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Abstract
We focus our attention on the analytical and numerical methods for solving
the fuzzy linear system (FLS) and fully fuzzy linear system ( FFLS).
For the analytical solution of the fuzzy linear system we have presented the
following methods: Friedman's proposal, S. Abbasbandy and M. Alavi
method, Fuzzy Solution by Using Fuzzy Center, Algorithmic Approach,
Embedding method , LU decomposition method, and LU-Decomposition
method of Mansouri and Asady. The analytical methods presented for the
fully fuzzy linear system include: matrix inversion method, Cramer’s rule
and LU decomposition method.
For the numerical handling of the fuzzy linear system we have implemented
the following techniques, namely: Iterative Jacobi method, Gauss—Sidel
methods, and Successive over relaxation iterative method. For the fully
fuzzy linear system we have used the Gauss -Jacobi and Gauss- Seidel
methods.
To show the efficiency of these numerical techniques we have considered
some numerical examples. Numerical results for both (FLS) and (FFLS)

have shown to be in a closed agreement with the analytical ones.



XI
We strongly believe that, the Successive over relaxation iterative
method(SOR) is one of the most powerful numerical techniques for solving
FLS in comparison with other numerical techniques. Moreover, the Gauss-
Seidel method is more efficient than the Gauss —Jacobi method for solving

FFLS.



Introduction

The subject of Fuzzy System of Linear Equations with a crisp real coefficient
matrix and with a vector of fuzzy triangular numbers on the right-hand side
and Fully Fuzzy System of Linear Equations where all the parameters of
the system are fuzzy numbers arise in many branches of science and
technology such as economics, statistics, telecommunications, image
processing , physics and even social sciences. In the year of 1965 L.A.
Zadeh [27] introduced and investigated the concept of fuzzy numbers that
can be used to generalize crisp mathematical concept to fuzzy sets.

There is a vast literature on the investigation of solutions for fuzzy linear
systems. Early work in the literature are on to linear equation systems whose
coefficient matrix is crisp and the right hand vector is fuzzy, that is known
as Fuzzy Linear Equation System (FLS), was first proposed by Friedman et
al. [17]. For computing a solution, they used the embedding method and
replaced the original fuzzy n X n linear system by a 2n X 2n crisp linear
system. Later, several authors studied FLS. Allahviranloo [4-5], used the
Jacobi and Gauss—Seidel iterative methods to compute an approximate
solution. He also used the successive over relaxation iterative method for
solving FLS. Dehghan & Hashemi [12] investigated the existence of a
solution provided that the coefficient matrix is strictly diagonally dominant
matrix with positive diagonal entries and then applied several iterative
methods for solving FLS. Ezzati [15] developed a new method for solving

FLS by using embedding method and replaced an n X n fuzzy linear system
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by two n X n crisp linear system. Furthermore, Muzziolia et al. [22]
discussed fuzzy linear systems in the form of A;x + b; = A,x + b, with
A;, A, square matrices of fuzzy coefficients and b,, b, fuzzy number
vectors. Abbasbandy and Jafarian [3] proposed the steepest descent method
for solving fuzzy system of linear equation.
The crispness of the coefficient matrix makes the modeling of real life
problems restricted. Linear systems, whose all the parameters are fuzzy i.e.
both coefficient matrix and right hand vector are fuzzy, are named Fully
Fuzzy Linear Equation System (FFLS). The main objective of FFLS is to
widen the scope of FLS in scientific applications by removing the crispness
assumption on the entries of coefficient matrix.
Dehgan et al. [13] have proposed the Adomian decomposition method,
iterative methods and some computational methods such as Cramer’s rule,
Gauss elimination method, LU decomposition method and linear
programming approach for finding the solutions of n X n FFLS. Then, they
applied some iterative iterative techniques such as Richardson, Jacobi,
Jacobi over relaxation (JOR), Gauss—Seidel, successive over relaxation
(SOR), accelerated over relaxation (AOR), symmetric and unsymmetric
SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) ,for
solving (FFLS). In addition, they proposed methods from nonlinear
Programming, such as Newton, quasi-Newton and conjugate gradient to
solve FFLS [14].
Besides FLS and FFLS, there exist the dual forms of both systems in the

literature. Generally, both FLS and FFLS are handled under two main
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headings: square (n x n) and nonsquare (mx n) forms. Most of the works in
the literature deal with square form. For example, Asady et al. [8], extended
the model of Friedman for n x n fuzzy linear system to solve general m x n
rectangular fuzzy linear system for m x n,where coefficients matrix are crisp
and the right-hand side column is a fuzzy number vector, they replaced the
original fuzzy linear system m x n by a crisp linear system 2m x 2n. And
they investigated conditions for the existence of a fuzzy solution.
Fuzzy elements of these systems can be taken as triangular, trapezoidal or
generalized fuzzy numbers in general or parametric form. While triangular
fuzzy numbers are widely used in earlier works, trapezoidal fuzzy numbers
are neglected for a long time. Besides, there exist lots of works using the
parametric and level cut representation of fuzzy numbers. Another
classification for FFLS can be made also depending on whether FFLS has
sign restrictions on its parameters. Having sign restrictions for FFLS means
that all parameters of FFLS are assumed as positive. Since the parameters
are assumed as positive in the most of the papers, further work is needed for
FFLS with arbitrary (no restrictions on sign) fuzzy numbers.
This thesis is organized as follows:
In chapter one, we introduce some basic concepts of fuzzy sets, crisp sets,
fuzzy numbers, and fuzzy linear system.
Chapter two investigates some analytical methods for solving the Fuzzy
Linear System of Equations. These methods are: Friedman's proposal, S.
Abbasbandy and M. Alavi Method, Fuzzy Solution by Using Fuzzy Center,

Algorithmic Approach, Embedding method, LU decomposition method, and
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LU-Decomposition Method of Mansouri and Asady. For the Fully Fuzzy
System of Linear Equations we presented the analytical methods: matrix
inversion method, Cramer’s rule and LU decomposition method.

In chapter three, we employ some numerical methods to solve fuzzy system
of linear equations. These are: Iterative Jacobi, Gauss—Sidel methods, and
Successive over relaxation iterative method. And we employ Jacobi and
Gauss—Sidel methods for fully fuzzy system of linear equations.

In chapter four, MATLAP software has been used to solve numerical
examples to demonstrate the efficiency of these numerical schemes
introduced in chapter three.

Finally, we draw a comparison between analytical and numerical solutions

for some numerical examples.
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Chapter One

Mathematical Preliminaries

1.1 Crisp Sets

The concept of a set is fundamental in mathematics and it can be described

as a collection of objects possibly linked through some properties.

Definition (1.1) [9]: Characteristic function:

Let X be a set and A be a subset of X(Ac X). Then the characteristic
function of the set A in X is defined by: '

ZUN PR by
Classical sets and their operations can be represented by their characteristic
functions.

Indeed, Let us consider the union

AUB={x € X | x € A or x € B}. Its Characteristic function is

Xaup(x) = max{y,(x), xp(x)}

For the intersection

ANB ={x€X|x € Aand x € B} the characteristic function is

Xang(x) = min{y,(x), xp(x)}.

If we consider the complement of 4 in X,

A ={x e X | x & A} it has the characteristic function
lAC (X) :1_ ZA(X) .



1.2 Fuzzy Sets

Zadeh in [27] extended the definition of the characteristic functions by
replacing the set {0,1} by the closed interval [0,1]which is the bases to the

new definition of fuzzy sets.

Definition (1.2) [27]: Fuzzy set:
A fuzzy set A(fuzzy subset of X) is defined as a mapping
A: X = [0,1],
where A(x) is the membership degree function of x to the fuzzy set A. We
denote the collection of all fuzzy subsets of X by F(X).

In the case of the characteristic function ¥,: X— {0,1} if ¥ A(X)=0 then;

the grade of membership is 0; and that means x doesn’t belong to A, if the
characteristic function ¥ A(X)=1, then the grade of membership is equal to 1;
and that means x belongs to A. While, in the case of fuzzy sets: p, (x)could
be any other number from 0 to 1.

We identify a fuzzy set with its membership function. Other notations that

can be used the following p,(x) = A(x).

Example 1.1:

U4(x)=0.95 may means that x is more likely to be in py, or if pu,(x)=0.5
then x may be half way between belonging to A and not belonging to A. It
is clear that regular subsets of X are a special case of fuzzy sets called crisp

fuzzy sets where pu,(x)€ {0,1} < [0,1].
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We use different ways to display a fuzzy subset of X. In the next example

we describe some of those ways:

Example 1.2:
Consider the regular set X = {a, b, c,d, e} and let u, be the fuzzy subset of
X that maps X to [0,1] by the following mapping:

a— 0.2, b — 0.83, c — 0.5, d- 0, and e — 0.6
We may write p4 as the set of ordered pairs:
ta = {(a,0.2),(b,0.83),(c,0.5),(d,0), (e, 0.6)} using notation of regular
set, or we may represent it as gy = {ag2, bog3, Cos, do, €pe}- This last

form will be mostly used in this manuscript.

Operations on Fuzzy Sets

Zadeh in his first publication [27], define the operations for fuzzy sets by
generalize the theoretic operations of crisp sets (the reader should realize that
the set theoretic operations intersection, union and complement correspond

to the logical operators and, inclusive or and negation).

Definition (1.3) [28]: Operations for fuzzy sets:
Let E and D be two fuzzy sets, then:
1) The intersection of E and D 1is the fuzzy set C with

C(x) =(EnD)(x) =min{E(x),D(x)} = E(x)aD(x), Vx € X.
2) The union of E and D is the fuzzy set C, where

C(x) = (E UD)(x) = max{E(x),D(x)} = E(x)vD(x), Vx € X.
3) The complement of E is the fuzzy set D, where

D(x)= E°(x) = 1—-E(x),Vx € X.
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4) Difference (E — D)(x) = (ENnD°)(x) = min{ E(x),1 — D(x)}.
5) equilibrium points E(x) = E°(x).

In the following examples we illustrate the previous definitions.

Example 1.3:
Consider the following two fuzzy sets:
A={ai0, bos, o3, do2} and B={aos, bo.7, Co.2, do4 }.
1. Complement A€ ={ao.0, bos, co.7, dos}.
Complement B ={ao s, bo3, Cos, dos}.
Union: A UB ={ai.0, bo.7, Co.3, do4}.

Intersection: A N B ={aos, bos, Co2, do2}.

A

Difference A - B = AN B¢ =={ays, bos, co3, do2}.

For the continuous graph case:

Take X = [0,4], A(x) and B(x) are as follows:

1.0 1.0 N

1 2 3 4 x 1 2 3 4 x
Intersection of fuzzy sets



F 9 F 3
A B A A
'._':.‘ “ —
1.0 A 1.0
b, 4 \‘ AU B
:}.’!1 "!
& \
; \
'
y \
- ~ > >
1 2 3 4 x 1 2 3 4 x
Union of fuzzy sets Complement of fuzzy sets

Now we can compare two fuzzy subsets of a set X as one of them containing

the other as follows:

Definition (1.4) [27]: The containment:
Let A, B be two fuzzy subsets of X, wesay A < B tomean A(x) < B(x)

for all x € X.

For example: Consider X = {a, b, c,d} and let A={ao4, bos, co.1, do } and
B={ao.1, bos, co, do }, then clearly B < A.

Definition (1.5) [9]: The support of the fuzzy set :
The support of the fuzzy set A is defined by:
supp(A) ={x € X : A(x) > 0}.
Definition (1.6) [18]: a —cut:
An a -level set of a fuzzy set A of X is a non-fuzzy set denoted by A%and is

defined by:
a_{xEX:A(x)Za Jifa € (0,1]

cl(supp(A)) Jifa =0
where cl (supp (A)) = Closure of the support A.
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Example 1.4:
The following example displays some a — levels of some fuzzy subsets:
Let A ={ ao4, bo7, co3, do2 }be a fuzzy subset of X={a, b, c, d}then the 0.3-
level=A%3={a, b, ¢}, the 0.1-level=A%1={a, b, ¢, d}. And the support of
Asupp(A) = X ={a, b, c, d}.

Example 1.5:
The following represents the graph of a fuzzy subset of R = (—o0, 00) with

its function representation.

x—2 ifx€|23]

1 if x €[3,5]
where A(x) = 8_Tx if x €[5,8]
0 elsewhere

The 0.4 level of this fuzzy setis, A%* = {x € X: A(x) = 0.4}

04 < x—2=x = 24
8—x
04 > — =X < 6.8 so A%* =[2.4,6.8]

In general, the a-level can be found as follows:
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A= %1, x7 ]

Now, a = x{ — 2, and this implies that x{ = a + 2

8—x¥
And a = 2

which means x§ =8 — 3«
So A% = [a + 2,8 — 3]
Fora = 0.4, A% = [2.4,6.8]

LA N

Example 1.6:

Let A defined as the following

1
05 /\/

Supp(4) = (1,2)U(2,)
A’ ={x e X: A(x) = 0.4} =[1.8,2.2]U[3.4, ).
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Definition (1.7) [23]: Normal fuzzy set:
A fuzzy set A is called normal if there is at least one point x € R with

Alx) = 1.

Definition (1.8) [23]: convex fuzzy set:
A fuzzy set E is convex if each of its & —level are convex set,

ie. E* = {x € X: E(x) = a }are convex Va € (0,1].

An alternative definition of convexity: we call E convex if and only if

E(ty+(1—1)2) =2 min{E(y),E(2)},Vy,z€ X, t€][0,1].

Convex Fuzzy Set Non-convex Fuzzy Set

Figure (1.1)

1.3 Interval Arithmetic [11]

An interval is a subset of R such that A = [ay,a,] = {t: a, <t<a,,
aa, € R}.

If A=ay,a,]and B = [by,b,] are two intervals, thus the arithmetic
operations are:

Addition:

[ai, ay] + [by, by] = [ag + by, a; + by]
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Subtraction

[ai, az] — [by, by] = [ag — by, a; — by]

Product

[a;, az]. [b1, by] =

[min(a, by, a1 by, ay by, ayb,), max(a,by, ab,, a,by, asb,)]

Division
[ay, a;1/[by, by )=
[min(a, /by, a1/b;y, az /by, az/by), max(a, /by, ar /by, az/by, az/bs)]
by, b, #0

1.4 Fuzzy Numbers

A way to describe the vagueness and lack of precision of data is a fuzzy
number. The theory of fuzzy numbers is based on the theory of fuzzy sets
which was introduced by Zadeh [27] in 1965. The concept of a fuzzy number
was first used by Nahmias in the United States and by Dubois and Prade in
France in the late 1970's. Our definition of a fuzzy number is illustrating in

the following.

Definition (1.9) [16]: fuzzy number:

A fuzzy number is a fuzzy set v: R = [0,1] which satisfies:
e VIS upper semi continuous.

e v(x) = 0 outside some interval [a, d].

e There are real numbers b,c: a < b < ¢ < d for which
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a. v(x) is monotonic increasing on [a, b],
b. v(x) is monotonic decreasing on [c,d |,

cv(x)=1, b < x < c.

(0, x<a
f(x), a< x<bh
ie. v(x)=1 1, b<x<c (1.1)
g(x), c< x<d
0, x=>d

where f is an increasing function and is called the left side, while g is a

decreasing function and is called the right side.

v (x)

L J

[
1
1
1
1
1
1
1
1
1
:
t

a b C d
Figure (1.2)

% Also v is called symmetric fuzzy number if v(t +x) = v(t — x) for

allx € R, wheret = %.

7/

% The set of all the fuzzy numbers is denoted by E!.
* If v(x) in the intervals [a, b] and [c,d] is linear then it is called a
trapezoidal fuzzy number(which we will discuss later) and we write

v(x) =(a,b,c,d).
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Definition (1.10) [24]: Parametric form of fuzzy number:

An arbitrary fuzzy number in parametric form is represented by an ordered

pair of functions (v(r),v(r)), 0 < r < 1, which satisfy the following

requirements:

1. v(r) is a bounded left-continuous non-decreasing function over [0, 1].

2. v(r) is a bounded left-continuous non-increasing function over [0, 1].
3.v(M<v(r); 0 <r < 1.

Remark (1.1) [15]:

A crisp number «a is simply represented by

v =v(r)=a,0 <r < 1.

Also v = (v,v) is called a symmetric fuzzy number in parametric form if

+v(r) |
ve(r) = @Zv " is a real constant for all 0 <r <1

For example:
u=(2+r5—2r)is a fuzzy number andv = (1 + r,3 — r)is a

symmetric fuzzy number in parametric form.

1.4.1. Types of a Fuzzy Number

Here we will talk about most popular types of fuzzy numbers, namely:
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1) Triangular Fuzzy Number

pa (x)

Figure (1.3)

A triangular fuzzy number (TFN) as illustrated in Figure (1.3) is a special

type and the most common of fuzzy number and its membership function

U4 (x) is given by:

=

|
Q
IA
=

‘I‘w

Ny
|

IA

o

Pa (x) =1

7
S

)

\

2) Trapezoidal Fuzzy Number

pa (%)

n

Figure (1.4)

A trapezoidal fuzzy number (Tr F N) which illustrated in Figure (1.4) is a

special type of fuzzy number and its membership function p4 (x) is given by



(0) x—a’
x—a
—, a<x<h,
b—a

s (x) =<1, b<x<c,
d;x' C S ,
d—c
kO, <

1.4.2 Conversion from Fuzzy Number to Interval Using Alpha Cut

The a —cut operation can be also applied to the fuzzy number. If we denote
a —cut interval for fuzzy number A as A%, the obtained interval A% is
defined as following

A% =[x1 , x5 ]

We can also know that it is an ordinary crisp interval

1) Conversion Triangular Fuzzy Number to Interval
Let, a triangular fuzzy number defined as = (a4, a,, a3) , then to find & —cut
of A ,Va € [0,1] we first set @ equal to the left and right membership

function of A . That is,
x¢ —a

a="2—1 anda =
a,—aq as—as

az—x¥

Expressing x% in terms of @ we have, x{ = a(a, — a;) + a, and
x§ = —a(az —ay) +az
Therefore, we can write the fuzzy interval in terms of @ —cut interval as:

A%=la(a, —ay) + a;,—a(az — ay) + as].

Example 1.7:
LetA=(1,23),B=(-3,-2,—-1)and C = (3,4,5)
ThenA* = [1+a,3—a],B*=[-3+a,-1—-a],C*=[3+a5—al.
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Example 1.8:
In the case of the triangular fuzzy number A = (=5,—1,1), the

membership function value will be,

r 0 x < -5
XT+5 —5<x<-1
MA(x)=<1‘T" —1<x<1
0 1<x
\

a —cut interval from this fuzzy number is
xT+5 =a =>x=4a—-5
t—x =a=> x= —2a+1
A%*=[af ,a5 | = [4a —5,—2a +1]
If « = 0.5, substituting 0.5 for a, we get A%

A%*=[a?® ,a3® 1=[-3, 0]

Ag.s

cr = (.5 cut of triangular fuzzy number A = (—5, 1. 1)

Figure (1.5)

2) Conversion Trapezoidal Fuzzy Number to Interval

Let, a trapezoidal fuzzy number defined as A = (a4, a,, asz, ay)

By following the similar procedure as above, we can write the fuzzy interval
in terms of a —cut interval as following:

A%=[a(a; —ay) + a;,—a(a, — az) + ay).
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1.4.3. Fuzzy Arithmetic

Since A% is now interval, so fuzzy addition, subtraction, multiplication and

division are the same as interval arithmetic.

Definition (1.11) [20]:
As discussed above, fuzzy numbers may be transformed into an interval
through parametric form. So, for any arbitrary fuzzy number x =

x(a),x(a)), y = (X(a),i(a)) and scalar k ,we have the interval based

fuzzy arithmetic as

i. x =yifandonlyif x(a) = y(a) and x(a) = y(a).
i, x+y=(x(a)+yla), x(a)+y().
i x-y= @@ -5@), ¥@) - y(a)).
iv. xxy=[min(x(@y@),x(@)y@),x(@y@),x(a)y(a)),
max(x(a)y (@), x(@)y (@), x(@)y(@), x(@)y(a)].
v x/y = ((x (@, @)/ (@, 7)) = (x(@)/7(@), %@ /y(@).
provided X(a) =y(a) #0

K _{[kz(axki(a)] k>0
vi. kx = [kx(a), kx(a)] ,k<O.

Definition (1.12) [23]: Positive fuzzy number:

A fuzzy number A is called positive, denoted by A > 0, if its membership

function py (x)satisfies uy (x) = 0,vx < 0.

Definition (1.13) [23]: Nonnegative fuzzy number:
A fuzzy number A is called nonnegative, denoted by > 0 , if its

membership function u, (x)satisfies uy (x)=0,vVx < O.
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Definition (1.14) [25]: Equality in fuzzy numbers:
Two triangular fuzzy numbers N = (m,y,f)and M = (n,a,d) are said

to be equal, ifand only ifm = n,y =a and f = 6.

1.5 Fuzzy Linear System

In 1965[27] Lotfi Zadeh was submit fuzzy logic, which has had achieved
many successful applications in several areas that one can imagine. The
reason behind that they are many real-world applications problems are
involved the systems in which at least some parameters are represented by
fuzzy numbers rather than crisp numbers. Moreover a system of fuzzy linear
equations may appear in a wide variety of problems in various areas such as
engineering, mathematics, physics, statistic and social sciences.
A linear system of fuzzy equations divided into three categories
Ax = b (1.2)
— In the first category, the coefficient matrix arrays are crisp numbers, the
right-hand side column is an arbitrary fuzzy vector and the unknowns are
fuzzy numbers.
— In the second category, the coefficient matrix arrays are fuzzy numbers,
the right-hand side column is an arbitrary fuzzy vector and the unknowns
are crisp numbers.

— In the third category, all the coefficient matrix arrays, the right-hand side

arrays and the unknowns, are fuzzy numbers.
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Definition (1.15) [1]: Fuzzy linear system:

The n X n linear system

(A11%1 + QX + oo+ AipXy = by,

ar1X1 + aAyr,Xo + ... + aznxn = bz,
< ' ' o (1.3)
\ Qp1 X1 + ApaXy + oo + apnXxy = by,

where the coefficients matrix A = (a;;),1 < i,j < n is a crisp n X

n matrix and each b; € E*,1 < i < n, is fuzzy number, is called a fuzzy

linear system (FLS).

Definition (1.16) [1]: Solution of fuzzy linear system:

A fuzzy number vector X = (xq,X,...,X%,)" given by x; =

(xi(r),x_i(r)>, 1<i<n 0<r<1is called (in parametric form) a

solution of the FLS(1.3) if

n n
z aij.x]' = Z al'jx]' = bl"
j=1 j=1 —
n n _
z' Cll'ij = Z . Cll'jx]' = bi'
Jj=1 Jj=1

Following Friedman et al (1998) [17] we introduce the notations below:

(1.4)

X = (X1, Xg, o Xy = X1, —Xg e = Xp)"

b = (by, by, .. by, —by, —by, ... — by)*

S = (si j), 1 <i,j <2n,where s;; are determined as follows:
a;j 2 0= ;5 = Qjj, Siyn jin = Aij,

(1.5)

a;j < 0= S;j4n = —Qij, Sitnj = —Ajj-
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and any s;; which is not determined by (1.5) is zero. Using matrix notation
we have
SX =b»b (1.6)

The structure of S implies that s;; = 0 and thus

S = (f, g) (1.7)
where B contains the positive elements of A, C contains the absolute value
of the negative elements of Aand A = B -C. An example in the work of
Friedman et al (1998) shows that the matrix S may be singular even if A4 is

nonsingular.

Theorem (1.1) [17]:
(Friedman et al (1998)) The matrix S is nonsingular matrix if and only if the

matrices A = B — C and B + C are both nonsingular.

Proof. By subtracting the jth column of S, fromits (n + j)th column for 1 <

Jj < n we obtain

=9~ 5=

Next, we adding the (n + i)th row of S to its ith row for 1 < i < n then

we obtain
=2 57050 )=

Clearly, |S| =1S;] =|S;| =|B + C||B — C| = |B + C||Al.
Therefore
|S| # 0 if and only if |A| # 0 and |B + C| # 0,

Which concludes the proof.
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Corollary 1.1 [17]:
If a crisp linear system does not have a unique solution, the associated fuzzy

linear system does not have one either.

Definition (1. 17) [7]: Strong solution:

IfX = (x1, %Xy, ... Xy, —X1, —X3, ., —X,) | is a solution of (1.6) and for each
1 < i < n, when the inequalities x; < x; hold, then the solution X =

(X1, X2, e X, —X1, —X3, ..., —X) L is called a strong solution of the system

(1.6).

Definition (1.18) [7]: weak solution:

If X = (xq,%Xy, .. Xy, —Xq,—X5, ..., —X,,) | is a solution of (1.6) and for some
[ € [1,n], when the inequality x; = X; hold, then the solution X =

(X1, X2, e Xy, —X1, —X3, ..., —Xy) | is called a weak solution of the system

(1.6).

Theorem (1.2) [7]:

LetS = (g

strong solution if and only if (B + €)~1(b — b) < 0.

g) be a nonsingular matrix. Then the system (1.6) has a

Theorem (1.3) [7]:
The FLS (1.3) has a unique strong solution if and only if the following
conditions hold:
1) The matrices

A = B —(C and B + C are both invertible matrices .
2)(B+C)"Y(b—b) <0.
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1.6 Fully Fuzzy Linear System of Equations

Definition (1.19) [13]:

Consider the n X n fully fuzzy linear system of equations:

(8, ®%)®(3, ®%,)®---0(d, ®%,) =0,
(8, ®%) D, ®%)® (&, ®%,)=h,

: (1.8)
(&, ®%)®(F, ®%) @, ®%)=h,
the matrix form of the above system is
AQRx=b (1.9)

where the coefficient matrix A = (di j), 1<i,j<nis annXxn fuzzy
matrix and ¥;,b;, 1 < i < n are fuzzy vectors. This system is called fully
fuzzy linear system (FFLS).

Let us review some important definitions and arithmetic of fuzzy number.
We symbolically represent the Triangular fuzzy number as m = (m, , ).

In addition we denote the set of all Triangular fuzzy number by F(R).

Definition (1.20) [13]: Positive fuzzy number:

A fuzzy number m is said to positive (negative), shows as 1 > 0(m < 0)
where its membership function satisfies uz(x) = 0,Vx < 0(Vx > 0).
Consequently, a Triangular fuzzy number as M = (m, a, f) is said to be

positive if and only if m — a > 0.
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Definition (1.21) [13]: Arithmetic operations on fuzzy numbers:
For two fuzzy numbers M = (m, a, ) and i = (n,y, §) we define
1. Addition: m@ i =m,a,f) D (ny,d)=m+na+y B +9).
2. Opposite: —m = —(m,a, B) = (—m, B, a).
3. Multiplication of two fuzzy numbers : If m > 0 and 7 > 0, then
(ma,B) ® (n,y,8) = (mn,my + na,mé + np).

4. Scalar multiplication:

k@(m’a’ﬁ):{(km,ka,kﬁ), k>0

(km,—ka,—kB), k<O
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Chapter Two

Analytical Methods for Solving Linear Fuzzy Systems
We will discuss some analytical methods for solving the first category of
fuzzy linear systems (1.2) where the coefficient matrix are crisp numbers and
the right-hand side column is an arbitrary fuzzy vector and the unknowns are
fuzzy numbers. Moreover, we introduce some analytical methods for solving
the third category of fuzzy linear systems (1.2) which is called fully fuzzy
linear system, where all the coefficient matrix arrays, the right-hand side

arrays and the unknowns are fuzzy numbers.

2.1 Analytical Methods for Solving Fuzzy Systems of Linear Equations
(FLS)

2.1.1 Friedman's Proposal [17]

The idea of this approach is replacing the original system with matrix A by
(2n)x(2n) crisp linear system with matrix S which may be singular matrix
even if A is nonsingular matrix.

Consider the ith equation of the system (1.3):

ain (21, %) + o+ @ (2, 5) + 0+ i (20, %) = <&(7’);ﬂ(r)),

we have

QX1 + o+ QX+ o+ QX = Yi(7)

2.1)

Qi+ + TG+ 4+ Ay =y;(r), 1<i<n 0<r<1.
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From (2.1) we have two crisp n X n linear systems for all i that means we
can extended the fuzzy system (1.3) to a 2n X 2n crisp linear system as
follows:
SX =Y, (2.2)
where s;; are determined as follows:

a;j 2 0= s;; = Qjj, Siyn jin = Aijs

(2.3)
a;j <0 =S jin = —Qj, Sivnj = —Aj-
and any s;;which is not determined by equation(2.3) is zero and.
X1 [ V1]
Xn In
X=f =, Y Z|. (2.4)
—X1 _yl
[—X, -y,
The structure of § = (sij), 1<1i,j<2nimplies s;; = 0 and that
[BC
s=| ; B] (2.5)

where B contains the positive elements of 4, and C the absolute values of the
negative entries of 4, thatis,A = B —C .

now the system (2.2) yields to

_ BcCi[ X ] _ [ Y ]
SX—Y—)[C B”—Y =17 (2.6)
Thus fuzzy linear system (1.3) is extended to a crisp (2.6) which also can

be written as the following:

{Bg +C(-X) = 27
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Example 2.1:
Consider the 2x 2 fuzzy linear system
3x; — 4x; = Y1,
S5x1 + 2x, = y,.

The 4Xx4 system is

3x1 +4(=x,) = y1
5&1 + 2&2 = XZJ
4 x, +3(—x1) ==Y

5(=x) +2(=xz) ==y,

1.€.

S O W»n W
S b~ N O
hn W O O
|\ BN e an SN N

The linear system of equation(2.2) is now a (2n) X (2n) crisp linear system

and can be uniquely solved for X, if and only if the matrix S is non-singular.

On the other hand, the following example contradicts the notable fact that S

may be singular even if the original matrix A is not.

Example 2.2:

The matrix A of the following fuzzy linear system

2x1 + sz == yl’
3x1 - 3x2 == yz

1s nonsingular matrix, while
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S O W
W O O N
w N O O
S NN W O

is singular. So a fuzzy linear system represented by a nonsingular matrix A
may have no solution or an infinite number of solutions.

The next result eliminate the possibility of a unique fuzzy solution,
whenever the crisp system is not uniquely solved, i.e. whenever A is

singular.

Theorem 2.1 [17]:

If S~1 exists it must have the same structure as S, i.e.

s1= (IE) g) 2.8)

Now, to calculate E and D we write

-G 5= )
then we get
BD + CE =1, CD + BE = 0. (2.9)

By subtracting and adding the two parts of Equation(2.9) we obtain

D—-E=(B-071, D+E=(B+071, (2.10)
then we get,

1
D= 5[(3 +0O)t+B-0)1],

2.11)
[(B+C)™t —=(B-0)"].

N[ =

E =
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the solution vector actually is unique but may still not be a suitable fuzzy
vector.
The next result provides necessary and sufficient conditions for the unique

solution to be a fuzzy vector.

Theorem 2.2[17]:
The unique solution X of equation(X = S~1Y)is a fuzzy vector for arbitrary
Y if and only if S~ has nonnegative entries.

Proof: see [17].

Theorem 2.3 [17]:
The inverse of nonnegative matrix A is nonnegative if and only if A is a

permutation matrix.

To define the fuzzy solution of the crisp linear system, we consider the
following theorem:
Theorem 2.4 [19]:
Let X = {(ﬁ (r), —x_i(r)), 1<i< n} denote the unique solution of the
2n X 2n crisp linear system(2.2). The fuzzy number vector U =
{(w(), W), 1<i<n}defined by

u;(r) = min {x,(r), (1), (D, x (D)},

T (r) = max {x,(), %), (D, 51}
is called the fuzzy solution of crisp system SX =Y. If (ﬁ(r), —x_i(r)),
1 <i<mn,are all fuzzy numbers then y; (r) = Xi (r), wj(r) =x;(r),1 <
i <nandU is called a strong fuzzy solution. Otherwise, U is a weak fuzzy

solution.
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Example 2.3:
Consider the 2 X 2 fuzzy system
2x; +3x, = (24 2r,8 —4r),
5%, —x, = (4r, 6 — 2r).

The extended 4 X 4 matrix is

S O W DN
—_ o O W
DO O
S W = O

and the solution of equation (2.2) is

Xx1(1)
M| _
—x1(7)
—X,(7)
[—2/221 45/221 -—15/221 6/221] 2+ 2r
75/221 —30/221 10/221 —4/221|| 4
—15/221 6/221 —2/221 45/221 ||4r —8]
10/221 —4/221 75/221 -30/221)l2r—6

X= Sy =

1.e.
(L B0 128 L 284 T6r
JW =" MW E

<80 +128r 284 — 76r)
- =
1 221 ' 221 /)

94 + 62r 400 — 244r

6 =— 2 %) =
(94 + 62r 400 — 24-4-T)
- xz = B .
221 221

Here x; < x1, X, < X,; X4, X, are monotonic decreasing functions.

Thus the fuzzy solution x;, x, is a strong fuzzy solution.
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2.1.2 S. Abbasbandy and M. Alavi Method

This is an efficient method for solving an n X n system of fuzzy linear
equations. The original system with matrix A is replaced by two n X n crisp
function linear systems (in comparison with Friedman’s procedure [17] ).
The obtained solution vector will be symmetric solution if the right hand side
vector is symmetric [1].

Now, we will clarify the fuzzy solution

The it equation in (1.3) can be represent in the following equivalent form:

z aij £J+ z aUYJ :Xi (21261)
0

ajjz a;j<0
Z ai; X; + Z a;Xj =Y, (2.12b)
aijZO aij<0
thus,
z ag (% —xj) = z a; (% —x) =Y, — ¥ (2.13)
a;;j =20 a;;<o0

If we assume w; = x; — x; and v; = y; — y; then Equation(2.13) has the

Z Cll'jo - Z aijo =7, i = 1,2, e, n,

a;;j=0 a;;j<0

form

and in the matrix form

(B+OW =V,
Where W = (wy,wy, ...,w)t, V = (vq,0y,...,v,) and A=B —C. Let
X¢ = (x{,x5,..,x5) and Y€ =(y{,y5, ....,y5) where x;{ = (x;(r)+

x;(r))/2 and yi = (y;(r) +y;(r))/2 for1 < i <n.
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Theorem 2.5 [1]:
Let X be a fuzzy solution of FLS (1.3) where coefficients matrix A is
nonsingular matrix and Y is a fuzzy number vector. Then AX¢ = Y°,

Proof: Based on the equation (2.12), we have foreachi,1 <i<n

Z (a; (x; (r) ;&;(r))) N Z @y (x;(r) ;—gj(r))) _ AQ) erzi(r))

a;jz0 a;j<0

Cc c __ C
Z a;jxj + Z ai;Xj =Y,

a;;jz0 a;;<0

hence,

i.e., (B — C)X¢ = Y*¢, which conclude the proof.

Remark 2.1 [1]:
In previous Theorem, if Y is symmetric fuzzy vector then X is symmetric

fuzzy vector.

Remark 2.2 [1]:
For finding the solution of FLS (1.3), we must solve the following crisp

linear systems,
{ B+OOW =V,

(B — C)X® = Y°©. (2.14)

And after solving (2.14), it is enough to take
X = Xl-c — OSWL

xX; = x{ + 0.5w; foreachi, 1 <i < n.
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Example 2.4:
Consider the 2 X 2 symmetric fuzzy linear system
X, —xy = (2r,4 — 2r)
Xy +2x,=(6+3r,12 —3r)
thus
X1 — Xy = 21, X1 + 2x, = 6 + 3r,

xl—&=4—27‘, §1+2y2=12—37‘,

then
{(El_ﬁl)'l'(fz _Ez) = 4——47‘,
(El - &1) + Z(EZ - Ez) =6— 67‘,
which is equivalent to

{ Wl + W2 - 171, (l)
Wq + 2W2 = 172,

where v; = 4 — 4r and v, = 6 — 6r. Another crisp linear system is
C_ x¢ =2 =€
{ X1 — X2 Vi,
xy +2x5 =9 =ys,

By solving (i) and (ii), we have w; = 2 — 2r, w, = 2 — 21, x{ = ?, x5 =

g and therefore

B S« B pa
&1_3 2 Tlxl_g 2 r)l
_ 1(2 2r) _—7+1(2 2r)
27377 T ¥ =3Ty i

Here x; < x;, x, < Xx5; and X;,X, are monotonic non-increasing
and x;, x, are monotonic non-decreasing functions. Thus the obtained
solution x4, X, is a strong fuzzy solution.

In case of weak solution, we will take in our consideration Theorem (2. 4),

a weak fuzzy solution will be obtained in the next example .
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Example 2.5:
Consider the 3 X 3 non-symmetric fuzzy system
X1 — 2%y + 3x53 = (2r,5 — 37),
X1 — Xy +x3 =(=3,-2—-r),
3x1 + x5 + x3 = (1 + 2r, 3).
The two crisp linear systems are

W1+2W2+3W3=5—57',
W1+W2+W3:1_T,
3W1+W2+W3=2—27‘,

and

5—r
2 )

—5—r
2 )

3x{ +x5+x5 =2+,

(xf — 2x5 + 3x§ =

xX{—x5 +x§ =

The solution vectors in parametric form are W = (0.5 —0.5r,—3 +
3r,3.5 — 3.51)¢
And X°¢ = (—2.5833 —0.083r,4.8333 + 0.833r,4.9167 + 0.4167r)" ,
then we obtain

x; = (0.1667r — 2.833,—0.333r — 2.333),

x; = (—0.667r + 6.333,2.333r + 3.333),

x3 = (2.167r + 3.167,—1.333r + 6.667).
The fact that x, is not fuzzy number because. W, is negative, the fuzzy
solution in this case is a weak solution given by

u; = (0.1667r — 2.833,—0.333r — 2.333),

u, = (2.333r + 3.333,-0.667r + 6.333),

u; = (2.167r + 3.167,—1.333r + 6.667).



36

2.1.3 Fuzzy Solution by Using Fuzzy Center

This proposed method is based on the use of graphical method for solving a
system of n fuzzy linear equations with n variables by using fuzzy center.
The original system is replaced by a crisp linear system in which the
graphical method can be used to solve it. This method was applied for both
symmetric and non-symmetric fuzzy linear system. In comparison with other
methods, this method is efficient to obtain the solution, when the number of

variables in the fuzzy linear system is large [26].

Remark 2.3 [26]:
By Theorem 2.7, the fuzzy center x{ satisfies equation(1.3), consequently

we can find x{ from the equation (1.3) by using ordinary method.

We can represented the i*" equation in (1.3) by the following equivalent

form
Z al-j &1 + z al-j I] = Xl' (21561)
a;j 20 a;;<0
a;;=0 a;;<o0
xj(r)+x;(r) yim+y;(r)
where x{ == andyf = =——""for1 <i<n.

2

Theorem 2.6 [26]
The extreme points on the monotonic decreasing solution vector

(X1, X5, e e e ,Xn) can be obtained by replacing x; in terms of x; by using

fuzzy center in (2.15b) atr = 0 and r = 1.
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Proof:
¢ Xt L ¢ =
As we know x; = = which yields x; = 2x; — X;

Replace x; by using the above result in (2.15b) we get

Z aij % + Z ay; (2xf —=x;) =y, (r), i=12,..,n

a;jz0 a;j<0

which gives,

Z jj Xj — Z a;jx; =y, (r) —2 z aijxf ,i=12,..,n (2.16)

a;;z0 a;;<0 a;;j<o0
Obviously the above equations in (2.16) represents a crisp system when r =
Oandr = 1.

The crisp system can be solved by ordinary method, thus we have a solution

vector
(X1, X5, e e e ,Xp)atr=0andr = 1.
Theorem 2.7[26]:

The extreme points on the monotonic increasing solution vector
(CPE S T— , Xn) can be obtained by replacing X; in terms of x; by using
fuzzy center in (2.15a) atr = 0 and r = 1.

In similar manner we can prove the theorem (see [26] for more details).

After identifying the points in the graph by using the previous theorems, so
it is possible to find the equation of straight line joining the points by
ordinary method. That will give the complete solution to the given system.

The following examples are used to explain the above method.
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Example 2.6:
Consider the 2 X 2 symmetric fuzzy linear system
X1 —x, = (2r,4 — 2r)
Xy +2x, =(6+3r,12 —3r)
By using the Theorem 2.7, we have

Xy —x5 =2

xy +2x5 =9
Solving, we get
. 13
X1 =3
c 7
X3 =3

Now, by using equation(2.15a) we write
Xy — Xy = 21

X, +2x, =6+ 3r
By replacing X, by 2x5 — x, in x; — x, = 2r, and substitute the value of
x5 we get

X1+ x, = 13—4 + 2r

x, +2x, =6+ 3r
Put r = 0, thus the above system reduces to a crisp system that can be solved

to give
10
xjatr =0is —
- 3
4
x,atr =0is 3

Similarly, Put r = 1, the above system reduces to a crisp system that gives

.13
xatr =11is 3

7
&atr=1is§
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Now, by plotting the points (?, 0) and (?, 1) and finding the equation of

the straight line joining the two points, we get the required solution for x;.

_, 10
X =T+

similarly, by plotting the points (g ,0) and (% ,1) and finding the equation

of the straight line joining the two points, we get the required solution for

X2.
L4

X =T —.

=2 3

Finally, we use similar method to find x; and x,.

_ 16
Xy =T
_ 10
Xp=—7 T

The graphical solution is shown below in Figure (2.1).

(2,1 (2. 1)

08

02

Figure (2.1) : Graphical representation of the solution of example 2.6.
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Example 2.7:
Consider the 2 X 2 non- symmetric fuzzy linear system
X, —xy = (2r,4 — 2r)

Xy +2x, = (6+ 31,13 — 4r)

By using the Theorem 2.7, we have

Xy — x5 =
19 —r
x{ + 2x5 = >
Solving, we get
¢ 27—r
oo 156
-r
Cc __
X5 e

Now, by using equation (2.18) we write
Xy — Xy = 21
X1+ 2x, =6+ 37
By replacing X, by 2x5 — x, in x; — X, = 2r, and substitute the value of

xswe get s
+ or

3
X, +2x, =6+ 3r

X tx =

Put r = 0, thus the above system reduces to crisp system and then solve, we
get

xatr =0is 4

x,atr=0is1
Similarly, Put r = 1, the above system reduces to crisp system and then

solve, we get



41

.13
xjatr =11is 3

tr=1is =
x,atr is 3
Now, by plotting the points (4,0 )and ( %, 1) and finding the equation of

the straight line joining the two points, we get the required solution for x;.

X1 =37 +4.
similarly, by plotting the points (1,0 ) and(% ,1) and finding the equation of

the straight line joining the two points, we get the required solution for x,.

=—r+1.
Xp =37

Finally, we use similar method to find x; and x,.
2

Y. =5 ——
X, 3"
4 5

The graphical solution is shown below in Figure (2.2).

3
r < .0 & D

= . = - - - - = x = T - - - X
0.8l 1.6 2 a4l 32 F] 56

(1.0) .0 (4.0) t:—:.o) (5.0)

Figure (2.2) : Graphical representation of the solution of example 2.7.




42
2.1.4 Algorithmic Approach

In this technique the original system is reduced into two equivalent crisp
linear systems which can be solved by given algorithm. Also we have
showed that this method is applicable for both symmetric and non-symmetric
system in addition is suitable to obtain the solution of fuzzy linear system,
when the number of variables involved in the linear system is large.

Let's introduce the new technique for getting the solution of linear systems

in fuzzy environment. Consider the ith equation of the system (1.3):
8, (X% )+ +a (X, %) + o+ 3y, (%,,%,) = (¥, (N, 7(D),
we have
A Xy + o+ QX+ F Xy = Yi(1)

ailx_1+~--+aiix_i+---+ainﬂ=ﬁ(r), 1<i<n, 0<r<l.

As aresult of this we have two crisp n X n linear systems AX = Y and AX =
Y forall i,1 < i < n. Thus, the above system can be extended to two sets of
linear systems such as AX® = Y°, AX® = Yland AXO = YO, AXT =Y1by

replacingr = O0andr = 1.

Remark 2.4 [24]:

If a;; < 0, then the method can be continued after replacing x; by 2x¢ — x;
inAX =Y andx; by 2x —x;inX =Y .

We have introduced the following propositions, to solve the above system.
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Proposition 2.1[24]:

The crisp system AX = Ycan be divided into two crisp linear systems such

as AX° = Y%nd AX® = Y by replacing r = 0 and r = 1 respectively. The
0

extreme solution x° = (x2,x2,..x9) and x! = (x}, x,..x1) can be

obtained by directly from the above two crisp systems.

Proposition 2.2[24]:

The crisp system AX = Y can be divided into two crisp linear systems such
as AX® = Y%nd AX' = Y?! by replacing r = 0 and r = 1 respectively. The
extreme solution x0 = (x_f, E, E) and x! = (x_%, x_%, g) can be

obtained by directly from the above two crisp systems.

Proposition 2.3[24]:
Let(x%, x°) and(x%, x1) be the extreme crisp solution at7 =0 and r = 1

respectively. Then the solution of the fuzzy linear systems (1.3) is obtained

by using the extreme solution as x; = (xll —x} ) r+x? and x; = (xl1 -

x_lp)r +x_lpfori =12, ..,n

Now, to find the solution of the fuzzy linear system (1.3) we will introduce
the following algorithm. First, from the matrix AX = Y by using the fuzzy
linear system. Extend n X n system AX =Y into two systems such as AX =
Y and AX =Y. By replacing r as 0 in the above system, we obtain AX° =
Y°, AX° = Y°. Now, this crisp system can be solved by the direct method,

we get the extreme crisp solutions x° and x0, Repeat the same steps for r =
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1, we getx® and xI. We employ the extreme solution X° = (x° x°) and
X1 =(x1, F) to find the solution vector X = (x,x) by x; = (xl1 —x} ) r+

0 — _(1_.0 0 _
x_iandxl- = (xi —xi)r+xi fori =1,2,..,n.

The following flow chart will illustrate the procedure to find the solution of

FLS

START
v

! Read the coefficient matrix A = (a,;) .y, Withn
vanables of the Fuzzy Linear Svstem AX =Y.
v
Extend AXY = ¥ into two
systems AX = ¥ and AX =V.

|
v '

Putr =0, we get the crisp ‘ Putr = 1, we get the crisp

systems AX® = ¥°, AX° =Y°. systems AX! = ¥1, AXT=¥1,

v
[ Solving, we obtain the extreme solutions
v
' '
x® = (2,22, . xf = (x}x}, .2l
- (1 _ﬂJ atr =0 - (_1; _n} atr=1
x° = (x9,x2,..x0) xt = (xf,xd, o xd
Solution of the system is x;, = (xi‘ - x?)r+ xland ¥ = I[F— E]Ir +x_'° fori = 1,2,..,mn.

STOP

Figure (2.3): Procedure to find the solution of FLS

Thus, we present an example to illustrate the above algorithm.
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Example 2.8: Consider the fuzzy linear system
X, —xy, = (2r,4 —2r)
X1+ 2x, = (6+3r,12 — 3r)

The above system can be written as SX =Y

100 1 %1 2r

_11 2 0 O _| = _|6+3r
where § = 0 1 1 ol X = = andY = or—a |
0 0 1 2 —X, 3r—12

By replacing r as 0 in the above system, we get the following crisp system

SX°=Y°,
_x{)_
1 0 0 1 iy 0
1 2 0 0| yo_| *2 0 6
where S = 0 1 1 O,X = —F and Y = _a |
0 0 1 2 1 -12
—x3 ]

From the augmented matrix for the system SX° = Y° and solve the system

by Gauss Elimination method, we have

10 — 16
0 _ 0 _
=73 XT3
4 — 10
o_* 0 _
L=z 2T

Similarly by replacing r as 1 in the same system, we get the following crisp

system SX! =Y1,

X1
1 0 0 1 g g
_{1 2 0 O 1_| = 1 _
where § = 0 1 1 O,X —_;andY =15
00 1 2 _11 -9
_xz_
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Solving the system SX1 = Y1by the same method, we have

13 — 13
x%=—3, x11=—3
7 — 7

1_ 7 1_ "1
X2 3’ X2 3

By using the following formula

xX; = (xil—ﬁ)r+ﬁandx_i= (xll —x?)r+x? fori =1,2,...,n.

We get the solution of the given system as

10 _ 16
ﬁ=7‘+?, X1=—T+?,
4 4 _ 4 10
Xo =17 T = =1 T+—
z2 3’ 2 3
The graphical representation of the obtained solution is shown in Figure (2.4)
1 - S
/\
\
09} ) TR -
// \
08} ’ ¢ [ q\ 1
/ \
0.7} ’ ‘. ¢ ¢+ a
g ’ ¢ 4 * .
/ \
< 05| ' . 4 * .
04 ’ * ¢ ¢ 8
/ \
03 ’ . 4 s -
/ \
02+ . . 4 ¢ b
/ \
/ \
0.1~ ¢ ¢ /‘ .\ 4
/ \
0 — \ \ \ — \ \ \ N
1 15 2 25 3 35 4 45 5 55
X
Figure (2.4): Graphical representation of the solution of example 2.8
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2.1.5 Embedding Method

In the first we are going to define an embedding map to form a new crisp

system.

Definition 2.1[6]:
For an arbitrary fuzzy number X in parametric form the embedding 7: R? —

R? is defined as follows

7 (x(), %)) = (F) — x(), () + x(1)). (2.17)

Lemma 2.1 [31]:

Let X = (g(r),f(r)), y = <X(r),§(r)) are arbitrary fuzzy numbers and
let k be a real number. Then

(i) ¥ = y ifand only if 7 (X) = n(y)

@) (X + ) = n(%) + n(P)

(k) = 7 (k (x0), %)) = (KI(E) - x0), kG +x(0)))

Proof: see[6].

By employ the previous lemma 2.1, system(1.3) can be replaced by the

following parametric system:
n

T z (aij (x-(r),fj(r))) =T (Qi(r),gi(r)) ,i=12,..,n. (2.18)

j=1
Z ( <al, x;(r), % (r)))) = (Ei(r) — b;(1), b;(r) + Qi(r)),
Jj=1

i=12..,n. (219
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> dayl (50 - 1), 0y (£ + x,0)))

j=1

] - (El.(r) — b;(), b (r) + Qi(r)) i=12..,n (2.20)

O layl (70 = ,0), > ay (50 +x,0)))
j=1 j=1
= (b:(") = b,("), ;) + bi(1)) i = 1.2, ..,m. (2.21)

So we have now the following equations:

Z|aij| (ZO) -5@) =) - b@), i=12,...n (2.22)
Z a; (B0 +5,0) =@ +b@),  i=12..n (2.23)
j=1

Thus in order to solve the fuzzy linear system (1.3) we
must solve two (nXmn) crisp linear system of equation
(2.22) and (2.23).
the matrix form of systems (2.22) and (2.23) is as following:
BU=Z, AY =W (2.24)
. . n n .
where the coefficients matrix B = [|al~ f”i,j=1 and A = [ai f]i,j=1 are crisp

n X n matrices and the right hand side columns are the vectors
— — _ T

Z = (b1(r) = b1 (1), 5,(r) = b (1), .., by () = b))

W = (by(r) + by (r), by () + by (1), .., b () + b (1)
_ _ _ T

U= (%0) = (1), %, () = 2,(5), 0, T (1) — 2, (1)) and

Y = (x1 () +x,.(r), x%,(r) + x5, (1), .., X () + x5, (r))T are the solutions

of the crisp linear systems of equation(2.24).
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Theorem 2.8[6]:

The fuzzy linear system (1.3) has a unique solution if and only if the matrices
A and B are both nonsingular.

For the proof it is obvious.

Hence the solution vector is unique but it is still not an appropriate fuzzy
number vector.

So the following theorems will explain guarantied conditions for receiving
fuzzy number vector solution.

In order to obtain an appropriate solution we will use the following theorems.

Theorem 2.9[6]:
The unique solution X of equation(2.22) is nonnegative for arbitrary Z if and
only if B~! is nonnegative.

Proof: see [6].

Theorem 2.10 [6]:
The inverse of a nonnegative matrix A is nonnegative if and only if A is a

generalized permutation matrix.

Theorem 2.11 [6]:
The fuzzy linear system (1.3) has a fuzzy solution if B~ B~!—

A™1, B™! + A1 are nonnegative matrices.

Proof: let B! = (¢;;)and A™* = (s;;), 1 < i,j < nthen
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U=B1Z, Yy=A"1w (2.25)

u; =x;(r) —x;(r) and y; = x;(r) + x;(r), 1 <i,j <n, are the solution

of equation (2.22) and equation (2.23) respectively. Thus we can write: x; =

1
SO +uy)
n

n
_ 1
Xi = E 2 SijWij + z tijZij (226)
j=1

j=1

With replacement z; = (Ej (r) — b (r)) and w; = (Ej (r) +bj(r)) in

equation (2.26), then we obtain the next result

J=1

n n

-1 z : - 2 :
X = E (Sij + tl])b] + (Sij - tl])é] (227)

=1

Since b; is monotonically decreasing and b; is monotonically increasing for

all j, and according to assumptions of theorem, Xx; to be monotonically

decreasing. In a similar way: x; = 5 (y; — u;)is monotonically increasing.

Theorem 2.12 [6]:
with notation of theorem (2.11), the fuzzy linear system (1.3) has a fuzzy
number solution, if and only if

u; =0
[@ o (2.28)
drl— dr
where U = B™1Z andY = A™'W.
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Proof: let the fuzzy linear system (1.3) has a fuzzy number solution vector
X = (xq,%g, ., x)T which x; = (x;(r),x;(r)) . Thus, u; =x;(r)—
x(r)=0, i=12,..,n. Since x; = %(yi +u;) is monotonically

' : _ _ . . dx;
decreasing and x; = > (y; — u;)is monotonically increasing, then d—rl <0

dx; d(yi+u; d(yi—u; . du; dy;
and = > 0. Therefore MSO, 20U 5 g e — 2> Dioang
dr dr dr dr dr
du; dy; ay; du; . .
——2>——Con ntl |— < ——. Conversely is obvious.
= Consequently, o =" Conversely is obvious
Example 2.9:

Consider the 2 X 2 fuzzy linear system
X1 —x, = (2r,4 — 2r)
X1+ 2x, = (6 + 31,13 — 4r)
det(A) = 3 and det(B) = 1, consequently, equation(2.22) and equation

(2.23) will have solution as follow:
x1 () — x1(r) _ - _ _
7=(;) 5 @l(:) —Z(i)> =577=(54 )62 =G3)

-1
_ 2 1
v - (y1) _ <x1(r) +£1(T)> _ 4 = _31 31 (194_ r)
3 3

Y2 X, (1) + x,(1)
9 r
_[773
T
3

vr,0 <r <1, uyy =1—randu, =3 — 3r, both are nonnegative.
au

AlsoVr,0 <r <1, |%| < - ol i = 1,2. So the result will be

1
El = E(yl + ul) = 5 - 06677’,
1

X = E(yl —uy) =4+ 0.333r,
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1
EZ = E(yz + uz) =4 — 16677‘,

1
X2 = E(YZ —u,) =1+ 1.333r.

Therefore, the fuzzy number solution is
x1 = (2,0, % () = (4+0.333r,5 — 0.667r),

X, = (&(r),fz(r)) = (1 + 1.333r,4 — 1.6677).

A weak fuzzy solution will be obtained in the next example.

Example 2.10:
consider the 3 X 3 fuzzy system
—x1 + X, +x3=(—2,—1—71),
X1 —2x, +x3 =(2+71,3),
3x; +x, +2x3 = (r,2 —1),
det(A) = 13 and det(B) = —1, consequently, equation (2.22) and equation

(2.23) will have solution as follow:

Uy x1 (1) — 2, (1) -3 1 1 1—r 0
U=<UZ>= EZ(T)—&(T) =B_1Z=<—1 1 0)(1—"'):( 0 >
Us X3 (1) — x3(1) 5 =2 -1/ \2-2r 1—-r

V1 X1 (1) + x,(r) —0385 —0.077 0231\ /=3 —7
Y = <y2) =| %) +x0) |=4"W = < 0.077 —0.385 0.154 )( 5+r )
Vs %5 (r) + x5 (1) 0538 0308 0.077 2
1.232 - 0.308r
= (—1.848 - 0.462r>
0.08 — 0.237

vr,0 <r <1, uy =0,u, =0and u; = 1 — r are nonnegative.

d d d
Also vr,0 <r <1, |ﬂ Y2 s
dr dr dr

< 5
dr

duz

d
> _du ,
dr

- dr ’

according to that this (FLS) will not have fuzzy number solution.
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2.1.6 LU Decomposition Method

Theorem 2.13 [2]:
Let A be an n X n matrix with all non-zero leading principal minors. Then
A has a unique factorization:
A=1LU,
Where L is unit lower triangular matrix and U is upper triangular matrix.
In order to decomposition of matrix S, we must find both matrices L and U

such that S = LU, where

L 0 U U
[ = | ], U= [ 11 12],
Ly Ly, 0 Uy

Where L4 and L,, are lower triangular matrices, U;; and U,, are upper
triangular matrices.
Now we suppose that A = B — C has LU decomposition. So we have
s=[¢ sl=[ o vl

21 L2z 22
then
B = Ly,U1,, (2.29)
C = L11Us, > Uy, = L71C,
C =Ly Uyy = Ly = CUL,
B = Ly1Usp + Ly Upy,
Now we can write
B —CB™IC = L,,U,,. (2.30)
From (2.29) and (2.30) if B and B — CB~1C both have LU decomposition,

then S has LU decomposition.
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Theorem 2.14 [2]:
Let S be an n X n symmetric positive definite matrix then there exists a
unique lower triangular matrix L with positive diagonal entries such that
S=LL".

Therefore if the matrix S be a symmetric positive definite matrix then we

have
] [Ln ] L11 L€1
Ly1 Ly L%,
then
B = L11Lr€1, (231)

C = L1y = Ly = L7iC,

C =Ly Ly = Ly = C(LT)™Y

B = Ly1 L} + Ly LYy,

thus

B —CB™1C = Ly,L%,. (2.32)
By using Theorem (2.14) in LU decomposition method, the matrices B and

B — CB~C should be symmetric positive definite.

Example 2.11:
Consider the 2 X 2 non- symmetric fuzzy linear system
2x; +3x, = (24 2r,8 —4r),
5%, —x, = (4r, 6 — 2r).

The extended 4 X 4 matrix 1s
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2 3 0 0
s_|5 0 o 1
0 0 2 3
0 1 5 0
and
(2 3) (1 0Y(5 0
“\5 0/ \4 1)lo 3)
B—CB—16—2 3 ) (1 0Y5 0133
“ 15 0133) (04 1)\0 2947
and hence
1 0 0 0Y5 0 0 1
|04 1 0 0[l0 3 0 -04
10 0333 1 0llo 0 5 0133
0 0 04 1/l0 0 0 2.947

Now the exact solution is
x1 = (x1(r), x1(r)) = (0.362 + 0.57971,1.285 — 0.344r),

Xy = (%,(1),%,(r)) = (0.425 + 0.281r,1.809 — 1.104r).

The exact and the approximate solution are show in figure (2.5).

x1

0.9+

0.8

r

0.7+

0.6

0.5

0.4

0.3

0.2

0.1

0 L L 4 o
02 04 0.6 08 1 42 14 16 18 2
Figure (2.5): Graphical renresentation ot the solution of examnle 2.11
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Example 2.12:
Consider the 2 X 2 symmetric fuzzy linear system
X, —xy = (2r,4 — 2r)
Xy +2x,=(6+3r,12 —3r)

The extended 4 X 4 matrix 1s

1 0 0 1

1 2 0 0
S =

0 1 1 0

0 0 1 2
and

5 CB_1C_10.5_10 1 05
{1 2) 11 1)lo 15

and hence
1 0 00)1 00 I
1 1 00]l0 20 -1
10 051 0/0 01 05
0 0 1 1) 000 15

Now the exact solution is

x1 = (x1(r), x1(r)) = (3.333 +1,5.333 — 1),

Xy = (x2(r),x,(r)) = (1.333 +1,3.333 —1).
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The exact and the approximate solution using LU decomposition are show

in figure (2.6).

09F R * ' iy
07k ’ ' , . i

r—05

T
>
&>
‘““’““““ —
&
|

03 ' ' ' (.

0.2

T
-

-
T
-
|

] 'y +

Figure (2.6): Graphical representation of the solution of example 2.12

2.1.7 LU-Decomposition Method of Mansouri and Asady

In this subsection we want to proposed the efficient of this method and
compared with Abbasbandy [2] for solve a large linear system and extension
to very large system.

Theorem 2.15 [21]:

Suppose A is nonsingular square matrix, then A has a unique
decomposition such that

A=LU

where L is a unit lower triangular matrix and U is upper triangular matrix.
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Theorem 2.16 [21]:

Let A be an n X n symmetric positive definite matrix then there exists a

unique lower triangular matrix L with positive diagonal entries s.t

A=LL

Now as we show in the previous subsection (2.1.6), we can factor the matrix

A into LU using l; = 1. Thus to solve the linear system LUX = b

we solve the system LZ = b

fZl = bl,
ly171 + 1557, = b,,
< :
lknzy + lgpzy oo + lee-1)Zk-1 + 2k = by,
klnlzl + anZZ  RERREEE + ln(n_l)Zn_l + Zn = b‘)’l'
by forward substitution, and we obtain

(2.33)

fuzzy solution Z =

(24, Z, «.., Zn ) which we put it into upper fuzzy linear system UX = Z

(U11X1 T UppXp +oee e + UinXn = 24,
u22x2 + """ + uann Z2,
3
Ukk Xk o ALY + UpnXn Zy,
\ UnnXn = Zp,

(2.34)

and we solve this system using the backward substitution.

Example 2.13:

Consider the 3 X 3 non-symmetric fuzzy system

3x, + x, —x3 = (2r,5 — 3r),
—x,+3x,+2x3=(-3,-2—-71),

X1+ x, +3x3=(1+2r,3).
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When we solving this system by using LU —decomposition method, we
obtain

3 -1 1
-1 ] [ 0.333 ] [0 3.333 1667]
1

0.333 02 1 3

A=

To solve the given system, we use forward substitution to solve LZ = b,

that is
(2r,5 — 3r)
[ 0.333 ” ]= (-=3,—-2—71)
0.333 02 1 (1+2r,3)
This yields,
Z1 (2r,5 — 3r)
Z =12 ] =|(-3+0.667r,—0.333 — 2r)
Z3 (—=0.6 + 3.4r,3.6 — 0.87r )

Finally, we solve the system UX = Z using backward substitution, that is
3 (2r,5 — 3r)

[0 3.333 1. 667] [xz ] (=3 +0.667r,—0.333 — 2r)
0 (—0.6 + 3.4r,3.6 — 0.8r )

Then, we obtain

= (=15 + 3.333r,—-1.1667r)

X1 ] (—0.0667 + 4.933r,7.0667 — 2.2r)
(=0.2 + 1.1333r,1.2 — 0.2667r )

In the following example we will compare Mansouri and Asady methods

with Abbasbandy method [2].
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Example 2.14:
Consider the 3 X 3 symmetric fuzzy system
4x, +x, —x3 =1 +1r3—r),
—x1+ x,+ x3=(02+71,3),
2x1 + X+ x5 =(-2,—-1—1).

when we solve this system using LU —decomposition method, we obtain

-1
] [025 1 ][O 1.25 075]
04 1

To solve the given system, we use forward substitution to solve LZ = b, that

A=

is

1+r,3-r)
[025 1 ” ]= G+

04 1 (=2,—-1—1)
This yields,
Zq 1+r3-r)
7 = |z, ] = [(2.25 + 1.257,3.75 — 0.257)
Z3 (-5+4+0.6r,—2.4—2r)

Finally, we solve the system UX = Z using backward substitution, that is

1+r3-r)
lO 1.25 0. 75] lxz ] (2.25 + 1.257r,3.75 — 0.257)
(=54 0.6r,—2.4—2r )

Then, we obtain

X=X |= (3+2r,5.5—-0.57)

X ] (—2.1667 + 0.257, —0.5 — 1.1667r)
x3 1 |(~2.1667 + 0.5r,—0.5 — 1.1667r )

Clearly in this example A is nonsingular but the 6 X 6 crisp matrix S in the

following form
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4 1.0 0 0 1
01 1100
c_lz2 11000
001410
1000 11
00 0 2 1 1

is a singular matrix, and therefore the proposed methods in (Abbasbandy et

al) [2] can not be used to solve this system.

2.2 Analytical Methods for Solving Fully Fuzzy Linear System of

Equations(FFLS)

In this section, we will discuss the third category of fuzzy system of linear
equations where all the coefficient matrix arrays, the right-hand side arrays
and the unknowns, are fuzzy numbers, we will apply the matrix inversion
method, Cramer’s rule and LU decomposition method.

Our target in this section to obtain a positive solution of a fully fuzzy linear
system (1.9) where A= (4,M,N)>0,b= (b,g,h) >0 and x =

(x,y,z) > 0. Thus we have

(A,M,N)® (x,y,2z) = (b, g, h). (2.35)

In this section some direct methods to solve the Equation(1.8) is presented:

2.2.1 Matrix Inversion Method [13]

By using the approximation formula for the extended multiplication of two
fuzzy numbers Equation(2.35) may be written as
(Ax,Ay + Mx,Az + Nx) = (b, g, h)

Now using definition (1.14), we get



Ax = b,
Ay +Mx = g, (2.36)
Az + Nx = h.
1.e.
Ax = b,
Ay = g — Mx, (2.37)
Az = h — Nx.

We assume that A is nonsingular matrix, thus equation (2.37) may be
written as
x = A"1b,
y=A"1g — A 1Mx, (2.38)
z=A"1h—-A"1Nx.
Therefore , the fuzzy solution (x, y, z)can be easily obtained by using the

above equation (2.38).

Example 2.15:

Consider the fully fuzzy linear system of equations:
(5,1,1) ® (x1,y1,21) @D (6,1,2) @ (x3,¥,,22) = (50,10,17)
(7,1,0) ® (x1,y1,21) @ (4,0,1) @ (x2,¥2,22) = (48,5,7)

thus we have

4[5 6 11

Sy o4lr M= Nz[(l)i

o2 o= (4] 4=

7 dllul=liel= L2l =14

So
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Similarly i
; 46}] [;Z]z[fo]_[g ﬂ [[5}]=> ﬁ]z E
11

and
0
> Al =11-0 =[] - !

Therefore the solution is

2.2.2 Cramer’s rule [13]

Cramer’s rule is another method for solving the fully fuzzy linear system of
equations, which states that each entry x; in the solution is a quotient of two
determinants.

For solving FFLS (1.9) with this method, consider equation (2.37). So we

may write
_ det(4®)

L = " 1 ./ AN .:1121-";
1T geta) " "
where A® denotes the matrix which obtained from A by replacing its i*"

column by b . then using solution x , we have

_ det(4'®)

= 2 =12,
Yi= Tgeta) "
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det(4"®)

i — T 3 A< | = 1)2;'"1
A7 Tdeta) "
whereA’® and A”® denotes matrix which obtained from A by replacing its

th column by g — Mx and h — Nx , respectively.

Example 2.16:

Consider the following fully fuzzy linear system of equations:

(4.3.2) ® (x1,y1,21) @ (5,2,1) ® (X2,¥2,72) D (3,0,3) & (x3,y3,23)
= (71,54,76)

(7,4,3) ® (x1,¥1,21) @ (10,6,5) ® (X2,¥2,22) @ (2,1,1) ® (x3,¥3,23)
= (118,115,129)

(6,2,2) @ (x1,¥1,21) © (7,1,2) @ (x2,¥2,22) @ (15,54) @ (x3,¥3,23)
= (155,89,151)

In matrix form

(74,3) (10,6,5) (2,1,1) ||y|=((118,115,129)

432 21 303 ]« (71,54,76)
6,2,2) (7,1,2) (15,5,4) H (155,89,151)

Thus we have

4 5 3 3 2 0 2 1 3
A=|7 10 2|, M=|[4 6 1|, N=|3 5 1]
6 7 15 2 1 5 2 2 4

71
b =]118|,

155

o=pil el

Where det (A) = 46
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Now we calculate A' ,4% and A3 which obtained from A by replacing its i*"

column by b .
71 5 3
A'=1118 10 2 |= det(4!) =184
155 7 15
4 71 3
A2 =17 118 2 |= det(4?) =368
6 155 15
4 5 71
A3 =7 10 118|= det(43) = 230
© 1BZ 155 368 230
Therefore we have, x;y =— =4, x, =—=8 and x3=—=5
46 46 46

4
1.€. X = [8]
5

Now to calculate y and z we first need to calculate A’ and A”®
denotes matrix which obtained from A by replacing its i*" column by g —

Mx and h — Nx , respectively.

o-we= ] -[s & 1o] [
)l s -1z

26 5 3
AM =46 10 2 |= det(4A'W) =92
48 7 15

h—Nx =

Now,
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4 26 3
A@D =7 46 2|= det(4'®) =138
6 48 15
4 5 26
A® =17 10 46|= det(4A'®) = 46
6 7 48
92 138 46
J’1—4_6—2» Y2 —4_6—3 and y3 ~ 26 1
2
y=|3
1
45 5 3
Similarly, ~ A"® =[72 10 2 |= det(4"®) =92
107 7 15
4 45 3
A'@ =17 72 2|=det(4"?®) =230
6 107 15
4 5 45
A'® =17 10 72 |=det(4"®) =187
6 7 1073
92 230
So,zl=g=2,zz=z—5 and z; = =4

W

Therefore the solution of this problem is

(4,2,2)
% =|(83,5)
(5,1,4)
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2.2.3 LU decomposition method for solving FFLS[13]

The coefficients matrix of the linear system of equations in the LU
decomposition method is factored into the product of two lower and upper
triangular matrices. This method is frequently used to solve a large system
of equations. Consider the system of equation (1.9), where 4 is a non-
singular matrix. we start by writing the matrix 4 as the product of a lower

triangular matrix L and an upper triangular matrix U in the following form

A=LQTU,
Where A = (A,M,N), L = (Ly,Ly,L3) and U = (U, Uy, U3).

Thus we have

(A, M; N) = (Lll LZ; LB) ® (Ull U2; U3)

(A, M,N) = (L,Uy, L U, + LUy, L Us + L3Uy)

1.e.
A=1LU,, (2.39)
M = LU, + LUy, (2.40)
N =LU;+ L3U; (2.41)

In order to obtain the unique solution we either set all the diagonal elements
of L as 1 or all the diagonal elements of U as 1. ForU;; =1, i = 1,2, ...,n,

this method is called the Crout’s LU decomposition method and for L;; = 1,
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i =1,2,...,n, this is called Doolittle’s method. Here in this chapter we will
use Doolittle’s factorization method.
First of all we calculate L; and U; suchthat A = L,U,;, where L, is alower
triangular crisp matrix, having the diagonal of 1’s and U; is an upper

triangular crisp matrix with the general diagonal.

1 0 0 0 u11 u12 u13 uln rall alZ a13 aln'l
‘Vl21 1 0 0 ‘HV 0 u22 u23 uan a21 a22 a23 a2n
lsi I3 1 .. 0 | 0 0 Usz ... Uzpl= a§1 a?z azz ... OQ3n

lnl ln2 ln3 1Jl 0 0 0 unnJ lanl Ay QAnz - annJ

which amounts to n? equations in the n? unknowns lijand u;;. The

computations runs as the following:

uj=aq, j=12,.,n (2.42)
Lty = a = ly = Z—l i=12,..,n (2.43)
11

Continuing in a recursive way forr = 2,3,...,n, we alternatively get the

rows of U; and corresponding columns of L;to be

r—1

Upj = Qpj — 2 Lk, J=rr+1.,n (2.44)
k=1

Each row will follow by the corresponding column of L,

r—1
Ajyr — Zk=1 likukr
lT‘j =
Uy

i=r,r+1,..,n, (2.45)

We place the diagonals of L, and L5 to be consist of 0’s not 1°s.
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By using equation(2.40), and [, = (l'ij) with diagonals of 0’s and U, =

(U';;) we may write
n
mij = z 'y, 1<ijs<n, I'y=0 (2.46)
=1

Since L; and U; in hand, we can continue our approach to the second step

for L, and U, as follows:

wyj=my;, j=12,..,n, (2.47)

Vy=—2—" 1 =1 ..n (2.48)

We continue in a recursive way, for r = 2,3,...,n we alternatively find the

rows of U; and corresponding columns of L, to be

wrp=my— LZiluyy), j=rr+1..m, (2.49)

My — e Uy — S Ll
ry, = T = it S Zisthir g 0 (250)
Tr

Similarly by equation(2.41), and L3 = (I"';;) and U3 = (U"';;)we may write

n
nij = Z Lt + U geug;, 1<i,j<n (2.51)
k=1
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By continue our approach to the second step for find L3 and U; as follows:

12 .
Uy =ng, j= 1,..,n,

(2.52)
nyg — Lu”’
l”il — %' 1 = ]_’ v, L
11

Finally we find the rows of U3 and the corresponding columns of L; for r =

2,3, ...,n to be as follow:

r—1

u"’p; =ny — Z(lrku”kj + l”rkukj), j=rr+1,..,n,
k=1

(2.53)

r—1 gn1n r 17
" Ny — D=1 U ikUier — Dk=1 L 'kr .
U, = ,i=rr+1..,n
uTT

The solution to the problem A @ % = b could be obtained by a two step

triangular solve process

~

AQRx=b
IQU®x=bh
= L®x =h
Where T ® % = x’ (2.54)

By solving system (2.54), we obtain the solution x.
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Example 2.17:
Consider the following FFSLE

(12,8,20) (14,12,15)  (8,8,10) (142,139,257) |.

(6,1,4) (5,2,2) (3,2,1) X (58,30,60)
-
(24,10,34) (32,30,30) (20,19,24) z (316,297,514)

1n matrix form

ARx=0b
where
6 5 3 1 2 2 4 2 1
A=\|12 14 8|, M=|8 12 8|, N=|20 15 10
24 32 20 10 30 19 34 30 24

From equations (2.42), (2.43), (2.44)and(2.45), we can calculate the

elements of L, and U;.

U1 = A11 =66, Uip = Q12 = 5:12 Uy3 = aq3 = 3. ”

aiq azq asi
l =—=—=1’ =—=—=2, l = =—=4,
11 W, 6 21 Uis 3 31 Uiy 6

u22=a22—121u12=14—2><5=4—,

u23=a23—l21u13=8—2><3=2,
azz_l21ulz_14_2x5_

lyr = =1,

22 Usyy 4

l _a32—l31u12_32—4><5_

32 = = =
Uso 4

U33:a33_l31ul3_l32u23:20—4‘X3_3X2:2,

l33 == 1.
Thus we have,
1 0 O 6 5 3
Li=12 1 0 Uuy=10 4 2
4 3 1 0 0 2
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To find the elements of L, and U,we use equations (2.47), (2.48), (2.49)

and (2.50).
I _ _ l _ _ l — _
Uy =my =1, Uy =My =2, U3 =my3 = 2.
! 1A
, my —luyy O , My —lpyu'y; 6
l11: :_:0, 121:—:_:1,
Uqq 6 Uqq 6

!
Mzy — lz1Uqg

6—1
Uqq 6

! ! !

Uop = Myp — Uy — Upquy, =12 -4 -5 =3,
4 — 4 4 — —
Uopz = My3 — w3 —lyuy3=8—-4—-3=1,

12 _ ! ! 14 ! —
W3z = M3z — l31U'13 = Uz1Uy3 = l3pUp3 — U'3pUp3 =19 -8-3 -3 -4

=1=1,
- M3z — U315 — [31U'1 — I35U'5; _ 30-5-8-9 _
32 Uz2 4 '
Thus we have,
0 0 O 1 2 2
L, = [1 0 0] U,=10 3 1]
1 2 0 0 0 1

In similar way, we can use equations (2.47), (2.48), (2.49) and (2.50). To

find the elements of L3, and U , we obtain

0 0 0 4 2 1
Ly=[2 0 0 Us;=10 1 2
3 1 0 0 0 3

Therefore the LU decomposition method of fuzzy matrix 4 is
(1,0,0) (0,0,0) (0,0,0) (6,1,4) (5,22) (321)
A=ILQ®U=[(212) (1,00 (0,00)|&®](000) (431 (21,2
(4,1,3) (3,21) (1,0,0) (0,0,0) (0,000 (2,1,3)

To solve the fully fuzzy linear system we will start by solving the system of

equations I ® x =b
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1.€.

(2,1,2) (1,0,0) (0,0,0) (142,139,257)

(1,0,0) (0,0,0) (0,0,0) x' (58,30,60)
°h)-
(4,1,3) (3,21) (1,0,0) z' (316,297,514)

Using Cramer’s rule we can easily compute X' as

x' (58,30,60)
X = ly’] =[(26,21,21)
z' (6,4,11)
Finally we solve the fully fuzzy linear system of equations U @ ¥ = x'
i.e.
(0,000 (4,3,1) (2,1,2)||y|=1(26,21,21)

(6,1,4) (522) (321 rc] (58,30,60)
(0,0,0) (0,00) (2,1,3)|"z (6,4,11)

Again we obtain by Cramer’s rule

X (4,1,3)
%= H = [(5,0.5,2)
z (3,0.5,1)
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Chapter Three

Numerical Technique for Solving Linear Fuzzy Systems

In this chapter we will present some numerical technique for solving FLS

and FFLS.

3.1 Numerical Methods for Solving Fuzzy System of Linear
Equations(FLS)
In this section we will apply the following iterative schemes for solving

(FLS).

3.1.1 Iterative Jacobi and Gauss—Sidel methods

An iterative technique for solving an n X n linear system AX = b starts with
an initial approximation X° to the solution X and then generates a sequence
{X (k)}:): 0 which converges to X. Most iterative technique involve a process
of converting the system AX = b into an equivalent system X =TX + C,

where T 1s an n X n matrix and C is a column vector. After selecting an

initial approximation X° we generate a sequence of vectors {X (k)}:’:O

defined by

X©O =7xk-D 4 ¢ k>1.

Definition 3.1[5]: Diagonally Dominant Matrix: A square matrix 4 is
called diagonally dominant if |aij| = Z?=1’i¢j|aij|, j=12,..,n. Ais
called strictly diagonally dominant if |ai j| > Z?=1,i¢ j|ai j|, j=12,..,n

At the beginning we are going to presented the following theorems.
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Theorem 3.1 [ 4]:
Let matrix 4 in equation(1.3) be strictly diagonally dominant then both the

Jacobi iterates and Gauss - Sidel iterates are converge to A~'Y for any X°.

Theorem 3. 2 [ 4]:

The matrix A in equation(1.3) is strictly diagonally dominant if and only if
matrix S be strictly diagonally dominant.

Proof: Let A be column strictly diagonally dominant matrix,

i.e. |al-j| > Z?=1,i¢j|aij|, j=12,..,n

By considering the structure of S we have
Sij = Sn+in+j = Aij > 0 S Spyij = Sinyj = a;; =0,

(3.1)
Sij = Sn+in+j = Aij =09 Sy = Singsj = ;5 <0,
also
2n n n
Z |Sij| = Z |Sij| + Z |Sn+ij|: j=1,..,2n.
i=1,i#j i=1,i#j i=1,i%#]

IfSij > O, l,] = 1,2, ey, n, then

] 1,
n n
Z. ) .|Si.n+j| + Z _ _|5n+i,n+j|, j=1,..,n
1=1,i#] i=1,i#]j

From (3.1)
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on (2 sl <layl=1sf

> lsul =1

ey kz Tsul <layl = [snrinil 7=
then

2n

> lsul <lsyl

i=1,i#j

Now suppose that S be column strictly diagonally dominant, we have
2n n n
Z [si;] = Z [si;] + Z [snis-

i=1,i#j i=1,i#j i=1,i#j

Taking into consideration (3.1) and A = B — C we have

2n n
z |Sij| = Z |aij| < |Sjj| = |ajj|; j=12,..,n
i=1,0#) i=1,i#]

since s;; =0,j =n,..,2n. It can be hold for row strictly diagonally

dominant too. The proof is complete.

From [4], without loss of generality, suppose that s; > 0 for all i =
21, and letS =D + L + U where

N R T

(D))ii=s;>0, I=1,2,..,n, and assume S; = D; + L; + U;. In the

J acobi method, from the structure of SX =Y we have

ol s L2l

then
X = D1_1X - D1_1(L1 + U)X — Dl_lszy;

(3.2)
X =D;YY — DY(Ly + U)X — DS, X.
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Thus the Jacobi iterative technique will be

—k
X1 = Dr'Y — DM (Ly + UDX* = DS, X,

(3.3)
—k+1 — —k
X =D{Y — DML, + UDX — D;lszgk, k=01,..
—k+1
The elements of X**1 = (Xk+1 X ) are
1| = _
@) = — |y = Y sk - Zsm+, % ()],
Sii |~ |
j=1,j#i
n
—k+1
= (T~ Y s - zsmﬂ £
b j=1,j#i

k=012,.., i=12,..,n
The result in the matrix form of the Jacobi iterative technique are X*+1 =

PX¥ + C where

P = [_Dl_l(l'l + Uy) —Di'S, — [Dl_lxl X = [K]
Y —D7Y(L, + U pyty|’ x!
In the Gauss— Sidel method, we have:
SR = Y v | =R =
—_|+ —_|=1|= 34
52 Dl + L1 X 0 Ul X Y ( )
then

X=(Dy+L) Y —(Dy + L) U X — (Dy + Ly)71S,X,

(3.5)
X=(D;+L)7 Y —(Dy + L)X — (Dy + Ly)71S,X.
Thus the Gauss— Sidel iterative technique will be

—k

XK1 = (Dy + L)Y — (D + L) U X — (D + L) 718X,

(3.6)
—k+1 15 -1 -1¢ yk
X - (Dl + Ll) Y - (Dl + Ll) U1 X - (Dl + Ll) Sz& y

k=0,1,..
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—k+1n\¢
So the elements of X*+1 = (Xk’r1 X ) are

i—1 n

1
) = — |y = ) s = ) sk - Zsm,x] ™|
b j=1 j=i+1
i—-1
. 1
A O ORI AGE Z SEAGE Z Sinjxf ()],
Ll j=1 j=i+1

k=012,.. i==12,..,n
The result in the matrix form of the Gauss—Sidel iterative technique are

Xk+1l = pxk 4 C as

p= [—<01 + L))" =Dy + Ll)‘lsz] _ [(01 + Ll)‘lxl
=D+ L), =D+ L)TMU T (D + L)Y
X
=

From Theorem 3.1and 3. 2, both Jacobi iterates and Gauss— Sidel iterates
are converge to the unique solution X = A=Y, for any X°, where X € R?"

and (X, X) € E™.The stopping criterion for a given tolerance € > 0 is

—k+1 —k
I -x| lx+t - x4

T R

3.1.2 Successive over relaxation iterative method

<e¢ k=0,1,..

In this section we turn next to a modification of the Gauss—Sidel iteration

which known as S OR iterative method. By multiply system of (3 4)in D~

[+ Dy'Ly D;1U1 Y
B e [
S, 1+D1 Ly 01 U, 0111/

Let D1_1U1 - Ul’ D1_1L1 - L1 then
[+ L 0 11X U, S,11X Dty

PSRRI 1= B3 v | = g = 69
| S T+ L]y 0 Ully D;lY

hence
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I+ L)X =D7'Y — Ui X - 5,X,

(3.9)
(I+L)X =D -UX-S,X
for some parameter w:
(I + wl)X = wD7Y — [(1 — w)] + wU;]X — wS,X,
(3.10)

(I + wLl)X = wD7Y — [(1 — w)] + wU;]X — wS,X.

If w = 1, then clearly X is just the Gauss—Sidel solution (3.9). So the SOR
iterative method will be:
X1 = (I + wL))twD™YY — (I + wLy) (1 — w)] + wU, ] X*
—k
- (I + a)Ll)_lezX )
(3.11)
—k+1 1 1T 1 —k
X =U+wl)"oD™'Y -+ wl) ' [(A—-w)+wU;]X
— (I + wl) twS, Xk

Consequently the result in the matrix form of the SOR iterative method are
XK+ = pXX + C where

P
[0+ oL) A - o) + U] —(I + wl) tws, ]
B —(I 4+ wLy) *wS, —(I 4+ wL) ' [(1 = ) + wU, ]V
[+ wLy) 'wD™!
L+ wL) *wD )
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For 0 < w < 1 this method is called successive under—relaxation method
that can be used to achieve convergence for systems that are not convergent
by the Gauss—sidel method.
For w > 1 the method is called successive over—relaxation method (SOR)
that can be used to accelerate of convergence of linear systems that are

already convergent by the Gauss—sidel method.

Theorem 3.3 [5]:
If S is appositive definite matrix and 0 < w < 2 then the SOR method

converges for any choice of initial approximate vector X°.

3.2 Numerical Methods for Solving Fully Fuzzy Linear System of
Equations (FFLS)

In the previous chapters, we have presented some direct methods for solving
fully fuzzy linear system of equations. In this section, two iterative methods
namely: Gauss-Jacobi, and Gauss-Seidel methods are presented to find the
solution of fully fuzzy linear system of equations.
3.2.1 Gauss- Jacobi method
To solve fully fuzzy linear system of equations we already discussed an
approach in chapter 2. According to which the positive vectors x, y and z can
be found by solving following linear system of equations .
NZW corlljsider the FFLS Ax = b. by using equation (2.36)

x =

Ay+Mx =g
Az+ Nx =h
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We can write the previous equation as
Ai1X1 + AppXy + o+ Appxy, = by
(@ny1 + @y + -+ Q¥n) + (Mygxy + Mpxy + -+ M) = g, 1 <i<m
(@21 + Qpzy + -+ Aipzn) + (M Xy + NpXp + -+ Ny X)) = Ny (3.12)

Using above equations, we can say
n

p
a;X; = b; — Z aijX;
Jj=1,j#i
n n
{QiiYi = gi — Z a;;yj + Zmijxj , 1sis=na; #0  (3.13)
j=1,j#i j=1
n n
a;z; = hi - Z aiij + Z Tlijx]'
\ j=1,j#i j=1
Hence
( 1 n
Xp = a_(bl - z aijx;)
u j=1,j#i
1 n n
<YL:;(.91_ 2 al]yj+2mljxj ), 1<is<n (3.14)
H j=1,j%i j=1
1 n n
Z; _a_(hl_ z aijzj+ZnUx] )
\ u j=1,j#i j=1
This can easily be written as
n
(et 3 e
x. = —_—— a..x. —
l ag L7 ay
Jj=1,j#i
n n
1 9i o<
{yi=—— iyt p myX |+, Isisn (3.15)
122 . ) - 2%
Jj=1,j#1 j=1
n n
A DI
Z: = —— A::7Z: N::X:
l Qi v 7 U Aji;
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Equations (3.15) can be written in matrix form as the following:

b=

where M is called the iteration matrix and [ is a vector.

+B (3.16)

To solve system(3.16), we can consider initial approximation X (@ of the
solution vector and then we substitute it into the right hand side of equation
(3.16). The solution of equation (3.16) will give a vector XV, which is
better approximation to the solution than X(®. We continue this process
until the successive iteration X converges to the solution up to desired
accuracy, which suggests the following iterative process as the Gauss-Jacobi

method for solving a fully fuzzy linear system of equations:

( 1 -
2 k4D = = (b - Z a;;x;) (3.17)
w j=1,j#i
1 n
L = —(gi=| D ayy® +2m 5™ D isi<n (318)
u Jj=1,j=#i
1 n
2z, = — (h; — z a;jz;" + Z n;2 %)) (3.19)
. u j=1,j%i j=1
In general,
et ) £
yED | =M [y® [+ 8, (k=0) (3.20)
7+ 1) o)

Where M is called the iteration matrix of the iterative method and f is a
vector. x**1D and x® denote solution at k™ and (k + 1)t" iteration

respectively.
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Equation (3.20) can be written in the matrix form as:
— 1 -

iz
k
xikﬂ) 1 0 a;; @3 - Qin xf ) by ]
x§k+1) azz a21 0 a32 o a2n xgk) b2
= — 1 az; dsz 0 - azuf| .. [—|bs
s 0
[x,(lkH)J Ani Gnz  Apz 0 |_xnk)J bn
1
ann

or
x®*D = DL, + U)x® + Db

Similarly, equation (3.18) and (3.19) can be written in matrix form
respectively as

y®*tD = —pri(L, + U)y® + Dilg

204D = —pri(L, + U)z® + Dk

Sufficient condition [14]:

The Gauss — Jacobi iterative method for solving fully fuzzy linear system of
equations A @ ¥ = b converges if and only if the classical Gauss- Jacobi
iterative method converges for solving the crisp linear system of equations
Ax = b derived from the corresponding fully fuzzy linear system of
equations.

If the matrix A in the crisp linear system of equations Ax = b is strictly
diagonally dominant i.e., |a;|> Z}l=1|aij| ,i =1,2,3,..,nthen the
J#i

iterations obtained in classical Gauss- Jacobi iterative method converges for

any initial approximation X,
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3.2.2 Gauss- Seidel method
Another well-known iterative method for solving FFLS is the Gauss—Seidel
method.

Equation (3.12) can be written as:
n

(
2 al-jxj = bi - 2 al-jxj,
j=i i>i

4 Eaijyizgi— Zauy] zmux] , 1<i<n,
j<i j>i

\j<i Jj>i

Thus, Gauss- Seidel method is defined as:

( [ n n

1
xi(k+1) L Zaljxj(k+1) Zall J(k) ‘
Qii | j<i j>i
[ n
1
Kk+1 Kk+1 K ,
Ly o g Zauy]( ) Zauy] Zmu Wl1<i<nk=0
Qi j<i j>i
[ n n n
1
Zi(k+1) =— hy — Z a; Zj(k+1) Z a; Z](k) Zn’-]xj(k) (3.21)
\ u | j<i j>i j=1

or, in matrix form the system can be written as
(Dy + L)x**D = p — y,x®
(D4 + L)y* ) = g — Uyy® — Mx®
(Dy+ L)z* Y = h — U, z® — Mx®

where D4, Ly, U, are diagonal, lower triangular and upper triangular
matrices respectively.
Therefore the Gauss-Seidel iterative method for solving fully fuzzy linear

system of equations is as follows:
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x®*D = —(Dy + L) " 0ux® + (Dy + L) th
y &Y = —(Dy + L) WUy ® + (D + L) *Mx® + (D, + L) g
20D = —(Dy + L) Uuz™ + (D4 + L) *Nx® + (D, + L)tk

In this method also, if A is strictly diagonally dominant then the iteration
always converges. Gauss-Seidel method will generally converge if the

Jacobi method converges and will converge at a faster speed.
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Chapter Four

Numerical Examples and Results

4.1 Numerical Examples and Results for Fuzzy System of Linear
Equations(FLS)

To demonstrate the efficiency and accuracy of the numerical schemes which
we discuss it in chapter three, we will use MATLAB software to solve some
numerical examples, then draw a comparison between approximate solution
and exact ones for the following schemes: Jacobi method, Gauss—Sidel

method, and Successive over relaxation iterative method.

Example 4.1.
Consider the 2 X 2 non- symmetric fuzzy linear system

2x, — 2xy, = (21,4 — 2r)
4.1)
2x1 + 6x2 = (8 + 27‘, 14 — 4‘T)

Numerical Solution of Equation (4.1) using Jacobi Method

The extended 4 X 4 matrix 1s

2 0 0 -2

2 6 0 0
S =

o -2 2 0

0 0 2 6



X,(r)
X,(r)

—>_(1(r) -

—Xa (1)

-1
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0.5625 -0.0625 0.1875 -0.1875 2r
-0.1875 0.1875 —0.0625 0.0625 || 8+2r
0.1875 -0.1875 0.5625 -0.0625 || 2r—-4
-0.0625 0.0625 -0.1875 0.1875 )\ 4r-14

The exact solution is

11 5 23 7)

5= (n050) = (F+gng -5

71113)

%= (a.B0)=(G+575 5

The exact and approximate solutions are shown in Figure (4.1).

method

1 O w 2
@ A
0.9+ O - P + Jacobi Solution
Ry o P O Exact Solution
08¢ O < i ]
O @ - 4
0.7} o ¢ g < ]
E & 4 < 4
S o6} o ¢ + & ]
° °o & 4 4
2 05| s @ N & ]
2 o @ 4% 4
§ 04/ s  © & & ]
: o o 4 @
03 s & 4 s
5 & 4 &
02} 6 & @ s
@ © 4 4
o1 o A, s
© b @
0 > > 5
0.5 1 1.5 2 2.5 3

Figure (4.1): Graphical representation of the solution of example 4.1 using Jacobi
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Numerical Solution of Equation(4.1) using Gauss- Seidel Method

The exact and approximated solutions are plotted and compared in

Figure(4.2).
1 O +
N ++
0.9 #+ Gauss Zidetp4- -+ .
O Exact Solutjef- — +
0.8/ R o+ |
o+ o+
07 " + + f
E oo+ -+ +
S o6 o+ -+ + |
2 4+ + + +
2 o5 o+ - o+ |
g o+ - o+
S 04 S+ + o+ f
> o+ o+ +
03} S+ o+ + f
o+ 4+ +
0.2} B o +
- + o+ +
01) - e + -
i S +
H—‘—'d;'—‘—‘—‘—%
%.5 1 1.5 2 2.5 3
Figure(4.2): Graphical representation of the solution of example 4.1 using Gauss-
Seidel method
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Numerical Solution of Example (4.1) using Successive over relaxation

iterative method

The exact and approximated solutions are plotted and compared in

Figure(4.3)

+ SOR Solution, O Exact Solution
1 O P
4 G4
0.9/ S & ]
N @& @
08 & & & b ]
¢ & 4 ¢
0.7+ © & 4 - 1
o @ @ 4 e
g 06F ¢ @ 4 ¢ 1
2 4 o < &
£ 05/ b b & & ]
2 & & & @
c o4 = o s w f
= © © 4 <
0.3 © ¢ 4 4 ]
4 o & 4
0.21- 4 o 4 4 1
- & @ -
0.1] & b & b
© O ¢
0 $ ! ¢ ! ! ! $
0.5 1 1.5 2 2.5 3
Figure (4.3): Graphical representation of the solution of example 4.1 using SOR
method
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Comparison results between three methods

Numerical Method Number of | Total CPU Time
Iterations in Seconds
Jacobi 16 16.8
Gauss- Seidel 9 7.9
Successive over relaxation 6 12.5

Membership Value

+ GZ, O Exact, * Jacobi, -- SOR

|

0.9+ &
B
0.7 - oF
# 9
0.6 43
<+
0.5- -+
“+
0.4+ e
4
0.3 +
B
0.2} =S
B
0.1+ )
# ’S/h
0 v

©
(&)}
N

Figure (4.4): comparison between three methods.
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4.2 Numerical Examples and Results for Fully Fuzzy System of Linear

Equations(FFLS)

Numerical Solution by Gauss- Jacobi iterative method

Example 4.2:
Solve the following system of equations using Gauss- Jacobi method
(5,1,1) @ (x1,¥1,21) D (6,1,2) ® (x2,¥2,22) = (50,10,17)
(7,1,0) ® (x1,y1,21) @ (4,0,1) @ (x3,¥,,22) = (48,5,7)

So, from the above system we have
_[5 6 M1 1 [ 2
A‘[7 4 M_[1 0 N‘[o ] and
_[50 _[10 _[17
b_[48] 9_[5] h_[7]
To solve the above problem by using Gauss-Jacobi method, first of all we

obtain the following equations by the method explained in chapter 3.

[5 6][*1] _ [50

7 4llx,] T l4g (4.2)
| e A [ e 43)
o dl+B =11 (4.4)

Equation(4.2) can be written as:

5x; + 6x, =50

7x1 + 4x, = 48

Since|5| # |6] and |4| # |7|, therefore the above system of equations is not
diagonally dominant. So writing the above system in diagonally dominant

form as:
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7x1 + 4x, = 48
4.5)
5x; + 6x, =50

So, the above system of linear equations is in diagonally dominant form as
|7| > |4| and |6] > |5|. Now, to find the solution by Gauss-Jacobi method

first of all (4.5) can also be written as

1
X1 == ; (4‘8 - 4x2)

(4.6)
Xy = %(50 — 5x;)

Thus, the Gauss-Jacobi’s methods when applied to the above system, it gives

1
x, K+D = - (48 — 4x,()

k=012, ..
1
x, K+ = A (50 — 5x, )

Now, starting with initial approximation vector x© = (0,0), we get

1 48
x, @ = 5(48 — 4x,®) = — = 6.8571

1 50
x = 2 (50 = 5x,©) = — = 83333

ie. xM =(6.8571, 8.3333)

hence continuing with this we obtain
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Table (4.1): the sequence x*), k = 0,1,2, ... generated by the Jacobi

method, with ¢ = 1 x 1072.

k x = (xq1, %) Error
lx — xo]
1 x® = (6.8571,8.3333) 10.7919
2 x®@) = (2.0952,2.6190) 7.4383
3 x® = (5.3605,6.5873) 5.1390
4 x™® = (3.0930,3.8662) 3.5421
5 x®) = (4.6479,5.7559) 2.4471
6 x® = (3.5681,4.4601) 1.6867
7 x = (4.3085,5.3599) 1.1653
8 x® = (3.7943,4.7429) 0.8032
9 x® = (4.1469,5.1714) 0.5549
10 x19 = (3.9021,4.8776) 0.3825
11 x1D = (4.0700,5.0816) 0.2642
12 x12) = (3.9534,4.9417) 0.1821
13 x13) = (4.0333,5.0389) 0.1258
14 x1 = (3.9778,4.9722) 0.0867
15 x(1%) = (4.0159,5.0185) 0.0599
16 x(10) = (3.9894,4.9868) 0.0413
17 x17) = (4.0076,5.0088) 0.0285
18 x18) = (3.9950,4.9937) 0.0197
19 x(19) = (4.0036,5.0042) 0.0136
20 x?9 = (3.9976,4.9970) 0.0094

Since we have already found the exact solution of the above system in
chapter two, Example 2.15 and is found to be (4,5). It seems that the
sequence x®), k = 0,1,2, ... generated by the Jacobi method will converge to
the exact solution. Hence up to two decimal places we obtain

x = (xq1,x,) = (4.00,5.00)

Now, putting the value of (x4, x,) in the equations (4.3) and (4.4) we obtain

FIARH



ot

5y1+6y2:1 521+622:3
1.e. and

7y1+4‘y2=1 7Z]_+4Z2=2

Since the above equation are not in the form of diagonally dominant form.
So converting them to diagonally dominant form as:
7y1 4y, =1

4.7)
5y; +6y, =1

Now, solving the above equations by the same procedure that is used to solve

the system (4.2), we obtain:
1
Y1 = = (1 - 4y,)

1
Y2 = 5(1 —5y1)

Taking the initial approximation as y(o) = (0,0) and continuing with

Gauss- Jacobi method we obtain
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Table (4.2): the sequence y*¥) k = 0,1,2, ... generated by the Jacobi

method, with ¢ = 1 x 1072.

k y = 1Y2) Error

[y = Yol
1 y® = (0.143200,0.167570) 0.2204
2 y® = (0.047448,0.048233) 0.1530
3 y®) = (0.115640,0.128030) 0.1050
4 y® = (0.070042,0.071201) 0.0729
5 y® = (0.102510,0.109200) 0.0500
6 y(® = (0.080801,0.082138) 0.0347
7 y? = (0.096264,0.100230) 0.0238
8 y® = (0.085924,0.087346) 0.0165
9 y©® = (0.093288,0.095962) 0.0113
10 y(10 = (0.088364,0.089826) 0.0079

at 10" jteration we obtain y1% = (0.0862, 0.0862) which is very close to

: 1 : :
exact solution (1—11,3). Hence the value of the optimal solution up to two

decimal place is:

y = (y1,¥2) = (0.09,0.09)

Similarly solving

521 + 622 = 3
(4.8)

721 + 422 - 2

Solving (4.8) we find that the value of z converges at 12" iteration as

follows:



96
Table (4.3): the sequence z, k = 0,1,2, ... generated by the Jacobi

method, with ¢ = 1 x 1072.

k z = (2y,2,) Error

|z — z|
1 zM =(0.28614, 0.5014) 0.5773
2 z® = (-0.00037113,0.26295) 0.3728
3 z® =(0.13589,0.50171) 0.2749
4 z® = (-0.00054786,0.38816) 0.1775
5 z®) = (0.064337, 0.50186) 0.1309
6 z(®) = (-0.00063202,0.44778) 0.0845
7 z() = (0.030266,0.50193) 0.0623
8 z® = (-0.0006721,0.47618) 0.0403
9 z® = (0.014041,0.50196) 0.0297
10 | z(9 = (-0.00069118,0.4897) 0.0192
11 z(" = (0.0063151,0.50197) 0.0141
12 z(12) = (=0.00070027, 0.49614) 0.0091

Thus the value of z up to two decimal points is
z = (zy,2z,) = (0,0.5)
Hence the solution of given fully fuzzy linear system of equations is as

follows:
¥ = (4,0.09,0) ]
~ 1(5,0.09,0.5)

Which is the required solution of the given fully fuzzy linear system of

equations.

Numerical Solution by Gauss- Seidel iterative method
Consider the system (4.2).
1.e.

1
x1 - 7 (48 - 4X2)

1
xz = g (50 - le)
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The Gauss-Seidel iterative formula for this system can be written as:
1
xl(k+1) = 7 (4‘8 - 4x2(k))
Jk=012,..
1
xz(k+1) — g (50 _ le(k+1))

Taking the x(© = (xio),xéo)) = (0,0) we get

1 48
x, @ = 7(48 — 4x,@) = — = 6.8571

1 15.7145
x = 2 (50 = 5x, W) = ———= 26191

ie. x® = (6.8571, 2.6191)

hence continuing with this, we get

Table (4.4): the sequence x¥), k = 0,1, 2, ... generated by the Gauss-
Seidel method, with £ = 1 x 1072,

k x = (xq,%x3) Error

lx — xo
1 xD = (6.8571,2.6190) 7.3403
2 x®) = (5.3605,3.8662) 1.9481
3 x® = (4.6479 ,4.4601) 0.9277
4 x® = (4.3085,4.7429) 0.4418
5 x®) = (4.1469,4.8776) 0.2104
6 x©® = (4.0700,4.9417) 0.1002
7 x7 = (4.0333,4.9722) 0.0477
8 x® = (3.7943,4.7429) 0.0227
9 x® = (4.0159,4.9868) 0.0108
10 x10 = (4.0036,4.9970) 0.0052

Since we can found the exact solution of the above system in chapter two,
And is found to be (4,5). It seems that the sequence x® k=012, ..

generated by the Gauss-Seidel method will converges to the exact solution.



So, by the above results it is clear that the value of x up to two decimal points
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is x = (xq,x,) = (4,5) solving (4.7) we obtain

Table (4.5): the sequence y® k=0,1,2,.. generated by the Gauss-

Seidel method, with € = 1 x 1072,

k y=01y2) | Error |

Y~ Yo
1 y® = (0.142340,0.047947) 0.1502
2 y® = (0.114940,0.070779) 0.0357
3 y® = (0.101900,0.081652) 0.1070
4 y® = (0.095685,0.086829) 0.0081

Hence the value of y up to two decimal places can be written as

we obtain

Table (4.6): the sequence z® k=01,2,.. generated by the Gauss-

y = (y1,y,) = (0.09,0.09)

and solving (4.8), using the same method as used for solving the system (4.5)

Seidel method, with £ = 1 x 1072,

k z = (24,2,) Error
|z — 2|
1 z®M = (0.28614,0.2619500) 0.53879
2 z® = (0.13646,0.3866800) 0.1948
3 z® = (0.06518,0.4460800) 0.0928
4 z® = (0.031238,0.474370) 0.0442
5 z® = (0.015075,0.487840) 0.0210
6 z(® = (0.0073784,0.49425) 0.0100
7 z( = (0.0037134,0.49731) 0.0048

Hence from the above results, we find that the value of z up to two decimal

points is found to be:

z = (zy,2,) = (0,0.5)
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Hence the solution of the given fully fuzzy linear system of equation up to

two decimal places is found to be
¥ = (4,0.09,0) ]
~ 1(5,0.09,0.5)
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Comparison results between Gauss-Jacobi and Gauss- Seidel Method

Numerical Methods | Total CPU Time Error
in seconds 1% — x°|
Gauss-Jacobi 4.2 0.009127082636873
Gauss- Seidel 5.9 0.004770825630768
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Conclusions

In this thesis, analytical and numerical methods have been used to solve
Fuzzy System of Linear Equations where the coefficient matrix arrays are
crisp numbers, the right-hand side column is an arbitrary fuzzy vector and
the unknowns are fuzzy numbers. Moreover, some analytical and numerical
methods have been used to solve Fully Fuzzy System of Linear Equations
where all the coefficient matrix arrays, the right-hand side arrays and the
unknowns, are fuzzy numbers.

The numerical methods for FLS and FFLS were implemented in a form of
algorithms to solve some numerical test cases using MATLAB software.
For FLS the numerical results have shown to be in a close agreement with
the analytical ones. Moreover, the SOR iterative method is one of the most
powerful numerical technique for solving FLS, in terms of number of
iterations and CPU time, as we show in Example (4.1).

For FFLS the numerical results have shown to be in a close agreement with the
analytical ones. In fact, the Gauss- Seidel iterative methods is more efficient
than the Gauss-Jacobi for solving FFLS in terms of number of iterations, CPU

time and the absolute error, as we shown in Example (4.2).
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Appendix

MATLAB Code for Jacobi Iterative Techniques for Solving Fuzzy

System of Linear Equations

% Solving Fuzzy System of Linear Equations (FSLE)
% Jacobi Method

cle
clear all
close all

syms r

%% Inputs;
S=[100-1;
1300;
0-11 0
001 3]

Y=[r;
4+r;
2-r;

7-2%r];

%S=[100 0-4;



%
%
%

%Y

%
%
%

% S

%
%
%
%
%

%Y

%
%

%
%
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0 16-4 0;
0-4 10 0;
-4 0 0 16]; % Change for your example
= [26+2%*r;
34+2%r;
31-3*r;

38-2%*r]; % Change for your example

=[41000-1;
031-100;
21300 0;
00-1410;
10003 1;
00021 3];
=[ +r;

2+r;

-1-1];

N= length(Y)/2;

Y U=Y(1:N);

Y L=Y(N+1:2%N);
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x0 U=zeros(N,1);

x0 L=zeros(N,1);

toler = 0.001; % Change for your example

err =1;

max = 500; % Change to biger, if the solution didn't converge
% x_axis_name = 'Put a name'; % Change for your example

y_axis_name ='r - Membership Value';

%% Start Coding with Jacobi Method,;
T=0;
for K = 1:max

%% Check if the matrix A is diagonally dominant

fori=1:2*N
J=1:2*N;
j =11

B = abs(S(i,)));
Check(i) = abs(S(i,1)) - sum(B); % Is the diagonal value greater than the
remaining row values combined?
if Check(i) <0
T=1;
fprintf('"The matrix is not strictly diagonally dominant at row %2i\n\n',1)
end

end
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ifT==1
break

end

%% Jacobi Iteration; Based on Paper {5,4}
forI=1:N
sumL1=0;
sumL2=0;
forJ=1:N
ifJ ~=1
sumL1 =sumL1 + S(I,J)*x0_L(J);
end
sumL2 = sumL2 + S(LN+J)*x0 _U(J);
end

x_L(K,I) =eval((Y_L(I) - sumL1 - sumL2)/S(LI));

sumU 1=0;
sumU2=0;
forJ=1:N
ifJ ~=1
sumU1 = sumU1 + S(I,J)*x0_U(J);
end
sumU2 = sumU2 + S(I,N+J)*x0_L(J);

end
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x_ UK, =eval((Y_U() - sumU1 - sumU2)/S(L,1));

end

%% Cheching Error;
MLI1 = Noreta(x_L(K,:));
MU1 = Noreta(x_U(K,:));
ML2 = Noreta(x0 _L);
MU?2 = Noreta(x0_U);
errl = vpa(subs(abs(ML1 - ML2),r,0:0.1:1));
err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1));
err = [errl,err2];
if double(err) <= toler
XL =x L(end,:);
XU =x_U(end,:);
Error = err;
Nolterations = K;;
break
end
x0 L=x L(K,:)";
x0 U=x UK.}

end

%% Puting Answers in one vector X (XL1 XUl XL2 XU2...)

=L
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fori=1:2:2*N
X(1) = XL(j);
=it

end

=L

fori1=2:2:2*N
X(1) = XU();
=it

end

%% Showing Answers
ANS =X;

Nolterations = K

fori=1:2*N

F(i,:) = subs(ANS(i),r,(0:0.05:1));
plot(F(i,:),(0:0.05:1),'+','markersize',11)
hold all

end

% xlabel(x_axis name)
ylabel(y axis name)

title('"Fuzzy system Using Jacobi')

% grid on

% the colour gradiant starts from Blue



111
%% Exact Solution based on X = (1/S)*Y
Ans = vpa(inv(S)*Y);
1=1;
=L
for 1 = 1:length(Ans)
if 1 <= length(Ans)/2
v1(i)= Ans(i);
else v2(j)=Ans(i);
=it
end
1=i+1;

end

for i = 1:length(v1)

Ans F(i,:) = [v1(1) v2(1)];
end
Ans F
fori=1:2*N
TRR(i,:) = subs(Ans(i),r,(0:0.05:1));
plot(TRR(i,:),(0:0.05:1),'0")
hold on
end
text(2.4,0.9,'+ Jacobi Solution')
text(2.4,0.85,'0 Exact Solution')
set(text,'linewidth',2)

format long
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MATLAB Code for Gauss - Sidel Iterative Techniques for Solving

Fuzzy System of Linear Equations

% Solving Fuzzy System of Linear Equations (FSLE)

% Gauss Seidel Method

cle
clear all
close all

syms r

%% Inputs;
%S=[213000;
% 41000-1;
% 031-100;
% 00021 3;
% 00-1410;
% -100031]
%Y =[11+08%*r;

%  27-08%r;

%  -23+10%*r;

%  -05-08*r;

%  10+05%*r;

%  27-12%r];



%S=[10 0-1;

% 130 0;
% 0-110;
% 001 3]
NY=[r1;

%  4+r;

%  2-1;

%  7-2%r];

S=[41000-1;

031-100;
21300 0;
00-1410;
-100031;
00021 3]

-1-r];

%S=[100 0-4;
% 0 16-4 0;

113
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% 0-4 10 0;
% -4 0 016]; % Change for your example
%Y =[26+2%r;
%  34+2%r;
%  31-3%*r;

%  38-2*r]; % Change for your example

N= length(Y)/2;
Y U=Y(1:N);
Y L=Y(N+1:2*N);

x0 U=zeros(N,1);

x0 L=zeros(N,1)";

toler =0.001; % Change for your example

err = 1;

max = 500; % Change to biger, if the solution didn't converge
% x_axis_name = 'Put a name'; % Change for your example

y_axis_name ='r - Membership Value';

%% Starting Program
% Check if the matrix A is diagonally dominant
T=0;
fori=1:2*N
j=1:2*N;
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j@)=1I;
B = abs(S(1,)));
Check(i) = abs(S(i,1)) - sum(B); % Is the diagonal value greater than the
remaining row values combined?
if Check(i) <0
T=1;
fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',1)
end

end

if T ==
break

end

% Gauss-Seidel Iteration Technique; Based on Paper {5}
for K = 1:max
forI=1:N

sumL1=0;

sumL2=0);

sumL3=0;

for J = 1:1-1

sumL1 =sumL1 + S(I,J)*x L(K,J);
end

for J=1+1:N
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sumL2 = sumL2 + S(L,))*x0 L(J);
end
forJ=1:N
sumL3 = sumL3 + S(LJ+N)*x0 U(J);
end

x_ L(K,]) =eval((Y_L(I) - sumL1 - sumL2 - sumL3)/S(LI));

sumU 1=0;
sumU2=0;
sumU3=0;
for J = 1:1-1
sumU1 = sumU1 + S(I,J)*x_U(K,J);
end
for J=1+1:N
sumU2 = sumU2 + S(I,J)*x0_U(J);
end
for J=1:N
sumU3 = sumU3 + S(LJ+N)*x0 L(J);
end
x_U(K,I)=-eval((Y_U() - sumU1 - sumU2 - sumU3)/S(L,1));

end

% Cheching Error;
ML1 = Noreta(x_L(K.:));
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MU1 = Noreta(x_U(K,:));
ML2 = Noreta(x0 L);
MU?2 = Noreta(x0 U);
errl = vpa(subs(abs(ML1 - ML2),r,0:0.1:1));
err2 = vpa(subs(abs(MU1 - MU2),r,0:0.1:1));
err = [errl,err2];
if double(err) <= toler
XL =x L(end,:);
XU =x_U(end,:);
Error = err;
Nolterations = K;;
break
end
x0 L=x L(K,)};
x0 U=x UK.}

end

%% Puting Answers in one vector X (XL1 XUl XL2 XU2...)
=1
fori=1:2:2*N
X(i) = XL(j);
=ith
end

=L
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for1=2:2:2*N
X(1) = XU(j);
=it

end

%% Showing Answers
ANS = vpa(X);

Nolterations = K

fori=1:2*N

F(i,:) = subs(ANS(i),r,(0:0.05:1));
plot(F(i,:),(0:0.05:1),'+','lineWidth',2,'markersize',11)
hold all

end

% xlabel(x_axis name)

ylabel(y_axis name)

% title('+ Gauss Zidel, O Exact Solution')

% grid on

%% the colour gradiant starts from Blue

%% Exact Solution based on X = (1/S)*Y

Ans = vpa(inv(S)*Y);

1=1;
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=1
for 1 = 1:length(Ans)
if 1 <= length(Ans)/2
v1(i1)= Ans(i);
else v2(j)=Ans(i);
=it
end
1=i+1;

end

for 1 = 1:length(vl)

Ans F(i,:) = [v1(1) v2(1)];
end
Ans F
fori=1:2*N
TRR(1,:) = subs(Ans(i),r,(0:0.05:1));
plot(TRR(1,:),(0:0.05:1),'or")
hold on
end
text(0.5,0.9,'+ Gauss Zidel")
text(0.5,0.85,'0O Exact Solution')
set(text,'linewidth',2)

format long
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MATLAB Code for LU — decomposition Method for Solving Fuzzy

System of Linear Equations

function [X,S1,S2,L,U] = LUFLLE(A,Y)
% solving Fuzzy number system using LU factorization.
% [X,S1,S2,L.,U] = LUFLLE(A,Y). A: the system matrix.
% Y: Fuzzy numbers matrix (n-by-2).
% returns: X: the solution vector, the matrices S1 and S2,
% and the LU factorization.

%% Initialization and Pre-setting

An = A(%);
ST =TI;
S2=1I;
Y=Y()

for i = 1:length(An)
if (An (i) > 0)
S1(i) = An (i);
S2(i) = 0;
else
S2(i) = An (i);
S13i) = 0;
end

end
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S1 =reshape(S1,size(A));
S2 =reshape(S2,size(A));
S =[S1S2;S2 S17;

%% LU factorization Process
fori=1:size(S,1)
M(i) = det(S(1:1,1:1));
if (M(i1) == 0)
fprintf('the principal minor %i is zero, LU fact. is not unique!!!',1);
break;
end
end
a = (M(1:length(M)-1) <= 0);
if sum(a) ==
disp(' S has a unique LL\"t Factorization');
end

[L,U,X] = LUfact(S,Y); % calling the function of LU-fact.

%% Display
X2 =X; % some resetting
fori=1: length(X)
X3 = inline(X2(1));
if (((X3(1) - X3(0)) <0) && 1 <= length(X)./2)
X(i) = X(1);
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end
if (X3(1) - X3(0) > 0)) && i > length(X)./2)
X(1) = X(@);
end

end

X = simplify(X); % simplification
fprintf("\n\t X =\n")
for i=1: length(Y)./2
fprintf("\t\t ( %s , %s )\n',char(X(i)),char(X(i+length(Y)/2)));
end
figure('color','w")
myplots(X); % calling myplot function
hold off;

end
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MATLAB code for LU — factorization for Fuzzy System of Linear

Equations

function [L,U,x]=LUfact(A,b)
sa = size(A);
sb = size(b);
if(sa(1)==sa(2) && sa(2)==sb(1) && sb(2)==1)
n=sa(l);
%% LU Factorization...
for i=1mn
U(@,i)=1;
end
L(1,1)=sqrt(A(1,1));
U(1,1)=L(1,1); %% L11*Ul11=Al1;
if(U(1,1)*L(1,1)==0)
error(' ** no possible LU factorization!!!");
else
for(j=2:n)
U(Lj)=Aj)/L(1,1);
LG, D)=A(,1)/U(1,1);

end
for(i=2:n-1)
s=0;
for k=1:i-1

s=s+L(1,k)*U(k,1);

end
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L(i,i)=sqrt(A(i,i)-s);
U(i,)=L(i,i);
if(L(1,i)*U(i,i)==0)

error(' ** no possible LU factorization!!!");

for(j=i+1:n)
su=0; sI=0;
for(k=1:1-1)
su=su+L(1,k)*U(k,));
sl=sl+L(j,k)*U(k,1);
end
U(1,))=(A(1,j)-su)/L(1,1);% 1-th row of U.
L@G,1)=(A(,1)-s1)/U(1,1);%i-th column of L.
end
end
end
if(t==1)
s=0;
for (k=1:n-1)
s=s+L(n,k)*U(k,n);
end
L(n,n)=sqrt(A(n,n)-s);
U(n,n)=L(n,n);
if(L(n,n)*U(n,n)==0)

disp(' ** the matrix is singular!!!");
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end
end
end
%% Forward substitution...
y(1,1)=b(1,1)/L(1,1);
for (i=2:n)
s=0;
for(G=1:1-1)
s=s+L(1,j)*y(,1);
end
y(i,)=(b(i,1)-s)/L(i1);
end
%% Backward substitution...
x(n,1)=y(n,1)/U(n,n);
for(i=n-1:-1:1)
s=0;
for(j=i+1:n)
s=s+U(1j)*x(),1);
end
x(1,1)=(y(i,1)-s)/U(1,1);
end
end

end
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MATLAB Code for SOR Iterative Techniques for Solving Fuzzy

System of Linear Equations

% Solving Fuzzy System of Linear Equations (FSLE)

% Successive over/under Relaxation ()SOR

clc
clear all
close all
syms r

t = cputime;

% Inputs;
S=120 0-2;
260 0;
0-220;
0026];

Y=[ 2%r;
8+2%r;
4-2%r
14-4%*r];
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%S=[100 0-4;
% 0 16-4 0;
% 0-4 10 0;
% -4 0 016]; % Change for your example
%Y =[26+2%r;
%  34+2%r;
%  31-3%*r;

%  38-2%*r]; % Change for your example

%S=[8210000003;
% 051012001 0;
% 1051101000;
% 0004200100;
% 1000302000;
% 0000382100;
% 2001005101;
% 0100010511;
% 001000004 2;
% 020001000 3];

% Y =r;
% 4+r;
% 1+2%*r;
% 1+r;

% 3%*r;
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% 2-1;

% 7-2%r;
% 6-3*r;
% 3r;

% 6-3%r];

N=length(Y)/2;

Y U=Y(1:N);

Y L=Y(N+1:2*N);
maxEter = 300;

Toler = 0.001;

omega = 0.4; % [0,1]

%% Getting D,L,U from S
d = diag(S);
for i=1:2*N
for j=1:2*N
if i~=j
D(i,j) = 0;
else
D(i,)) = d(i);
end

end
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end
L = tril(S);
U = triu(S);
L1 =L(1:N,1:N);
D1 =D(1:N,1:N);
Ul =U(1:N,1:N);
C =L(N+1:2*N,1:N);
s=D+L+U;

B=DI+L1+Ul;

%% Iteration
x0 L = zeros(N,1);
x0 U = zeros(N,1);

% Equations from paper Iterative solution of fuzzy linear systems

for k = 1:maxEter

x_L =inv(DI+omega*L1)*(omega*Y L + ((1-omega)*D1-

omega*Ul)*x0 L -omega*C*x0 U);

x_U = inv(D1+omega*L1)*(-omega"2*C*inv(D1+omega*L1)*Y L +

omega*Y U + ((1-omega)*D1-

omega*Ul+omega”2*C*inv(D1+omega*L1)*C)*x0 U -

omega*C*inv(D1+omega*L1)*((1-omega)*D1-omega*Ul)*x0 L);

1=0;
for jj = 0:0.05:1

1=i+1;
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errl(:,1) = subs(abs(x L -x0 L),r,jj);
err2(:,1) = subs(abs(x_U - x0 _U),r,jj);
end
err = [errl,err2];
if max(double(err)) <= Toler

break

end

x0 L=xL;
x0 U=x U;

end

%% Puting Answers in one vector X (XL1 XU1 XL2 XU2...)
=L
for1=1:2:2*N
X(1) = x_L();
=it
end
=1
fori=2:2:2*N
X(1) =x_U();
=it

end
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%% Exact Solution based on X = (1/S)*Y
GGG = vpa(inv(S)*Y);
i=1;
=1
for 1 = 1:length(GGQG)
if i <= length(GGG)/2
v1(i)= GGG(i);
else v2(j)=GGG(1);
I=ith
end
1=i+1;

end

for 1= 1:length(vl)
Ans_F(i,}) = [v1(i) v2(1)];
end

Ans F

%% Showing Answers
ANS =X

Nolterations = k

fori=1:2*N
F(i,:) = subs(Ans_F(i),r,(0:0.05:1));



132
plot(F(i,:),(0:0.05:1),'+','markersize',11)
hold all
end
% xlabel("put a name')
ylabel("Membership Value')
title('+ SOR Solution, O Exact Solution')

grid on

fori=1:2*N

KKK(i,:) = subs(Ans_F(i),r,(0:0.05:1));
plot(KKK(i,:),(0:0.05:1),'or")

hold on

end

t CPU_SOR = cputime-t

% t CPU_SOR = cputime
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MATLAB Code for Jacobi and Gauss-Sidel Iterative Techniques for

Solving Fully Fuzzy System of Linear Equations

function [X,Y,Z] = iter(A,M,N,b,g,h,X0,Y0,Z0,eps)

% [X,Y,Z] = jaco(A,M,N,b,g,h,X0,Y0,Z0,eps), Takes the fully Fuzzy
system

% Matrices, A,M,N,b,g,h and the precision "eps" and the initial values
X0,

% YO0 and Z0, and returns the solution vectors X,Y,Z.

disp(' Select Which Methood to use:'); % selection of the desired
method.

s = lower(input (' enter "J" for Jacobi, or "S" for Gauss-Seidal:... ",'s"));

% 1nitialization.
[n,m] = size(A);
L = zeros(n,m);
U = zeros(n,m);
% Calculate the permutation matrix E.
E = zeros(n,m);
[v,inda] = max(A);
fori=1m
[r,p] = max (v);

E(inda(i),p) = 1;
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v(p) = -exp(-10);
end
% Transform the system to Diagonally dominant system.
A=E*A;
% Calculate Da, La, and Ua.
D = diag( diag (A));
fori=1:n
forj=1:m
if (i > )
L(1,)) = A(L,));
elseif (i <j)
U(L,)) = A®iy);
end
end

end

Di = inv(D);
DLi = inv(D+L);
if (det(D) == 0)
error('Da is Singular !!!");

end

% start the iterations.

e =1000;
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1=0;
if (s =="5") % Jacobi Method.
fprintf("\n\t\t\t******* Starting Jacobi Method ******* 1),
pause
fprintf("\n\n \t ** solution for X: ")
while (e > eps) % Solving for X
1=i+1;
X = - Di*((L+U)*X0 - E*b);
e = norm(X - X0);
X0=X;
fprintf("\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(X',5),e);
if (e > (50/eps))

error ('The process is Diverging !!!");

Break;
end
end
1=0;e=1000;

fprintf("\n\n \t ** solution for Y: ')

while (e > eps) % Solving for Y
i=i+1;
Y = - Di*((L+U)*YO0 + E¥(M*X - g));
e =norm(Y - Y0);
YO=Y;

fprintf("\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y",5),e);
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end
1=0; e=1000;
fprintf("\n\n \t ** solution for Z: ")
while (e > eps) % Solving for Z
1=1+1;
Z = - Di*((L+U)*Z0 + E*(N*X - h));
e =norm(Z - Z0);
70=17,
fprintf("\n iteration %d: \t (%s) ,\t error: %.4f",i,num2str(Z',5),e);
end

fprintf("\n\n the approximation error is: %f', e);

elseif (s =="'s") % Gauss-Seidal Method.
fprintf("\n\t\t\t******* Starting Gauss-Seidal Method *##*#* 1),
pause
fprintf("\n\n \t ** solution for X: ")
while (e > eps) % Solving for X
1=1+1;
X =-DLi*(U*XO0 - E*b);
e = norm(X - X0);
X0=X;
fprintf("\n iteration %d: \t (%s) ,\t error: %.4f,i,num2str(X',5),e);
if (e > (50/eps))

error ('The process is Diverging !!!");
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Break;
end
end
1=0;e=1000;

fprintf("\n\n \t ** solution for Y: ")
while (e > eps) % Solving for Y
1=i+1;
Y =- DLi*(U*Y0 + E*(M*X - g));
e =norm(Y - Y0);
YO=Y;
fprintf("\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Y",5),e);
end
1=0;e=1000;
fprintf("\n\n \t ** solution for Z: ")
while (e > eps) % Solving for Z
1=1+1;
Z = - DLi*(U*Z0 + E*(N*X - h));
e =norm(Z - Z0);
70=127;
fprintf("\n iteration %d: \t (%s) ,\t error: %.4f',i,num2str(Z',5),e);
end
fprintf("\n\n the approximation error is: %f \n\n', e);

end

end
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