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Preface
Let X=(X,||) beanormed space and suppose that
any givenxin Xisto be approximated by an element y in
Y, where Y is a fixed subspace of X. We let d denoted the

distance from x to Y. By definition,

d=d(x,Y)=inf lx — yj .Clearly, d depends on both x and

Y, which we keep, fixed, so that the simple notation d 1s

in order. If there exists a y, €Y such that lx—y,|=d.

then yo is called a best approximation of Y'to x ora best
approximant of x In ¥ We see that a best approximation
yo is an element of minimum distance from the given X.
Such a y,e€Y may or may not exist; this raises the
problem of existence. The problem of uniqueness is of

practical interest, 100, since for a given x and ¥ there may

be more than one best approximation.



My thesis consists of three chapters. In chapter one
we summarize some of the essential and basic concepts
which shall be needed in the following chapters, this
chapter consists of two sections; in the first one we
present metric, normed, Banach spaces, and the last one
we present inner product, and Hilbert spaces. This
chapter is absolutely fundamental.

In chapter two, we define best approximations in
section one. In section two we study some properties of
the set of all best approximations P(x,Y). In section three
we study some properties of the proximinal set and show
that compact subspace and finite-dimensional subspace
are proximinal, In section four we consider the problem
of uniqueness of best approximation. In section five we
review the properties of Orlicz spaces in which we

introduce some of the basic theory of proximinality



In chapter three, which is the main body of our
thesis, we, in section one, study the main characteriz-
ations and properties of best approximations and some
consequences of the characterization in arbitrary normed
linear spaces. In sections two and three we gives some
application in several spaces like LY(T ), C(K) and

Cr(K).



Chapter One

Preliminaries

In this chapter we summarize some of the essential
and basic definitions, theorems, and concepts in
functional analysis which will be used in the sequent

chapters.

Section (1.1) Metric Spaces, Normed Spaces, and
Banach Spaces

Definition 1.1.1: (Metric space, metric).

A metric space is a pair (X,d), where X isa
nonempty set and d is a metric on X, that’s, a function
defined on X x X suchthat forall x,y,z€ X we have:

i) dis real-valued, finite and nonnegative.



i) d(x,y)=0if and only if x=y.
i) d(x,y)=d(y.x) (Symmetry)
v) d(x,y)<d(x,z)+d(z,¥) (Triangle
inequality).
The diameter D(A)of a nonempty set A ina
metric space (X,d) is defined to be

D(A) =supd(x,y)

x,yeA

A is said to be bounded ifD(A4) < 0.

Let M be a subset of a metric space X, then a
point x, of X is called an accumulation point of M
if every neighborhood of x, contains at least one
point y e M distinct from xo. The set consisting of
the points of M and the accumulation points of Mis

called the closure of A and is denoted by M .
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Definition 1.1.2: (Dense set).

A subset M of a metric space X is said to be dense
in Xif M = X ; where M is the closurc of M in X. e

Definition 1.1.3: (Convergence of a sequence, limit).

A sequence (x,) in a metric space (X.d) is said to
converge in X if there is an xe X such that

limd(x,,x)=0. The point x is called the limit of the

sequence (Xn).

Definition 1.1.4: (Vector space).

A vector space (or linear space) over a field Fisa
nonempty set X of elements x, y, ... (called vectors)
together with two algebraic operations. These operations
are called vector addition and multiplication of vectors by

scalars, that is, by elements of F.



A subspace of a vector space X is a nonempty

subset Y of X such that for all y,,y, € Y and all scalars
a, f wehave ay, + fv, €Y.

A linear combination of vectors X;,Xz,...,Xn ofa
vector space X is an expression of the form

o X, +a,x, +..+a,x, where the coefficients

a,,d,,...,o,are any scalars.

A subset Y={x,, X, ..., X} of X'is said to be linearly

i=H

independent if whenever we have Sk x, =0 then k=0

for all i=1,2,...,n.

Definition 1.1.5: (Finite and infinite dimensional

Vector spaces)
A vector space X is said to be finite dimensional if
there is a positive integer n such that X contains a linearly

independent set of r vectors whereas any set of n+1 or



more vectors of X is linearly dependent. # is called the
dimension of X, written n=dimX. If X is not finite
dimensional, it is said to be infinite dimensional. e

Definition 1.1.6: (Cauchy sequence, Completeness).

A sequence (x,) in a metric space (X,d) is said to be
Cauchy if for every £ >0 thereisan N = N(¢&) such that
d(x,,x )<e forevery mn>N.

The space X is said to be complete if every Cauchy
sequence in X converges to an element of X.-.

Definition 1.1.7: (Normed space, Banach space).

A normed space X is a vector space with a norm
defined on it. A Banach space is a complete normed

space. A norm on a vector space X is a real-valued

function on X whose value at an x € X is denoted by ||

and which has the properties
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RLE
i) lx]=0 ifand only if x=0.
i) ford| =l
iv) eyl bl
Here x and y are arbitrary vectors in Y and ¢ any scalar.

A norm on X defines a metric d on X, which is given by

d(x,y)=|x-] (x,yeX) and is called metric induced
by the norm [|]. The normed space just defined is denoted

i

Definition 1.1.8: (Compactness).

by (X,

).e

A metric space X is said to be compact if every
sequence in X has a convergent subsequence. A subset M
of X is said to be compact if M is compact considered as a

subspace of X, that is, if every sequence in Mhas a

F oG gP Eprrits@ o) I‘Pmb-@rTm@E@ﬁ@ﬁf‘&R_uﬁﬂeLn1lm1f nf A



We present the following result

Theorem 1.1.9: [7]

Every finite dimensional subspace ¥ of a normed
space X is closed in X,
For a finite dimensional normed space we have

Theorem 1.1.10:[7]

In a finite dimensional normed space X, any subset
of X is compact if and only if it is closed and bounded.

Theorem 1.1.11:[7]

A continuous mapping T of a compact subset M of
a metric space X into R assumes a maximum and a
minimum on M.

Definition 1.1.12: (Linear operator).

A linear operator T is an operator such that
i) the domain D (T) of T is a vector space and the

range R (T) lies in a vector space over the same field.
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ii) forall x,y in D (T) and scalar £,
TE+y)=T)+T()
T(kx)=k T(x).

Definition 1.1.13: (Linear functional).

A linear functional fis a linear operator with
domain in a vector space X and range in the scalar field /°
of X.

Section (1.2) Inner Product Spaces. Hilbert Spaces

Definition 1.2.1: (Inner product space, Hilbert space)

An inner product space is a vector space X with an
inner product defined on X. A Hilbert space is a complete
inner product space. An inner product on X is a
mapping of X x X into the scalar field /" of X; that is,
with every pair of vectors x and y in X there is an

associated scalar which is written <x,y> and is called the



inner product of x and y, such that for all vectors x,y,z and
scalar & we have
i) <X+y,z>=<Xz>+<Y,z>

i) <kx,y>=k<x,y>

i) <x,y>=<),Xx>

<x,x>20

) <x,x>=0 ifandonlyif  x=0.

In (iit), the bar denotes complex conjugate. Consequently,
if X is a real vector space, we simply have <xy>=<y,x>

Inner product spaces are normed spaces, with norm
defined as [x|" =< x,x>. Hilbert spaces arc Banach

spaces with norms induced by inner products. Not all

normed spaces are inner product spaces.

Definition 1.2.2: (Orthogonality).




An element x of an inner product space X is said to

be orthogonal to an element y in X if <x,y>=0. We also
say that x and y are orthogonal, and we write x.1y .
Similarly, for subsets 4, Bc X we write

x1A if xLla forall ae A4,and ALB if alb forall
aeAdandal beB.

Definition 1.2.3: (Distance of a point from a subset)

In a metric space X, the distance 6 from an element
x € X to a nonempty subset ¥ of X is defined to be

o= il})f d(x,1). In a normed space this becomes

d =1nf

yel

x—y

Theorem 1.2.4: |7]

[n an inner product space,

if x >xand y —>y then <x,y >><X,y>
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Proof:

<X,y >—<X,y>=|<X,.Y, S <X,YSHLX, P> —<X, >
<l<x,y —y>+l<x, —xy>]
x|y, = +x, = v >0

<1

sincey —v—>0&x, —x—>0 as n—>o.

Remark 1.2.5:

It is evident that, a Hilbert space X, with the
induced norm, is a Banach space which satisfies

the parallelogram law.

e+ 3] +lx =2 =2 ).

x|+

Definition 1.2.6: (Direct sum).

A vector space X is said to be the direct sum of two
subspaces Y and Z of X, written X =Y © Z , if gach

x € X has a unique representationn

X=v+z veV,zeZ. Here Zand Y are called



algebraic complements of each other in X', and (¥,Z) 1s
called a complementary pair of subspaces in X,

Theorem 1.2.7:]7]

Let Y be any closed subspace of a Hilbert space H.

then H=Y®Y" whereY' ={ze H|zlY}.
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Chapter Two

Approximation in General Normed Spaces

Section (2.1) Introduction
The problem of best approximation amounts o the
problem of finding, for a given point x and a given set ¥’

in a metric space X, a point y, € Y which should be

nearest to x among all points of the set Y, i.e. such that

d(x,v,)= i1_;11f d(x,y) where d denotes the distance in the

metric space X. We shall take as X' not an arbitrary metric
space, but a normed.linear space. Naturally, the distance
in X is that induced by the norm, i.e.

d(x,y)=|x-y| forall x,yeX.

Thus, the problem of best approximation consists of

finding, for a given clement x and a given set Yina
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normed linear space X, an element y, €Y such that

lx—y|=inflx-»] .

o

Every y, €Y with this property 1s called an element of

best approximation of x in y.

Section (2.2) The Set of Best approximations P(x,Y)
The set of all elements of best approximation of x

in ¥ isdenoted by P(x,Y)={ve¥:|x—3]= d(x,Y)}
In this section we study some properties of the set

of best approximation of x in Y.

Theorem 2.2.1:

Let ¥ be a subspace of a normed space X , then
NIf xeY,then P(x,Y)= {x}
i)Ifxe¥ /Y, then P(x,Y)=¢.
Proof:

For (i) Let x € Y then d(x,x)=0
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P(x,¥)={yeY |x -3 =0}={x} sice d is a metric.

For (ii)let xe Y \Y then for each natural number

: |
n, there is an element y, of ¥ such that |x, — x| <— i.e. in
n

the limit case d(x,Y)=0then P(x,Y)=¢.

A subspace A of a vector space X is said to be
convex if x,y e A implies that the set
M={zeXlz=ax+(1-a)y,0<a<ljc 4. Mis
called d closed segment with boundary points x and y;
any other z € M is called an interior point of M.

Theorem 2.2.2:

Let ¥ be a subspace of a normed space X', and
x e X, then P(x,Y) 1s a convex set.
Proof:

Let z, yve P(x,Y), and let r 20 so that

Ix -yl =|x-z|=r. For 0<a <1, we have



Hx—[ay»%(l—cx)z]“z
Hx—ay—z+az“:Hx—ay—z+az—ax+ax“

=fa(x - )+ (1-a)(x-2)
S06\|x—y”+(1—a)”x—zH:ar—l—r—ar:r

thus;, v+ (1-a)z e P(x,Y).
Hence P(x,Y) is convex.

Corollary 2.2.3:

If P(x,Y) is not empty; then it either contains

exactly one point or an infinite number of points.
Proof:

If xe¥ thenby (2.2.1)(1) P(x,Y) contains exactly

ong point, namely x.

If P(x,Y) contains more than one points, say, y,z then
by (2.2.2) for each scalar a with la|<1,P(x,¥) a convex

set so contains all points of the form ay+ (1 - )z,
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hence it contains an infinite number of points.

Theorem 2.2.4:

Let ¥ be a subspace of a normed space X, P(x,Y) isa

bounded set.
Proof:

Let z,ye P(x,Y) and let [x-y| =t
le =y =le—x+x-y|<|z =2 +|x—y|=2r

Therefore P(x,Y) is a bounded set.

An element x is said to be orthogonal to an element

¥ in anormed linear space X , if we have |jx < |x — o
for every scalar . We write x 1 yto say that x is

orthogonal to y. In a Hilbert space we have x 1 y if and

only if (x,y) =0.
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An element x of a normed linear space X is said to

be orthogonalto aset Y < X and we write x L Y if
x 1 yforeach yeV.

Theorem 2.2.5:

Let Y be a subspace of a normed space X,

xe X/Y and y eV, wehave y € P(x,Y) ifand only if
(x—y LY.

Proof:

Suppose, y, € P(x,Y). Since Y is a subspace

y —ay e for each scalar . So; for each scalar a, we

have; |lx — yOH < Hx - y+ayﬂ” Which implies that

x—y LY.
Conversely, assume that x—y L Ythen x—y 1y for

all yeV.Thus; [x-yl<|x—y, ~a|. For ze?, let
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y=z-yo. Since Y is a subspace ye Y. Now,
O F T B PP B |

Theerfore y € P(x,V).e

Section (2.3) Proximinal set:

In this section we study some properties of the
proximinal set, and show that compact subspaces and
finite-dimensional subspaces are proximinal.

A subspace Y is called proximinal in X if]
Vxe X, JyeYst d(xY)=|x-y|.
We begin this section by the following theorem

Theorem 2.3.1:;

Every compact subspace Y of X is proximinal in
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Proof:

Let x € X, be arbitrary

Let 5 =inf{d(x,y): ye¥)

Define a sequence of points ¥,»¥,s-in ¥ such that

d(x,y)— & as n— «. By compactness of ¥, we may

assume that the sequence converges to a point 5 of Y.
We will show that 5 is a point of ¥ of minimum distance
from x.
d(x, V) < d(x, y)+dy,y)
The left hand side is independent of » and the right hand
side converges J to as »n converges to o,
thus d(x, V)< &
Since yeV, d(x,¥)>5 Hence d(x,v)=6.

If ¥'is not compact then the next example shows

that a best approximation may not exist.
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Example 2.3.2:

Let X be the Euclidean Space R® and let Y be the
set of points that are strictly inside the unit circle. There
is no best approximation in ¥ to any point of X that is out
side or in the unit circle.

Theorem 2.3.3:

A finite-dimensional linear subspace Y of a normed
linear space X is proximinal in X .

Proof:

Let ¥ be such a subspace and x in X'. Let y_ be

an arbitrary point of ¥ . Then the point we seek lies in the
set {v vel|y—x< Hyu —~ xH} which, by theorem
(1.1.10), i1s compact. By theorem ( 2.3.1), it contains a

point of minimal distance from x. Hence Y is

proximinal.

547649
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A natural question is suggested by theorem (2.3.1): Is the
finite-dimensionality necessary? We will answer this
question by an example. The example will show that the
finite dimensionality can’t be omitted from the last
theorem and we consider the space ¢y of infinite sequence

= (x!, xz,...) such that x, — 0 with the norm
1= max|x].

Example 2.3.4;

In the space ¢, the subspace Y of points
f = x.,-) for which 37 2™y =0 is not proximinal
n cy.
Proof:

Let g = (gl,gz,..) be any point of () not in ¥. Then
the number =3 2% g #0

Obviously A #
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Let f = —_72—(/1,0,0,...)+ g

f.= :;(&,/1,0,0,...)+ g

/.= :;(/1,2.,/1,0,...% g etc

Our claim is that f eY forall n

Proof of claim:
By induction

For n=1;

1 | 1
= (24 + +—g, +t—g, +..
-f; 2( gt) 22g_ Z;g

hence fleY.

Now, assume it true for n=k-1

2!
f":2" l(i,i,i,...,km_ﬂ’ 0.0,.)+(g,,8,,)
/;' (2; __I/1+gi""’E}';—'24+gk,gk+l"")

k¥ _ place
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Now,

L 2" 1 2%
5(2;-__1 gl)—i_—é?(zi_];{'_l_gv)_f_ +2—( 1/1+gk)+gk+1’
Then f eV .

Hence f eV forall n

_ 2
I/, -] = ?_—IW — |4

Then the distance from g to Y is not more than |)\

Now, we want to show that no point of Y is of distance

Al orless from g

If f=(x,x:.--) is an clement of ¥ with|g - /] < i

- gJ < %W whenever & > n[Possible

since the elements of ¢, are sequance converging to 0].

=0
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Then

]Z z-kgk' = !Zz_kgk _§:2"‘xk - ‘Z 24(ga- _x’f)’ s Zzikrgt _x"‘ =

<pz2” +%;;1|§ 24 <[]
which is a contradiction.

Section (2.4) Uniqueness of Best Approximation

In this section we consider the problem of
uniquness of best approximant.

A subspace ¥ in a normed linear space X is called
a semi-Chebyshev subspace if Vx e X, P(x,Y) contains
at most one point and if it contains exactly one point then
Y 1s called Chebyshev.

Definition 2.4.1:( Strictly convex)

The set E'of a linear space X is strictly convex if,
VS]?SZ e kL, S 7 Sa the points

las.+(1-a)s,: 0<a< 1} are interior points of £ .
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Theorem2.4.2:

Let X be a normed linear space. Then, Vx e X

and for any r > 0, the closed ball

NG, r)={y:|v-x|<r,ye X} is convex

Proof:

Let 3 and y bein

N(x,1).

ley,+(1-a)y - x| <]y, - o+ (1~ a)y -(1- a)x| =

:~a

Yo~ |+t -y, -+

Si’ﬂaH]l—a[}:r O0<a<l

Theorem 2.4.3:

Let ¥ be a compact and strictly convex set in a
normed linear space X . Then Y is Chebyshev.
Proof:
Let ¥ be a compact and strictly convex set in a normed

linear space X, xe X, and let § = d(x,Y)
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Since Y is compact, theorem (2.3.1) shows that there is a
best approximant for x in Y.
Suppose g, and g, are different best approximants of ¥

to x. Now; we have

1 (s, +sz)-xHS%]ls, —xl}+% 52— = %5%5: 5. And

: . 1 :
because Y is convey, it follows that E(g, +,) isalsoa
best approximant of x in Y and therefore it satisfies the

J
equation %(51 +sl)—x( =0 )

Let A be the largest number in the interval 0 < 4 <] such that the point
1 1 . - >
SZE(S|+Sz.)+/1(-x‘5(S,+SE)) ......... (2) isin ¥,

Since Y is compact the value A is well-defined.

(1) and (2) imply the equation

by ]
oy
=
3y
M
(s

However & is positive, otherwise s=x=g,,and A is
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positive because the strict convexity of Y implies that
i . : X :
E(S' + 5,) 1s an interior point of ¥ . It therefor follows

from 3 that s — x| is less than & . This contradiction

proves the theorem.

Definition 2.4.4: ( strictly convex norm)

A strictly convex norm is a norm || such that. for

all x,y ofnorm 1, |x+y| <2. A normed space with

such a norm is called a strictly convex normed space.
Linear subspaces of strictly convex spaces are,
clearly, strictly convex.

Theorem 2.4.5;

Let ¥ be a convex set in a normed linear space X , whose
norm is strictly convex. Then, Y is Semi-Chebyshev.
Proof:

Suppose that s, and s, are different best approximations
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from Y toxand that 6 = d(x,Y). Since the strict

convexity of the norm implies that the set N(x,8) is

: .1 : L .
strictly convex, the point 5( s+ §.) 1s an interior point of

N(x,9), which is the condition <0.

1
—(s +5,)—x
2(. 2)

- . 1
This is a contradiction, however, because E(S‘ +5,)€Y.

Theorem 2.4.6:

Let ¥ be a finite-dimensional subspace in a strictly
convex normed linear space X . Then Y is Chebyshev.
Proof:

Theorem (2.3.3) shows that there is a best
approximation from Y to x.

Suppose that g, and g, are different best

approximations from Y to x
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I x{=ls. - =5.

=0.SinceYisa

”%(S; +s,) —x} < %”s, — x| +—12-H52 - ]

linear subspace, %(Sl +g5,0€7; %(S1 + 5,020 . Nowif

6 =0,1tisclearthatg =x=g¢

2

If & # 0, then the vectors S‘g X S x, and there
9

midpoint are all of norm 1, and by the strict convexity,

lS‘lZSE.

Theorem 2.4.7:

Hilbert spaces are strictly convex.
Proof:

For all x and y # x of norm one we have, say,
Ix—y| =, where a > 0, and the parallelogram equality

gives
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lx+ 3 = ~lx=y| + 2% + ) = —a* + 200+ 1 < 4,

hence |x+y|<2.

Corollary 2.4.8:[7]

Any subspace of Hilbert space is Chebyshev.

Theorem 2.4.9:

Let X be an inner product space and ¥ # ¢ a convex
subset which is complete. Then for every given xe X
there exists a unique v €Y such that

d = inflx~ 3=~ |
Proof:

By definition of an infimum there is a sequence (y,;)
in Y such that
d —>d where d =|x-y]

We show that (y,,) is Cauchy. Writing y,-x=v,,, we have
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v,|=d, and

> 2d because

I
v, +v,|=ly, +», - 24 = 2”5 (v, +¥,)-x

. 1
Y 1s convex, so that 5( v, +vy )eY.Furthermore, we

have y -y =v —v . Hence by the parallelogram
equality,

“y” - LH = “m —~ vmﬂz = —Hv” +v Hz +2(v | +vaH2) <—Q2dY +2d: +d})

And (*) implies that (y,) is Cauchy. Since Y is complete,

(v») converges, say, y, —> ye Y. Since ye Y, we have

lx—y|=d. Also, by (*),

=y <|x=»]+ly, - ¥|=d, +|y, - 3| - d. This shows
that x— yj=d .
Now we assume that  »,y, € ¥ both satisty [x—y|=d

and |x— y,| = dand then show that y, = y. By the

parallelogram equality,
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vyl =ly-0-0, -2 =2y-af + 2y, -« -

0

2

=2+ (v, ~x)

| 3
=2d° +2d’ - 2“}i%(y+y”)—x

>d.

On the right, %(y+yl,) e, so that I%(}”ryﬂ)—x

This implies that the right hand side is less than or equal

to 2d’ +2d* —4d* = 0. Hence we have the inequlity

<0. Clearly,

-, y—,/20, so that we must have
equality.
Section (2.5) Best Approximation in Orlicz Space

A function ¢ is said to be subadditive if for all x
and y we have d(x+ v) < ¢(x)+ @(y).

Let ¢ be a strictly increasing continuous

subadditive function defined on [0, %] with ¢(0)=0.

Such a function is called a modulus function. Some
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examples of modulus functions are
p(x)=x" ,0< p<oo,and ¢(x)=In(1+x). In fact if ¢ is

¢

a modulus function then so is ﬁ,}.— . Further, the

composition of two modulus functions is a modulus

function. Let (1, X) be a finite measure space. The

Orlicz space I’ (u, X) is the set of all complex-valued

measurable function, /* which are defined on X and

satisfy |f]¢ ~ [o(f e <.

With the metric \

,» the space L*(u, X') becomes a

complete linear topological space [3].

For a modulus function ¢ and a measure space

(T,n) we set,

/(X)) ={x, e X : T o(|x.]) <)
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(1, X) = {g T = X [p(|g@ldu(r) < oo}

For x=(x,)e?’ and f e L'(x,) we have,

[+, =2 ¢x| and 1], = olfdu
Theorem 2.5.1:

if ¥ is a closed subspace of X, then /(1Y) is a

closed subspace of L! (i, X).

Proof:

L(uY)= {y T — Y”y”¢ < oo}
First we show that L*(,Y) is a subspace of L, X)
Let y,y e ’(u,Y). |

(Y +y)O=yO+y (t)eY. Since »,(8),y,(t)e Y and

Y is a subspace.
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v+ vl <yl +lw, <

Hence y +y e L'(p,Y)—————- (1)

Now, let @ be areal number andy = L°(,Y). We want
ay e L'(1,Y)

a(y)eY = oy, <oy, <o

Hence ave L' (u,Y)—————— - (2).

Then (1) and (2) imply that 7 (x,Y) is a subspace of
L'(u, X).

To show that 2*(z,Y) is closed let (y) be a sequnce in

L’'(4,Y) such that y — y.

y,2y=>y @) >WO) forallteT . But (y (f)) isa
sequence in ¥ forallt € Tand Y is closed subspace of

X, then y(t)eY VteT
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M =b=y.+ 3], b=yl ),
Asn—w, |y < limHan‘L <= I(uY) is a.closed
subspace of I/ (u, X).

Theorem 2.5.2:

If ¥ is a proximinal subspace of X, then ¢¢(Y) is
a proximinal subspace of ¢¢(X)

Proof:

let x, €£*(Y) and Y proximinal in X .

Foralln,3y eYsuchthat. d(x, V)= ”x,.— y“ and

Iy <2l [y eYi|x, - y,|<[x, - ¥ inparticular
take y=0 {x, = y,[ <[x. |, [v.] <y, — =) + ] < 2, 3.
y=,)el(Y)

Our claim is that y is a best approximation for x in £/(Y)
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Let z € £*(Y) then

xn_zn Zz¢xﬂ_yﬂ

-z, =Z¢

=|x -], hence

d(x,lf”(Y))=’|x~y||¢ and y € p(x,£*(Y)).

Theorem 2.5.3:[8]

let Y be a closed subspace of a Banach space X, if g
is a best approximation of fin L*(y,Y), then y() is a

best approximation of f{#) in Y for almostall t e T'.

Theorem 2.5.4:[06]

let Y be a reflexive subspace of X, then L'(z,Y)is
proximinal in L'(xu, X).

Theorem 2.5.5;[5]

Let 1 < p <. The following are equivalent:
1) I7(4,Y) is proximinal in L7 (u, X)

2) L'(x,Y) is proximinal in L'(u, X)
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Proof:

(1) implies (2)

Let /e L”(u, X). Since the measure space (T,u) is
finite, /€ L' (&, X), by assumption, there exists
geL'(u,Y)suchthat |/ —g| <]/ - A for all

heL(uY). then |f(0)-g@)|<|/f@)-y| forallyeY

hence
SO -g®)| | fO-w@)  forallwel (uY).
Since O e, it follows that |g(#)| < 2| f(¢)| Hence
geLl(uY)and|f —g| <|f-w| Ywel (u1)
(2) implies (1)
Considerthe map J: L' (1, X) > L' (1, X)

By

{J(f)(r) =IO f@) i f()#0
J(H))=0 otherwise
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Then [J(/)0)| = /@) hence [J(N)|” =]/ since Jis
one to one.

Further if ge L7(u, X), then
SO =g g e X &|f()]=|g®)] thus

fel(uX).

Further

JOO=Mren” Jeol g =]g@] g g) = g(@)
then .J is onto. Also J(L (x,Y)=L"(u,Y).

Now, let f e L' (1, X). With no loss of generality we can
assume that f(¢) = 0, otherwise we can restrict our

measure to the support of /.

Since J(f)e L"(u, X) then by assumption, there exists

some g € L'(u,.X) such that

(N =J@QN, SN -J@)|,  The L’(4,Y) then by
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(2.5.3), we get

O -T@D < ()-y]  Vye hence

Ty

(0 =)D <

VyeY

multiply both side by /()] 7 to get
Lol els|<lrw-s) wyer

Let w(r) ::“f(t)HI";" Ng(t)'l]:’_1 g(1). Since g(t) is a best
approximation of f{) in Y and 0 € Y, it follows that
lg(e)|< 2|/ ()] hence we L'(u,Y) and

lF )y —w@)|<|f()-0()] Vel (uY)andsogisa
best approximation of  f e L' (1,Y).

In a similar way we can prove the following
theorem.

Theorem 2.5.6:[5]
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let Y be a closed subspace of X, then the following are

equivalent:
i) L' (1,Y) is proximinal in L (z, X).
it) L' (g, Y) is proximinal in L (g, X) e

Theorem 2.5.7:

If Y is a reflexive subspace in X, then

(1) L’(u,Y) is proximinal inL* (2, X).

(1) L7(u,Y) is proximinal in 1" (g, X).

Proof:

(1) By theorem (2.5.4) Y is reflexive in X,
L'(u,Y) is proximinal in I'(z, X) and hence
by (2.5.6) I (u,Y) is proximinal in
L),

(i1) By theorems (2.5.4)and (2.5.5).

Definition 2.5.8: (L"-summand)
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A closed subspace Y of a Banach space X 1s said to
be an L’-summand, 1 < p < if there is a bounded
projection P: X — Y which is onto, and
" =[P + = P

Theorem 2.5.9:

If Y is an L'-summand of X, then Y is proximinal in
X.
Proof:

Let

xeX,veY, y=PFP(z) ,sav

Jx =3 = Ix = P(2)) = [P(x = P(2))] + |x = y = P(x — y|
P(x)— P(P(x))] +|x— P(z) - P(x)+ P(P(z)))
P(x)— P(2)|+|x = P(x)

sx =z x - P

Then Y 1s proximinal.

Theorem 2.5.10:

Let Y be a closed subspace of X. If L'(T,Y) is proximinal
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in L'(T,X)then L*(T,Y) is proximinal in L*(T, X).
Proof:

Let fe L (T, X)sof e (T, X)and |f], <|f]..
But L'(7,Y) is proximinal in L'(T,X), then there exists
f e L'(T,Y) such that||f - f;| = d(f,L(T,Y)) and by
(2.5.3), it follows that

—d(f(1),Y) aet

JAGENAG)
1 | SHf(t)—yH aet

JO-1)

Hence forall y €Y . In particular

Lr@) - £ < If(-g@)] aet forall ge L(T,Y).
But L(T,Y) < L(T,Y),and hence, for every he L°(T,Y)
we have | £ () - £, |/ -h®)|  aet *

Now, since 0eY,we get |f,(0)] < 2]|f(t)i| aet.
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Hence f € L"(T,Y). Thus it follows from (*) that
\f =1 <|f-H, Forevery he L*(T,Y). And hence

L(T,Y) is proximinal in L°(T, X).

Theorem 2.5.11:[6]

If ¥is an L'-summand of X, then L'(T,Y) is L'-

summand in L'(T,X).
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Chapter Three

Characterization of Best Approximation

Section (3.1) Introduction

In the present chapter we shali give characteriz-
ations of elements of best approximation and some conse-
quences of these characterizations in arbitrary normed
linear spaces, and we shall see how they apply to various

concrete spaces. Since we have

| E: for xe¥
P(x,Y)—{¢ for xe¥Y\Y

for any linear subspace Y of a normed linear space X; it
will be sufficient to characterize the’ elements of best
approximation of the elements x e X \Y . In order to
exclude the trivial case when such elements x doesn't

exist, throughout the sequel by “linear subspace" ¥ < X
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we shall understand "proper linear subspace Y which is
not dense in X", that is, we shall assume, without special

mention, that ¥ = X .

Section (3.2) Characterization in General Normed
Spaces
We recall by X' the conjugate space of X, i.e. the

space of all continuous linear functionals on X, with the

norm /] = sup! /().

xeX
It]

Theorem 3.2.1:

Let Y be a subspace of a normed space X,

xe X/Y and y, e Y. We have y, € P(x,Y) if and only

if there exists an f e X "with the following properties:

/=1 e 2.1)
7(N=0 yeY. .. (2.2)

fx=y, ={x=y]...23
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Proof:

Assume that v, € P(x,Y), since x € X /¥ we have
d(x,7)=|x -y, > 0. Then by Hahn-Banach theorem,

there exists f, € X such that

1

fo(x)=1,}ﬁmH=H;C—_7= f,(»)=0 ye¥ .
Let f=|x—yl|f.. f€X", andsatisfies (2.1),(2.2) and
2.3)

Conversely, assume that there exists an f € X satisfying

(2.1),(2.2) and (2.3). Then forany y et we have

=yl =l -yl =l =<l -yl =i -5
Therefore v, € P(x,Y).

Lemma 3.2.2:

Let Y be a subspace of a normed space X,

xeX/Y.,y eYandf e X", then
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i) f'satisfies (2.1) and (2.3) if and only if it satisfies (2.1)
and Ref(x—y)=|x-y]..24)

ii) f satisfies (2.2) if and only 1f

Re f(y)=0 yveY...(2.5)

iii) £ satisfies (2.1),(2.2) and [ f(x = y,), =[x -y,

if and only if the function f, = [sign f(x- yo)lf

satisfies (2.1),(2.2) and (2.3) where for a complex

number «,

e = % if a#0
| @
SIgNa = <

0 if a=0

iv) fsatisfies (2.1),(2.2)
and|Re /' (x—»,) =[x = y,|.....(2.7) if and only if either
fi=/, or the function f,=-f satisfies (2.1),(2.2), and (2.3)

Proof:
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DIf f(x-p)= |x - y,[thenRe f(x~y,) = e =y,
Conversely, if fsatisfies (2.1) and (2.4), we have
lx=y[=Re f(x=-y,)< if(x - yu)l <|px - yo.ll then
Re f(x-v,)=|f(x=p).
f(x-yy) is real and positive and hence f(x-y,)=|x-y,|.
ii) (2.2) implies (2.5) 1s obvious.

Conversely, if fsatisfies (2.5), then for
ive Y wehavelm f(y)=-Re f(iy),
f(MN=Re f(¥y)—iRe f(iy)=0 ye¥
iii) if / satisfies (2.1),(2.2) and (2.6), f; satisfies (2.1),

(2.2)and f(x - ¥,) = |f(x - )

=lx =yl
Conversely, if f ={[sign f(x-y,)]f, satisfies
(2.1),(2.2), and (2.3) then f =¢™“™ f satisfies

(2.1),(2.2) and (2.6)

iv) if f;=for f;=-f satisfies (2.1),(2.2) and
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(2.3), then, f'satisfies (2.1),(2.2), and (2.7)

Conversely, if fsatisfies (2.1),(2.2), and (2.7), we
have [x - v,| = Re f(x—y,) < |f(x = p) <] = nl
whence |Re f(x—y,) = 'f(x — yo)l then f(x— ,)is real,
whence either f;=f, or f;=-f'satisfies (2.1),(2.2),and (2.4).

We shall now give a number of equivalent variants

of the conditions of theorem (3.2.1).

Corollary 3.2.3:]11]

Let Y be a subspace of a normed space X if
xe X /Y andy, €Y the following statements are
equivalent:
1y, € P(x.Y)
2) there exists an f € X "satisfying (2.1),(2.2), and (2.4).
3) there exists an f e X "satisfying (2.1),(2.2), and (2.6).

4) there exists an f € X "satisfying (2.1),(2.2), and (1.7).
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5) there exists an f e X satisfying (2.1),(2.5), and (2.6).
6) there exists an f e X satisfying (2.1),(2.5), and (2.7).

Corollary 3.2.4:|11}

Let Y be a subspace of a normed space X,

xe X /Y andM Y. Wehave M < P(x,Y)if and only

if there exists an f e X satisfying (2.1),(2.2) and

S(x=y)=|x=»] y,eM

Section (3.3) Applications in the Space LY(T,v):
Let (T,v)be a positive measure‘ space and, for

1< p<oo(p=wm),let L/(T,v) be thelspace of all

th

equivalence classes of functions of p” power v-integrable

(v-measurable and v-essentially bounded on 7), endowed

with the usual vector operations and with the norm

i) = [ ﬂx(t)}"dv(r)} " (res.x| = esssuplx(). for a
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function x on 7. where
ess S}lrpl{f(t)ﬁl =inf(M : gt | /() > M} =0}

IWe shall use the notation Z(x) ={te T/x(1)= 0}.

Theorem 3.3.1:[11]

Let Y=L'(T,v), where (T,v) is a positive measure
space, let Y be a linear subspace of X,
xe X /Y andy, e Y . The following statement are
equivalent:
1) v, e P(x,Y)
2) There exist countably additive and v-absolutely

continuous set functions »z defined on the sets and finite

measure, such that

]m(A)[
sup ——= =1
Oau(d \’(A)
[¥(O)dm(n) =0 (ye¥)..32)
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3) we have

[ y)sign[x(e)= y,(D)dv(e) < jt['y(t)|dv(t) yet..(34)

ThZMx-1y,

4} We have
J y() sign[x(t)— y,(D)dv(0) < [|y(O\dv(t) ye ¥ ...(3.5)

where p, =Z(x—y I\T Z(y)............ (3.6)

5) there exists a
BeL’(T,v) st esssup|f(t)=1...3.7)

[WOBOBDD =0 yeVo... 3)

T

[[x(®) - ¥, (O1BO D) = [|x(D) - v, (@ev(0)...(3.9)
6) Thereexistsa f € L~ (7', v )satisfying (3.7.3.8)

and ﬁ(t)[x(t) —y,}(t)] = ]x(r) —y“(t)] v—aeonl ..(3.10)
7) There exists a v-measurable function «on the set Z{x-

yy) such that
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’a(t)l <lv-geon Z(x—v,)....(3.11)

[ yOadv)+  [y@signlx(n) -y, (k)= 0y e ¥...(3.12)

TARERTS! T\Z(x-¥)

Corollary 3.3.2:

Let X =L(T,v), where (T, v)isa pdsitive measure
space with the property that the dual L'(7,v)" is
canonically equivalent to L”(7,v), and let Y be a linear
subspace of X, x € X /Y & y, € P(x,Y). Then there

exists a v-measurable set {J . C 7" with

v(U ¢ ) > 0and amember € L”(T,v) so that we have

(3.7),(3.8) and

Iﬂ(f)‘:1 v—ae on Ug, .............. 3.13
g ()=x(t) v-ae on T\ifg ............... 3.14
Proof:

By virtue of the implication (1 implies 6) of
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theorem (3.3.1) there exists a S e L™(T,v)satisfying

(3.7),(3.8) and Ug =T\Z(x-g,), then by
xe X/Y we havev(Ug ) > 0,and by the definition of
Ug we have (3.14 by 3.15 and 3.10) we have 3.13.

We recall that in a linear spaces L any set of the
form {ﬂ.x+ (1-A)y/0<A< 1}, where x,y € L, is called
a segment; the points Ax + (1 — A)y with 0 < 4 <lare
called interior points of the segment. |

A set A — L is called convex if together with any
two points x, y it contains the whole segment generated
by them, that is, if the
relation
x,ve Aand 0 < A <limpliesthat Jx+(1-A)ye 4.

A set M in a topological linear space L is called an

extermal subset of a closed convex set A if M is a closed
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convex subset of 4 and together with every interior point
of a segment in A it contains the whole segment, i.e. the
relations x,ye Adand0< A <1, Ax+(1-A)ye M. An
extermal subset of 4 consisting of a single point is called
an extermal point of A, we shall denote by 9(4) the set of

all extermal points of 4.

Lemma 3.3.3:

Let X = L'(T,v), where (7, v) is a positive measure
space with the property that the dual Z'(7,v)" is
canonically equivalent to L*(7,v), and let f e X . We

have f e 9(§,.) ifand only if there existsa ff e L™ (T,v)

’ t)l-—l v—ae on T 316
such that “r(yy = _[x(.t)ﬂ(t)d\(t) xeX 317

Proof:
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Let f € 9(S,-). Then there exists, byv virtue of the
canonical equivalence
LT v=L{(Tyv),a el tT,v) such that we have
(3.17)and |B(t) <1 v-ae on T.Assumethat

doesn’t satisfy (3.16). Then there exists a measurable
subset 4 < 7 with v(4)>0 such that

\ﬁ|<1 v—ae on A 3.18
Put p(t)=e™" tel
A0 =BW]-De™"  teT

Then for f,(x) = [x())B,(Hdv(t) xeX, j=12
We will have £, f, €S ., f:%(f] + f,) and by (3.18),

S f, then [ & 8(S..)

Conversely, assume that f €S . \é(S_Y.) then there

exists f=%(fl + /) 3.19.
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Whence also B, B, B, € L"(T',v) uniquely determined by

ff1, and f; respectively, and a measurable subset A 7'

with v(4)>0 st
lﬁ(f),ﬂ,(f)]ﬁl v—-ae on T,
L)+ p.(1) v—ae on A 3.20
f(0) =[x av();
[0 =[O Odv(t) xeX j=12 321

Then from (3.20 and 3.21) it follows that we have

pt) = ! [B.()+ B,(1)] v—ae on T, whence by (3.20)

2

]ﬂ(r) <l v—ae on Tl and thus condition (3.16) is not

satisfied.

We will now deduce several characterizations of
elements of best approximation in the space L' (7, v);

collected in the following theorem.
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Theorem 3.3.4:[11]

Let X = L'(T,v), where (7, v) is a positive measure
space let ¥ be a linear subspace of
X,xe X /Y andy, € Y The following are equivalent:
1) y, € P(x,Y)
2) Forevery yeY thereexistsa =" e L"(T,v), s.t

‘ﬁ([)] =1 v—ae onT 3.22
Re [y, (1) — v()]dw(1) 20 | 3.23

f_[x(t) - 3,(O1BW) dv(1) = [|x(t) - v, ()| dv(z) ~ 3.24
3) For every y € Y there exists on the set Z(x-y,) a v-

measurable function ¢ = ¢’ s.t
la(t)l =1 v—aeon Z(x-y,) 3.25

’x(r) -V, (r)] dv(t) < :
JRe | [x(0) - y@Oletydv()+ Re  [[x(1)= w(O)]signlx(t) = y, (1) ebv(0)

Fix-*vy} TAZ(x-1)

4) For every y e Y there exists on the set Z(x-yo) a v-

measurable function ¢ = ¢* satisfying (3.24) and



04

Re  [[y,()— y(®)]signlx(t) - y,(O)]dv()

TWZ(x-¥y)

>-Re [[y,(6)=y(Ola(t)dw(r)...3.27

HELAYY

5) We have

Re 7 I_[}’,,(f)-—y(f)]sign[-Y(f)—yo(t)]dV(f))
o >— [y, (0) - y(E)dv(t) (yeY)..3.28

2(x=yp)

6) We have

Re [ w(0)sign[x(t)- v, (@O)]av(t) 2 - [|m0)|dv(D)

T 2{x-¥g) Z{x-vy)
~ Section (3.4) Application in the spaces C(K) & Cg(K)

For a compact space K, we shall denote by C(K),
the space of all continuous functions x on K, with the

norm jlx| = l];_lﬁ)('x(k)l.

5476489
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For a compact space K, we shall denote by Cx(K), the
space of all numerical continuous real-valued function on

K, with the norm [x| = ng_q{x[x(k)].

Theorem 3.4.1:[11]

Let X=C(K), Y alinear subspace of X,
xeX/Yandy, Y wehave y, € P(x,Y) if and only if
there exists a Radon measure g on K, with the following
properties
LK) =1
[ g(k)du(k) =0 geY
du

i e C(K)

. du .

(k)= g, () =Lsign - (RImads() ~g, (0] k€ SGD
Iet us now consider the problem of simultaneous

characterization of a set M < Y of elements of best

approximation.

4.1
4.2

4.3

4.4
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Theorem 3.4.2:

Let X=C(K), Y a linear subspace of X

xe X /Y andM cY.Wehave M < P(x,Y) if and only

if there exists a Radon measure uon K satisfying (4.1,4.2
and 3.3) and

du

x(k) - g, (k) = [sign"- = (k) max|x(1) - &,(¢)
dip =

(keS(u),g,eM 4.5

Proof:

Assume that we have M < P(x, Y). Then there
exists, by virtue of corolléry (3.2.4), a Radon measure
on K satisfying (4.1,4.2) and

[[x(k) g (k) )dutk) = maxix(k) - g,(K). (g, €M) 4.6

1%

It follows from (4.1,4.6 Yand x € X \Y that for every
g,€ M there exists a set of || —measure zero N, < K

such that
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_d_!:l_ k) = x(k)_gu(k)
diuj " maxlx(6)- g, (1)

keK\Ng“

Consequently, for any pair g, g, € M we have

g, (k) =g,(k) (ke KN(N, UN ),
hence (g, —8.2)}!11: 0,
whence g (k)= g, (k) ke S(w)
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