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The Optical Polaron versus the Effective Dimensionality in
Quantum Well Systems
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Abstract

The confined optical polaron is investigated within the framework of
an improved variational technique yielding a unified characterization of
problem for all the coupling strengths. The ground state energy is studied
as a function of the effective dimensionality of the quantum well to
interpolate between all possible confinement geometries.
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1. Introduction

Despite the long history of polaron theory, the interest to the problem
does not decrease. Different approaches have been used to study the
problem according to the coupling strength [1-26].

The progress achieved in micro-fabrication make the growing of low
dimensional semiconductor structures possible and this in turn opens a
large area of research on two-, one-, and even zero-dimensional polarons.
The common theoretical prediction reached is that the Polaronic effect
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becomes more important as the dimensionality is reduced (Ergelebi, A. &
Senger, R.T. 1994. Yildirim, T. Ercelebi, A. 1991. Yildirim, T. Ercelebi,
A. (1991). Yu, Y.B. Shu, S.N. Guo, K.X. 2004. Xie, H.J. Chen, C.Y. Ma,
B K 2000).

In a previous two reports (Samak, Z. Saqqa, B. 2009. Senger, R. T. &
Ercelebi, A. 1997). we proposed a modification to the mixed coupling
theory of Senger and Ercelebi (Senger, R. T. & Ergelebi, A. 1998) to
study the optical polaron in a spherical quantum dot and in slab-like
confinement, respectively. In this report we use the same approach to
display a comprehensive theoretical model yielding an explicit track of
the Polaronic effect as a function of the effective dimensionality in the
overall range of the electron-phonon coupling strengths. Yildirim and
Ercelebi (Yildirim, T. Ergelebi, A. 1991. Yildirim, T. Ercelebi, A. 1991)
have already attacked the problem but for the strong and the weak
coupling cases separately.

2. Theory

The model we use consists of an electron confined in an isotropic
potential box with tunable dimensions immersed in the field of the bulk
longitudinal optical (LO)-phonon modes. The dimensionless Hamiltonian
describing the problem in Frohlich units (2m:co|_o :l)is given by
(Ergelebi, A. & Senger R.T. 1994).

H = He +H gy + YVo|ag €97 +al e | (1)
Q

where H, represents the electronic Hamiltonian and is given by
p2
He:%+%a)12p2 +%a)2222 (2)
with prepresents the momentum, @, and @, stand for the
dimensionless measures of the degree of confinement in the X-y-plane
and the z-direction, respectively. By tuning @, and/or @, from zero to
values much larger than unity one can trace the transition from the bulk
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to all possible extremes of the effective dimensionality. Hpy, is the phonon
Hamiltonian defined to be as

Hopn :%ag% 3)

with ag (aQ) are the creation (annihilation) operators for LO phonons of

wave vector Q:(q ,qz), and Vg is the amplitude of the electron-phonon
interaction given by (Pekar S.I. 1954)

JA Y
_ ha)LO 47za h
Vo= I( Q ]( v j (2”‘%0} @

with 7w o being the energy of the phonons, V is the volume of the

crystal which is taken as unity and

2
a=S | 2N\ %oy, 5)
2hey \ ho o\ €4

is the standard dimensionless coupling constant of the electron-phonon
interaction with &, (s,) is the high (static) dielectric constant of the

medium.

Adopting the mixed-coupling approximation of (Senger R. T. &
Ercelebi A. 1998) we propose a modification to the first Lee-Low-Pines
(LLP)-transformation by inserting two variational parameters b; and bs,.
Our new unitary transformation is now

U, =expil(P, ~11, )-by 5+ (P, —T1, )b,2] 6)
with

—

P=p+X Qajag (7)
Q

is the total momentum of the polaron and
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M= %QagaQ (®)

is the momentum of the phonon. The two new variational parameters are
supposed to trace the problem from the strong coupling case to the weak
coupling limit and to interpolate between all possible geometries.

The second transformation is of the form (Senger R. T. & Ergelebi A.
1998)

Uzzqu laQ—agJ, 9

with Uq is treated as a variational function. This transformation is called
the displaced oscillator which is related to the phonon operators via the
phonon wave vector through the relation

Bon=U[0pn ) , (10)

where the ket ‘O ph> is the phonon vacuum state since at low temperature
there will be no effective phonons.

The ground state energy of the problem is obtained by
Eg :<0ph ‘<06|H"|Oe>‘0ph> (11)

The transformed Hamiltonian H" is given by
H"=U5'H'U, =U;'U"HU,U, . Straight forward calculation gives

H'=p? +%a)12p2 +%a)2222 +b12(Pp —Hp)2 +2hy pp(Pp —Hp)
+b22(Pz _Hz)2+2b2 pz(Pz _Hz)"'zagaQ (12)
Q

+SVola Qe—i(blqﬁ+bzqzz)ei QF | a} ei(blq~ﬁ+bzqzz)e—i<§~r]
Q

and
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2
H"=p? +%a)12p2 +%a)2222 +b12(Pp —Hp)2 +b12(Hg)))
+2blpp(Pp -1, +11%) —H§,°>)+b12(ng> —2Hp)n(p1)
+2b7 (Pp -y )Hfol) +2b 1011, - 207 P, 11
2 2 L2 (o P 1 0
+b3 (P, =11, )" +b3 (H(Z )) +2b2pZ(Pz ~11, + 119 11§ ))
+b22(1‘[(21) —2HZ)H(Z” +2b3 (PZ —H(ZO))H(Z” +2b3T1011, (13)

~2b3P, 11 + 3 ud +ZagaQ +ZuQ(aQ +ag)
Q Q Q

Q
D SVATLCLEE (ag “ug )
Q

with
ﬁ(l)zgduQ(aQ +ag) (14)
and

=¥ Qud (15)
Q

Using Eq. (13), the ground state energy given by Eq.(11) becomes
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Eq =(0c[p?]0c)+{0c[} of p* +4 @322 |0, +b7R} ~207P, 1)
+b12(H59))2 +Zu(23(1+b12q2 +b22q22)+
Q
+<Oe |<0ph |2b1 pp(lsp _ﬁp +ﬁg) _ﬁg)))oph>|0e>

N (16)
+%VQ Uo(0e |(e_'(b1q'p D0G2)giQr _i(h5.0,7)g QT )Oe>

+b7P? —2b7P, 11V +b? (1‘19’))2
+(0¢ (0 20, pz(ﬁZ —ii, +1IP —ﬁ§°>]0ph>| O)

To evaluate Eq. (16) we express the coordinates and momenta of the

electron in terms of its creation (annihilation) operators of (0) as
pﬂ=\//”t_1(aﬂ+02) (17)
Xﬂ:i\/ﬂ,_l(aﬂ—az) (18)
pz=\/Z(0'z+GI) (19)
p, =iy (o, —of) (20)

where the index u refers to the X and y coordinates, and 4; and A, are

another variational parameters. Performing the required calculations we
get for the ground state energy
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—+—=+—
2 4 21 44

25 O, w2 (O P
—2b; P,IT, +D; I,

(21)
+b2P2 —202P,T1 +b2 [ f
+Zué(1 +blq? + bzzqf)—szQ UoSo
Q Q
with
SQ :<Oe |eii(blq‘,5"‘b2qzZ)eiié'r | Oe> (22)
which can be written as
SQ :e—(l—b]) q /2/11 e’(lsz) qZ/ZZ,Z ) (23)

Minimizing Eq. (21) with respect to the variational function Ug we
obtain

[1+b2g2 +b2q2 +2b2q(© — P, )+ 2620, (1 - P, Jhig VoS (24)
Solving for Ug, with the assumption that 119 differs from the total
momentum by a scalar factor n (121(0) :775), we get
_ VoSq
L+bfq” +b7q; ~2b7qP, (1-7)~2b3q,P, (1-7)
Substituting Eq. (25) into Eq. (21) we obtain

Ug (25)
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h A of o 252 2 1252 2
g 71 %+ﬁ+ﬁ+bl P (1-7n)* +byP;(1-7)
) v@sd (i+b2g? +b2q2) o6
2 [1+b2q? +b2q2 —262aP, (1-17)— 2620,P, (1—7)f
oy V3S4 _
Q [1+b29> +b3q2 —262aP, (1-7)-2b2q, P, (1-7)|

E_

But E (P) may be well represented by the first two terms of a
power series expansion in P” as (Senger R. T. & Ercelebi, A. 1998)

Eq(P)=Eq(0)+ 8P +O(P*) +--- 27)

With B gives the effective mass of the polaron.
Comparing Egs. (26) and (27) we obtain for the ground state energy

A A @ @ V5S4
:_1+_2+a’1 @) _ Q~Q

E + - 1,
P2 4 24 44 G [I+biq® +biq?

(28)

and for the mass of the polaron we get
1

_ | 29
" 2 (1-uy] )

Substituting for Sg from Equation (23), the ground state energy of
Eq.(28) finally becomes

—(1-b ) q? —(1-b, g2 /2
E At of o] < Voe (l_bl) ¢* /24 2).qz/ PR
9_2 4 24 44 [1 b2 2 b2 2J
1 2 Q +0rq- +0b39;

. (30)
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3. Results and Discussions

To examine the present approach we, in the following, make
correspondence with common geometries of the problem and display
comparison of our results with well-known strong-coupling and the

perturbation theories. In the limit b; =b, -0 the problem is expected to

be turned to the pure strong-coupling regime. In this limit, the ground
state energy of Eq. (30) reduces to

2 2 s
E, AL A b UL D) sy 22k g % /2% 31)
24 2 4 4§

2
For oy =w, =0, we obtain numerically 4, =4, = %. Defining
pa

the binding energy as

1wy —Ey (32)

€p=a)1+2

we obtain the 3D binding energy as
2
iD _ &
e =—o 33
P =3, (33)
which is exactly the strong-coupling result obtained in (Ergelebi, A. &
Senger, R. T. 1995).

In the limit b;=b, >1(the weak-coupling limit) the ground state
energy becomes
A A wlz @22 VQ2

Eq=—"+—+ + - . 34
92 4 24 44 %1+Q2 G4

Again for o =w, =0, we get 4; =4, = 0and for the 3D binding
energy we have

€%D =q (35)
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Which agrees with the corresponding weak-coupling result obtained
in (Senger, R. T. & Ercelebi, A. 1997).

To obtain the strong coupling result in the strict 2D limit we put

@, = A, - o in Eq. (30). The value of A; which minimizes E, in this
2

case can be obtained numerically as 4; = %. The binding energy in

this limit is then

2
g0 =" (36)

which is the result obtained in (Ergelebi, A. & Senger, R. T. 1995) using
the strong coupling theory.

The weak coupling result in the 2D limit is obtained by putting
b, =1 and b, =0 in Eq.(30) to give for the ground state energy

2 -0 /A
ik of 0l Vg
2 4 24 44, G 1+¢?

(37)

Again in the strict 2D limit we have @, =4, - © and 4; = 0. The
binding energy in this limit is found to be

£y = (38)

Projecting out the summation in the last equation we obtain
2D o
& p = 7 (3 9)

This is the same result for the weak coupling case obtained in
(Senger, R. T. & Ergelebi, A. 1997).

In Figure (1) we plot the binding energy as a function of the degree
of confinement for the wire-like (@, =0) and for the slab-like (&, =0)
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configuration for a weak coupling value (a =0.9). Setting @; =0 and

varying @, we can trace the problem from the bulk case to the strictly
2D limit. On the other hand, deleting the confining potential along the z-
axis @, =0 and varying @, the theory reflects the problem in a quantum
well-wire.

In Figure (2) we display the binding energy as a function of the
degree of confinement for the wire- and slab-like confinement for a
rather strong value of the coupling constant (a =5). Correspondence is
also made for the bulk and the strict 2D limits.

From the two graphs we find that with increasing the barrier slopes
of the confining potential, the binding energy for the wire geometry
becomes larger than for the quazi-2D configuration. This follows
essentially from the fact that in the wire geometry the polaron cloud is
squeezed towards the wire axis in all transverse directions resulting in a
much stronger effective electron-phonon coupling than that for the slab-
like configuration.

To explain the relation between the variational parameters b; and b,
with the coupling constant, we plot in Figure (3) the variational
parameter b =b; =b, with a. As expected, the value of b varies between

0 and 1. For large values of the coupling constant b — 0 which conforms
the problem to the strong coupling theory. In the other hand, for small
values of a b — 1 which turns the problem to the weak-coupling limit.

4. Conclusion

A modification to the LLP-theory is proposed to study the polaron
problem. We proposed the insertion of two variational parameters
intended to trace the problem from the strong coupling case to the weak
coupling limit and to interpolate between all possible geometries. The
formalism is supposed to set up a weighted admixture between the strong
and the weak coupling counterparts of the problem such that the adiabatic
results can conform successfully to those attained from the perturbation
theory. It is supposed to display a comprehensive theoretical model
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giving an explicit track of the electron-phonon interaction for all degrees
of confinement and for all possible values of the coupling constant.

1.7k alpha=0.9

-+— Bulk

0.8 . '
10 10’ 10° 10

Figure (1): The binding energy ¢, as a function of the degree of

confinement @; or w,, for & =0.9.
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<+— Bulk

10" 10" 10° 10

Figure (2): The binding energy ¢, as a function of the degree of @, or

,, for a =5.
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-1

10

Figure (3): The variational parameter b versus the coupling constant o.
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