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Abstract 

We focus our attention on the analytical and numerical methods for solving 

the fuzzy linear system (FLS) and fully fuzzy linear system ( FFLS). 

For the analytical solution of the fuzzy linear system we have presented the 

following methods: Friedman's proposal, S. Abbasbandy and M. Alavi 

method,  Fuzzy Solution by Using Fuzzy Center, Algorithmic Approach, 

Embedding method ,  decomposition method, and  -Decomposition 

method  of  Mansouri and Asady. The analytical methods  presented for the 

fully fuzzy linear system include:  matrix inversion method, Cramer’s rule 

and 	decomposition method. 

For the numerical handling of the fuzzy linear system we have implemented 

the following techniques, namely: Iterative Jacobi method, Gauss Sidel 

methods,  and  Successive over relaxation iterative method. For the fully 

fuzzy linear system we have used the Gauss -Jacobi and Gauss- Seidel 

methods. 

To show the efficiency of these numerical techniques we have considered 

some numerical examples. Numerical results for both (FLS) and (FFLS) 

have shown to be in a closed agreement with the analytical ones. 



XI 

We strongly believe that, the Successive over relaxation iterative 

method(SOR) is one of the most powerful numerical techniques for solving 

FLS in comparison with other numerical techniques. Moreover, the Gauss- 

Seidel method is more efficient than the Gauss –Jacobi method for solving 

FFLS. 
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Introduction  

The subject of Fuzzy System of Linear Equations with a crisp real coefficient 

matrix and with a vector of fuzzy triangular numbers on the right-hand side 

and   Fully Fuzzy System of Linear Equations where all the parameters of 

the system are fuzzy numbers arise in many branches of science and 

technology such as economics, statistics, telecommunications, image 

processing , physics and even  social sciences. In the year of  1965 L.A. 

Zadeh  [27] introduced and investigated the concept of fuzzy numbers that 

can be used to generalize crisp mathematical concept to fuzzy sets. 

There is a vast literature on the investigation of solutions for fuzzy linear 

systems. Early work in the literature are on to linear equation systems whose 

coefficient matrix is crisp and the right hand vector is fuzzy,  that is known 

as Fuzzy Linear Equation System (FLS), was first proposed by Friedman et 

al. [17]. For computing a solution, they used the embedding method and 

replaced the original fuzzy  linear system by a 2 2  crisp linear 

system. Later, several authors studied FLS. Allahviranloo [4-5], used the 

Jacobi and Gauss–Seidel iterative methods to compute an approximate 

solution. He also used the successive over relaxation iterative method for 

solving FLS. Dehghan & Hashemi [12] investigated the existence of a 

solution provided that the coefficient matrix is strictly diagonally dominant 

matrix with positive diagonal entries and then applied several iterative 

methods for solving FLS. Ezzati [15] developed a new method for solving 

FLS by using embedding method and replaced an	  fuzzy linear system 
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by two  crisp linear system. Furthermore, Muzziolia et al. [22] 

discussed fuzzy linear systems in the form of 	 	 	 	 	  with 

,  square matrices of fuzzy coefficients and ,  fuzzy number 

vectors. Abbasbandy and Jafarian [3] proposed the steepest descent method 

for solving fuzzy system of linear equation.  

The crispness of the coefficient matrix makes the modeling of real life 

problems restricted. Linear systems, whose all the parameters are fuzzy i.e. 

both coefficient matrix and right hand vector are fuzzy, are named Fully 

Fuzzy Linear Equation System (FFLS). The main objective of FFLS is to 

widen the scope of FLS in scientific applications by removing the crispness 

assumption on the entries of coefficient matrix.  

Dehgan et al. [13] have proposed the Adomian decomposition method, 

iterative methods and some computational methods such as Cramer’s rule, 

Gauss elimination method,  decomposition method and linear 

programming approach for finding the solutions of  FFLS. Then, they 

applied some iterative iterative techniques such as Richardson, Jacobi, 

Jacobi over relaxation (JOR), Gauss–Seidel, successive over relaxation 

(SOR), accelerated over relaxation (AOR), symmetric and unsymmetric 

SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) ,for 

solving (FFLS). In addition, they proposed methods from nonlinear 

Programming, such as Newton, quasi-Newton and conjugate gradient to 

solve FFLS [14]. 

Besides FLS and FFLS, there exist the dual forms of both systems in the 

literature. Generally, both FLS and FFLS are handled under two main 
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headings: square 	 	  and nonsquare 	  forms. Most of the works in 

the literature deal with square form. For example, Asady et al. [8], extended 

the model of Friedman for 	 	  fuzzy linear system to solve general 	 	  

rectangular fuzzy linear system for 	 	 ,where coefficients matrix are crisp 

and the right-hand side column is a fuzzy number vector, they replaced the 

original fuzzy linear system 	 	  by a crisp linear system 2 	 	2 . And 

they investigated conditions for the existence of a fuzzy solution.  

Fuzzy elements of these systems can be taken as triangular, trapezoidal or 

generalized fuzzy numbers in general or parametric form. While triangular 

fuzzy numbers are widely used in earlier works, trapezoidal fuzzy numbers 

are neglected for a long time. Besides, there exist lots of works using the 

parametric and level cut representation of fuzzy numbers. Another 

classification for FFLS can be made also depending on whether FFLS has 

sign restrictions on its parameters. Having sign restrictions for FFLS means 

that all parameters of FFLS are assumed as positive. Since the parameters 

are assumed as positive in the most of the papers, further work is needed for 

FFLS with arbitrary (no restrictions on sign) fuzzy numbers.  

This thesis is organized as follows: 

In chapter one, we introduce some basic concepts of fuzzy sets, crisp sets, 

fuzzy numbers, and fuzzy linear system. 

Chapter two investigates some analytical methods for solving the Fuzzy 

Linear System of Equations. These methods are: Friedman's proposal, S. 

Abbasbandy and M. Alavi Method,  Fuzzy Solution by Using Fuzzy Center, 

Algorithmic Approach, Embedding method,  decomposition method, and 
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-Decomposition Method  of  Mansouri and Asady.  For the Fully Fuzzy 

System of Linear Equations we presented the analytical methods:  matrix 

inversion method, Cramer’s rule and 	decomposition method. 

In chapter three, we employ some numerical methods to solve fuzzy system 

of linear equations. These are: Iterative Jacobi, Gauss Sidel methods, and 

Successive over relaxation iterative method. And we employ Jacobi and 

Gauss Sidel methods for fully fuzzy system of linear equations. 

In chapter four, MATLAP software has been used to solve numerical 

examples to demonstrate the efficiency of these numerical schemes 

introduced in chapter three. 

Finally, we draw a comparison between analytical and numerical solutions 

for some numerical examples. 

 

 

 

 

 

 

 

 

\ 
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Chapter One 

Mathematical Preliminaries 

1.1 Crisp Sets 

The concept of a set is fundamental in mathematics and it can be described 

as a collection of objects possibly linked through some properties. 

Definition (1.1) [9]: Characteristic function: 

 Let  be a set and  be a subset of  	 . Then the characteristic 

function of the set  in  is defined by: 

( )A x =	
1									 	 ∈ ,
0								 	 ∉ 	 . 

Classical sets and their operations can be represented by their characteristic 

functions. 

Indeed,Let us consider the union 

 ∪ 	 ∈ 	 │ 	 ∈ 	 		 	 	 ∈ 	 . Its Characteristic function is 

∪ ,  

For the intersection  

∩ 	 ∈ | 	 ∈ 	 	 	 	 ∈ 	 	the characteristic function is 

∩ , . 

If we consider the complement of  	 	 ,  

	 	 ∈ 	 │ 	 ∉ 	  it has the characteristic function  

( )cA
x  =1- ( )A x . 
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1.2 Fuzzy Sets 

Zadeh in [27] extended the definition of the characteristic functions by 

replacing the set 0,1 	by the closed interval 0,1 which is the bases to the 

new definition of fuzzy sets. 

Definition (1.2) [27]: Fuzzy set: 

 A fuzzy set (fuzzy subset of ) is defined as a mapping  

∶ 	 	 	 0,1 , 

where  is the membership degree function of  to the fuzzy set . We 

denote the collection of all fuzzy subsets of  by Ƒ ). 

In the case of the characteristic function A : → {0,1} if ( )A x =0 then; 

the grade of membership is 0; and that means  doesn’t  belong to , if the 

characteristic function ( )A x =1, then the grade of membership is equal to 1; 

and that means  belongs to . While, in the case of fuzzy sets: could 

be any other number from 0  to 1. 

We identify a fuzzy set with its membership function. Other notations that 

can be used  the following 	 . 

 

Example 1.1: 

=0.95 may means that  is more likely to be in ,  or if )=0.5 

then	  may be half way between belonging to  and  not belonging to . It 

is clear that regular subsets of  are a special case of fuzzy sets called crisp 

fuzzy sets where ∈ 0,1 	⊆ 	 0,1  .     
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We use different ways to display a fuzzy subset of .  In the next example 

we describe some of those ways: 

 

Example 1.2: 

Consider the regular set , , , ,  and let	  be the fuzzy subset of 

 that maps  to [0,1] by the following mapping: 

→ 0.2, → 0.83, → 0.5, → 0, 	 → 0.6	

We may write  as the set of ordered pairs: 

	 , 0.2 , , 0.83 , , 0.5 , , 0 , , 0.6  using notation of  regular 

set, or we may represent it as 		 	 . , 	 . , . , , . . This last 

form will be mostly used in this manuscript. 

 

Operations on Fuzzy Sets 

Zadeh in his first publication [27], define the operations for fuzzy sets by 

generalize the theoretic operations of crisp sets (the reader should realize that 

the set theoretic operations  intersection, union and complement correspond 

to the logical operators and, inclusive or and negation). 

 

Definition (1.3) [28]: Operations for fuzzy sets: 

 Let  and  be two fuzzy sets, then: 

1) The intersection of  and   is the fuzzy set  with  

∩ , ˄ , ∀ 	 ∈ 	 .	

2) The union of  and   is the fuzzy set , where  

    	 	 , ˅ ,								∀ 	 ∈ 	 .	

3) The complement of  is the fuzzy set , where 

    	 	 	1 , ∀ 	 ∈ 	 .	
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4) Difference 	 	 	 ∩ 	 	 	 ,1 .	

5) equilibrium points 	 	 .	

In the following examples we illustrate the previous definitions. 

 

Example 1.3: 

 Consider the following two fuzzy sets: 

         ={a1.0, b0.5, c0.3, d0.2} and  ={a0.5, b0.7, c0.2, d0.4 }. 

1. Complement  ={a0.0, b0.5, c0.7, d0.8}. 

2. Complement  ={a0.5, b0.3, c0.8, d0.6}. 

3. Union:  	  ={a1.0, b0.7, c0.3, d0.4}. 

4. Intersection: 	 ∩ 	 	={a0.5, b0.5, c0.2, d0.2}. 

5. Difference 	– 	 	 ∩ 	=={a0.5, b0.3, c0.3, d0.2}.  

 
For the continuous graph case:  

Take 0,4 ,  and 	are as follows:  

               

 
 
 
 
 
 
 
                                                                 

                                                                               Intersection of fuzzy sets 
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            Union of fuzzy sets                                   Complement of fuzzy sets 

   

Now we  can compare two fuzzy subsets of a set  as one of them containing 

the other as follows: 

 

Definition (1.4) [27]: The containment: 

 Let , 	be two fuzzy subsets of , we say 	 		   to mean   

for all 	 ∈ . 

 

For example: Consider , , ,  and let ={a0.4, b0.8, c0.1, d0 } and 

={a0.1, b0.8, c0, d0 },  then clearly 	 	 . 

 

Definition (1.5) [9]: The support of  the fuzzy set :  

The support of  the fuzzy set  is defined by: 

∈ ∶ 	 	˃	0 .	

Definition (1.6) [18]: 	–cut: 

An 	–level  set of a fuzzy set  of  is a non-fuzzy set denoted by and is 

defined by: 
∈ ∶ 	 	 									, ∈ 0	,1

																			, 0						
 

where	 	 	 	 	 . 
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Example 1.4:  

The following example displays some  levels of some  fuzzy subsets: 

Let { a0.4 , b0.7, c0.3 , d0.2 }be a fuzzy subset of ={a, b, c, d}then the 0.3-

level= . ={a, b, c}, the 0.1-level= . ={a, b, c, d}. And the support of 

	 {a, b, c, d}. 

 

Example 1.5: 

The following represents the graph of a fuzzy subset of ∞,∞  with 

its function representation. 
  

 

 

where    

2					 	 ∈ 2,3
1													 	 ∈ 3,5

								 	 	 ∈ 5,8

0										
							

 

The 0.4 level of this fuzzy set is, . 	 ∈ :	 	 	0.4  

0.4	 		 2 	 	 	2.4	

0.4	 	
8
3

	 	 	 	6.8		 		 . 2.4	, 6.8 	

        In  general, the -level can be found as follows: 
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=[	 			, 			  

Now, 	 			 2,	 and this implies that 	 			 2 

And 
			

 which means 			 8 3  

So  	 2,8 3  

For 0.4,  . 2.4	, 6.8  

 

 

Example 1.6: 

 Let  defined  as the following 
 

 

     

    	 	 1	, 2	  2	,∞	 	

    .   = ∈ ∶ 	 	 	0.4 1.8	, 2.2	  3.4	, ∞ . 

 

 

 

 

1 

0.5	

					 1 2 3 4 	
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Definition (1.7) [23]: Normal fuzzy set:  

 A fuzzy set  is called normal if there is at least one point 	 ∈  with 

1. 

 

Definition (1.8) [23]: convex fuzzy set: 

 A fuzzy set  is convex if each of its level are convex set, 

 i.e.  	 	 	 ∈ 	 ∶ 	 	 	 	  are convex	∀α ∈ (0,1]. 
 

An alternative definition of convexity: we call  convex if and only if 

	 1 	 	 	 	 	 , , ∀ , ∈ ,				 ∈ 0,1 . 
 

 

 

 

1.3 Interval Arithmetic [11] 

An interval is a subset of  such that , : ,

, ∈ . 

If , 	 	 , 	 are two intervals, thus the arithmetic 

operations are: 

Addition: 

, , ,  

 

Convex Fuzzy Set                                     Non-convex Fuzzy Set          

 

11	

Figure (1.1) 
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Subtraction 

, , ,  

 

Product 

, . ,  

							 min	 , , , , 	 , , ,  

 

Division 

, / , = 

min	 / , / , / , / , 	 / , / , / , / 			 

, 0 

1.4 Fuzzy Numbers 

A way to describe the vagueness and lack of precision of data is a fuzzy 

number. The theory of fuzzy numbers is based on the theory of fuzzy sets 

which was introduced by Zadeh [27] in 1965. The concept of a fuzzy number 

was first used by Nahmias in the United States and by Dubois and Prade in 

France in the late 1970's. Our definition of a fuzzy number is illustrating in 

the following. 

Definition (1.9) [16]: fuzzy number: 

 A fuzzy number is a fuzzy set :	 → 0,1   which satisfies: 

  is upper semi continuous. 

  0  outside some interval , . 

 There are real numbers , ∶ 	 	 	 	 	  for which 
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   a.  is monotonic increasing on , 	, 

   b.  is monotonic decreasing on , 	 , 

   c. 1, 	 	 	 	  . 

i.e.   = 

0	,																																																																	
	ƒ x 	,																																																				 	
1	,																																																								b x c
ɡ x ,																																																					 	
0,																																																															

                  (1.1) 

where ƒ is an increasing function and is called the left side, while ɡ is a 

decreasing function and is called the right side.  

 

 

 
 

 Also  is called symmetric fuzzy number if 	 	 	 	 	  for 

all 	 ∈ 	 , where 	 		 	. 

  The set of all the fuzzy numbers  is denoted by 1. 

 If  in the intervals ,  and 	 ,  is linear then it is called a 

trapezoidal fuzzy number(which we will discuss later) and we write  

		 	 , , , 	 .	

 

 

	 	

	

 

t

Figure (1.2) 
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Definition (1.10) [24]: Parametric form of fuzzy number: 

 An arbitrary fuzzy number in parametric form is represented by an ordered 

pair of functions 	 , ,  0	 	 	 	1,  which satisfy the following 

requirements: 
 
1. 	 is a bounded left-continuous non-decreasing function over 0, 1 . 

2.   is a bounded left-continuous non-increasing function over 0, 1 . 

3. ≤ ;  0	 	 	 	1. 

Remark (1.1) [15]: 

 A crisp number  is simply represented by  

, 0	 	 	 	1. 

 

Also	 ,  is called a symmetric fuzzy number in parametric form if 

 is a real constant for all 0	 	 	 	1. 

 

For example:  

 	 	 2	 	 , 5	 	2  is a fuzzy number and 	 	 1	 	 , 3	 	 	is a 

symmetric fuzzy number in parametric form.  

1.4.1. Types of a Fuzzy Number 

Here we will talk about most popular types of fuzzy numbers, namely: 
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1) Triangular Fuzzy Number 

 

 

 

 

   

 

     

A triangular fuzzy number (TFN) as illustrated in Figure (1.3)  is a special 

type and the most common of fuzzy number and its membership function 

 	    is given by: 

    = 

0			,																					 ,
	,												 ,

	,														 ,

0				,																 	.							
							

 

2) Trapezoidal Fuzzy Number 

 

 

 

 

 

     

      

A trapezoidal fuzzy number (Tr F N) which illustrated in  Figure (1.4)  is a 

special type of fuzzy number and its membership function    is given by 

      

    

 

 

Figure (1.3) 

 

Figure (1.4)
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    = 

0	,																									 ,
,													 ,

1				,														

,															 ,

0		,															 	.						

, 

1.4.2 Conversion from Fuzzy Number to Interval Using Alpha Cut 

The cut operation can be also applied to the fuzzy number. If we denote 

cut interval for fuzzy number  as ,   the obtained interval  is 

defined as following   

 = [ 			, 			  

We can also know that it is an ordinary crisp interval 

 

1) Conversion Triangular Fuzzy Number to Interval 

Let, a triangular fuzzy number defined as , ,  , then to find cut 

of  , ∀ ∈ 	 0, 1 	we first set  equal to the left and right membership 

function of  . That is, 
				   and	 				 

Expressing  in terms of	  we have,		  and 

  

Therefore, we can write the fuzzy interval in terms of 	 cut interval as: 

=[ 	, . 

 

Example 1.7: 

 Let 1, 2, 3 , 3, 2, 1 	and 	 3, 4, 5  

Then  	 1 	, 3 ,  3 , 1 , 3 , 5 . 
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Example 1.8: 

 In the case of the triangular fuzzy number 5, 1, 1 	,  the 

membership function value will be, 

   = 

0																														 5					
														 5 1							

															 1 	1									

0																				1 																	
							

 

cut interval from this fuzzy number is  

	⇒	 	4 5	

  ⇒  	 2 1 

 = [ 			, 			 	 	 4 5, 2 1  

If 	 0.5, substituting  0.5	for α, we get .   

. =[ . 			, . 			]=[-3, 0] 
 

 

2) Conversion Trapezoidal Fuzzy Number to Interval 

Let, a trapezoidal fuzzy number defined as , , ,  

By following the similar procedure as above, we can write the fuzzy interval 

in terms of 	–cut interval as following: 

=[ 	, . 

 

Figure (1.5) 
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1.4.3. Fuzzy Arithmetic 

Since   is now interval, so fuzzy addition, subtraction, multiplication and 

division are the same as interval arithmetic. 

Definition (1.11) [20]: 

As discussed above, fuzzy numbers may be transformed into an interval 

through parametric form. So, for any arbitrary fuzzy number 

, , ,  and scalar  ,we have the interval based 

fuzzy arithmetic as 

 

i.			  if and only if  and .  

ii.    	,	 . 

iii.   , . 

iv. 	 	 , , ,	 ,	

																					 	 , 	 , , . 

v. 	x/y x	 α , x	 α / y α , y α 		 / , / .                           

p                                                                 provided y α y α 0 

vi.  
x	 α , kx	 α 						, 0

, 						, 0.
 

Definition (1.12) [23]: Positive fuzzy number: 

 A fuzzy number  is called positive, denoted by  	 	0, if its membership 

function 	 satisfies 	 0, ∀ 	 	0.  

Definition (1.13) [23]: Nonnegative fuzzy number: 

 A fuzzy number  is called nonnegative, denoted by 	 	0  , if its 

membership function 	 satisfies 	 )=0, ∀ 	 	0.	 
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Definition (1.14) [25]: Equality in fuzzy numbers: 

 Two triangular fuzzy numbers 	 	 , ,  and	 	 	 , 	,  are said 

to be equal, if and only if	 	 	 , 	 and 	 	 . 

1.5 Fuzzy Linear System 

In 1965[27] Lotfi Zadeh was submit fuzzy logic, which has had achieved 

many successful applications in several areas that one can imagine. The 

reason  behind that they are many real-world applications problems are 

involved the systems in which at least some parameters are represented by 

fuzzy numbers rather than crisp numbers. Moreover a system of fuzzy linear 

equations may appear in a wide variety of problems in various areas such as 

engineering, mathematics, physics, statistic and social sciences. 

A linear system of fuzzy equations divided into three categories 

																																					 	 	                                                             (1.2) 

– In the first category, the coefficient matrix arrays are crisp numbers, the 

right-hand side column is an arbitrary fuzzy vector and the unknowns are 

fuzzy numbers. 

– In the second category, the coefficient matrix arrays are fuzzy numbers, 

the right-hand side column is an arbitrary fuzzy vector and the unknowns 

are crisp numbers. 

– In the third category, all the coefficient matrix arrays, the right-hand side 

arrays and the unknowns, are fuzzy numbers. 
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Definition (1.15) [1]: Fuzzy linear system: 

  The 	 	  linear system 
		…		 ,
		…		 ,

									.																																								.										.					.			
						.																																								.										.					.
							.																																								.										.					.

		…		 ,

																																					 1.3  

where the coefficients matrix 	 	 	 , 1	 	 , 	 	  is a crisp 

	matrix and each 	 ∈ 	 , 1	 	 	 	 , is fuzzy number, is called a fuzzy 

linear system (FLS).  

 

Definition (1.16) [1]: Solution of fuzzy linear system: 

  A fuzzy number vector 	 	 , , . . . ,  given by 

, , 1 , 0 1 is called (in parametric form) a 

solution of the FLS(1.3) if  

	 , 

  (1.4) 

	 . 

Following Friedman et al (1998) [17] we introduce the notations below: 

, , … , , , …  

, , … , , , …                                         

, 1 , 2 , 	 	 are determined as follows: 

0 ⇒ , , , 

(1.5) 

0 ⇒ , , , . 
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and any  which is not determined by (1.5) is zero. Using matrix notation 

we have 

                                        	 	                                                            (1.6) 

The structure of  implies that 0 and thus 

                                  									
									

                                                      (1.7) 

where  contains the positive elements of 	,  contains the absolute value 

of the negative elements of 	and	 	 	 	– .  An example in the work of 

Friedman et al (1998) shows that the matrix  may be singular even if  is 

nonsingular. 

 

Theorem (1.1) [17]: 

(Friedman et al (1998)) The matrix  is nonsingular matrix  if and only if the 

matrices 	 	 	  and	 	  are both nonsingular.  

 

Proof. By subtracting the th column of , from its th column for 1

	we obtain 

	
	

→ 				
				

.                                                               

Next, we adding the   row of  to its th row for 1  then 

we obtain 

				
				

→ 				
				

0 .                                              

Clearly,  | | | | | | | || | | || |.  

Therefore 

| | 0 if and only if | | 0 and | | 0, 

Which concludes the proof. 
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Corollary 1.1 [17]: 

If a crisp linear system does not have a unique solution, the associated fuzzy 

linear system does not have one either. 

Definition (1. 17) [7]: Strong solution: 

 If	 , , … , , , … ,  is a solution of (1.6) and for each 

1 	 	 	 ,	when the inequalities  hold, then the solution 

, , … , , , … ,  is called a strong solution of the system 

(1.6). 

Definition (1.18) [7]: weak solution: 

 If		 , , … , , , … ,  is a solution of (1.6) and for some 

∈ 1, ,  when the inequality 		  hold, then the solution 	

, , … , , , … ,  is called a weak solution of the system 

(1.6). 

Theorem (1.2) [7]: 

 Let B									C
C									B

 be a nonsingular matrix. Then the system (1.6) has a 

strong solution if and only if 0. 

Theorem (1.3) [7]: 

The FLS (1.3) has a unique strong solution if and only if the following 

conditions hold: 

1) The matrices 

        	 	 	  and 	  are both invertible matrices . 

2) 0. 
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1.6 Fully Fuzzy Linear System of Equations 

Definition (1.19) [13]:  

Consider the  fully fuzzy linear system of equations: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) .

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

       


      


       

     

     



     

                                                     (1.8) 

the matrix form of the above system is  

⊗                                                    (1.9) 

where the coefficient matrix , 1 ,  is  an  fuzzy 

matrix and , , 1  are fuzzy vectors. This system is called fully 

fuzzy linear system (FFLS).  

Let us review some important definitions and arithmetic of fuzzy number. 

We symbolically represent the Triangular fuzzy number as , , .  

In addition we denote the set of all Triangular fuzzy number by F(R). 

 

Definition (1.20) [13]: Positive fuzzy number: 

A fuzzy number  is said to positive (negative), shows as 0 0  

where its membership function satisfies 0, ∀ 0 ∀ 0 . 

Consequently, a Triangular fuzzy number as , ,   is said to be 

positive if and only if 0. 
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Definition (1.21) [13]: Arithmetic operations on fuzzy numbers: 

For two fuzzy numbers , ,  and , ,  we define  

1. Addition:  ⊕ , ,  ⊕ , , , , . 

2. Opposite:	 , , , , . 

3. Multiplication of two fuzzy numbers : If 0 and 0, then  

, , ⊗ , , , , . 

4. Scalar multiplication: 

          ⊗ , ,
, , 	,									 0
, , ,					 0
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Chapter Two 

Analytical Methods for Solving Linear Fuzzy Systems  

We will discuss some analytical methods for solving the first category of 

fuzzy linear systems (1.2) where the coefficient matrix are crisp numbers and 

the right-hand side column is an arbitrary fuzzy vector and the unknowns are 

fuzzy numbers. Moreover, we introduce some analytical methods for solving 

the third category of fuzzy linear systems (1.2) which is called fully fuzzy 

linear system, where all the coefficient matrix arrays, the right-hand side 

arrays and the unknowns are fuzzy numbers. 

2.1 Analytical Methods for Solving Fuzzy Systems of Linear Equations 

(FLS) 

2.1.1 Friedman's Proposal [17] 

The  idea of  this approach is replacing the original system with matrix   by

   2 2n n   crisp linear system with matrix  which may be  singular matrix 

even if  is nonsingular matrix. 

Consider the	 th equation of the system (1.3): 

, ⋯ , ⋯ , , , 

we have 

     ⋯ ⋯         

(2.1) 

     ⋯ ⋯ , 1 , 0 1. 
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From (2.1) we have two crisp  linear systems for all  that means we 

can extended the fuzzy system (1.3) to a   2 2  crisp linear system as 

follows: 

,																																																											(2.2) 

where	 	 are determined as follows: 

0 ⇒ , , , 

(2.3) 

0 ⇒ , , , . 

and any which is not determined by equation(2.3) is zero and.  

=

		
⋮
		

⋮

  	,      =

		

⋮
		

⋮

  .                                      (2.4) 

The structure of , 1 , 2  implies		 0 and that 

S= 		 		
		

	                                                     (2.5) 

where  contains the positive elements of , and 	the absolute values of the 

negative entries of , that is, 	 	 	  . 

now the system (2.2) yields to 

→ 		 		
		

	
			

			
			

		 .																																																											(2.6) 

Thus fuzzy linear system (1.3) is extended to a crisp (2.6) which also can 

be written as the following: 

,

.
                                                                                 (2.7) 
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Example 2.1: 

Consider the 2 2 fuzzy linear system 

3 4 , 

5 2 . 

The 4 4 system is  

3 																															 4 		 , 

5 2 																																					 			 , 

									4	 3 																				 , 

                   5 2 	 , 

i.e. 

   

3 0 0 4

5 2 0 0

0 4 3 0

0 0 5 2

S

 
 
 
 
 
 

    

  

The linear system of equation(2.2) is now a 2 2  crisp linear system 

and can be uniquely solved for ,  if and only if the matrix	  is non-singular. 

On the other hand, the following example contradicts the notable fact that  

may be singular even if the original matrix  is not. 

Example 2.2: 

The matrix  of the following fuzzy linear system 

2 2 , 

3 3  

is nonsingular matrix, while 
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2 2 0 0

3 0 0 3

0 0 2 2

0 3 3 0

S

 
 
 
 
 
 

 

is singular. So a fuzzy linear system represented by a nonsingular matrix 	  

may have no solution or an infinite number of solutions. 

        The next result eliminate  the possibility of a unique fuzzy solution, 

whenever the crisp system is not uniquely solved, i.e. whenever  is 

singular. 

 

Theorem 2.1 [17]: 

If  	exists it must have the same structure as , i.e. 

			
			

                                                                                      (2.8) 

           Now,  to calculate  and  we write 

			
			

 			
			

I			
0			
0
I
	 

then we get 

I,																												 0.                                          (2.9) 

By subtracting  and  adding the two parts of  Equation(2.9) we obtain 

	,															 ,															                 (2.10) 

then we get, 

 
1
2

	 	 , 

 (2.11)    
1
2

	 	 . 
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the solution vector actually is unique but may still not be a suitable fuzzy 

vector. 

The next result provides necessary and sufficient conditions for the unique 

solution to be a fuzzy vector. 

 

Theorem 2.2[17]: 

 The unique solution  of  equation( ) is a fuzzy vector for arbitrary 

 if and only if   has nonnegative entries. 

Proof: see [17]. 

 

Theorem 2.3 [17]: 

 The inverse of nonnegative matrix  is nonnegative if and only if  is a 

permutation matrix. 

 

To define the fuzzy solution of the crisp linear system, we consider the 

following theorem: 

Theorem 2.4 [19]: 

 Let , , 1 	denote the unique solution of the 

2 2  crisp linear system(2.2). The fuzzy number vector 

, 	 , 1  defined by 

, , 1 , 1 , 

, , 1 , 1 , 

is called the fuzzy solution of crisp  system .	 If , ,

1 , are all fuzzy numbers then		 ,	 , 1

 and 	is called a strong fuzzy solution. Otherwise,  is a weak fuzzy 

solution. 
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Example 2.3: 

 Consider the 2 2 fuzzy system 

2 3 2 2 , 8 4 	 , 

5 4 , 6 2 . 

The extended 4 4 matrix is 

2 3 0 0

5 0 0 1

0 0 2 3

0 1 5 0

S

 
 
 
 
 
   

and the solution of equation (2.2) is 

=		

			
			

2/221 45/221 15/221 6/221
75/221 30/221 10/221 4/221
15/221 6/221 2/221 45/221

10/221 4/221 75/221 30/221

2 2
4

4 8
2 6

, 

i.e. 

	
80 128

221
	,			

284 76
221

	 

→
80 128

221
,
284 76

221
, 

 
94 62
221

		,			
400 244

221
	 

→
94 62
221

,
400 244

221
. 

Here 	 	 , 	 	 ; 		 , 		   are monotonic decreasing functions. 

Thus the fuzzy solution		 , 		  is a strong fuzzy solution. 
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2.1.2 S. Abbasbandy and M. Alavi Method  

This is an efficient method  for solving an  system of fuzzy linear 

equations. The original system with matrix  is replaced by two  crisp 

function linear systems (in comparison with Friedman’s procedure [17] ). 

The obtained solution vector will be symmetric solution if the right hand side 

vector is symmetric [1]. 

Now, we will clarify the fuzzy solution 

The	  equation in (1.3) can be represent in the following equivalent form: 

																																 2.12
	

 

																																 2.12  

thus, 

																						 2.13
	

 

If  we assume  and  then Equation(2.13) has the 

form 

,																	 1,2, … , , 

and in the matrix form 

, 

Where , , … , ,  , , … , and . Let 

, , … ,  and , , … ,  where 

/2 and /2 for 1 . 
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Theorem 2.5 [1]: 

 Let  be a fuzzy solution of FLS (1.3) where coefficients matrix  is 

nonsingular matrix and  is a fuzzy number vector. Then . 

Proof: Based on the equation (2.12),  we have for each , 1  

2 2 2
 

hence, 

,			 

i.e., , which conclude the proof. 

Remark 2.1 [1]: 

 In previous Theorem, if  is symmetric fuzzy vector then 	is symmetric 

fuzzy vector. 

 

Remark 2.2 [1]: 

For finding the solution of FLS (1.3), we must solve the following crisp 

linear systems, 
,
.
                                                                    (2.14) 

And after solving (2.14), it is enough to take 

                                    0.5  

    0.5                        for each , 1 . 
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Example 2.4: 

 Consider the 2 2  symmetric fuzzy linear system 

2 , 4 2  

2 6 3 , 12 3  

thus 

2 , 2 6 3 , 

4 2 ,				 2 12 3 ,	 

then 
	 4 4 ,

2 6 6 ,
 

which is equivalent to 

	
,

2 ,                                                                ( ) 

where  4 4  and 6 6 . Another crisp linear system is 
2 ,

		 2 9 ,
                                                       ( )      

By solving ( ) and ( ), we have 2 2 , 	 2 2 , 	 ,	 

  and therefore 
13
3

1
2
2 2 ,			

13
3

1
2
2 2 , 

7
3

1
2
2 2 ,			

7
3

1
2
2 2 . 

Here 	 	 , 	 	 ;	 and ,  are monotonic non-increasing 

and 		 , 		   are monotonic non-decreasing functions. Thus the obtained 

solution		 , 		  is a strong fuzzy solution. 

In case of weak solution, we will take in our consideration Theorem (2. 4),  

a weak fuzzy solution will be obtained in the next example . 

 



35 

Example 2.5: 

  Consider the 3 3 non-symmetric fuzzy system 

2 3 2 , 5 3 , 

3, 2 , 

3 1 2 , 3 . 

The two crisp linear systems are 

2 3 5 5 ,
1 ,

3 2 2 ,
 

and 

2 3
5
2

,

5
2

,

3 2 .

 

The solution vectors in parametric form are 		 0.5 0.5 , 3

3 , 3.5 3.5  

And 2.5833 0.083 , 4.8333 0.833 , 4.9167 0.4167 , 

then we obtain 

0.1667 2.833, 0.333 2.333 , 

0.667 6.333, 2.333 3.333 , 

2.167 3.167, 1.333 6.667 . 

The fact that  is not fuzzy number because. is negative, the fuzzy 

solution in this case is a weak solution given by 

0.1667 2.833, 0.333 2.333 , 

2.333 3.333, 0.667 6.333	 , 

2.167 3.167, 1.333 6.667 . 
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2.1.3 Fuzzy Solution by Using Fuzzy Center 

This proposed method is based on the use of graphical method for solving a 

system of  	fuzzy linear equations with  variables by using fuzzy center. 

The original system is replaced by a crisp linear system in which the 

graphical method can be used to solve it. This method was applied for both 

symmetric and non-symmetric fuzzy linear system.  In comparison with other 

methods, this method is efficient to obtain the solution, when the number of 

variables in the fuzzy linear system is large [26]. 

Remark 2.3 [26]: 

By Theorem 2.7, the fuzzy center	  satisfies equation(1.3), consequently 

we can find  from the equation (1.3) by using ordinary method. 

 

We can represented the  equation in (1.3) by the following equivalent 

form 

																																															 2.15
	

 

																																														 2.15  

where   and	  for 1 . 

Theorem 2.6 [26] 

The extreme points on the monotonic decreasing solution vector 

, , ……… ,  can be obtained by replacing  in terms of  by using 

fuzzy center in (2.15b) at 0 and 1. 
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Proof:   

As we know 
	 	

 ,  which yields 2  

Replace  by using the above result in (2.15b) we get 

 

2 ,						 1,2, … , . 

		which gives, 

2 				, 1,2, … , 						 2.16  

 Obviously the above equations in (2.16) represents a crisp system when 

0 and 1. 

The crisp system can be solved by ordinary method, thus we have a solution 

vector  

, , ……… ,  at 0 and 1. 

 

Theorem 2.7[26]: 

 The extreme points on the monotonic increasing solution vector 

, , ……… ,  can be obtained by replacing		   in terms of 	  by using 

fuzzy center in (2.15a) at 0 and 1. 

In similar manner we can prove the theorem (see [26] for more details). 

 

After identifying the points in the graph by using the previous theorems, so 

it is possible to find the equation of straight line joining the points by 

ordinary method. That will give the complete solution to the given system. 

The following examples are used to explain the above method. 
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Example 2.6: 

Consider the 2 2  symmetric fuzzy linear system 

2 , 4 2  

2 6 3 , 12 3  

By using the Theorem 2.7, we have 

                                                    2 

                                                    2 9 

Solving, we get 
13
3

 

7
3

 

Now, by using equation(2.15a) we write 

                                                2  

2 6 3  

By replacing  by 2  in  2 , and substitute the value of 

	we get  

                                              2  

2 6 3  

Put 0, thus the above system reduces to a crisp system that can be solved 

to give 

	 0	 	
10
3

 

	 	 0	 	
4
3

 

Similarly, Put 1, the above system reduces to a crisp system that gives 

	 1	 	
13
3

 

	 	 1	 	
7
3
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Now, by plotting the points (10

3
, 0 ) and (13

3
,1) and finding the equation of 

the straight line joining the two points, we get the required solution for  . 
10
3
	. 

similarly, by plotting the points ( 4

3
, 0 ) and ( 7

3
,1) and finding the equation 

of the straight line joining the two points, we get the required solution for  

. 
4
3
. 

Finally, we use similar method to find   and . 
16
3

 

10
3

. 

 

The graphical solution is shown below in Figure (2.1). 

 

 

 

 

 

 

 

 

 

 

 
Figure (2.1) : Graphical representation of the solution of example 2.6. 
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Example 2.7: 

  Consider the 2 2 non- symmetric fuzzy linear system 

2 , 4 2  

2 6 3 , 13 4  

By using the Theorem 2.7, we have 

                                                    2 

2
19
2

 

Solving, we get 
27
6

 

15
6

 

Now, by using equation (2.18) we write 

2  

         2 6 3  

By replacing  by 2  in  2 , and substitute the value of 

we get  
15 5

3
 

2 6 3  

Put 0, thus the above system reduces to crisp system and then solve, we 

get 

	 0	 	4 

	 	 0	 	1 

Similarly, Put 1, the above system reduces to crisp system and then 

solve, we get 
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	 1	 	
13
3

 

	 	 1	 	
7
3

 

Now, by plotting the points ( 4 , 0 )and 	13

3
, 1  and finding the equation of 

the straight line joining the two points, we get the required solution for  . 
1
3

4	. 

similarly, by plotting the points (1, 0 ) and( 7

3
,1)  and finding the equation of 

the straight line joining the two points, we get the required solution for  . 
4
3

1. 

Finally, we use similar method to find   and . 

5
2
3

 

4
5
3

 

The graphical solution is shown below in Figure (2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.2) : Graphical representation of the solution of example 2.7. 
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2.1.4 Algorithmic Approach  

In this technique the original system is reduced into two equivalent crisp 

linear systems which can be solved by given algorithm. Also we have 

showed that this method is applicable for both symmetric and non-symmetric 

system in addition is suitable to obtain the solution of fuzzy linear system, 

when the number of variables involved in the linear system is large. 

Let's introduce the new technique for getting the solution of linear systems 

in fuzzy environment. Consider the	 th equation of the system (1.3): 

       11 1, , , ( ), ( ) ,i ni ii i in n ii
a x x a x x a x x y r y r       

we have 

                           ⋯ ⋯          

                       ⋯ ⋯ ,								1 ,i n     0 1.r      

             

As a result of this we have two crisp  linear systems  and 

 for all , 1 . Thus, the above system can be extended to two sets of 

linear systems such as	 , and		 ,  by 

replacing 0	and	 1.  

 

Remark 2.4 [24]: 

If 0,	then the method can be continued after replacing   by 2  

in	  and  by 2  in  . 

We have introduced the following propositions, to solve the above system. 
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Proposition 2.1[24]: 

 The crisp system can be divided into two crisp linear systems such 

as and  by replacing 0	and	 1 respectively. The  

extreme solution , , …  and , , …  can be 

obtained by directly from the above two crisp systems.  

 

Proposition 2.2[24]: 

The crisp system	  can be divided into two crisp linear systems such 

as and  by replacing 0	and	 1 respectively. The  

extreme solution , , …  and , , … can be 

obtained by directly from the above two crisp systems.  

 

Proposition 2.3[24]: 

 Let ,  and ,  be the extreme crisp solution at 0	and	 1 

respectively. Then the solution of the fuzzy linear systems (1.3) is obtained 

by using the extreme solution as  and 

 for 1,2, … , . 

 

Now, to find the solution of the fuzzy linear system (1.3) we will introduce 

the following algorithm. First, from the matrix  by using the fuzzy 

linear system. Extend 	system  into two systems such as	

	and	 . By  replacing  as 0	in the above system, we obtain		

, . Now, this crisp system can be solved by the direct method, 

we get the extreme crisp solutions  and . Repeat the same steps for 
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1, we get	  and . We employ the extreme solution  ,  and  

,  to find the solution vector ,  by 

 and  for 1,2, … , . 

 

The following flow chart will illustrate the procedure to find the solution of 

FLS  

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Thus, we present an example to illustrate the above algorithm. 

 

 

 

 

Figure (2.3): Procedure to find the solution of FLS 
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Example 2.8: Consider the fuzzy linear system 

2 , 4 2  

         2 6 3 , 12 3  

The above system can be written as  

where 

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

,   

			
			

 and 

2
6 3
2 4
3 12

. 

By replacing  as 0 in the above system, we get the following crisp system 

, 

where 

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

,   

			

		
 and 

			0
			6
4
12

. 

From the augmented matrix for the system  and solve the system 

by Gauss Elimination method, we have 

10
3
	,

16
3

 

4
3
,

10
3

 

Similarly by replacing 	as 1 in the same system, we get the following crisp 

system 	 , 

where 

1 0 0 1
1 2 0 0
0
0

1
0

1 0
1 2

,   

			

		
 and 

		2
		9
2
9

. 
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Solving the system by the same method, we have 

13
3
	,

13
3

 

7
3
,

7
3

 

By using the following formula 

 and  for 1,2, … , . 

 

We get the solution of the given system as  
10
3
,

16
3
, 

4
3
,

10
3
. 

The graphical representation of the obtained solution is shown in Figure (2.4) 

 

 

 

 

 

 

 

 

 

 

 

10
3
 

16
3
 

4
3
 

10
3
 

Figure (2.4): Graphical representation of the solution of example 2.8 
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2.1.5 Embedding Method  

In the first we are going to define an embedding map to form a new crisp 

system. 

Definition 2.1[6]:  

For an arbitrary fuzzy number  in parametric form the embedding 	 : →

	is defined as follows 

, , .                                    (2.17) 

Lemma 2.1 [31]: 

Let , , ,  are arbitrary fuzzy numbers and 

let	  be a real number. Then 

  if and only if 	

 	

, | | ,  

Proof: see[6]. 

 

By  employ the previous lemma 2.1, system(1.3) can be replaced by the 

following parametric system: 

, , , 1,2, … , .									 2.18  

, , ,	 

1,2, … , 	.					 2.19  
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,

, , 1,2, … , .														 2.20  

 

,

, , 1,2, … , .														 2.21  

So we have now the following equations: 

,					 1,2, … , 																			 2.22  

,								 1,2, … , 																			 2.23  

Thus in order to solve the fuzzy linear system (1.3) we 

must solve two  crisp linear system of equation 

(2.22) and (2.23). 

the matrix form of systems (2.22) and (2.23) is as following: 

,                                                       2.24 	 

where the coefficients matrix 
,

 and  
,

 are crisp 

 matrices and the right hand side columns are the vectors 

	 , , … , , 

, , … , . 

, , … , and  

, , … , are the solutions 

of the crisp linear systems of  equation(2.24). 
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Theorem 2.8[6]: 

The fuzzy linear system (1.3) has a unique solution if and only if the matrices 

 and  are both nonsingular. 

For the proof it is obvious. 

 

Hence the solution vector is unique but it is still not an appropriate fuzzy 

number vector. 

So the following theorems will explain guarantied conditions for receiving 

fuzzy number vector solution. 

In order to obtain an appropriate solution we will use the following theorems. 

 

Theorem 2.9[6]: 

The unique solution  of equation(2.22) is nonnegative for arbitrary  if and 

only if  is nonnegative. 

Proof: see [6]. 

 

Theorem 2.10 [6]: 

The inverse of a nonnegative matrix  is nonnegative if and only if  is a 

generalized permutation matrix. 

 

Theorem 2.11 [6]: 

The fuzzy linear system (1.3) has a fuzzy solution if   , 	

, 	  are nonnegative matrices. 

Proof: let and , 1 ,  then 
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,                                           (2.25) 

 and , 1 , , are the solution 

of equation (2.22) and equation (2.23) respectively. Thus we can write: 

  

1
2

																																																		 2.26  

With replacement and 	 	in 

equation (2.26), then we obtain the next result  

1
2

																																							 2.27  

Since  is monotonically decreasing and  is monotonically increasing for 

all , and according to assumptions of theorem,  to be monotonically 

decreasing. In a similar way:  is monotonically increasing. 

 

Theorem 2.12 [6]: 

 with notation of theorem (2.11), the fuzzy linear system (1.3) has a fuzzy 

number solution, if and only if  

0									
																																																		 2.28  

where  and	 . 
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Proof: let the fuzzy linear system (1.3) has a fuzzy number solution vector 

, , … , which , . Thus, 

0,			 1,2, … , .   Since  is monotonically 

decreasing and 	 is monotonically increasing, then 0 

and 0 . Therefore 0 , 0  i.e.  and 

. Consequently, . Conversely is obvious. 

 

Example 2.9: 

Consider the 2 2 fuzzy linear system 

2 , 4 2  

2 6 3 , 13 4  

3  and det 1 , consequently, equation(2.22) and equation 

(2.23) will have solution as follow: 

 

2
1
	 1
			1

4 4
7 7

1
3 3

 

				
2
3
		

1
3

			
			
1
3

				
1
3

		 4
19

9
3

5
3

 

∀ , 0 1, 1  and 3 3 ,	 both are nonnegative. 

Also ∀ , 0 1, 	 , 1,2.	 So the result will be 
1
2

5 0.667 , 

1
2

4 0.333 , 
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1
2

4 1.667 , 

1
2

1 1.333 . 

Therefore, the fuzzy number solution is  

, 4 0.333 , 5 0.667 , 

, 1 1.333 , 4 1.667 . 

A weak fuzzy solution will be obtained in the next example. 

 

Example 2.10: 

consider the 3 3 fuzzy system 

2, 1 , 

   2 2 , 3 , 

3 2 , 2 , 

13 and det 1, consequently, equation (2.22) and equation 

(2.23) will have solution as follow: 

3 	1 	1
1 		1 		0
		5 2 1

1
1
2 2

0
0

1
 

0.385 0.077 0.231
0.077 0.385 0.154
0.538 0.308 0.077

		
3
5
2

1.232 0.308
1.848 0.462
0.08 0.23

 

∀ , 0 1, 0, 0 and 1  are nonnegative. 

Also ∀ , 0 1, 	 , 	 ,  

according  to that this (FLS) will not have fuzzy number solution.  
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2.1.6  Decomposition Method  

 

Theorem 2.13 [2]: 

 Let 	be an  matrix with all non-zero leading principal minors. Then 

 has a unique factorization: 

, 

Where	  is unit lower triangular matrix and	 	is upper triangular matrix. 

In order to decomposition of matrix , we must find both matrices  and  

such that ,  where 

									
0

,											 0 , 

Where  and  are lower triangular matrices,  and  are upper 

triangular matrices. 

Now we suppose that  has  decomposition. So we  have  

0
0 , 

then  

,                                                                                           (2.29) 

⇒ ,                                                                             

⇒ , 

, 

Now we can write 

.                                                                          (2.30)	

From (2.29) and (2.30) if   and  both  have  decomposition, 

then  has  decomposition. 
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Theorem 2.14 [2]: 

Let  be an  symmetric positive definite matrix then there exists a 

unique lower triangular matrix  with positive diagonal entries such  that 

. 

Therefore if the matrix  be a symmetric positive definite matrix then we 

have 
0

0
, 

then  

,                                                                                            (2.31) 

⇒ ,                                                                             

⇒ , 

, 

thus 

.                                                                           (2.32) 

By using Theorem (2.14) in 	  decomposition method, the matrices  and 

 should be symmetric positive definite. 

 

Example 2.11: 

 Consider the 2 2 non- symmetric fuzzy linear system 

2 3 2 2 , 8 4 	 , 

                                           5 4 , 6 2 . 

The extended 4 4 matrix is 
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2 3 0 0

5 0 0 1

0 0 2 3

0 1 5 0

S

 
 
 
 
 
 

 

and 
2 3 1 0 5 0

,
5 0 4 1 0 3

B
     

      
     

 

2 3 1 0 5 0.133

5 0.133 0.4 1 0 2.947

    
    

    
 

and hence 
1 0 0 0 5 0 0 1

0.4 1 0 0 0 3 0 0.4

0 0.333 1 0 0 0 5 0.133

0 0 0.4 1 0 0 0 2.947

S

  
    
  
  
  

 

Now the exact solution is  
, 0.362 0.579 , 1.285 0.344 , 

 
	 , 0.425 0.281 , 1.809 1.104 . 

The exact and the approximate solution  are show in figure (2.5).  

 
 
 

 

Figure (2.5): Graphical representation of the solution of example 2.11 

	

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

x2 x1
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Example 2.12: 

Consider the 2 2  symmetric fuzzy linear system 

2 , 4 2  

2 6 3 , 12 3  

 

The extended 4 4 matrix is 
1 0 0 1

1 2 0 0

0 1 1 0

0 0 1 2

S

 
 
 
 
 
 

 

and 
1 0 1 0 1 0

,
1 2 1 1 0 2

B
     

      
     

 

1 0.5 1 0 1 0.5

1 2 1 1 0 1.5

    
    

    
 

and hence 
1 0 0 0 1 0 0 1

1 1 0 0 0 2 0 1

0 0.5 1 0 0 0 1 0.5

0 0 1 1 0 0 0 1.5

S

  
    
  
  
  

 

Now the exact solution is  

 

, 3.333 , 5.333 , 

 

	 , 1.333 , 3.333 . 
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The exact and the approximate solution using   decomposition are show 

in figure (2.6). 

 

 

 
 

2.1.7 -Decomposition Method  of  Mansouri and Asady 

 In this subsection we want to proposed the efficient of this method and 

compared with Abbasbandy [2] for solve a large linear system and extension 

to very large system. 

Theorem 2.15 [21]: 

 Suppose  is nonsingular square matrix,  then  has a unique 

decomposition such that 

		

where	  is a unit lower triangular matrix and	  is upper triangular matrix. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

r

5 x1 x2

Figure (2.6): Graphical representation of the solution of example 2.12 
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Theorem 2.16 [21]: 

 Let  be an  	symmetric positive definite matrix then there exists a 

unique lower triangular matrix  with positive diagonal entries s.t 

	

Now as we show in the previous subsection (2.1.6), we can factor the matrix 

 into  using 1. Thus to solve the linear system   

we solve the system  

																																																																								 ,
																																																				 ,

⋮
⋯⋯ 		 ,

⋮
⋯⋯ 	 .

                               (2.33) 

by forward substitution, and we obtain fuzzy solution 

, , … , which we put it into upper fuzzy linear system 	 

⋯⋯ ,
																 ⋯⋯ ,

⋮
																 ⋯⋯ ,

⋮
																																															 ,

                                               (2.34) 

and we solve this system using the backward substitution.  

 

Example 2.13: 

  Consider the 3 3 non-symmetric fuzzy system 

  3 2 , 5 3 , 

         	 3	 2	 3, 2 , 

									 	 3	 1 2 , 3 . 
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When we solving this system by using decomposition method, we 

obtain 

			3 		1 1
1 		3 		2
		1 			1 			3

1 0 0
0.333 1 0
0.333 0.2 1

3 1 1
0 3.333 1.667
0 0 3

 

To solve the given system, we use forward substitution to solve , 

that is 

1 0 0
0.333 1 0
		0.333 0.2 1

			
		
	

	
2 , 5 3
3, 2
1 2 , 3		

 

This yields, 

			
		
	

	
2 , 5 3

3 0.667 , 0.333 2
0.6 3.4 , 3.6 0.8 		

 

Finally, we solve the system  using backward  substitution, that is  

3 1 1
0 3.333 1.667
0 0 3

			
		
	

	 =
2 , 5 3

3 0.667 , 0.333 2
0.6 3.4 , 3.6 0.8 		

 

Then, we obtain 

			
		
	

	 =
0.0667 4.933 , 7.0667 2.2

15 3.333 , 1.1667
0.2 1.1333 , 1.2 0.2667 		

 

In the following example we  will compare Mansouri and Asady methods 

with Abbasbandy method [2]. 
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Example 2.14: 

  Consider the 3 3 symmetric fuzzy system 

    4 1 , 3 , 

	 	 	 2 , 3 , 

    2 	 	 2, 1 . 

when we solve this system  using decomposition method, we obtain 

			4 		1 1
1 		1 			1

			2 			1 			1

1 0 0
0.25 1 0
0.5 0.4 1

4 1 1
0 1.25 0.75
0 0 1.2

 

To solve the given system, we use forward substitution to solve , that 

is 

1 0 0
0.25 1 0
0.5 0.4 1

			
		
	

	
1 , 3
2 , 3
2, 1 		

 

This yields, 

			
		
	

	
1 , 3

2.25 1.25 , 3.75 0.25
5 0.6 , 2.4 2 		

 

Finally, we solve the system  using backward  substitution, that is  

4 1 1
0 1.25 0.75
0 0 1.2

			
		
	

	 =
1 , 3

2.25 1.25 , 3.75 0.25
5 0.6 , 2.4 2 		

 

Then, we obtain 

			
		
	

	 =
2.1667 0.25 , 0.5 1.1667

3 2 , 5.5 0.5
2.1667 0.5 , 0.5 1.1667 		

 

Clearly in this example  is nonsingular but the 6 6 crisp matrix  in the 

following form 
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4 1 0 0 0 1
0 1 1 1 0 0
2
0
1
0

1
0
0
0

1
1
0
0

0
4
0
2

0
1
1
1

0
0
1
1

 

is a singular matrix, and therefore the proposed methods in (Abbasbandy et 

al) [2] can not be used to solve this system.  

2.2 Analytical Methods for Solving Fully Fuzzy Linear System of 

Equations(FFLS) 

In this section, we will discuss  the third category of fuzzy system of linear 

equations where  all the coefficient matrix arrays, the right-hand side arrays 

and the unknowns, are fuzzy numbers, we will apply the matrix inversion 

method, Cramer’s rule and  decomposition method. 

Our target in this section  to obtain a positive solution of a fully fuzzy  linear 

system (1.9) where , , 0, , , 0  and 

, , 0. Thus we have   

, , ⊗ , , , , .                                      (2.35) 

In this section some direct methods to solve the Equation(1.8) is presented: 

2.2.1  Matrix Inversion Method [13] 

By using  the approximation formula for the extended multiplication of two 

fuzzy numbers Equation(2.35) may be written as  

, , , ,  

Now using definition (1.14), we get 
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, 

     ,                                             (2.36) 

                                              .  

i.e. 

, 

 ,                                      (2.37) 

       . 

We assume that  is nonsingular matrix,  thus equation (2.37) may be 

written as 

, 

,                            (2.38) 

               . 

Therefore , the fuzzy solution , , can be easily obtained by using the 

above equation (2.38). 

 

 Example 2.15: 

Consider the fully fuzzy linear system of equations: 

5,1,1 ⊗ , , ⊕ 6,1,2 ⊗ , , 50,10,17 	

7,1,0 ⊗ , , ⊕ 4,0,1 ⊗ , , 48,5,7  

thus we have 
5 6
7 4

,							 1 1
1 0

, 1 2
0 1

 

	 50
48

,				 10
5

,				 17
7

 

So 
5 6
7 4

50
48

⇒	 	4
	5
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Similarly  

5 6
7 4

5
10

0 1
1 1

4
5
⇒ 	 	

1
11
1
11

 

and 

5 6
7 4

17
7

1 2
0 1

4
5
⇒	

	
	0
1
2

 

 

Therefore the solution is  

4,
1
11

, 0

5,
1
11

,
1
2

 

2.2.2   Cramer’s rule [13] 

Cramer’s rule is another method for solving the fully fuzzy linear system of 

equations, which states that each entry  in the solution is a quotient of two 

determinants. 

For solving FFLS (1.9) with this method, consider equation (2.37). So we 

may write  
det	
det	

,						 1,2, … ,  

where  denotes the matrix which obtained from  by replacing its  

column by  . then using solution 	, we have 

 
det	 ′
det	

,						 1,2, … ,  
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det	 ′′
det	

,						 1,2, … ,  

where ′  and ′′  denotes matrix which obtained from 	by replacing its 

	column by  and  , respectively.  

 

Example 2.16: 

 Consider the following fully fuzzy linear system of equations: 

4,3,2 ⊗ x , y , z ⊕ 5,2,1 ⊗ x , y , z ⊕ 3,0,3 ⊗ x , y , z  

																										 71,54,76 	

 7,4,3 ⊗ x , y , z ⊕ 10,6,5 ⊗ x , y , z ⊕ 2,1,1 ⊗ x , y , z  

																										 118,115,129  

6,2,2 ⊗ x , y , z ⊕ 7,1,2 ⊗ x , y , z ⊕ 15,5,4 ⊗ x , y , z

155,89,151 					 

In matrix form  

 
4,3,2 5,2,1 3,0,3
7,4,3 10,6,5 2,1,1
6,2,2 7,1,2 15,5,4

71,54,76
118,115,129
155,89,151

 

 

Thus we have  

 
4 5 3
7 10 2
6 7 15

,				
3 2 0
4 6 1
2 1 5

,				
2 1 3
3 5 1
2 2 4

 

 
71
118
155

,			
54
115
89

,
76
129
151

 

Where 	 	 46	
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Now we calculate  ,  and  which obtained from  by replacing its  

column by  . 
71 5 3
118 10 2
155 7 15

⇒ det 184 

 
4 71 3
7 118 2
6 155 15

⇒ det 368 

 
4 5 71
7 10 118
6 7 155

⇒ det 230 

Therefore we have,  4, 8  and 	 5 

i.e.                                             
4
8
5

 

    Now to calculate  and  we first need to calculate  ′  and ′′  

denotes matrix which obtained from 	by replacing its 	column by 

 and  , respectively. 

 
45
115
89

3 2 0
4 6 1
2 1 5

4
8
5

26
46
48

 

 
76
129
151

2 1 3
3 5 1
2 2 4

4
8
5

45
72
107

 

Now,  
26 5 3
46 10 2
48 7 15

⇒ det 92 
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′
4 26 3
7 46 2
6 48 15

⇒ det 138 

 

′
4 5 26
7 10 46
6 7 48

⇒ det ′ 46 

 

2, 3  and 	 1 

 

		
2
3
	1

 

 

Similarly,       ′
45 5 3
72 10 2
107 7 15

⇒ det 92 

 

′′
4 45 3
7 72 2
6 107 15

⇒ det 230 

 

					 ′′
4 5 45
7 10 72
6 7 1073

⇒ det ′′ 187 

 

 So, 2, 5  and 	 4 
2
5
4

 

Therefore the solution of this problem is 

 
4,2,2
8,3,5
5, 1,4
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2.2.3  decomposition method for solving FFLS[13]  

The coefficients matrix of the linear system of equations in the  

decomposition method is factored into the product of two lower and upper 

triangular matrices. This method is frequently used to solve a large system 

of equations. Consider the system of equation (1.9), where  is a non- 

singular matrix.  we start by writing the matrix  as the product of a lower 

triangular matrix  and an upper triangular matrix	  in the  following form 

 

⊗ , 

Where , , , , , 	 and , , . 

 

 Thus we have  

, , , , ⊗ , ,  

 

                             , , , ,  

i.e.          

,                                                                     (2.39) 

,																																																														(2.40) 

.																																																															(2.41) 

 

In order to obtain the unique solution we either  set all the diagonal elements 

of 	as 1 or all the diagonal elements of  as 1. For 1, 1,2, … , , 

this method is called the Crout’s  decomposition method  and for 1,
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1,2, … , , this is called Doolittle’s method. Here in this chapter we will 

use Doolittle’s factorization method. 

First of all  we calculate  and  such that 	 	 , where   is a lower 

triangular crisp matrix, having the diagonal of 1’s and  is an upper 

triangular crisp matrix with the general diagonal. 

 
1 0 0 … 0

1 0 … 0

⋮ ⋮
1 … 0
⋮ ⋱ ⋮

… 1

…
0 …
0
⋮
0

0
⋮
0
	

…
⋮ 			⋱ 			⋮
0 			…

⋯
…

⋮ ⋮
…

⋮ ⋱ ⋮
…

 

 

which amounts to    equations in the  unknowns and . The 

computations runs as the following: 

,				 1,2, … , .                                          (2.42) 

⇒ ,				 1,2, … , .                     (2.43) 

Continuing in a recursive way for 	 	2,3, . . . , , we alternatively get the 

rows of  and corresponding columns of to be 

 

,							 , 1, … , . 																																					 2.44  

Each row will  follow by the corresponding column of  

 
∑

					 , 1, … , ,																											 2.45 			 

We place the diagonals of  and  to be consist of 0’s not 1’s. 
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 By using equation(2.40), and ′  with diagonals of 0’s and 

′  we may write 

 

′ ,							1 , ,			 ′ 0	 																																		 2.46  

 

Since  and  in hand, we can continue our approach to the second step 

for	  and	  as follows: 

′ ,						 1,2, … , ,                                             2.47  

 

′
′

,						 1, … , 																																					 2.48  

 

We continue in a recursive way, for 	 	2,3, . . . ,  we alternatively find the 

rows of 	  and corresponding columns of  to be 

 

′ ∑ ′ ,						 , 1, … , ,                            2.49  

 

′
∑ ′ ∑ ′

,						 , 1… , 											 2.50  

  

Similarly by equation(2.41), and	 ′′  and ′′ we may write 

 

,						1 , .																												 2.51  
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By continue our approach to the second step for find  and  as follows: 

 

                                   ,			 1, … , ,  

2.52 	

′′
′′

,				 1, … , .				 

 

Finally we find the rows of  and the corresponding columns of  for 

2,3, … ,  to be as follow: 

 

,					 , 1, … , , 

(2.53) 

′′
∑ ′′ ∑ ′′

,			 , 1… , 																								 

 

The solution to the problem	 ⊗  could be obtained by a two step 

triangular solve process 

                                                    	 ⊗  

⊗ ⊗  

                                          ⇒    ⊗ ′   

                                         Where  ⊗ ′                                      (2.54) 

By solving system (2.54), we obtain the  solution . 
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Example 2.17: 

 Consider the following FFSLE  

 
6,1,4 5,2,2 3,2,1
12,8,20 14,12,15 8,8,10
24,10,34 32,30,30 20,19,24

⊗
58,30,60

142,139,257
316,297,514

. 

in matrix form  

	 ⊗  

where  
6 5 3
12 14 8
24 32 20

,				
1 2 2
8 12 8
10 30 19

,				
4 2 1
20 15 10
34 30 24

 

From equations (2.42), (2.43), (2.44)and(2.45), we can calculate the 

elements of  and . 

6,										 5,												 3. 
6
6

1,							
12
6

2,								
24
6

4.	 

14 2 5 4, 

8 2 3 2, 
14 2 5

4
1, 

32 4 5
4

3, 

20 4 3 3 2 2, 

1. 

Thus we have, 
1 0 0
2 1 0
4 3 1

                                   
6 5 3
0 4 2
0 0 2
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To find the elements of		  and we use equations (2.47), (2.48), (2.49) 

and (2.50). 

′ 1,										 ′ 2,												 ′ 2. 

′
′ 0

6
0, ′

′ 6
6

1,

′
′ 6

6
1.	 

′ ′ ′ 12 4 5 3, 

′ ′ ′ 8 4 3 1, 

′ ′ ′ ′ ′ 19 8 3 3 4

1 1, 

′
′ ′ ′ 30 5 8 9

4
2, 

Thus we have, 
0 0 0
1 0 0
1 2 0

                                   
1 2 2
0 3 1
0 0 1

 

 

In similar way, we can use equations (2.47), (2.48), (2.49) and (2.50). To 

find the elements of		  and  , we obtain 

  
0 0 0
2 0 0
3 1 0

                                   
4 2 1
0 1 2
0 0 3

 

Therefore the  decomposition method of  fuzzy matrix  is 

 ⊗
1,0,0 0,0,0 0,0,0
2,1,2 1,0,0 0,0,0
4,1,3 3,2,1 1,0,0

⊗
6,1,4 5,2,2 3,2,1
0,0,0 4,3,1 2,1,2
0,0,0 0,0,0 2,1,3

 

To solve the fully fuzzy linear system we will start by solving the system of  

equations ⊗ ′     
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i.e.  
1,0,0 0,0,0 0,0,0
2,1,2 1,0,0 0,0,0
4,1,3 3,2,1 1,0,0

⊗
′
′
′

58,30,60
142,139,257
316,297,514

 

Using  Cramer’s rule we can easily compute ′ as 

 
′
′
′

58,30,60
26,21,21
6,4,11

 

Finally we solve the fully fuzzy linear system of equations ⊗ ′ 

i.e.  
6,1,4 5,2,2 3,2,1
0,0,0 4,3,1 2,1,2
0,0,0 0,0,0 2,1,3

58,30,60
26,21,21
6,4,11

 

 

Again we obtain by Cramer’s rule  
4,1,3
5,0.5,2
3,0.5,1
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Chapter Three 

Numerical Technique  for Solving Linear Fuzzy Systems  

In this chapter we will present some numerical technique for solving FLS 

and FFLS. 

3.1 Numerical Methods for Solving Fuzzy System of Linear 

Equations(FLS) 

In this section we will apply the following iterative schemes for solving 

(FLS). 

3.1.1 Iterative Jacobi and Gauss Sidel methods  

An iterative technique for solving an  linear system  starts with 

an initial approximation   to the solution  and then generates a sequence 

, which converges to . Most iterative technique involve a process 

of converting the system   into an equivalent system  , 

where  is an  matrix and  is a column vector. After selecting an 

initial approximation  we generate a sequence of  vectors  

defined by  

					 1. 

 

Definition 3.1[5]: Diagonally Dominant Matrix: A square matrix  is 

called diagonally dominant if 	 ∑ ,			 1,2, … , .,    is 

called strictly diagonally dominant if  ∑ ,			 1,2, … , .,  

At the beginning we are going to presented the following theorems. 
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Theorem 3.1 [ 4]: 

Let matrix  in equation(1.3) be strictly diagonally dominant then both the 

Jacobi iterates and Gauss - Sidel iterates are converge to 	 	for any . 

 

Theorem 3. 2 [ 4]: 

The matrix  in equation(1.3) is strictly diagonally dominant if and only if 

matrix  be strictly diagonally dominant. 

Proof: Let  be column strictly diagonally dominant matrix,  

i.e.      ∑ ,							 1,2, … , .,  

By considering the structure of S we have 
, 0 ⇔ , , 0,

																																																																																																																										 3.1
, 0 ⇔ , , 0,

 

also 

, ,

,					 1, … ,2 .
,

 

If 0, , 1,2, … , ,	then 

,

	
,

							

,
,

 

 

, ,
																																								

,
,

, ,							 1, … , .
,

 

From (3.1) 
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,

,
																																								

,
, ,							 1, … , .		

 

then 

,

,				 1,2, … , . 

Now suppose that 	be column strictly diagonally dominant, we have 

, ,

.
,

 

Taking into consideration (3.1) and  we have 

, ,

,			 1,2, … , . 

since 0, , … ,2 .	 It can be hold for row strictly diagonally 

dominant too. The proof is complete. 

From [4], without loss of generality, suppose that 0  for all 

1,2, … ,2 . and let  where 
0

0 ,									
0

,								 0  

0,			 1,2, … , , and assume . In the 

Jacobi method, from the structure of  we have 
0

0 							 

then  

, 

(3.2) 

. 
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Thus the Jacobi iterative technique will be  

, 

   (3.3) 

,			 0,1, … 

The elements of , are 

1

,
,

,

, , 

1

,
,

,

, ,		 

		 0,1,2,… ,			 1,2, … , . 

The result in the matrix form of the Jacobi iterative technique are 

 where 

,			 ,					 . 

In the Gauss 	Sidel method, we have: 
0

0 																																									(3.4) 

then  

, 

(3.5) 

. 

Thus the Gauss 	Sidel iterative technique will be  

, 

      (3.6) 

,			 

0,1, … 
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So the elements of , are 

1

,
, , , , 

1

,
, , , ,		 

0,1,2, … ,			 1,2, … , . 

The result in the matrix form of the Gauss Sidel  iterative technique are  

 as 

,			 ,

. 

From Theorem 3.1and 3. 2, both Jacobi iterates and Gauss  Sidel iterates 

are converge to the unique solution , for any , where ∈  

and , ∈ .The stopping criterion for a given tolerance	 0 is 

, ,				 0,1, … 

3.1.2 Successive over relaxation iterative method  

      In this section we turn next to a modification of the Gauss–Sidel iteration  

which known as  iterative method. By multiply system of (3.4) in : 
0

0
        (3.7) 

Let ,  then 
0

0                                    (3.8) 

hence 
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 , 

                                            (3.9) 

 

 

 for some parameter : 

1 , 

       (3.10) 

1 . 

 

If 1, then clearly  is just the Gauss–Sidel solution (3.9). So the  

iterative method will be: 

1

, 

(3.11) 

1

. 

 

Consequently the result in the matrix form of the  iterative method are 

 where  

1
1

, 

. 
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For 0 1 this method is called successive under relaxation method 

that can be used to achieve convergence for systems that are not convergent 

by the Gauss sidel method. 

For 1 the method is called successive over relaxation method  

that can be used to accelerate of convergence of linear  systems that are 

already convergent by the Gauss sidel method. 

 

Theorem 3.3 [5]: 

If  is appositive definite matrix and 0 2  then the  method 

converges for any choice of initial approximate vector . 

3.2 Numerical Methods for Solving Fully Fuzzy Linear System of 

Equations (FFLS) 

In the previous chapters, we have presented some direct methods for solving 

fully fuzzy linear system of equations. In this section, two iterative methods 

namely: Gauss-Jacobi, and Gauss-Seidel methods are presented to find the 

solution of fully fuzzy linear system of equations. 

3.2.1 Gauss- Jacobi method  

To solve fully fuzzy linear system of equations we already discussed an 

approach in chapter 2. According to which the positive vectors , 	and 	can 

be found by solving following linear system of equations . 

Now consider the FFLS . by using equation (2.36) 
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We can write the previous equation as  
	 ⋯ 																																																																																																																																												

⋯ ⋯ , 1 																						
⋯ ⋯ 	 										 3.12 																													

																															

Using above equations, we can say 

,

																																																				

,

,				1 , 0

,

																										

							 3.13  

Hence 

1

,

																																																				

1

,

,				1

1

,

																										

														 3.14  

   This can easily be written as  

1

,

																																																				

1

,
.

,				1

1

,

																										

													 3.15  
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Equations (3.15) can be written in matrix form as the following: 

                                                                                    (3.16) 

where  is called the iteration matrix and  is a vector. 

 

To solve system(3.16), we can consider initial approximation of the 

solution vector and then we substitute it into the right hand side of equation 

(3.16). The solution of equation (3.16) will give a vector		 ,   which is 

better approximation to the solution than		 . We continue this process 

until  the successive iteration  converges to the solution up to desired 

accuracy, which suggests the following iterative process as the Gauss-Jacobi 

method for solving a fully fuzzy linear system of equations: 

	
1

,

																																																											 3.17 																							

1

,

, 1 			 3.18 																						

1

,

																								 3.19 																						

In general,  

,							 	 0                                                   (3.20) 

Where   is called the iteration matrix of the iterative method  and  is a 

vector.  and  denote solution at  and 1  iteration 

respectively. 
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Equation (3.20) can be written in the matrix form as: 

…
…

1

1

1

…
1

0 …
0 ⋯

… …
				0 ⋯
⋯			 0 ⋯

⋯ 0

…
… ⋯

 

or 

 

Similarly, equation (3.18) and (3.19) can be written in matrix form  

respectively as 

 

 

 

Sufficient condition [14]: 

The Gauss – Jacobi iterative method for solving fully fuzzy linear system of 

equations	 ⊗  converges if and only if the classical Gauss- Jacobi 

iterative method converges for solving the crisp linear system of equations 

 derived from the corresponding fully fuzzy linear system of 

equations. 

If the matrix  in the crisp linear system of equations  is strictly 
diagonally dominant i.e., | | ∑ , 1,2,3, … , 	then the 

iterations obtained in classical Gauss- Jacobi iterative method converges for 

any initial approximation 	 . 
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3.2.2 Gauss- Seidel method 

Another well-known iterative method for solving FFLS is the Gauss–Seidel 

method.  

Equation (3.12) can be written as:  

,																																																																															

, 1 ,																		

.																																																			

 

Thus, Gauss- Seidel method is defined as: 

 

1
,																																																																																				

1
, 1 , 0																								

1
																 3.21 																															

or, in matrix form the system can be written as  
																

 

where 	 , ,   are diagonal, lower triangular and upper triangular 

matrices respectively. 

Therefore the Gauss-Seidel iterative method for solving fully fuzzy linear 

system of equations is as follows: 
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In this method also,  if  is strictly diagonally dominant then the iteration 

always converges. Gauss-Seidel method will generally converge if the 

Jacobi method converges and will converge at a faster speed.  
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Chapter Four 

Numerical Examples and Results 

 

4.1 Numerical Examples and Results for Fuzzy System of Linear 

Equations(FLS) 

To demonstrate the efficiency and accuracy of the  numerical schemes which 

we discuss it in chapter three, we will use MATLAB software  to solve some 

numerical examples,  then draw a comparison between approximate solution 

and exact ones for the following schemes: Jacobi method,  Gauss Sidel 

method, and Successive over relaxation iterative method.  

 

Example 4.1. 

 Consider the 2 2 non- symmetric fuzzy linear system 

2 2 2 , 4 2  
(4.1) 

2 6 8 2 , 14 4  

Numerical Solution of Equation (4.1) using Jacobi Method 

The extended 4 4 matrix is 

2 0 0 2

2 6 0 0

0 2 2 0

0 0 2 6

S
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1

2 1

1

2

( ) 0.5625 0.0625 0.1875 0.1875 2
( ) 0.1875 0.1875 0.0625 0.0625 8 2

( ) 0.1875 0.1875 0.5625 0.0625 2 4

0.0625 0.0625 0.1875 0.1875 4 14( )

x r r
x r r

X S Y
x r r

rx r



     
                   
            

 

The exact solution is  

,
11
8

5
8
,
23
8

7
8

, 

,
7
8

1
8
,
11
8

3
8

. 

The exact and approximate solutions are shown in Figure (4.1). 
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Figure (4.1): Graphical representation of the solution of example 4.1 using Jacobi 
method 
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Numerical Solution of Equation(4.1) using Gauss- Seidel Method 

The exact and approximated solutions are plotted and compared in 

Figure(4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(4.2): Graphical representation of the solution of example 4.1 using Gauss- 
Seidel method 
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Numerical Solution of Example (4.1) using Successive over relaxation 

iterative method  

The exact and approximated solutions are plotted and compared in 

Figure(4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3): Graphical representation of the solution of example 4.1 using SOR 
method 
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Comparison results  between three  methods 

Numerical Method Number of 
Iterations 

Total CPU Time 
in Seconds  

Jacobi 16 16.8 
Gauss- Seidel 9 7.9 

Successive over relaxation 6 12.5 
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Figure (4.4): comparison between three methods. 
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4.2 Numerical Examples and Results for Fully Fuzzy System of Linear 

Equations(FFLS) 

Numerical Solution by Gauss- Jacobi iterative method 

 

Example 4.2:  

Solve the following system of equations using Gauss- Jacobi method  

5,1,1 ⊗ , , ⊕ 6,1,2 ⊗ , , 50,10,17  

7,1,0 ⊗ , , ⊕ 4,0,1 ⊗ , , 48,5,7  

So, from the above system we have 

5 6
7 4

												 1 1
1 0

							 1 2
0 1

		 and  

50
48

																		 10
5

												 17
7

 

To solve the above problem by using Gauss-Jacobi method, first of all we 

obtain the following equations by the method explained in chapter 3. 

5 6
7 4

50
48

                                                                                  (4.2) 

1 1
1 0

5 6
7 4

10
5

                                                          (4.3) 

1 2
0 1

5 6
7 4

17
7

                                                           (4.4) 

Equation(4.2) can be written as: 

5 6 50 

7 4 48 

Since|5| ≯ |6| and |4| ≯ |7|, therefore the above  system of equations is not 

diagonally dominant. So writing the above system in diagonally dominant 

form as: 
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7 4 48 

(4.5) 

5 6 50 

So, the above system of linear equations is in diagonally dominant form as 

|7| |4| and |6| |5|. Now, to find the solution by Gauss-Jacobi method 

first of all (4.5) can also be written as 

 
1
7
48 4  

                                                                                                               (4.6) 
1
6
50 5  

Thus, the Gauss-Jacobi’s methods when applied to the above system, it gives 

 
1
7
48 4  

, 0,1,2, … 
1
6
50 5  

 

Now, starting  with initial approximation vector  0,0 , we get  

 
1
7
48 4

48
7

6.8571 

1
6
50 5

50
6

8.3333 

 

i.e.        6.8571, 8.3333  

hence continuing with this we obtain 
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Table (4.1): the sequence , , , , …  generated by the Jacobi 

method, with .  
,   Error 

| | 

1 6.8571,8.3333 10.7919 
2 2.0952, 2.6190 7.4383 
3 5.3605,6.5873 5.1390 
4 3.0930,3.8662 3.5421 
5 4.6479,5.7559 2.4471 
6 3.5681,4.4601 1.6867 
7 4.3085,5.3599 1.1653 
8 3.7943,4.7429 0.8032 
9 4.1469,5.1714 0.5549 

10 3.9021,4.8776 0.3825 
11 4.0700,5.0816 0.2642 
12 3.9534,4.9417 0.1821 
13 4.0333,5.0389 0.1258 
14 3.9778,4.9722 0.0867 
15  = (4.0159, 5.0185  0.0599 
16 3.9894,4.9868 0.0413 
17 4.0076,5.0088 0.0285 
18 3.9950,4.9937 0.0197 
19 4.0036, 5.0042 0.0136 
20 3.9976, 4.9970  0.0094 

Since we have already found the exact solution of the above system in 

chapter two, Example 2.15 and is found to be 4, 5 .  It seems that the 

sequence , 0,1,2, … generated by the Jacobi method will converge to 

the exact solution. Hence up to two decimal places we obtain 

, 4.00,5.00  

Now, putting the value of ,  in the equations (4.3) and (4.4) we obtain 

5 6
7 4

1
1
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5 6
7 4

3
2

 

 

          5 6 1                                                     5 6 3 

i.e.                                                          and 

           7 4 1                                                    7 4 2 

 

Since the above  equation are not in the form of diagonally dominant form. 

So converting them to diagonally dominant form as: 

 7 4 1 

(4.7)                     

 5 6 1	 

                 

Now, solving the above equations by the same procedure that is used to solve 

the system (4.2), we obtain: 

1
7
1 4  

1
6
1 5  

Taking the initial approximation as 0,0   and continuing with 

Gauss- Jacobi method we obtain 
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 Table (4.2): the sequence , , , , … generated by the Jacobi 

method, with .  
  ,   Error 

| | 

1 		 0.143200,0.167570 0.2204 
2 		 0.047448,0.048233 0.1530 
3 		 0.115640, 0.128030 0.1050 
4 		 0.070042,0.071201 0.0729 
5 		 0.102510,0.109200  0.0500 
6 		 0.080801, 0.082138 0.0347 
7 		 0.096264, 0.100230 0.0238 
8 		 0.085924,0.087346 0.0165 
9 		 0.093288, 0.095962 0.0113 
10 0.088364, 0.089826 0.0079 

at 10  iteration we obtain 0.0862, 0.0862  which is very close to 

exact solution , . Hence  the value of the optimal solution up to two 

decimal place is:  

, 0.09, 0.09  

 

Similarly solving  

5 6 3 

(4.8)                     

 7 4 2	 

Solving (4.8) we find that the value of  converges at 	12  iteration as 

follows: 
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Table (4.3): the sequence , , , , …  generated by the Jacobi 

method, with .  
  ,   Error 

| | 
1 	 		 0.28614 , 0.5014  0.5773 
2 		 0.00037113,0.26295 0.3728 
3 		 0.13589,0.50171 0.2749 
4 		 0.00054786,0.38816  0.1775 
5 		 0.064337, 0.50186 0.1309 
6 		 0.00063202, 0.44778  0.0845 
7 		 0.030266,0.50193 0.0623 
8 		 0.0006721,0.47618 0.0403 
9 		 0.014041,0.50196  0.0297 

10 0.00069118,0.4897 0.0192 
11 0.0063151,0.50197  0.0141 
12 0.00070027, 0.49614 0.0091 

Thus the value of  up to two decimal points is  

, 0,0.5  

Hence the solution of given fully fuzzy linear system of  equations is as 

follows: 
4,0.09,0
5,0.09,0.5

 

Which is the required solution of the given fully fuzzy linear system of 

equations. 

Numerical Solution by Gauss- Seidel iterative method 

Consider the system (4.2). 

i.e. 
1
7
48 4  

1
6
50 5  
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The Gauss-Seidel iterative formula for this system can be written as: 
1
7
48 4  

, 0,1,2, … 
1
6
50 5  

Taking the , 0,0  we get 

1
7
48 4

48
7

6.8571 

1
6
50 5

15.7145
6

2.6191 

i.e.        6.8571, 2.6191  

hence continuing with this, we get 

Table (4.4): the sequence , , , , …  generated by the Gauss-

Seidel method, with .  
  ,   Error 

| | 

1 	 6.8571,2.6190 7.3403 
2 	 5.3605,3.8662 1.9481 
3 	 4.6479 ,4.4601 0.9277 
4 	 4.3085,4.7429 0.4418 
5 	 4.1469,4.8776  0.2104 
6 	 4.0700,4.9417 0.1002 
7 	 4.0333,4.9722 0.0477 
8 		 3.7943,4.7429 0.0227 
9 		 4.0159,4.9868 0.0108 

10 4.0036,4.9970  0.0052 

Since  we can found the exact solution of the above system in chapter two,  

And is found to be 4,5 .  It seems that the sequence , 0,1,2, …   

generated by the Gauss-Seidel method will converges to the exact solution.  
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So, by the above results it is clear that the value of  up to two decimal points 

is , 4,5  solving (4.7) we obtain 

Table (4.5): the sequence , , , , …  generated by the Gauss-

Seidel method, with .  
  ,   Error 

| | 
1 		 0.142340 ,0.047947  0.1502 
2 		 0.114940, 0.070779  0.0357	
3 		 0.101900, 0.081652  0.1070 
4 		 0.095685, 0.086829 0.0081 

Hence the value of  up to two decimal places can be written as  

, 0.09,0.09  

and solving (4.8), using the same method as used for solving the system (4.5) 

we obtain 

 Table (4.6): the sequence , , , , … generated by the Gauss-

Seidel method, with . 
  ,   Error	

| | 
1 		 0.28614,0.2619500 0.53879 
2 		 0.13646,0.3866800  0.1948 
3 		 0.06518,0.4460800  0.0928 
4 		 0.031238,0.474370  0.0442 
5 		 0.015075,0.487840  0.0210 
6 		 0.0073784,0.49425  0.0100 
7 		 0.0037134,0.49731  0.0048 

Hence from the above results, we find that the value of  up to two decimal 

points is found to be: 

, 0,0.5  
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Hence the solution of the given fully fuzzy linear system of equation up to 

two decimal places is found to be  
4,0.09,0
5,0.09,0.5
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Comparison results  between Gauss-Jacobi and Gauss- Seidel Method 

Numerical Methods Total CPU Time 
in seconds 

Error 
| | 

Gauss-Jacobi 4.2 0.009127082636873 
Gauss- Seidel 5.9 0.004770825630768 
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Conclusions 

In this thesis, analytical and numerical methods have been used to solve 

Fuzzy System of Linear Equations where the coefficient matrix arrays are 

crisp numbers, the right-hand side column is an arbitrary fuzzy vector and 

the unknowns are fuzzy numbers. Moreover, some analytical and numerical 

methods have been used to solve Fully Fuzzy System of Linear Equations 

where all the coefficient matrix arrays, the right-hand side arrays and the 

unknowns, are fuzzy numbers. 

The numerical methods for FLS and FFLS were implemented in a form of 

algorithms to solve some numerical test cases using MATLAB software. 

For FLS the numerical results have shown to be in a close agreement with 

the analytical ones. Moreover, the SOR iterative method is one of the most 

powerful numerical technique for solving FLS, in terms of number of 

iterations and CPU time, as we show in Example (4.1). 

For FFLS the numerical results have shown to be in a close agreement with the 

analytical ones. In fact, the Gauss- Seidel iterative methods is more efficient 

than the Gauss-Jacobi for solving FFLS in terms of number of iterations, CPU 

time and the absolute error, as we shown in Example (4.2). 
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Appendix 

MATLAB Code for Jacobi Iterative Techniques for Solving Fuzzy 

System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Jacobi Method 

  

clc 

clear all 

close all 

syms r 

  

%% Inputs; 

S = [1  0  0 -1; 

     1  3  0  0; 

     0 -1  1  0; 

     0  0  1  3]; 

Y = [  r; 

     4+r; 

     2-r; 

     7-2*r]; 

  

% S = [10 0   0 -4; 
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%      0  16 -4  0; 

%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

% S = [ 4  1  0  0  0 -1; 

%       0  3  1 -1  0  0;         

%       2  1  3  0  0  0; 

%       0  0 -1  4  1  0; 

%      -1  0  0  0  3  1; 

%       0  0  0  2  1  3]; 

% Y = [   +r ; 

%        2+r ;   

%       -2   ;        

%        2-r ; 

%        3   ; 

%       -1-r]; 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 
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x0_U=zeros(N,1); 

x0_L=zeros(N,1); 

toler = 0.001;   % Change for your example 

err = 1; 

max = 500;   % Change to biger, if the solution didn't converge  

% x_axis_name = 'Put a name';    % Change for your example 

y_axis_name = 'r - Membership Value'; 

  

%% Start Coding with Jacobi Method;  

T=0;   

for K = 1:max   

%% Check if the matrix A is diagonally dominant 

for i = 1:2*N 

    j = 1:2*N; 

    j(i) = []; 

    B = abs(S(i,j)); 

    Check(i) = abs(S(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

  if Check(i) < 0 

      T=1;   

      fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',i) 

  end 

end 
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if T == 1 

    break 

end 

  

%% Jacobi Iteration; Based on Paper {5,4}   

for I = 1:N 

    sumL1=0; 

    sumL2=0; 

    for J = 1:N 

        if J ~= I 

        sumL1 = sumL1 + S(I,J)*x0_L(J); 

        end 

        sumL2 = sumL2 + S(I,N+J)*x0_U(J); 

    end 

    x_L(K,I) = eval((Y_L(I) - sumL1 - sumL2)/S(I,I)); 

  

    sumU1=0; 

    sumU2=0; 

    for J = 1:N 

        if J ~= I 

        sumU1 = sumU1 + S(I,J)*x0_U(J); 

        end 

        sumU2 = sumU2 + S(I,N+J)*x0_L(J); 

    end 
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    x_U(K,I) = eval((Y_U(I) - sumU1 - sumU2)/S(I,I)); 

end 

  

%% Cheching Error; 

  ML1 = Noreta(x_L(K,:)); 

  MU1 = Noreta(x_U(K,:)); 

  ML2 = Noreta(x0_L); 

  MU2 = Noreta(x0_U); 

err1 = vpa(subs(abs(ML1 - ML2),r,0:0.1:1)); 

err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1)); 

err = [err1,err2]; 

if  double(err) <= toler 

    XL = x_L(end,:); 

    XU = x_U(end,:); 

    Error = err; 

    NoIterations = K; 

    break 

end 

 x0_L = x_L(K,:)'; 

 x0_U = x_U(K,:)'; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 
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for i = 1:2:2*N 

    X(i) = XL(j); 

    j= j +1; 

end 

j=1; 

for i = 2:2:2*N 

    X(i) = XU(j); 

    j= j +1; 

end 

  

%% Showing Answers 

ANS = X; 

NoIterations = K 

  

for i = 1:2*N 

F(i,:) = subs(ANS(i),r,(0:0.05:1)); 

plot(F(i,:),(0:0.05:1),'+','markersize',11) 

hold all 

end 

% xlabel(x_axis_name) 

ylabel(y_axis_name) 

title('Fuzzy system Using Jacobi') 

% grid on 

% the colour gradiant starts from Blue 
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%% Exact Solution based on X = (1/S)*Y 

Ans = vpa(inv(S)*Y); 

i=1; 

j=1; 

for i = 1:length(Ans) 

    if i <= length(Ans)/2 

         v1(i)= Ans(i); 

    else v2(j)=Ans(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

for i = 1:2*N 

TRR(i,:) = subs(Ans(i),r,(0:0.05:1)); 

plot(TRR(i,:),(0:0.05:1),'o') 

hold on 

end 

text(2.4,0.9,'+ Jacobi Solution') 

text(2.4,0.85,'O Exact Solution') 

set(text,'linewidth',2) 

format long 
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MATLAB Code for Gauss - Sidel Iterative Techniques for Solving 

Fuzzy System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Gauss Seidel Method 

  

clc 

clear all 

close all 

syms r 

  

%% Inputs; 

% S = [2  1  3  0  0  0; 

%      4  1  0  0  0 -1; 

%      0  3  1 -1  0  0; 

%      0  0  0  2  1  3; 

%      0  0 -1  4  1  0; 

%     -1  0  0  0  3  1]; 

% Y = [11+08*r; 

%      27-08*r; 

%     -23+10*r; 

%     -05-08*r; 

%      10+05*r; 

%      27-12*r]; 
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% S = [1  0  0 -1; 

%      1  3  0  0; 

%      0 -1  1  0; 

%      0  0  1  3]; 

% Y = [  r; 

%      4+r; 

%      2-r; 

%      7-2*r]; 

  

S = [ 4  1  0  0  0 -1; 

      0  3  1 -1  0  0;         

      2  1  3  0  0  0; 

      0  0 -1  4  1  0; 

     -1  0  0  0  3  1; 

      0  0  0  2  1  3]; 

Y = [   r ; 

       2+r ;   

      -2   ;        

       2-r ; 

       3   ; 

      -1-r]; 

  

% S = [10 0   0 -4; 

%      0  16 -4  0; 
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%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 

  

x0_U=zeros(N,1); 

x0_L=zeros(N,1)'; 

toler = 0.001;   % Change for your example 

err = 1; 

max = 500;   % Change to biger, if the solution didn't converge  

% x_axis_name = 'Put a name';    % Change for your example 

y_axis_name = 'r - Membership Value'; 

  

%% Starting Program 

% Check if the matrix A is diagonally dominant 

T=0;   

for i = 1:2*N 

    j = 1:2*N; 
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    j(i) = []; 

    B = abs(S(i,j)); 

    Check(i) = abs(S(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

  if Check(i) < 0 

      T=1;   

      fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',i) 

  end 

end 

  

if T == 1 

    break 

end 

  

% Gauss-Seidel Iteration Technique; Based on Paper {5} 

for K = 1:max     

for I = 1:N 

    sumL1=0; 

    sumL2=0; 

    sumL3=0; 

    for J = 1:I-1 

        sumL1 = sumL1 + S(I,J)*x_L(K,J); 

    end 

    for J = I+1:N 
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        sumL2 = sumL2 + S(I,J)*x0_L(J); 

    end 

    for J = 1:N 

        sumL3 = sumL3 + S(I,J+N)*x0_U(J); 

    end 

    x_L(K,I) = eval((Y_L(I) - sumL1 - sumL2 - sumL3)/S(I,I)); 

  

    sumU1=0; 

    sumU2=0; 

    sumU3=0; 

    for J = 1:I-1 

        sumU1 = sumU1 + S(I,J)*x_U(K,J); 

    end 

    for J = I+1:N  

        sumU2 = sumU2 + S(I,J)*x0_U(J); 

    end 

    for J = 1:N 

        sumU3 = sumU3 + S(I,J+N)*x0_L(J); 

    end 

    x_U(K,I) = eval((Y_U(I) - sumU1 - sumU2 - sumU3)/S(I,I)); 

end 

  

% Cheching Error; 

  ML1 = Noreta(x_L(K,:)); 
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  MU1 = Noreta(x_U(K,:)); 

  ML2 = Noreta(x0_L); 

  MU2 = Noreta(x0_U); 

err1 = vpa(subs(abs(ML1 - ML2),r,0:0.1:1)); 

err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1)); 

err = [err1,err2]; 

if  double(err) <= toler 

    XL = x_L(end,:); 

    XU = x_U(end,:); 

    Error = err; 

    NoIterations = K; 

    break 

end 

 x0_L = x_L(K,:)'; 

 x0_U = x_U(K,:)'; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 

for i = 1:2:2*N 

    X(i) = XL(j); 

    j= j +1; 

end 

j=1; 
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for i = 2:2:2*N 

    X(i) = XU(j); 

    j= j +1; 

end 

  

%% Showing Answers 

ANS = vpa(X); 

NoIterations = K 

  

for i = 1:2*N 

F(i,:) = subs(ANS(i),r,(0:0.05:1)); 

plot(F(i,:),(0:0.05:1),'+','lineWidth',2,'markersize',11) 

hold all 

end 

% xlabel(x_axis_name) 

ylabel(y_axis_name) 

% title('+ Gauss Zidel, O Exact Solution') 

% grid on 

%% the colour gradiant starts from Blue 

 

%% Exact Solution based on X = (1/S)*Y 

Ans = vpa(inv(S)*Y); 

  

i=1; 
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j=1; 

for i = 1:length(Ans) 

    if i <= length(Ans)/2 

         v1(i)= Ans(i); 

    else v2(j)=Ans(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

for i = 1:2*N 

TRR(i,:) = subs(Ans(i),r,(0:0.05:1)); 

plot(TRR(i,:),(0:0.05:1),'or') 

hold on 

end 

text(0.5,0.9,'+ Gauss Zidel') 

text(0.5,0.85,'O Exact Solution') 

set(text,'linewidth',2) 

format long 
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MATLAB Code for  decomposition Method for Solving Fuzzy 

System of Linear Equations 

 

function [X,S1,S2,L,U] = LUFLLE(A,Y) 

    % solving Fuzzy number system using LU factorization. 

    % [X,S1,S2,L,U] = LUFLLE(A,Y). A: the system matrix. 

    % Y: Fuzzy numbers matrix (n-by-2). 

    % returns: X: the solution vector, the matrices S1 and S2, 

    % and the LU factorization. 

    %% Initialization and Pre-setting 

    An = A(:); 

    S1 = []; 

    S2 = []; 

    Y = Y(:); 

     

    for i = 1:length(An) 

        if (An (i) > 0) 

            S1(i) = An (i); 

            S2(i) = 0; 

        else 

            S2(i) = An (i); 

            S1(i) = 0; 

        end 

    end 
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    S1 = reshape(S1,size(A)); 

    S2 = reshape(S2,size(A)); 

    S = [S1 S2;S2 S1]; 

  

    %% LU factorization Process 

    for i = 1 : size(S,1) 

        M(i) = det(S(1:i,1:i)); 

        if (M(i) == 0) 

            fprintf('the principal minor %i is zero, LU fact. is not unique!!!',i); 

            break; 

        end 

    end 

    a = (M(1:length(M)-1) <= 0);  

    if sum(a) == 0 

        disp(' S has a unique LL\^t Factorization'); 

    end 

    [L,U,X] = LUfact(S,Y); % calling the function of LU-fact. 

     

    %% Display 

    X2 = X; % some resetting 

    for i = 1 : length(X) 

        X3 = inline(X2(i)); 

        if (((X3(1) - X3(0)) < 0) && i <= length(X)./2) 

            X(i) =  X(i); 



122 

        end 

        if (((X3(1) - X3(0) > 0)) && i > length(X)./2) 

            X(i) =  X(i); 

        end 

    end 

     

    X = simplify(X); % simplification 

    fprintf('\n\t X = \n') 

    for i=1: length(Y)./2  

        fprintf('\t\t ( %s , %s )\n',char(X(i)),char(X(i+length(Y)/2))); 

    end 

    figure('color','w') 

    myplots(X); % calling myplot function 

    hold off; 

end 
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MATLAB code for  factorization for Fuzzy System of Linear 

Equations 

 

function [L,U,x]=LUfact(A,b) 

    sa = size(A); 

    sb = size(b); 

    if(sa(1)==sa(2) && sa(2)==sb(1) && sb(2)==1) 

        n=sa(1); 

        %% LU Factorization... 

        for i=1:n 

            U(i,i)=1; 

        end 

        L(1,1)=sqrt(A(1,1)); 

        U(1,1)=L(1,1); %% L11*U11=A11; 

        if(U(1,1)*L(1,1)==0) 

            error(' ** no possible LU factorization!!!'); 

        else 

            for(j=2:n) 

                U(1,j)=A(1,j)/L(1,1); 

                L(j,1)=A(j,1)/U(1,1); 

            end 

            for(i=2:n-1) 

                s=0; 

                for k=1:i-1 

                    s=s+L(i,k)*U(k,i); 

                end 
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                L(i,i)=sqrt(A(i,i)-s); 

                U(i,i)=L(i,i); 

                if(L(i,i)*U(i,i)==0) 

                    error(' ** no possible LU factorization!!!'); 

                    t=0; 

                else 

                    t=1; 

                    for(j=i+1:n) 

                        su=0; sl=0; 

                        for(k=1:i-1) 

                            su=su+L(i,k)*U(k,j); 

                            sl=sl+L(j,k)*U(k,i); 

                        end 

                        U(i,j)=(A(i,j)-su)/L(i,i);% i-th row of U. 

                        L(j,i)=(A(j,i)-sl)/U(i,i);%i-th column of L. 

                    end 

                end 

            end 

            if(t==1) 

                s=0; 

                for (k=1:n-1) 

                    s=s+L(n,k)*U(k,n); 

                end 

                L(n,n)=sqrt(A(n,n)-s); 

                U(n,n)=L(n,n); 

                if(L(n,n)*U(n,n)==0) 

                    disp(' ** the matrix is singular!!!'); 
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                end 

            end 

        end 

        %% Forward substitution... 

        y(1,1)=b(1,1)/L(1,1); 

        for (i=2:n) 

            s=0; 

            for(j=1:i-1) 

                s=s+L(i,j)*y(j,1); 

            end 

            y(i,1)=(b(i,1)-s)/L(i,i); 

        end 

        %% Backward substitution... 

        x(n,1)=y(n,1)/U(n,n); 

        for(i=n-1:-1:1) 

            s=0; 

            for(j=i+1:n) 

                s=s+U(i,j)*x(j,1); 

            end 

            x(i,1)=(y(i,1)-s)/U(i,i); 

        end 

    end 

end 
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MATLAB Code for  Iterative Techniques for Solving Fuzzy 

System of Linear Equations 

 

% Solving Fuzzy System of Linear Equations (FSLE) 

% Successive over/under Relaxation ()SOR 

  

clc 

clear all 

close all 

syms r 

t = cputime; 

  

% Inputs; 

S =  [ 2  0  0 -2; 

       2  6  0  0;         

       0 -2  2  0; 

          0 0 2 6]; 

           

      

Y = [   2*r ; 

      8+2*r ;   

       4-2*r ; 

      14-4*r]; 
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% S = [10 0   0 -4; 

%      0  16 -4  0; 

%      0 -4  10  0; 

%     -4  0   0 16]; % Change for your example 

% Y = [26+2*r; 

%      34+2*r; 

%      31-3*r; 

%      38-2*r]; % Change for your example 

  

% S = [8 2 1 0 0 0 0 0 0 3; 

%      0 5 1 0 1 2 0 0 1 0; 

%      1 0 5 1 1 0 1 0 0 0; 

%      0 0 0 4 2 0 0 1 0 0; 

%      1 0 0 0 3 0 2 0 0 0; 

%      0 0 0 0 3 8 2 1 0 0; 

%      2 0 0 1 0 0 5 1 0 1; 

%      0 1 0 0 0 1 0 5 1 1; 

%      0 0 1 0 0 0 0 0 4 2; 

%      0 2 0 0 0 1 0 0 0 3]; 

%  Y = [r; 

%       4+r; 

%       1+2*r; 

%       1+r; 

%       3*r; 
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%       2-r; 

%       7-2*r; 

%       6-3*r; 

%       3-r; 

%       6-3*r]; 

  

N= length(Y)/2; 

Y_U = Y(1:N); 

Y_L = Y(N+1:2*N); 

maxEter = 300; 

Toler = 0.001; 

  

omega = 0.4;  % [0,1] 

  

%% Getting D,L,U from S 

d = diag(S); 

for i=1:2*N 

    for j=1:2*N 

        if i~=j 

        D(i,j) = 0; 

        else 

            D(i,j) = d(i); 

        end 

    end 
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end 

L = tril(S); 

U = triu(S); 

L1 = L(1:N,1:N); 

D1 = D(1:N,1:N); 

U1 = U(1:N,1:N); 

C = L(N+1:2*N,1:N); 

s = D + L + U; 

B = D1 + L1 + U1; 

  

%% Iteration 

x0_L = zeros(N,1); 

x0_U = zeros(N,1); 

% Equations from paper Iterative solution of fuzzy linear systems 

for k = 1:maxEter 

x_L = inv(D1+omega*L1)*(omega*Y_L + ((1-omega)*D1-

omega*U1)*x0_L -omega*C*x0_U); 

x_U = inv(D1+omega*L1)*(-omega^2*C*inv(D1+omega*L1)*Y_L + 

omega*Y_U + ((1-omega)*D1-

omega*U1+omega^2*C*inv(D1+omega*L1)*C)*x0_U - 

omega*C*inv(D1+omega*L1)*((1-omega)*D1-omega*U1)*x0_L); 

i=0; 

for jj = 0:0.05:1 

    i=i+1; 
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err1(:,i) = subs(abs(x_L - x0_L),r,jj); 

err2(:,i) = subs(abs(x_U - x0_U),r,jj); 

end 

err = [err1,err2]; 

if max(double(err)) <= Toler 

    break 

end 

  

x0_L = x_L; 

x0_U = x_U; 

end 

  

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2 . . . ) 

j=1; 

for i = 1:2:2*N 

    X(i) = x_L(j); 

    j= j +1; 

end 

j=1; 

for i = 2:2:2*N 

    X(i) = x_U(j); 

    j= j +1; 

end 

  



131 

%% Exact Solution based on X = (1/S)*Y 

GGG = vpa(inv(S)*Y); 

i=1; 

j=1; 

for i = 1:length(GGG) 

    if i <= length(GGG)/2 

         v1(i)= GGG(i); 

    else v2(j)=GGG(i); 

         j = j + 1; 

    end 

    i=i+1; 

end 

  

for i = 1:length(v1) 

    Ans_F(i,:) = [v1(i) v2(i)];  

end 

Ans_F 

  

%% Showing Answers 

ANS = X; 

NoIterations = k 

  

for i = 1:2*N 

F(i,:) = subs(Ans_F(i),r,(0:0.05:1)); 
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plot(F(i,:),(0:0.05:1),'+','markersize',11) 

hold all 

end 

% xlabel('put a name') 

ylabel('Membership Value') 

title('+ SOR Solution, O Exact Solution') 

grid on 

 

for i = 1:2*N 

KKK(i,:) = subs(Ans_F(i),r,(0:0.05:1)); 

plot(KKK(i,:),(0:0.05:1),'or') 

hold on 

end 

t_CPU_SOR = cputime-t 

% t_CPU_SOR = cputime 
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MATLAB Code for Jacobi and Gauss-Sidel Iterative Techniques for 

Solving Fully Fuzzy System of Linear Equations 

 

function [X,Y,Z] = iter(A,M,N,b,g,h,X0,Y0,Z0,eps) 

    % [X,Y,Z] = jaco(A,M,N,b,g,h,X0,Y0,Z0,eps), Takes the fully Fuzzy 

system 

    % Matrices, A,M,N,b,g,h and the precision "eps" and the initial values 

X0, 

    % Y0 and Z0, and returns the solution vectors X,Y,Z. 

     

    disp(' Select Which Methood to use:'); % selection of the desired 

method. 

    s = lower(input (' enter "J" for Jacobi, or "S" for Gauss-Seidal:... ','s')); 

     

    % initialization. 

    [n,m] = size(A); 

    L = zeros(n,m); 

    U = zeros(n,m); 

    % Calculate the permutation matrix E. 

    E = zeros(n,m); 

    [v,inda] = max(A); 

    for i = 1:n 

        [r,p] = max (v); 

        E(inda(i),p) = 1; 
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        v(p) = -exp(-10); 

    end 

    % Transform the system to Diagonally dominant system. 

    A = E * A;  

    % Calculate Da, La, and Ua. 

    D = diag( diag (A)); 

    for i = 1:n 

        for j = 1:m 

            if (i > j) 

                L(i,j) = A(i,j); 

            elseif (i < j) 

                U(i,j) = A(i,j); 

            end 

        end 

    end 

    

    Di = inv(D); 

    DLi = inv(D+L); 

    if (det(D) == 0) 

        error('Da is Singular !!!'); 

    end 

     

    % start the iterations. 

    e = 1000; 
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    i = 0; 

    if (s == 'j') % Jacobi Method. 

        fprintf('\n\t\t\t******* Starting Jacobi Method ******* '); 

        pause 

        fprintf('\n\n \t ** solution for X: ') 

        while (e > eps) % Solving for X 

            i = i + 1; 

            X = - Di*((L+U)*X0 - E*b); 

            e = norm(X - X0); 

            X0 = X; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(X',5),e); 

            if (e > (50/eps)) 

                error ('The process is Diverging !!!'); 

                Break; 

            end 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Y: ') 

        while (e > eps) % Solving for Y 

            i = i + 1; 

            Y = - Di*((L+U)*Y0 + E*(M*X - g)); 

            e = norm(Y - Y0); 

            Y0 = Y; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y',5),e); 
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        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Z: ') 

        while (e > eps) % Solving for Z 

            i = i + 1; 

            Z = - Di*((L+U)*Z0 + E*(N*X - h)); 

            e = norm(Z - Z0); 

            Z0 = Z; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Z',5),e); 

        end 

        fprintf('\n\n the approximation error is: %f', e); 

         

    elseif (s == 's') % Gauss-Seidal Method. 

        fprintf('\n\t\t\t******* Starting Gauss-Seidal Method ******* '); 

        pause 

        fprintf('\n\n \t ** solution for X: ') 

        while (e > eps) % Solving for X 

            i = i + 1; 

            X = - DLi*(U*X0 - E*b); 

            e = norm(X - X0); 

            X0 = X; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(X',5),e); 

            if (e > (50/eps)) 

                error ('The process is Diverging !!!'); 
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                Break; 

            end 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Y: ') 

        while (e > eps) % Solving for Y 

            i = i + 1; 

            Y = - DLi*(U*Y0 + E*(M*X - g)); 

            e = norm(Y - Y0); 

            Y0 = Y; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y',5),e); 

        end 

        i = 0; e = 1000; 

        fprintf('\n\n \t ** solution for Z: ') 

        while (e > eps) % Solving for Z 

            i = i + 1; 

            Z = - DLi*(U*Z0 + E*(N*X - h)); 

            e = norm(Z - Z0); 

            Z0 = Z; 

            fprintf('\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Z',5),e); 

        end 

        fprintf('\n\n the approximation error is: %f \n\n', e); 

    end 

         

end
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ص ل   ال
ن معاملات  ث ت ة  اب ــــــــــــــ ة ال عادلات ال ام م ال زنا على حل ن روحة ر في هذه الا

ام اعد رق ال عض ال ــــة  اق زنا على م ة ، ور اب رات فهي اعداد ضــــ غ ابت وال ة اما ال ق اد حق
عاملات و  لاً م ال ن  ث ت ة  اب ــــــــــــــ ة ال املة ال عادلات ال ام م ال ل ن رات ل غ ال

ة اب ابت اعداد ض   .وال
رقة فر  لت   ة شـــــ اب ـــــ ة ال عادلات ال ام م ال ل ن ة ل ل ل رق ال د ال رقة ســـــع دمان، 

فة ـــــــــــف ل م ل رقة ت ر،  ر رقة   ، د وماجد عل ـــــــــــ ا  ا ا ودن فة عل ـــــــــــف عاملات ل ال
اوس.و  عاد ل   رقة الاس

ة  رق العدد ياما ال رقة جاك اها هي:  اول ي ت ع. ت ال ا رقة ال رقة جاوس ســـــــــــــــایدل  و  ،
رق وت وضــــــع مقار  ة بهذه ال لة العدد ذ الام ف رقة ت ة ان  ائج العدد ا ال هرت ل ث ا ها ح نة ب

انت اك ع  ا ي و ال اك قارنة مع ال ال فاءة  اوس سایدل فقد ت الر  رارات ال ل ب ل الى ال ص
  .وزم اقل

رقة انت  ة  اب ــ ة ال املة ال عادلات ال ام م ال ل ن ة ل ل ل رق ال اشــر،  ال عاكس ال ال
ر و  ر ا.ررقة  ا ودن فة عل ف عاملات ل فة ال ف ل م ل   قة ت

لت ع ة اش رق العدی اوس سایدلوال ي وال اك رقة ال رق لى  ة بهذه ال لة العدد ذ الام ف . ت ت
اوس سایدل  رقة ال ة ان  ائج العدد ا ال هرت ل ث ا ة ح رق العدد وت وضع مقارنة ب هذه ال

اك قارنة مع ال ال فاءة  ر  قارنة مع اك ال أ اقل  رارات وزم وخ ل ب ل الى ال صــ ي فقد ت ال
ي. اك  رقة ال


