ݑ ൌ ݉ଶଷ െ ݈ଶଵݑ′ଵଷ െ ݈′ଶଵݑଵଷ ൌ 8 െ 4 െ 3 ൌ 1, 

ଷଷ′ݑ ൌ ݉ଷଷ െ ݈ଷଵݑ′ଵଷ െ ݈′ଷଵݑଵଷ െ ݈ଷଶݑ′ଶଷ െ ݈′ଷଶݑଶଷ ൌ 19 െ 8 െ 3 െ 3 െ 4

ൌ 1 ൌ 1, 

݈′ଷଶ ൌ
݉ଷଶ െ ݈′ଷଵݑଵଶ െ ݈ଷଵݑ′ଵଶ െ ݈ଷଶݑ′ଶଶ

ଶଶݑ
ൌ
30 െ 5 െ 8 െ 9

4
ൌ 2, 

Thus we have, 

ଶܮ ൌ ൥
0 0 0
1 0 0
1 2 0

൩                                   ܷଶ ൌ ൥
1 2 2
0 3 1
0 0 1

൩ 

 

In similar way, we can use equations (2.47), (2.48), (2.49) and (2.50). To 

find the elements of		ܮଷଶ and ଷܷ , we obtain 

  

ଷܮ ൌ ൥
0 0 0
2 0 0
3 1 0

൩                                   ܷଷ ൌ ൥
4 2 1
0 1 2
0 0 3

൩ 

Therefore the ܷܮ decomposition method of  fuzzy matrix ܣሚ is 

ሚܣ  ൌ ෨ܮ ⊗ ෩ܷ ൌ ቎
ሺ1,0,0ሻ ሺ0,0,0ሻ ሺ0,0,0ሻ
ሺ2,1,2ሻ ሺ1,0,0ሻ ሺ0,0,0ሻ
ሺ4,1,3ሻ ሺ3,2,1ሻ ሺ1,0,0ሻ

቏ ⊗ ቎
ሺ6,1,4ሻ ሺ5,2,2ሻ ሺ3,2,1ሻ
ሺ0,0,0ሻ ሺ4,3,1ሻ ሺ2,1,2ሻ
ሺ0,0,0ሻ ሺ0,0,0ሻ ሺ2,1,3ሻ

቏ 

To solve the fully fuzzy linear system we will start by solving the system of  

equations ܮ෨ ⊗ ෩′ݔ ൌ ෨ܾ    
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i.e.  

቎
ሺ1,0,0ሻ ሺ0,0,0ሻ ሺ0,0,0ሻ
ሺ2,1,2ሻ ሺ1,0,0ሻ ሺ0,0,0ሻ
ሺ4,1,3ሻ ሺ3,2,1ሻ ሺ1,0,0ሻ

቏ ⊗ ൥
′ݔ
′ݕ
′ݖ
൩ ൌ ቎

ሺ58,30,60ሻ
ሺ142,139,257ሻ
ሺ316,297,514ሻ

቏ 

Using  Cramer’s rule we can easily compute ݔ෤′ as 

 

෤ᇱݔ ൌ ൥
′ݔ
′ݕ
′ݖ
൩ ൌ ቎

ሺ58,30,60ሻ
ሺ26,21,21ሻ
ሺ6,4,11ሻ

቏ 

Finally we solve the fully fuzzy linear system of equations ෩ܷ ⊗ ෤ݔ ൌ ෩′ݔ  

i.e.  

቎
ሺ6,1,4ሻ ሺ5,2,2ሻ ሺ3,2,1ሻ
ሺ0,0,0ሻ ሺ4,3,1ሻ ሺ2,1,2ሻ
ሺ0,0,0ሻ ሺ0,0,0ሻ ሺ2,1,3ሻ

቏ ቈ
ݔ
ݕ
ݖ
቉ ൌ ቎

ሺ58,30,60ሻ
ሺ26,21,21ሻ
ሺ6,4,11ሻ

቏ 

 

Again we obtain by Cramer’s rule  

෤ݔ ൌ ቈ
ݔ
ݕ
ݖ
቉ ൌ ቎

ሺ4,1,3ሻ
ሺ5,0.5,2ሻ
ሺ3,0.5,1ሻ

቏ 
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Chapter Three 

Numerical Technique  for Solving Linear Fuzzy Systems  

In this chapter we will present some numerical technique for solving FLS 

and FFLS. 

3.1 Numerical Methods for Solving Fuzzy System of Linear 

Equations(FLS) 

In this section we will apply the following iterative schemes for solving 

(FLS). 

3.1.1 Iterative Jacobi and GaussെSidel methods  

An iterative technique for solving an ݊ ൈ ݊ linear system ܺܣ ൌ ܾ starts with 

an initial approximation  ܺ଴ to the solution ܺ and then generates a sequence 

൛ܺሺ௞ሻൟ
௞ୀ଴

ஶ
, which converges to ܺ. Most iterative technique involve a process 

of converting the system  ܺܣ ൌ ܾ into an equivalent system  ܺ ൌ ܶܺ ൅  ,ܥ

where ܶ  is an ݊ ൈ ݊ matrix and ܥ  is a column vector. After selecting an 

initial approximation ܺ଴  we generate a sequence of  vectors ൛ܺሺ௞ሻൟ
௞ୀ଴

ஶ
 

defined by  

ܺሺ௞ሻ ൌ ܶܺሺ௞ିଵሻ ൅ ݇					ܥ ൒ 1. 

 

Definition 3.1[5]: Diagonally Dominant Matrix: A square matrix ܣ  is 

called diagonally dominant if 	หܽ௜௝ห ൒ ∑ หܽ௜௝ห,			݆ ൌ 1,2, … , ݊.௡
௜ୀଵ,௜ஷ௝ ܣ    is 

called strictly diagonally dominant if  หܽ௜௝ห ൐ ∑ หܽ௜௝ห,			݆ ൌ 1,2, … , ݊.௡
௜ୀଵ,௜ஷ௝  

At the beginning we are going to presented the following theorems. 
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Theorem 3.1 [ 4]: 

Let matrix ܣ in equation(1.3) be strictly diagonally dominant then both the 

Jacobi iterates and Gauss - Sidel iterates are converge to 	ିܣଵܻ	for any ܺ଴. 

 

Theorem 3. 2 [ 4]: 

The matrix ܣ in equation(1.3) is strictly diagonally dominant if and only if 

matrix ܵ be strictly diagonally dominant. 

Proof: Let ܣ be column strictly diagonally dominant matrix,  

i.e.      หܽ௜௝ห ൐ ∑ หܽ௜௝ห,							݆ ൌ 1,2, … , ݊.௡
௜ୀଵ,௜ஷ௝  

By considering the structure of S we have 
௜௝ݏ ൌ ௡ା௜,௡ା௝ݏ ൌ ܽ௜௝ ൐ 0 ⇔ ௡ା௜,௝ݏ ൌ ௜,௡ା௝ݏ ൌ ܽ௜௝ ൌ 0,

																																																																																																																										ሺ3.1ሻ
௜௝ݏ ൌ ௡ା௜,௡ା௝ݏ ൌ ܽ௜௝ ൌ 0 ⇔ ௡ା௜,௝ݏ ൌ ௜,௡ା௝ݏ ൌ ܽ௜௝ ൏ 0,

 

also 

෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

ൌ ෍ หݏ௜௝ห

௡

௜ୀଵ,௜ஷ௝

൅ ෍ หݏ௡ା௜௝ห,					݆ ൌ 1,… ,2݊.

௡

௜ୀଵ,௜ஷ௝

 

If ݏ௜௝ ൐ 0, ݅, ݆ ൌ 1,2, … , ݊,	then 

෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

ൌ

ە
ۖ
۔

ۖ
෍	ۓ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝
							

෍ หݏ௜,௡ା௝ห
ଶ௡

௜ୀଵ,௜ஷ௝

 

 

ൌ

ە
۔

෍ۓ หݏ௜௝ห
௡

௜ୀଵ,௜ஷ௝
൅෍ หݏ௡ା௜௝ห

௡

௜ୀଵ,௜ஷ௝
																																								

෍ หݏ௜,௡ା௝ห
௡

௜ୀଵ,௜ஷ௝
൅෍ หݏ௡ା௜,௡ା௝ห,							݆ ൌ 1,… , ݊.

௡

௜ୀଵ,௜ஷ௝

 

From (3.1) 
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෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

ൌ

ە
۔

෍ۓ หݏ௜௝ห
௡

௜ୀଵ,௜ஷ௝
൏ ห ௝ܽ௝ห ൌ หݏ௝௝ห																																								

෍ หݏ௜௝ห
௡

௜ୀଵ,௜ஷ௝
൏ ห ௝ܽ௝ห ൌ หݏ௡ା௜,௡ା௝ห,							݆ ൌ 1, … , ݊.		

 

then 

෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

൏ หݏ௝௝ห,				݆ ൌ 1,2, … , ݊. 

Now suppose that ܵ	be column strictly diagonally dominant, we have 

෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

ൌ ෍ หݏ௜௝ห

௡

௜ୀଵ,௜ஷ௝

൅ ෍ หݏ௡ା௜௝ห.

௡

௜ୀଵ,௜ஷ௝

 

Taking into consideration (3.1) and ܣ ൌ ܤ െ  we have ܥ

෍ หݏ௜௝ห

ଶ௡

௜ୀଵ,௜ஷ௝

ൌ ෍ หܽ௜௝ห

௡

௜ୀଵ,௜ஷ௝

൏ หݏ௝௝ห ൌ ห ௝ܽ௝ห,			݆ ൌ 1,2, … , ݊. 

since ݏ௜௝ ൌ 0, ݆ ൌ ݊,… ,2݊.	 It can be hold for row strictly diagonally 

dominant too. The proof is complete. 

From [4], without loss of generality, suppose that ݏ௜௜ ൐ 0  for all ݅ ൌ

1,2, … ,2݊. and let ܵ ൌ ܦ ൅ ܮ ൅ ܷ where 

ܦ ൌ ൤
ଵܦ 0
0 ଵܦ

൨ ܮ									, ൌ ൤
ଵܮ 0
ܵଶ ଵܮ

൨ ,								ܷ ൌ ൤ ଵܷ ܵଶ
0 ଵܷ

൨ 

ሺܦଵሻ௜௜ ൌ ௜௜ݏ ൐ ܫ			,0 ൌ 1,2, … , ݊ , and assume ଵܵ ൌ ଵܦ ൅ ଵܮ ൅ ଵܷ . In the 

Jacobi method, from the structure of ܵܺ ൌ ܻ we have 

൤
ଵܦ 0
0 ଵܦ

൨ ൤
ܺ

ܺ
൨ ൅ ൤

ଵܮ ൅ ଵܷ ܵଶ
ܵଶ ଵܮ ൅ ଵܷ

൨ ൤
ܺ

ܺ
൨ ൌ ൤

ܻ

ܻ
൨							 

then  

ܺ ൌ ଵܦ
ିଵܻ െ ଵܦ

ିଵሺܮଵ ൅ ଵܷሻܺ െ ଵܦ
ିଵܵଶܺ, 

(3.2) 

ܺ ൌ ଵܦ
ିଵܻ െ ଵܦ

ିଵሺܮଵ ൅ ଵܷሻܺ െ ଵܦ
ିଵܵଶܺ. 
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Thus the Jacobi iterative technique will be  

ܺ௞ାଵ ൌ ଵܦ
ିଵܻ െ ଵܦ

ିଵሺܮଵ ൅ ଵܷሻܺ௞ െ ଵܦ
ିଵܵଶܺ

௞
, 

   (3.3) 

ܺ
௞ାଵ

ൌ ଵܦ
ିଵܻ െ ଵܦ

ିଵሺܮଵ ൅ ଵܷሻܺ
௞
െ ଵܦ

ିଵܵଶܺ௞,			݇ ൌ 0,1, … 

The elements of ܺ௞ାଵ ൌ ቀܺ௞ାଵ, ܺ
௞ାଵ

ቁ
௧
are 

௜ݔ
௞ାଵሺݎሻ ൌ

1
௜,௜ݏ

቎ݕ௜ሺݎሻ െ ෍ ௝ݔ௜,௝ݏ
௞ሺݎሻ

௡

௝ୀଵ,௝ஷ௜

െ෍ݏ௜,௡ା௝ݔ௝
௞ሺݎሻ

௡

௝ୀଵ

቏, 

௜ݔ
௞ାଵሺݎሻ ൌ

1
௜,௜ݏ

቎ݕ௜ሺݎሻ െ ෍ ௝ݔ௜,௝ݏ
௞ሺݎሻ

௡

௝ୀଵ,௝ஷ௜

െ෍ݏ௜,௡ା௝ݔ௝
௞ሺݎሻ

௡

௝ୀଵ

቏,		 

		݇ ൌ 0,1,2,… ,			݅ ൌ 1,2, … , ݊. 

The result in the matrix form of the Jacobi iterative technique are ܺ௞ାଵ ൌ

ܲܺ௞ ൅  where ܥ

ܲ ൌ ቈ
െܦଵ

ିଵሺܮଵ ൅ ଵܷሻ െܦଵ
ିଵܵଶ

െܦଵ
ିଵܵଶ െܦଵ

ିଵሺܮଵ ൅ ଵܷሻ
቉ ܥ			, ൌ ቈ

ଵܦ
ିଵܻ

ଵܦ
ିଵܻ

቉ ,					ܺ ൌ ൤
ܺ

ܺ
൨. 

In the Gaussെ	Sidel method, we have: 

൤
ଵܦ ൅ ଵܮ 0
ܵଶ ଵܦ ൅ ଵܮ

൨ ൤
ܺ

ܺ
൨ ൅ ൤ ଵܷ ܵଶ

0 ଵܷ
൨ ൤
ܺ

ܺ
൨ ൌ ൤

ܻ

ܻ
൨																																									(3.4) 

then  

ܺ ൌ ሺܦଵ ൅ ଵሻିଵܻܮ െ ሺܦଵ ൅ ଵሻିଵܮ ଵܷܺ െ ሺܦଵ ൅  ,ଵሻିଵܵଶܺܮ

(3.5) 

ܺ ൌ ሺܦଵ ൅ ଵሻିଵܻܮ െ ሺܦଵ ൅ ଵሻିଵܮ ଵܷܺ െ ሺܦଵ ൅  .ଵሻିଵܵଶܺܮ

Thus the Gaussെ	Sidel iterative technique will be  

ܺ௞ାଵ ൌ ሺܦଵ ൅ ଵሻିଵܻܮ െ ሺܦଵ ൅ ଵሻିଵܮ ଵܷ
ିଵܺ௞ െ ሺܦଵ ൅ ଵሻିଵܵଶܺܮ

௞
, 

      (3.6) 

ܺ
௞ାଵ

ൌ ሺܦଵ ൅ ଵሻିଵܻܮ െ ሺܦଵ ൅ ଵሻିଵܮ ଵܷ
ିଵܺ

௞
െ ሺܦଵ ൅  			,ଵሻିଵܵଶܺ௞ܮ

݇ ൌ 0,1, … 
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So the elements of ܺ௞ାଵ ൌ ቀܺ௞ାଵ, ܺ
௞ାଵ

ቁ
௧
are 

௜ݔ
௞ାଵሺݎሻ ൌ

1
௜,௜ݏ

቎ݕ௜ሺݎሻ െ෍ݏ௜,௝ݔ௝
௞ାଵሺݎሻ

௜ିଵ

௝ୀଵ

െ ෍ ௝ݔ௜,௝ݏ
௞ሺݎሻ

௡

௝ୀ௜ାଵ

െ෍ݏ௜,௡ା௝ݔ௝
௞ሺݎሻ

௡

௝ୀଵ

቏, 

௜ݔ
௞ାଵሺݎሻ ൌ

1
௜,௜ݏ

቎ݕ௜ሺݎሻ െ෍ݏ௜,௝ݔ௝
௞ሺݎሻ

௜ିଵ

௝ୀଵ

െ ෍ ௝ݔ௜,௝ݏ
௞ሺݎሻ

௡

௝ୀ௜ାଵ

െ෍ݏ௜,௡ା௝ݔ௝
௞ሺݎሻ

௡

௝ୀଵ

቏,		 

݇ ൌ 0,1,2, … ,			݅ ൌൌ 1,2, … , ݊. 

The result in the matrix form of the GaussെSidel  iterative technique are  

ܺ௞ାଵ ൌ ܲܺ௞ ൅  as ܥ

ܲ ൌ ൤
െሺܦଵ ൅ ଵሻିଵܮ ଵܷ െሺܦଵ ൅ ଵሻିଵܵଶܮ
െሺܦଵ ൅ ଵሻିଵܵଶܮ െሺܦଵ ൅ ଵሻିଵܮ ଵܷ

൨ ܥ			, ൌ ቈ
ሺܦଵ ൅ ଵሻିଵܻܮ

ሺܦଵ ൅ ଵሻିଵܻܮ
቉ ,

ܺ ൌ ൤
ܺ

ܺ
൨. 

From Theorem 3.1and 3. 2, both Jacobi iterates and Gaussെ Sidel iterates 

are converge to the unique solution ܺ ൌ ܺ ଵܻ, for any ܺ଴, whereିܣ ∈ ܴଶ௡ 

and ሺܺ, ܺሻ ∈ ߳	௡.The stopping criterion for a given toleranceܧ ൐ 0 is 

ቛܺ
௞ାଵ

െ ܺ
௞
ቛ

ቛܺ
௞ାଵ

ቛ
൏ ߳,

ฮܺ௞ାଵ െ ܺ௞ฮ

ฮܺ௞ାଵฮ
൏ ߳,				݇ ൌ 0,1, … 

3.1.2 Successive over relaxation iterative method  

      In this section we turn next to a modification of the Gauss–Sidel iteration  

which known as ܱܴܵ iterative method. By multiply system of (3.4) in ିܦଵ: 

ቈ
ܫ ൅ ଵܦ

ିଵܮଵ 0
ܵଶ ܫ ൅ ଵܦ

ିଵܮଵ
቉ ൤
ܺ

ܺ
൨ ൅ ቈ

ଵܦ
ିଵ

ଵܷ ܵଶ
0 ଵܦ

ିଵ
ଵܷ
቉ ൤
ܺ

ܺ
൨ ൌ ቈ

ଵܦ
ିଵܻ

ଵܦ
ିଵܻ

቉        (3.7) 

Let ܦଵ
ିଵ

ଵܷ ൌ ଵܷ, ܦଵ
ିଵܮଵ ൌ  ଵ thenܮ

൤
ܫ ൅ ଵܮ 0
ܵଶ ܫ ൅ ଵܮ

൨ ൤
ܺ

ܺ
൨ ൅ ൤ ଵܷ ܵଶ

0 ଵܷ
൨ ൤
ܺ

ܺ
൨ ൌ ቈ

ଵܦ
ିଵܻ

ଵܦ
ିଵܻ

቉                                   (3.8) 

hence 
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 ሺܫ ൅ ଵሻܺܮ ൌ ଵܻିܦ െ ଵܷܺ െ ܵଶܺ, 

                                            (3.9) 

ሺܫ ൅ ଵሻܺܮ ൌ ଵܻିܦ െ ଵܷܺ െ ܵଶܺ 

 

 for some parameter ߱: 

ሺܫ ൅ ଵሻܺܮ߱ ൌ ଵܻିܦ߱ െ ሾሺ1 െ ߱ሻܫ ൅ ߱ ଵܷሿܺ െ ߱ܵଶܺ, 

       (3.10) 

ሺܫ ൅ ଵሻܺܮ߱ ൌ ଵܻିܦ߱ െ ሾሺ1 െ ߱ሻܫ ൅ ߱ ଵܷሿܺ െ ߱ܵଶܺ. 

 

If ߱ ൌ 1, then clearly ܺ is just the Gauss–Sidel solution (3.9). So the ܱܴܵ 

iterative method will be: 

ܺ௞ାଵ ൌ ሺܫ ൅ ଵܻିܦଵሻିଵ߱ܮ߱ െ ሺܫ ൅ ଵሻିଵሾሺ1ܮ߱ െ ߱ሻܫ ൅ ߱ ଵܷሿܺ௞

െ ሺܫ ൅ ଵሻିଵ߱ܵଶܺܮ߱
௞
, 

(3.11) 

ܺ
௞ାଵ

ൌ ሺܫ ൅ ଵܻିܦଵሻିଵ߱ܮ߱ െ ሺܫ ൅ ଵሻିଵሾሺ1ܮ߱ െ ߱ሻܫ ൅ ߱ ଵܷሿܺ
௞

െ ሺܫ ൅  .ଵሻିଵ߱ܵଶܺ௞ܮ߱

 

Consequently the result in the matrix form of the ܱܴܵ iterative method are 

ܺ௄ାଵ ൌ ܲܺ௄ ൅   where ܥ

ܲ

ൌ ൤
െሺܫ ൅ ଵሻିଵሾሺ1ܮ߱ െ ߱ሻܫ ൅ ߱ ଵܷሿ െሺܫ ൅ ଵሻିଵ߱ܵଶܮ߱

െሺܫ ൅ ଵሻିଵ߱ܵଶܮ߱ െሺܫ ൅ ଵሻିଵሾሺ1ܮ߱ െ ߱ሻܫ ൅ ߱ ଵܷሿ
൨, 

ܥ ൌ ൤
ሺܫ ൅ ଵିܦଵሻିଵ߱ܮ߱

ሺܫ ൅  .ଵ൨ିܦଵሻିଵ߱ܮ߱
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For 0 ൏ ߱ ൏ 1 this method is called successive underെrelaxation method 

that can be used to achieve convergence for systems that are not convergent 

by the Gaussെsidel method. 

For ߱ ൐ 1 the method is called successive overെrelaxation method ሺܱܴܵሻ 

that can be used to accelerate of convergence of linear  systems that are 

already convergent by the Gaussെsidel method. 

 

Theorem 3.3 [5]: 

If ܵ  is appositive definite matrix and 0 ൏ ߱ ൏ 2  then the ܱܴܵ  method 

converges for any choice of initial approximate vector ܺ଴. 

3.2 Numerical Methods for Solving Fully Fuzzy Linear System of 

Equations (FFLS) 

In the previous chapters, we have presented some direct methods for solving 

fully fuzzy linear system of equations. In this section, two iterative methods 

namely: Gauss-Jacobi, and Gauss-Seidel methods are presented to find the 

solution of fully fuzzy linear system of equations. 

3.2.1 Gauss- Jacobi method  

To solve fully fuzzy linear system of equations we already discussed an 

approach in chapter 2. According to which the positive vectors ݔ,  can	ݖ and	ݕ

be found by solving following linear system of equations . 

Now consider the FFLS ݔܣ ൌ ܾ. by using equation (2.36) 

൝
ݔܣ ൌ ܾ											
ݕܣ	 ൅ ݔܯ ൌ ݃	
ݖܣ ൅ ݔܰ ൌ ݄		
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We can write the previous equation as  

൞

	ܽ௜ଵݔଵ ൅ ܽ௜ଶݔଶ ൅ ⋯൅ ܽ௜௡ݔ௡ ൌ ܾ௜																																																																																																																																												
ሺܽ௜ଵݕଵ ൅ ܽ௜ଶݕଶ ൅ ⋯൅ ܽ௜௡ݕ௡ሻ ൅ ሺ݉௜ଵݔଵ ൅ ݉௜ଶݔଶ ൅ ⋯൅݉௜௡ݔ௡ሻ ൌ ݃௜, 1 ൑ ݅ ൑ ݊																						
ሺܽ௜ଵݖଵ ൅ ܽ௜ଶݖଶ ൅ ⋯൅ ܽ௜௡ݖ௡ሻ ൅ ሺ݊௜ଵݔଵ ൅ ݊௜ଶݔଶ ൅ ⋯൅ ݊௜௡	ݔ௡ሻ ൌ ݄௜										ሺ3.12ሻ																													

																															

Using above equations, we can say 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ܽ௜௜ݔ௜ ൌ ܾ௜ െ ෍ ܽ௜௝ݔ௝

௡

௝ୀଵ,௝ஷ௜

																																																				

ܽ௜௜ݕ௜ ൌ ݃௜ െ ቌ ෍ ܽ௜௝ݕ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݉௜௝ݔ௝

௡

௝ୀଵ

ቍ ,				1 ൑ ݅ ൑ ݊, ܽ௜௜ ് 0

ܽ௜௜ݖ௜ ൌ ݄௜ െ ቌ ෍ ܽ௜௝ݖ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݊௜௝ݔ௝

௡

௝ୀଵ

ቍ																										

							ሺ3.13ሻ 

Hence 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
௜ݔۓ ൌ

1
ܽ௜௜

ሺܾ௜ െ ෍ ܽ௜௝ݔ௝ሻ

௡

௝ୀଵ,௝ஷ௜

																																																				

௜ݕ ൌ
1
ܽ௜௜

ሺ݃௜ െ ቌ ෍ ܽ௜௝ݕ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݉௜௝ݔ௝

௡

௝ୀଵ

ቍሻ,				1 ൑ ݅ ൑ ݊

௜ݖ ൌ
1
ܽ௜௜

ሺ݄௜ െ ቌ ෍ ܽ௜௝ݖ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݊௜௝ݔ௝

௡

௝ୀଵ

ቍሻ																										

														ሺ3.14ሻ 

   This can easily be written as  

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ௜ݔ ൌ െ

1
ܽ௜௜

෍ ܽ௜௝ݔ௝ ൅

௡

௝ୀଵ,௝ஷ௜

ܾ௜
ܽ௜௜
																																																				

௜ݕ ൌ െ
1
ܽ௜௜

ቌ ෍ ܽ௜௝ݕ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݉௜௝ݔ௝

௡

௝ୀଵ

ቍ ൅
݃௜
ܽ௜௜

.

,				1 ൑ ݅ ൑ ݊

௜ݖ ൌ െ
1
ܽ௜௜

ቌ ෍ ܽ௜௝ݖ௝

௡

௝ୀଵ,௝ஷ௜

൅෍݊௜௝ݔ௝

௡

௝ୀଵ

ቍ ൅
݄௜
ܽ௜௜௜

																										

													ሺ3.15ሻ 
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Equations (3.15) can be written in matrix form as the following: 

ቈ
ݔ
ݕ
ݖ
቉ ൌ ܯ ቈ

ݔ
ݕ
ݖ
቉ ൅  (3.16)                                                                                    ߚ

where ܯ is called the iteration matrix and ߚ is a vector. 

 

To solve system(3.16), we can consider initial approximation ܺሺ଴ሻof the 

solution vector and then we substitute it into the right hand side of equation 

(3.16). The solution of equation (3.16) will give a vector		ܺሺଵሻ,   which is 

better approximation to the solution than		ܺሺ଴ሻ. We continue this process 

until  the successive iteration  ܺሺ௞ሻconverges to the solution up to desired 

accuracy, which suggests the following iterative process as the Gauss-Jacobi 

method for solving a fully fuzzy linear system of equations: 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
௜ݔ	ۓ

ሺ௞ାଵሻ ൌ
1
ܽ௜௜

ሺܾ௜ െ ෍ ܽ௜௝ݔ௝௞ሻ

௡

௝ୀଵ,௝ஷ௜

																																																											ሺ3.17ሻ																							

௜ݕ
ሺ௞ାଵሻ ൌ

1
ܽ௜௜

ሺ݃௜ െ ቌ ෍ ܽ௜௝ݕ௝
ሺ௞ሻ

௡

௝ୀଵ,௝ஷ௜

൅෍݉௜௝ݔ௝
ሺ௞ሻ

௡

௝ୀଵ

ቍሻ, 1 ൑ ݅ ൑ ݊			ሺ3.18ሻ																						

௜ݖ
ሺ௞ାଵሻ ൌ

1
ܽ௜௜

ሺ݄௜ െ ቌ ෍ ܽ௜௝ݖ௝
ሺ௞ሻ

௡

௝ୀଵ,௝ஷ௜

൅෍݊௜௝ݔ௝
ሺ௞ሻ

௡

௝ୀଵ

ቍሻ																								ሺ3.19ሻ																						

In general,  

቎
ሺ௞ାଵሻݔ

ሺ௞ାଵሻݕ

ሺ௞ାଵሻݖ
቏ ൌ ܯ ቎

ሺ௞ሻݔ

ሺ௞ሻݕ

ሺ௞ሻݖ
቏ ൅ ݇	ሺ							,ߚ ൒ 0ሻ                                                  (3.20) 

Where  ܯ is called the iteration matrix of the iterative method  and ߚ is a 

vector. ݔሺ௞ାଵሻ  and ݔሺ௞ሻ  denote solution at ݇௧௛  and ሺ݇ ൅ 1ሻ௧௛  iteration 

respectively. 
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Equation (3.20) can be written in the matrix form as: 

ۏ
ێ
ێ
ێ
ێ
ଵݔۍ

ሺ௞ାଵሻ

ଶݔ
ሺ௞ାଵሻ

…
…

௡ݔ
ሺ௞ାଵሻے

ۑ
ۑ
ۑ
ۑ
ې

ൌ െ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1
ܽଵଵ

1
ܽଶଶ

1
ܽଷଷ

…
1
ܽ௡௡ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ە
ۖ
۔

ۖ
ۓ

ۏ
ێ
ێ
ێ
ۍ
0 ܽଵଶ ܽଵଷ … ܽଵ௡
ܽଶଵ 0 ܽଷଶ ⋯ ܽଶ௡
ܽଷଵ
…
ܽ௡ଵ

ܽଷଶ
…
ܽ௡ଶ

				0 ⋯ ܽଷ௡
⋯			 0 ⋯
ܽ௡ଷ ⋯ 0 ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ଵݔۍ

ሺ௞ሻ

ଶݔ
ሺ௞ሻ

…
…
௡ݔ
ሺ௞ሻے
ۑ
ۑ
ۑ
ۑ
ې

െ

ۏ
ێ
ێ
ێ
ۍ
ܾଵ
ܾଶ
ܾଷ
⋯
ܾ௡ے
ۑ
ۑ
ۑ
ې

ۙ
ۖ
ۘ

ۖ
ۗ

 

or 

ሺ௞ାଵሻݔ ൌ െܦ஺
ିଵሺܮ஺ ൅ ஺ܷሻݔ

ሺ௞ሻ ൅ ஺ܦ
ିଵܾ 

Similarly, equation (3.18) and (3.19) can be written in matrix form  

respectively as 

ሺ௞ାଵሻݕ ൌ െܦ஺
ିଵሺܮ஺ ൅ ஺ܷሻݕ

ሺ௞ሻ ൅ ஺ܦ
ିଵ݃ 

ሺ௞ାଵሻݖ ൌ െܦ஺
ିଵሺܮ஺ ൅ ஺ܷሻݖ

ሺ௞ሻ ൅ ஺ܦ
ିଵ݄ 

 

Sufficient condition [14]: 

The Gauss – Jacobi iterative method for solving fully fuzzy linear system of 

equations	ܣ෩ ⊗ ෤ݔ ൌ ෨ܾ converges if and only if the classical Gauss- Jacobi 

iterative method converges for solving the crisp linear system of equations 

ݔܣ ൌ ܾ derived from the corresponding fully fuzzy linear system of 

equations. 

If the matrix ܣ in the crisp linear system of equations ݔܣ ൌ ܾ is strictly 
diagonally dominant i.e., |ܽ௜௜| ൐ ∑ หܽ௜௝ห

௡
௝ୀଵ
௝ஷ௜

, ݅ ൌ 1,2,3, … , ݊	then the 

iterations obtained in classical Gauss- Jacobi iterative method converges for 

any initial approximation 	ܺሺ଴ሻ. 
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3.2.2 Gauss- Seidel method 

Another well-known iterative method for solving FFLS is the Gauss–Seidel 

method.  

Equation (3.12) can be written as:  

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
௝ݔ෍ܽ௜௝ۓ ൌ ܾ௜ െ෍ܽ௜௝ݔ௝,

௡

௝வ௜௝ஸ௜

																																																																															

෍ܽ௜௝ݕ௜ ൌ ݃௜ െ ቌ෍ܽ௜௝ݕ௝ ൅෍݉௜௝ݔ௝

௡

௝ୀଵ

௡

௝வ௜

ቍ , 1 ൑ ݅ ൑ ݊,																		
௝ஸ௜

෍ܽ௜௝ݖ௜ ൌ ݄௜ െ ቌ෍ܽ௜௝ݖ௝ ൅෍݊௜௝ݔ௝

௡

௝ୀଵ

௡

௝வ௜

ቍ.																																																			
௝ஸ௜

 

Thus, Gauss- Seidel method is defined as: 

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
௜ݔ
ሺ௞ାଵሻ ൌ

1
ܽ௜௜

቎ܾ௜ െ෍ܽ௜௝ݔ௝
ሺ௞ାଵሻ

௡

௝ழ௜

െ෍ܽ௜௝ݔ௝
ሺ௞ሻ

௡

௝வ௜

቏,																																																																																				

௜ݕ
ሺ௞ାଵሻ ൌ

1
ܽ௜௜

቎݃௜ െ෍ܽ௜௝ݕ௝
ሺ௞ାଵሻ

௡

௝ழ௜

െ෍ܽ௜௝ݕ௝
ሺ௞ሻ െ෍݉௜௝ݔ௝

ሺ௞ሻ
௡

௝ୀଵ

௡

௝வ௜

቏ , 1 ൑ ݅ ൑ ݊, ݇ ൒ 0																								

௜ݖ
ሺ௞ାଵሻ ൌ

1
ܽ௜௜

቎݄௜ െ෍ܽ௜௝ݖ௝
ሺ௞ାଵሻ

௡

௝ழ௜

െ෍ܽ௜௝ݖ௝
ሺ௞ሻ െ෍݊௜௝ݔ௝

ሺ௞ሻ
௡

௝ୀଵ

௡

௝வ௜

቏																ሺ3.21ሻ																															

or, in matrix form the system can be written as  

ቐ
ሺܦ஺ ൅ ݔ஺ሻܮ

ሺ௞ାଵሻ ൌ ܾ െ ஺ܷݔ
ሺ௞ሻ																

ሺܦ஺ ൅ ݕ஺ሻܮ
ሺ௞ାଵሻ ൌ ݃ െ ஺ܷݕ

ሺ௞ሻ െ ሺ௞ሻݔܯ

ሺܦ஺ ൅ ݖ஺ሻܮ
ሺ௞ାଵሻ ൌ ݄ െ ஺ܷݖ

ሺ௞ሻ െ ሺ௞ሻݔܯ
 

where 	ܦ஺, ,஺ܮ ஺ܷ   are diagonal, lower triangular and upper triangular 

matrices respectively. 

Therefore the Gauss-Seidel iterative method for solving fully fuzzy linear 

system of equations is as follows: 
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ቐ
ሺ௞ାଵሻݔ ൌ െሺܦ஺ ൅ ஺ሻିଵܮ ஺ܷݔ

ሺ௞ሻ ൅ ሺܦ஺ ൅ 																																							஺ሻିଵܾܮ
ሺ௞ାଵሻݕ ൌ െሺܦ஺ ൅ ஺ሻିଵܮ ஺ܷݕ

ሺ௞ሻ ൅ ሺܦ஺ ൅ ݔܯ஺ሻିଵܮ
ሺ௞ሻ ൅ ሺܦ஺ ൅ ஺ሻିଵܮ

ሺ௞ାଵሻݖ ൌ െሺܦ஺ ൅ ஺ሻିଵܮ ஺ܷݖ
ሺ௞ሻ ൅ ሺܦ஺ ൅ ݔ஺ሻିଵܰܮ

ሺ௞ሻ ൅ ሺܦ஺ ൅ ஺ሻିଵ݄ܮ

݃ 

In this method also,  if ܣ is strictly diagonally dominant then the iteration 

always converges. Gauss-Seidel method will generally converge if the 

Jacobi method converges and will converge at a faster speed.  
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Chapter Four 

Numerical Examples and Results 

 

4.1 Numerical Examples and Results for Fuzzy System of Linear 

Equations(FLS) 

To demonstrate the efficiency and accuracy of the  numerical schemes which 

we discuss it in chapter three, we will use MATLAB software  to solve some 

numerical examples,  then draw a comparison between approximate solution 

and exact ones for the following schemes: Jacobi method,  GaussെSidel 

method, and Successive over relaxation iterative method.  

 

Example 4.1. 

 Consider the 2 ൈ 2 non- symmetric fuzzy linear system 

ଵݔ2 െ ଶݔ2 ൌ ሺ2ݎ, 4 െ  ሻݎ2
(4.1) 

ଵݔ2 ൅ ଶݔ6 ൌ ሺ8 ൅ ,ݎ2 14 െ  ሻݎ4

Numerical Solution of Equation (4.1) using Jacobi Method 

The extended 4 ൈ 4 matrix is 

2 0 0 2

2 6 0 0

0 2 2 0

0 0 2 6

S

 
 
 
 
 
 
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1

2 1

1

2

( ) 0.5625 0.0625 0.1875 0.1875 2
( ) 0.1875 0.1875 0.0625 0.0625 8 2

( ) 0.1875 0.1875 0.5625 0.0625 2 4

0.0625 0.0625 0.1875 0.1875 4 14( )

x r r
x r r

X S Y
x r r

rx r



     
                   
            

 

The exact solution is  

ଵݔ ൌ ൬ݔଵሺݎሻ, ሻ൰ݎଵሺݔ ൌ ൬
11
8
൅
5
8
,ݎ
23
8
െ
7
8
 ,൰ݎ

ଶݔ ൌ ൬ݔଶሺݎሻ, ሻ൰ݎଶሺݔ ൌ ൬
7
8
൅
1
8
,ݎ
11
8
െ
3
8
 .൰ݎ

The exact and approximate solutions are shown in Figure (4.1). 
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Figure (4.1): Graphical representation of the solution of example 4.1 using Jacobi 
method 
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Numerical Solution of Equation(4.1) using Gauss- Seidel Method 

The exact and approximated solutions are plotted and compared in 

Figure(4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(4.2): Graphical representation of the solution of example 4.1 using Gauss- 
Seidel method 
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Numerical Solution of Example (4.1) using Successive over relaxation 

iterative method  

The exact and approximated solutions are plotted and compared in 

Figure(4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3): Graphical representation of the solution of example 4.1 using SOR 
method 
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Comparison results  between three  methods 

Numerical Method Number of 
Iterations 

Total CPU Time 
in Seconds  

Jacobi 16 16.8 
Gauss- Seidel 9 7.9 

Successive over relaxation 6 12.5 
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Figure (4.4): comparison between three methods. 
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4.2 Numerical Examples and Results for Fully Fuzzy System of Linear 

Equations(FFLS) 

Numerical Solution by Gauss- Jacobi iterative method 

 

Example 4.2:  

Solve the following system of equations using Gauss- Jacobi method  

ሺ5,1,1ሻ ⊗ ሺݔଵ, ,ଵݕ ଵሻݖ ⊕ ሺ6,1,2ሻ ⊗ ሺݔଶ, ,ଶݕ ଶሻݖ ൌ ሺ50,10,17ሻ 

ሺ7,1,0ሻ ⊗ ሺݔଵ, ,ଵݕ ଵሻݖ ⊕ ሺ4,0,1ሻ ⊗ ሺݔଶ, ,ଶݕ ଶሻݖ ൌ ሺ48,5,7ሻ 

So, from the above system we have 

ܣ ൌ ቂ5 6
7 4

ቃ ܯ												 ൌ ቂ1 1
1 0

ቃ 							ܰ ൌ ቂ1 2
0 1

ቃ		 and  

ܾ ൌ ቂ50
48
ቃ 																		݃ ൌ ቂ10

5
ቃ 												݄ ൌ ቂ17

7
ቃ 

To solve the above problem by using Gauss-Jacobi method, first of all we 

obtain the following equations by the method explained in chapter 3. 

ቂ5 6
7 4

ቃ ቂ
ଵݔ
ଶݔ
ቃ ൌ ቂ50

48
ቃ                                                                                  (4.2) 

ቂ1 1
1 0

ቃ ቂ
ଵݔ
ଶݔ
ቃ ൅ ቂ5 6

7 4
ቃ ቂ
ଵݕ
ଶݕ
ቃ ൌ ቂ10

5
ቃ                                                          (4.3) 

ቂ1 2
0 1

ቃ ቂ
ଵݔ
ଶݔ
ቃ ൅ ቂ5 6

7 4
ቃ ቂ
ଵݖ
ଶݖ
ቃ ൌ ቂ17

7
ቃ                                                           (4.4) 

Equation(4.2) can be written as: 

ଵݔ5 ൅ ଶݔ6 ൌ 50 

ଵݔ7 ൅ ଶݔ4 ൌ 48 

Since|5| ≯ |6| and |4| ≯ |7|, therefore the above  system of equations is not 

diagonally dominant. So writing the above system in diagonally dominant 

form as: 
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ଵݔ7 ൅ ଶݔ4 ൌ 48 

(4.5) 

ଵݔ5 ൅ ଶݔ6 ൌ 50 

So, the above system of linear equations is in diagonally dominant form as 

|7| ൐ |4| and |6| ൐ |5|. Now, to find the solution by Gauss-Jacobi method 

first of all (4.5) can also be written as 

 

ଵݔ ൌ
1
7
ሺ48 െ  ଶሻݔ4

                                                                                                               (4.6) 

ଶݔ ൌ
1
6
ሺ50 െ  ଵሻݔ5

Thus, the Gauss-Jacobi’s methods when applied to the above system, it gives 

 

ଵݔ
ሺ௞ାଵሻ ൌ

1
7
൫48 െ  ଶሺ௞ሻ൯ݔ4

,݇ ൌ 0,1,2, … 

ଶሺ௞ାଵሻݔ ൌ
1
6
൫50 െ  ଵሺ௞ሻ൯ݔ5

 

Now, starting  with initial approximation vector  ݔሺ଴ሻ ൌ ሺ0,0ሻ, we get  

 

ଵݔ
ሺଵሻ ൌ

1
7
൫48 െ ଶሺ଴ሻ൯ݔ4 ൌ

48
7
ൌ 6.8571 

ଶݔ
ሺଵሻ ൌ

1
6
൫50 െ ଵሺ଴ሻ൯ݔ5 ൌ

50
6
ൌ 8.3333 

 

i.e.        ݔሺଵሻ ൌ ሺ6.8571, 8.3333ሻ 

hence continuing with this we obtain 
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Table (4.1): the sequence ࢞ሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, …  generated by the Jacobi 

method, with ࢿ ൌ ૚ ൈ ૚૙ି૛.  
݇ ݔ ൌ ሺݔଵ,  ଶሻݔ Error 

ݔ| െ  |଴ݔ

ሺଵሻݔ 1 ൌ ሺ6.8571,8.3333ሻ 10.7919 
ሺଶሻݔ 2 ൌ ሺ2.0952, 2.6190ሻ 7.4383 
ሺଷሻݔ 3 ൌ ሺ5.3605,6.5873ሻ 5.1390 
ሺସሻݔ 4 ൌ ሺ3.0930,3.8662ሻ 3.5421 
ሺହሻݔ 5 ൌ ሺ4.6479,5.7559ሻ 2.4471 
ሺ଺ሻݔ 6 ൌ ሺ3.5681,4.4601ሻ 1.6867 
ሺ଻ሻݔ 7 ൌ ሺ4.3085,5.3599ሻ 1.1653 
ሺ଼ሻݔ 8 ൌ ሺ3.7943,4.7429ሻ 0.8032 
ሺଽሻݔ 9 ൌ ሺ4.1469,5.1714ሻ 0.5549 

ሺଵ଴ሻݔ 10 ൌ ሺ3.9021,4.8776ሻ 0.3825 
ሺଵଵሻݔ 11 ൌ ሺ4.0700,5.0816ሻ 0.2642 
ሺଵଶሻݔ 12 ൌ ሺ3.9534,4.9417ሻ 0.1821 
ሺଵଷሻݔ 13 ൌ ሺ4.0333,5.0389ሻ 0.1258 
ሺଵସሻݔ 14 ൌ ሺ3.9778,4.9722ሻ 0.0867 
,ሺଵହሻ = (4.0159ݔ 15 5.0185ሻ 0.0599 
ሺଵ଺ሻݔ 16 ൌ ሺ3.9894,4.9868ሻ 0.0413 
ሺଵ଻ሻݔ 17 ൌ ሺ4.0076,5.0088ሻ 0.0285 
ሺଵ଼ሻݔ 18 ൌ ሺ3.9950,4.9937ሻ 0.0197 
ሺଵଽሻݔ 19 ൌ ሺ4.0036, 5.0042ሻ 0.0136 
ሺଶ଴ሻݔ 20 ൌ ሺ3.9976, 4.9970ሻ 0.0094 

Since we have already found the exact solution of the above system in 

chapter two, Example 2.15 and is found to be ሺ4, 5ሻ.  It seems that the 

sequence ݔሺ௞ሻ, ݇ ൌ 0,1,2, … generated by the Jacobi method will converge to 

the exact solution. Hence up to two decimal places we obtain 

ݔ ൌ ሺݔଵ, ଶሻݔ ൌ ሺ4.00,5.00ሻ 

Now, putting the value of ሺݔଵ,  ଶሻ in the equations (4.3) and (4.4) we obtainݔ

ቂ5 6
7 4

ቃ ቂ
ଵݕ
ଶݕ
ቃ ൌ ቂ1

1
ቃ 



94 

 

ቂ5 6
7 4

ቃ ቂ
ଵݖ
ଶݖ
ቃ ൌ ቂ3

2
ቃ 

 

ଵݕ5           ൅ ଶݕ6 ൌ ଵݖ5                                                     1 ൅ ଶݖ6 ൌ 3 

i.e.                                                          and 

ଵݕ7            ൅ ଶݕ4 ൌ ଵݖ7                                                    1 ൅ ଶݖ4 ൌ 2 

 

Since the above  equation are not in the form of diagonally dominant form. 

So converting them to diagonally dominant form as: 

ଵݕ7  ൅ ଶݕ4 ൌ 1 

(4.7)                     

ଵݕ5  ൅ ଶݕ6 ൌ 1	 

                 

Now, solving the above equations by the same procedure that is used to solve 

the system (4.2), we obtain: 

ଵݕ ൌ
1
7
ሺ1 െ  ଶሻݕ4

ଶݕ ൌ
1
6
ሺ1 െ  ଵሻݕ5

Taking the initial approximation as ݕሺ଴ሻ ൌ ሺ0,0ሻ   and continuing with 

Gauss- Jacobi method we obtain 
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 Table (4.2): the sequence ࢟ሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, … generated by the Jacobi 

method, with ࢿ ൌ ૚ ൈ ૚૙ି૛.  
݇  ݕ ൌ ሺݕଵ,  ଶሻݕ Error 

ݕ| െ  |଴ݕ

ሺଵሻݕ 1 		ൌ ሺ0.143200,0.167570ሻ 0.2204 
ሺଶሻݕ 2 		ൌ ሺ0.047448,0.048233ሻ 0.1530 
ሺଷሻݕ 3 		ൌ ሺ0.115640, 0.128030ሻ 0.1050 
ሺସሻݕ 4 		ൌ ሺ0.070042,0.071201ሻ 0.0729 
ሺହሻݕ 5 		ൌ ሺ0.102510,0.109200ሻ 0.0500 
ሺ଺ሻݕ 6 		ൌ ሺ0.080801, 0.082138ሻ 0.0347 
ሺ଻ሻݕ 7 		ൌ ሺ0.096264, 0.100230ሻ 0.0238 
ሺ଼ሻݕ 8 		ൌ ሺ0.085924,0.087346ሻ 0.0165 
ሺଽሻݕ 9 		ൌ ሺ0.093288, 0.095962ሻ 0.0113 
ሺଵ଴ሻݕ 10 ൌ ሺ0.088364, 0.089826ሻ 0.0079 

at 10௧௛ iteration we obtain ݕሺଵ଴ሻ ൌ ሺ0.0862, 0.0862ሻ which is very close to 

exact solution ቀ
ଵ

ଵଵ
,
ଵ

ଵଵ
ቁ. Hence  the value of the optimal solution up to two 

decimal place is:  

ݕ ൌ ሺݕଵ, ଶሻݕ ൌ ሺ0.09, 0.09ሻ 

 

Similarly solving  

ଵݖ5 ൅ ଶݖ6 ൌ 3 

(4.8)                     

ଵݖ7  ൅ ଶݖ4 ൌ 2	 

Solving (4.8) we find that the value of ݖ  converges at 	12௧௛  iteration as 

follows: 
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Table (4.3): the sequence ࢠሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, …  generated by the Jacobi 

method, with ࢿ ൌ ૚ ൈ ૚૙ି૛.  
݇  ݖ ൌ ሺݖଵ,  ଶሻݖ Error 

ݖ| െ  |଴ݖ
ሺଵሻݖ	 1 		ൌ ሺ0.28614 , 0.5014ሻ 0.5773 
ሺଶሻݖ 2 		ൌ ሺെ0.00037113,0.26295ሻ 0.3728 
ሺଷሻݖ 3 		ൌ ሺ0.13589,0.50171ሻ 0.2749 
ሺସሻݖ 4 		ൌ ሺെ0.00054786,0.38816ሻ 0.1775 
		ሺହሻݖ 5 ൌ ሺ0.064337, 0.50186ሻ 0.1309 
ሺ଺ሻݖ 6 		ൌ ሺെ0.00063202, 0.44778ሻ 0.0845 
ሺ଻ሻݖ 7 		ൌ ሺ0.030266,0.50193ሻ 0.0623 
ሺ଼ሻݖ 8 		ൌ ሺെ0.0006721,0.47618ሻ 0.0403 
ሺଽሻݖ 9 		ൌ ሺ0.014041,0.50196ሻ 0.0297 

ሺଵ଴ሻݖ 10 ൌ ሺെ0.00069118,0.4897ሻ 0.0192 
ሺଵଵሻݖ 11 ൌ ሺ0.0063151,0.50197ሻ 0.0141 
ሺଵଶሻݖ 12 ൌ ሺെ0.00070027, 0.49614ሻ 0.0091 

Thus the value of ݖ up to two decimal points is  

ݖ ൌ ሺݖଵ, ଵሻݖ ൌ ሺ0,0.5ሻ 

Hence the solution of given fully fuzzy linear system of  equations is as 

follows: 

ݔු ൌ ൤
ሺ4,0.09,0ሻ
ሺ5,0.09,0.5ሻ

൨ 

Which is the required solution of the given fully fuzzy linear system of 

equations. 

Numerical Solution by Gauss- Seidel iterative method 

Consider the system (4.2). 

i.e. 

ଵݔ ൌ
1
7
ሺ48 െ  ଶሻݔ4

ଶݔ ൌ
1
6
ሺ50 െ  ଵሻݔ5
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The Gauss-Seidel iterative formula for this system can be written as: 

ଵݔ
ሺ௞ାଵሻ ൌ

1
7
൫48 െ  ଶሺ௞ሻ൯ݔ4

,݇ ൌ 0,1,2, … 

ଶሺ௞ାଵሻݔ ൌ
1
6
൫50 െ  ଵሺ௞ାଵሻ൯ݔ5

Taking the ݔሺ଴ሻ ൌ ቀݔଵ
ሺ଴ሻ, ଶݔ

ሺ଴ሻቁ ൌ ሺ0,0ሻ we get 

ଵݔ
ሺଵሻ ൌ

1
7
൫48 െ ଶሺ଴ሻ൯ݔ4 ൌ

48
7
ൌ 6.8571 

ଶݔ
ሺଵሻ ൌ

1
6
൫50 െ ଵሺଵሻ൯ݔ5 ൌ

15.7145
6

ൌ 2.6191 

i.e.        ݔሺଵሻ ൌ ሺ6.8571, 2.6191ሻ 

hence continuing with this, we get 

Table (4.4): the sequence ࢞ሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, …  generated by the Gauss-

Seidel method, with ࢿ ൌ ૚ ൈ ૚૙ି૛.  
݇  ݔ ൌ ሺݔଵ,  ଶሻݔ Error 

ݔ| െ  |଴ݔ

ሺଵሻݔ 1 	ൌ ሺ6.8571,2.6190ሻ 7.3403 
ሺଶሻݔ 2 	ൌ ሺ5.3605,3.8662ሻ 1.9481 
ሺଷሻݔ 3 	ൌ ሺ4.6479 ,4.4601ሻ 0.9277 
ሺସሻݔ 4 	ൌ ሺ4.3085,4.7429ሻ 0.4418 
ሺହሻݔ 5 	ൌ ሺ4.1469,4.8776ሻ 0.2104 
ሺ଺ሻݔ 6 	ൌ ሺ4.0700,4.9417ሻ 0.1002 
ሺ଻ሻݔ 7 	ൌ ሺ4.0333,4.9722ሻ 0.0477 
		ሺ଼ሻݔ 8 ൌ ሺ3.7943,4.7429ሻ 0.0227 
ሺଽሻݔ 9 		ൌ ሺ4.0159,4.9868ሻ 0.0108 

ሺଵ଴ሻݔ 10 ൌ ሺ4.0036,4.9970ሻ 0.0052 

Since  we can found the exact solution of the above system in chapter two,  

And is found to be ሺ4,5ሻ.  It seems that the sequence ݔሺ௞ሻ, ݇ ൌ 0,1,2, …   

generated by the Gauss-Seidel method will converges to the exact solution.  
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So, by the above results it is clear that the value of ݔ up to two decimal points 

is ݔ ൌ ሺݔଵ, ଶሻݔ ൌ ሺ4,5ሻ solving (4.7) we obtain 

Table (4.5): the sequence ࢟ሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, …  generated by the Gauss-

Seidel method, with ࢿ ൌ ૚ ൈ ૚૙ି૛.  
݇  ݕ ൌ ሺݕଵ,  ଶሻݕ Error 

ݕ| െ  |଴ݕ
ሺଵሻݕ 1 		ൌ ሺ0.142340 ,0.047947ሻ  0.1502 
ሺଶሻݕ 2 		ൌ ሺ0.114940, 0.070779ሻ  0.0357	
ሺଷሻݕ 3 		ൌ ሺ0.101900, 0.081652ሻ  0.1070 
ሺସሻݕ 4 		ൌ ሺ0.095685, 0.086829ሻ 0.0081 

Hence the value of ݕ up to two decimal places can be written as  

ݕ ൌ ሺݕଵ, ଶሻݕ ൌ ሺ0.09,0.09ሻ 

and solving (4.8), using the same method as used for solving the system (4.5) 

we obtain 

 Table (4.6): the sequence ࢠሺ࢑ሻ, ࢑ ൌ ૙, ૚, ૛, … generated by the Gauss-

Seidel method, with ࢿ ൌ ૚ ൈ ૚૙ି૛. 
݇  ݖ ൌ ሺݖଵ,  ଶሻݖ Error	

ݖ| െ  |଴ݖ
ሺଵሻݖ 1 		ൌ ሺ0.28614,0.2619500ሻ 0.53879 
ሺଶሻݖ 2 		ൌ ሺ0.13646,0.3866800ሻ  0.1948 
ሺଷሻݖ 3 		ൌ ሺ0.06518,0.4460800ሻ  0.0928 
ሺସሻݖ 4 		ൌ ሺ0.031238,0.474370ሻ  0.0442 
ሺହሻݖ 5 		ൌ ሺ0.015075,0.487840ሻ  0.0210 
ሺ଺ሻݖ 6 		ൌ ሺ0.0073784,0.49425ሻ  0.0100 
ሺ଻ሻݖ 7 		ൌ ሺ0.0037134,0.49731ሻ  0.0048 

Hence from the above results, we find that the value of ݖ up to two decimal 

points is found to be: 

ݖ ൌ ሺݖଵ, ଶሻݖ ൌ ሺ0,0.5ሻ 
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Hence the solution of the given fully fuzzy linear system of equation up to 

two decimal places is found to be  

ݔු ൌ ൤
ሺ4,0.09,0ሻ
ሺ5,0.09,0.5ሻ

൨ 
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Comparison results  between Gauss-Jacobi and Gauss- Seidel Method 

Numerical Methods Total CPU Time 
in seconds 

Error 
ݔු| െ  |଴ݔ

Gauss-Jacobi 4.2 0.009127082636873 
Gauss- Seidel 5.9 0.004770825630768 
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Conclusions 

In this thesis, analytical and numerical methods have been used to solve 

Fuzzy System of Linear Equations where the coefficient matrix arrays are 

crisp numbers, the right-hand side column is an arbitrary fuzzy vector and 

the unknowns are fuzzy numbers. Moreover, some analytical and numerical 

methods have been used to solve Fully Fuzzy System of Linear Equations 

where all the coefficient matrix arrays, the right-hand side arrays and the 

unknowns, are fuzzy numbers. 

The numerical methods for FLS and FFLS were implemented in a form of 

algorithms to solve some numerical test cases using MATLAB software. 

For FLS the numerical results have shown to be in a close agreement with 

the analytical ones. Moreover, the SOR iterative method is one of the most 

powerful numerical technique for solving FLS, in terms of number of 

iterations and CPU time, as we show in Example (4.1). 

For FFLS the numerical results have shown to be in a close agreement with the 

analytical ones. In fact, the Gauss- Seidel iterative methods is more efficient 

than the Gauss-Jacobi for solving FFLS in terms of number of iterations, CPU 

time and the absolute error, as we shown in Example (4.2). 
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Appendix 

MATLAB Code for Jacobi Iterative Techniques for Solving Fuzzy 

System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Jacobi Method 

  

clc 

clear all 

close all 

syms r 

  

%% Inputs; 

S = [1  0  0 -1; 

     1  3  0  0; 

     0 -1  1  0; 

     0  0  1  3]; 

Y = [  r; 

     4+r; 

     2-r; 

     7-2*r]; 

  

% S = [10 0   0 -4; 
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%      0  16 -4  0; 

%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

% S = [ 4  1  0  0  0 -1; 

%       0  3  1 -1  0  0;         

%       2  1  3  0  0  0; 

%       0  0 -1  4  1  0; 

%      -1  0  0  0  3  1; 

%       0  0  0  2  1  3]; 

% Y = [   +r ; 

%        2+r ;   

%       -2   ;        

%        2-r ; 

%        3   ; 

%       -1-r]; 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 
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x0_U=zeros(N,1); 

x0_L=zeros(N,1); 

toler = 0.001;   % Change for your example 

err = 1; 

max = 500;   % Change to biger, if the solution didn't converge  

% x_axis_name = 'Put a name';    % Change for your example 

y_axis_name = 'r - Membership Value'; 

  

%% Start Coding with Jacobi Method;  

T=0;   

for K = 1:max   

%% Check if the matrix A is diagonally dominant 

for i = 1:2*N 

    j = 1:2*N; 

    j(i) = []; 

    B = abs(S(i,j)); 

    Check(i) = abs(S(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

  if Check(i) < 0 

      T=1;   

      fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',i) 

  end 

end 
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if T == 1 

    break 

end 

  

%% Jacobi Iteration; Based on Paper {5,4}   

for I = 1:N 

    sumL1=0; 

    sumL2=0; 

    for J = 1:N 

        if J ~= I 

        sumL1 = sumL1 + S(I,J)*x0_L(J); 

        end 

        sumL2 = sumL2 + S(I,N+J)*x0_U(J); 

    end 

    x_L(K,I) = eval((Y_L(I) - sumL1 - sumL2)/S(I,I)); 

  

    sumU1=0; 

    sumU2=0; 

    for J = 1:N 

        if J ~= I 

        sumU1 = sumU1 + S(I,J)*x0_U(J); 

        end 

        sumU2 = sumU2 + S(I,N+J)*x0_L(J); 

    end 
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    x_U(K,I) = eval((Y_U(I) - sumU1 - sumU2)/S(I,I)); 

end 

  

%% Cheching Error; 

  ML1 = Noreta(x_L(K,:)); 

  MU1 = Noreta(x_U(K,:)); 

  ML2 = Noreta(x0_L); 

  MU2 = Noreta(x0_U); 

err1 = vpa(subs(abs(ML1 - ML2),r,0:0.1:1)); 

err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1)); 

err = [err1,err2]; 

if  double(err) <= toler 

    XL = x_L(end,:); 

    XU = x_U(end,:); 

    Error = err; 

    NoIterations = K; 

    break 

end 

 x0_L = x_L(K,:)'; 

 x0_U = x_U(K,:)'; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 
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for i = 1:2:2*N 

    X(i) = XL(j); 

    j= j +1; 

end 

j=1; 

for i = 2:2:2*N 

    X(i) = XU(j); 

    j= j +1; 

end 

  

%% Showing Answers 

ANS = X; 

NoIterations = K 

  

for i = 1:2*N 

F(i,:) = subs(ANS(i),r,(0:0.05:1)); 

plot(F(i,:),(0:0.05:1),'+','markersize',11) 

hold all 

end 

% xlabel(x_axis_name) 

ylabel(y_axis_name) 

title('Fuzzy system Using Jacobi') 

% grid on 

% the colour gradiant starts from Blue 
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%% Exact Solution based on X = (1/S)*Y 

Ans = vpa(inv(S)*Y); 

i=1; 

j=1; 

for i = 1:length(Ans) 

    if i <= length(Ans)/2 

         v1(i)= Ans(i); 

    else v2(j)=Ans(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

for i = 1:2*N 

TRR(i,:) = subs(Ans(i),r,(0:0.05:1)); 

plot(TRR(i,:),(0:0.05:1),'o') 

hold on 

end 

text(2.4,0.9,'+ Jacobi Solution') 

text(2.4,0.85,'O Exact Solution') 

set(text,'linewidth',2) 

format long 
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MATLAB Code for Gauss - Sidel Iterative Techniques for Solving 

Fuzzy System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Gauss Seidel Method 

  

clc 

clear all 

close all 

syms r 

  

%% Inputs; 

% S = [2  1  3  0  0  0; 

%      4  1  0  0  0 -1; 

%      0  3  1 -1  0  0; 

%      0  0  0  2  1  3; 

%      0  0 -1  4  1  0; 

%     -1  0  0  0  3  1]; 

% Y = [11+08*r; 

%      27-08*r; 

%     -23+10*r; 

%     -05-08*r; 

%      10+05*r; 

%      27-12*r]; 
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% S = [1  0  0 -1; 

%      1  3  0  0; 

%      0 -1  1  0; 

%      0  0  1  3]; 

% Y = [  r; 

%      4+r; 

%      2-r; 

%      7-2*r]; 

  

S = [ 4  1  0  0  0 -1; 

      0  3  1 -1  0  0;         

      2  1  3  0  0  0; 

      0  0 -1  4  1  0; 

     -1  0  0  0  3  1; 

      0  0  0  2  1  3]; 

Y = [   r ; 

       2+r ;   

      -2   ;        

       2-r ; 

       3   ; 

      -1-r]; 

  

% S = [10 0   0 -4; 

%      0  16 -4  0; 
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%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 

  

x0_U=zeros(N,1); 

x0_L=zeros(N,1)'; 

toler = 0.001;   % Change for your example 

err = 1; 

max = 500;   % Change to biger, if the solution didn't converge  

% x_axis_name = 'Put a name';    % Change for your example 

y_axis_name = 'r - Membership Value'; 

  

%% Starting Program 

% Check if the matrix A is diagonally dominant 

T=0;   

for i = 1:2*N 

    j = 1:2*N; 
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    j(i) = []; 

    B = abs(S(i,j)); 

    Check(i) = abs(S(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

  if Check(i) < 0 

      T=1;   

      fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',i) 

  end 

end 

  

if T == 1 

    break 

end 

  

% Gauss-Seidel Iteration Technique; Based on Paper {5} 

for K = 1:max     

for I = 1:N 

    sumL1=0; 

    sumL2=0; 

    sumL3=0; 

    for J = 1:I-1 

        sumL1 = sumL1 + S(I,J)*x_L(K,J); 

    end 

    for J = I+1:N 
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        sumL2 = sumL2 + S(I,J)*x0_L(J); 

    end 

    for J = 1:N 

        sumL3 = sumL3 + S(I,J+N)*x0_U(J); 

    end 

    x_L(K,I) = eval((Y_L(I) - sumL1 - sumL2 - sumL3)/S(I,I)); 

  

    sumU1=0; 

    sumU2=0; 

    sumU3=0; 

    for J = 1:I-1 

        sumU1 = sumU1 + S(I,J)*x_U(K,J); 

    end 

    for J = I+1:N  

        sumU2 = sumU2 + S(I,J)*x0_U(J); 

    end 

    for J = 1:N 

        sumU3 = sumU3 + S(I,J+N)*x0_L(J); 

    end 

    x_U(K,I) = eval((Y_U(I) - sumU1 - sumU2 - sumU3)/S(I,I)); 

end 

  

% Cheching Error; 

  ML1 = Noreta(x_L(K,:)); 
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  MU1 = Noreta(x_U(K,:)); 

  ML2 = Noreta(x0_L); 

  MU2 = Noreta(x0_U); 

err1 = vpa(subs(abs(ML1 - ML2),r,0:0.1:1)); 

err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1)); 

err = [err1,err2]; 

if  double(err) <= toler 

    XL = x_L(end,:); 

    XU = x_U(end,:); 

    Error = err; 

    NoIterations = K; 

    break 

end 

 x0_L = x_L(K,:)'; 

 x0_U = x_U(K,:)'; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 

for i = 1:2:2*N 

    X(i) = XL(j); 

    j= j +1; 

end 

j=1; 
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for i = 2:2:2*N 

    X(i) = XU(j); 

    j= j +1; 

end 

  

%% Showing Answers 

ANS = vpa(X); 

NoIterations = K 

  

for i = 1:2*N 

F(i,:) = subs(ANS(i),r,(0:0.05:1)); 

plot(F(i,:),(0:0.05:1),'+','lineWidth',2,'markersize',11) 

hold all 

end 

% xlabel(x_axis_name) 

ylabel(y_axis_name) 

% title('+ Gauss Zidel, O Exact Solution') 

% grid on 

%% the colour gradiant starts from Blue 

 

%% Exact Solution based on X = (1/S)*Y 

Ans = vpa(inv(S)*Y); 

  

i=1; 
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j=1; 

for i = 1:length(Ans) 

    if i <= length(Ans)/2 

         v1(i)= Ans(i); 

    else v2(j)=Ans(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

for i = 1:2*N 

TRR(i,:) = subs(Ans(i),r,(0:0.05:1)); 

plot(TRR(i,:),(0:0.05:1),'or') 

hold on 

end 

text(0.5,0.9,'+ Gauss Zidel') 

text(0.5,0.85,'O Exact Solution') 

set(text,'linewidth',2) 

format long 
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MATLAB Code for ࢁࡸ െ decomposition Method for Solving Fuzzy 

System of Linear Equations 

 

function [X,S1,S2,L,U] = LUFLLE(A,Y) 

    % solving Fuzzy number system using LU factorization. 

    % [X,S1,S2,L,U] = LUFLLE(A,Y). A: the system matrix. 

    % Y: Fuzzy numbers matrix (n-by-2). 

    % returns: X: the solution vector, the matrices S1 and S2, 

    % and the LU factorization. 

    %% Initialization and Pre-setting 

    An = A(:); 

    S1 = []; 

    S2 = []; 

    Y = Y(:); 

     

    for i = 1:length(An) 

        if (An (i) > 0) 

            S1(i) = An (i); 

            S2(i) = 0; 

        else 

            S2(i) = An (i); 

            S1(i) = 0; 

        end 

    end 
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    S1 = reshape(S1,size(A)); 

    S2 = reshape(S2,size(A)); 

    S = [S1 S2;S2 S1]; 

  

    %% LU factorization Process 

    for i = 1 : size(S,1) 

        M(i) = det(S(1:i,1:i)); 

        if (M(i) == 0) 

            fprintf('the principal minor %i is zero, LU fact. is not unique!!!',i); 

            break; 

        end 

    end 

    a = (M(1:length(M)-1) <= 0);  

    if sum(a) == 0 

        disp(' S has a unique LL\^t Factorization'); 

    end 

    [L,U,X] = LUfact(S,Y); % calling the function of LU-fact. 

     

    %% Display 

    X2 = X; % some resetting 

    for i = 1 : length(X) 

        X3 = inline(X2(i)); 

        if (((X3(1) - X3(0)) < 0) && i <= length(X)./2) 

            X(i) =  X(i); 
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        end 

        if (((X3(1) - X3(0) > 0)) && i > length(X)./2) 

            X(i) =  X(i); 

        end 

    end 

     

    X = simplify(X); % simplification 

    fprintf('\n\t X = \n') 

    for i=1: length(Y)./2  

        fprintf('\t\t ( %s , %s )\n',char(X(i)),char(X(i+length(Y)/2))); 

    end 

    figure('color','w') 

    myplots(X); % calling myplot function 

    hold off; 

end 
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MATLAB code for ࢁࡸ െ factorization for Fuzzy System of Linear 

Equations 

 

function [L,U,x]=LUfact(A,b) 

    sa = size(A); 

    sb = size(b); 

    if(sa(1)==sa(2) && sa(2)==sb(1) && sb(2)==1) 

        n=sa(1); 

        %% LU Factorization... 

        for i=1:n 

            U(i,i)=1; 

        end 

        L(1,1)=sqrt(A(1,1)); 

        U(1,1)=L(1,1); %% L11*U11=A11; 

        if(U(1,1)*L(1,1)==0) 

            error(' ** no possible LU factorization!!!'); 

        else 

            for(j=2:n) 

                U(1,j)=A(1,j)/L(1,1); 

                L(j,1)=A(j,1)/U(1,1); 

            end 

            for(i=2:n-1) 

                s=0; 

                for k=1:i-1 

                    s=s+L(i,k)*U(k,i); 

                end 



124 

                L(i,i)=sqrt(A(i,i)-s); 

                U(i,i)=L(i,i); 

                if(L(i,i)*U(i,i)==0) 

                    error(' ** no possible LU factorization!!!'); 

                    t=0; 

                else 

                    t=1; 

                    for(j=i+1:n) 

                        su=0; sl=0; 

                        for(k=1:i-1) 

                            su=su+L(i,k)*U(k,j); 

                            sl=sl+L(j,k)*U(k,i); 

                        end 

                        U(i,j)=(A(i,j)-su)/L(i,i);% i-th row of U. 

                        L(j,i)=(A(j,i)-sl)/U(i,i);%i-th column of L. 

                    end 

                end 

            end 

            if(t==1) 

                s=0; 

                for (k=1:n-1) 

                    s=s+L(n,k)*U(k,n); 

                end 

                L(n,n)=sqrt(A(n,n)-s); 

                U(n,n)=L(n,n); 

                if(L(n,n)*U(n,n)==0) 

                    disp(' ** the matrix is singular!!!'); 
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                end 

            end 

        end 

        %% Forward substitution... 

        y(1,1)=b(1,1)/L(1,1); 

        for (i=2:n) 

            s=0; 

            for(j=1:i-1) 

                s=s+L(i,j)*y(j,1); 

            end 

            y(i,1)=(b(i,1)-s)/L(i,i); 

        end 

        %% Backward substitution... 

        x(n,1)=y(n,1)/U(n,n); 

        for(i=n-1:-1:1) 

            s=0; 

            for(j=i+1:n) 

                s=s+U(i,j)*x(j,1); 

            end 

            x(i,1)=(y(i,1)-s)/U(i,i); 

        end 

    end 

end 
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MATLAB Code for ࡾࡻࡿ Iterative Techniques for Solving Fuzzy 

System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Successive over/under Relaxation ()SOR 

  

clc 

clear all 

close all 

syms r 

t = cputime; 

  

% Inputs; 

S =  [ 2  0  0 -2; 

       2  6  0  0;         

       0 -2  2  0; 

          0 0 2 6]; 

           

      

Y = [   2*r ; 

      8+2*r ;   

       4-2*r ; 

      14-4*r]; 
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% S = [10 0   0 -4; 

%      0  16 -4  0; 

%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

% S = [8 2 1 0 0 0 0 0 0 3; 

%      0 5 1 0 1 2 0 0 1 0; 

%      1 0 5 1 1 0 1 0 0 0; 

%      0 0 0 4 2 0 0 1 0 0; 

%      1 0 0 0 3 0 2 0 0 0; 

%      0 0 0 0 3 8 2 1 0 0; 

%      2 0 0 1 0 0 5 1 0 1; 

%      0 1 0 0 0 1 0 5 1 1; 

%      0 0 1 0 0 0 0 0 4 2; 

%      0 2 0 0 0 1 0 0 0 3]; 

%  Y = [r; 

%       4+r; 

%       1+2*r; 

%       1+r; 

%       3*r; 
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%       2-r; 

%       7-2*r; 

%       6-3*r; 

%       3-r; 

%       6-3*r]; 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 

maxEter = 300; 

Toler = 0.001; 

  

omega = 0.4;  % [0,1] 

  

%% Getting D,L,U from S 

d = diag(S); 

for i=1:2*N 

    for j=1:2*N 

        if i~=j 

        D(i,j) = 0; 

        else 

            D(i,j) = d(i); 

        end 

    end 
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end 

L = tril(S); 

U = triu(S); 

L1 = L(1:N,1:N); 

D1 = D(1:N,1:N); 

U1 = U(1:N,1:N); 

C = L(N+1:2*N,1:N); 

s = D + L + U; 

B = D1 + L1 + U1; 

  

%% Iteration 

x0_L = zeros(N,1); 

x0_U = zeros(N,1); 

% Equations from paper Iterative solution of fuzzy linear systems 

for k = 1:maxEter 

x_L = inv(D1+omega*L1)*(omega*Y_L + ((1-omega)*D1-

omega*U1)*x0_L -omega*C*x0_U); 

x_U = inv(D1+omega*L1)*(-omega^2*C*inv(D1+omega*L1)*Y_L + 

omega*Y_U + ((1-omega)*D1-

omega*U1+omega^2*C*inv(D1+omega*L1)*C)*x0_U - 

omega*C*inv(D1+omega*L1)*((1-omega)*D1-omega*U1)*x0_L); 

i=0; 

for jj = 0:0.05:1 

    i=i+1; 



130 

err1(:,i) = subs(abs(x_L - x0_L),r,jj); 

err2(:,i) = subs(abs(x_U - x0_U),r,jj); 

end 

err = [err1,err2]; 

if max(double(err)) <= Toler 

    break 

end 

  

x0_L = x_L; 

x0_U = x_U; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 

for i = 1:2:2*N 

    X(i) = x_L(j); 

    j= j +1; 

end 

j=1; 

for i = 2:2:2*N 

    X(i) = x_U(j); 

    j= j +1; 

end 

  



131 

%% Exact Solution based on X = (1/S)*Y 

GGG = vpa(inv(S)*Y); 

i=1; 

j=1; 

for i = 1:length(GGG) 

    if i <= length(GGG)/2 

         v1(i)= GGG(i); 

    else v2(j)=GGG(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

  

%% Showing Answers 

ANS = X; 

NoIterations = k 

  

for i = 1:2*N 

F(i,:) = subs(Ans_F(i),r,(0:0.05:1)); 
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plot(F(i,:),(0:0.05:1),'+','markersize',11) 

hold all 

end 

% xlabel('put a name') 

ylabel('Membership Value') 

title('+ SOR Solution, O Exact Solution') 

grid on 

 

for i = 1:2*N 

KKK(i,:) = subs(Ans_F(i),r,(0:0.05:1)); 

plot(KKK(i,:),(0:0.05:1),'or') 

hold on 

end 

t_CPU_SOR = cputime-t 

% t_CPU_SOR = cputime 
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MATLAB Code for Jacobi and Gauss-Sidel Iterative Techniques for 

Solving Fully Fuzzy System of Linear Equations 

 

function [X,Y,Z] = iter(A,M,N,b,g,h,X0,Y0,Z0,eps) 

    % [X,Y,Z] = jaco(A,M,N,b,g,h,X0,Y0,Z0,eps), Takes the fully Fuzzy 

system 

    % Matrices, A,M,N,b,g,h and the precision "eps" and the initial values 

X0, 

    % Y0 and Z0, and returns the solution vectors X,Y,Z. 

     

    disp(' Select Which Methood to use:'); % selection of the desired 

method. 

    s = lower(input (' enter "J" for Jacobi, or "S" for Gauss-Seidal:... ','s')); 

     

    % initialization. 

    [n,m] = size(A); 

    L = zeros(n,m); 

    U = zeros(n,m); 

    % Calculate the permutation matrix E. 

    E = zeros(n,m); 

    [v,inda] = max(A); 

    for i = 1:n 

        [r,p] = max (v); 

        E(inda(i),p) = 1; 
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        v(p) = -exp(-10); 

    end 

    % Transform the system to Diagonally dominant system. 

    A = E * A;  

    % Calculate Da, La, and Ua. 

    D = diag( diag (A)); 

    for i = 1:n 

        for j = 1:m 

            if (i > j) 

                L(i,j) = A(i,j); 

            elseif (i < j) 

                U(i,j) = A(i,j); 

            end 

        end 

    end 

    

    Di = inv(D); 

    DLi = inv(D+L); 

    if (det(D) == 0) 

        error('Da is Singular !!!'); 

    end 

     

    % start the iterations. 

    e = 1000; 
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    i = 0; 

    if (s == 'j') % Jacobi Method. 

        fprintf('\n\t\t\t******* Starting Jacobi Method ******* '); 

        pause 

        fprintf('\n\n \t ** solution for X: ') 

        while (e > eps) % Solving for X 

            i = i + 1; 

            X = - Di*((L+U)*X0 - E*b); 

            e = norm(X - X0); 

            X0 = X; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(X',5),e); 

            if (e > (50/eps)) 

                error ('The process is Diverging !!!'); 

                Break; 

            end 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Y: ') 

        while (e > eps) % Solving for Y 

            i = i + 1; 

            Y = - Di*((L+U)*Y0 + E*(M*X - g)); 

            e = norm(Y - Y0); 

            Y0 = Y; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y',5),e); 
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        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Z: ') 

        while (e > eps) % Solving for Z 

            i = i + 1; 

            Z = - Di*((L+U)*Z0 + E*(N*X - h)); 

            e = norm(Z - Z0); 

            Z0 = Z; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Z',5),e); 

        end 

        fprintf('\n\n the approximation error is: %f', e); 

         

    elseif (s == 's') % Gauss-Seidal Method. 

        fprintf('\n\t\t\t******* Starting Gauss-Seidal Method ******* '); 

        pause 

        fprintf('\n\n \t ** solution for X: ') 

        while (e > eps) % Solving for X 

            i = i + 1; 

            X = - DLi*(U*X0 - E*b); 

            e = norm(X - X0); 

            X0 = X; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(X',5),e); 

            if (e > (50/eps)) 

                error ('The process is Diverging !!!'); 
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                Break; 

            end 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Y: ') 

        while (e > eps) % Solving for Y 

            i = i + 1; 

            Y = - DLi*(U*Y0 + E*(M*X - g)); 

            e = norm(Y - Y0); 

            Y0 = Y; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y',5),e); 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Z: ') 

        while (e > eps) % Solving for Z 

            i = i + 1; 

            Z = - DLi*(U*Z0 + E*(N*X - h)); 

            e = norm(Z - Z0); 

            Z0 = Z; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Z',5),e); 

        end 

        fprintf('\n\n the approximation error is: %f \n\n', e); 

    end 

         

end
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 ب

  الʠرق العددǻة لʲل نʢام مʥ الʸعادلات الʻʠʳة الʮʷابʻة
  إعداد

  لʮʹى لʻʮب احʸد انعʻرات
  إشراف

  أ.د. ناجي قʠʹاني

  الʸلʳص
زنا على حل نʤام مʧ الʺعادلات الʽʢʵة الʹــــــــــــــʰابʽة ʽʴǼث تʨؔن معاملات  في هذه الاʡروحة رؗ

زنا على مʻاقʷــــة Ǽعض الʢرق الʤʻام اعد اد حقʽقʽة اما الʨʲابت والʺʱغʽرات فهي اعداد ضــــʰابʽة ، ورؗ
ʰابʽة ʽʴǼث تʨؔن ؗلاً مʧ الʺعاملات و  الʺʱغʽرات لʴل نʤام مʧ الʺعادلات الؔاملة الʽʢʵة الʹــــــــــــــ

  .والʨʲابت اعداد ضʰابʽة
Ȅدمان، ʡرȄقة ســـــعʽد الʢرق الʴʱلʽلʽة لʴل نʤام مʧ الʺعادلات الʽʢʵة الʹـــــʰابʽة شـــــʺلت  ʡرȄقة فر 

الʺعاملات لʺʸـــــــــــفʨفة علʽا ودنʽا  اʶǼـــــــــــʻʰدȑ وماجد علʡ ،ȑʨرȄقة ؗرȄʺر، ʡرȄقة تʴلʽل مʸـــــــــــفʨفة
  ʡرȄقة الاسʰʱعاد لʳاوس.و 

، ʡرȄقة جاوس ســـــــــــــــایدل  وʡرȄقة الʱʱاǼع. تʦ الʱي تʻاولʻاها هي: ʡرȄقة جاكȃʨياما الʢرق العددǽة 
نة بʻʽها حʽث اʣهرت لʻا الʱʻائج العددǽة ان ʡرȄقة تʻفʽذ الامʲلة العددǽة بهذه الʢرق وتʦ وضــــــع مقار 

ʲع ؗانت اكǼاʱʱي و الȃʨاكʳالʺقارنة مع الǼ الر ؗفاءة ʦاوس سایدل فقد تʳؔرارات الʱل بʴل الى الʨصʨ
  .وزمʧ اقل

الʺعاكس الʺʰاشــر،  الʢرق الʴʱلʽلʽة لʴل نʤام مʧ الʺعادلات الؔاملة الʽʢʵة الʹــʰابʽة ؗانت ʡرȄقة
  قة تʴلʽل مʸفʨفة الʺعاملات لʺʸفʨفة علʽا ودنʽا.ʡرʡȄرȄقة ؗرȄʺر و 

. تʦ تʻفʽذ الامʲلة العددǽة بهذه الʢرق لى ʡرȄقة الʳاكȃʨي والʳاوس سایدلوالʢرق العدیʽة اشʱʺلت ع
وتʦ وضع مقارنة بʧʽ هذه الʢرق العددǽة حʽث اʣهرت لʻا الʱʻائج العددǽة ان ʡرȄقة الʳاوس سایدل 

ȃʨي فقد تʦ الʨصــʨل الى الʴل بʱؔرارات وزمʧ وخʢأ اقل Ǽالʺقارنة مع اكʲر ؗفاءة Ǽالʺقارنة مع الʳاك
 ʡرȄقة الʳاكȃʨي.


