جامعة النجاح الوطنية
كلية الدراسات العليا

أثر التدريب البدني عاليا الشدة وتدريب الفارتلك على بعض الخصائص
البدنية و الفسيولوجية لدى ناشئي كرة القدم

إعداد
HAMAD BSAIM ABU AL-RHOMAN SALAMAH

إشراف
Prof. ABDEL NASSER EL-MARDI

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في التربية الرياضية
بكلية الدراسات العليا في جامعة النجاح الوطنية، فلسطين

2013م
تأثير التدريب الافتراضي عالي الشدة وتدريب الفارتلك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم

إعداد
حامد بسام عبد الرحمن سلامة

نوقشت هذه الأطروحة بتاريخ: 28 / 3 / 2013 م، وأجيزت.

توقيع

أعضاء لجنة المناقشة
- أ. د. عبد الناصر قدومي، مشرفاً ورئيسًا
- د. بهجت أبو طعام، ممتحناً خارجياً
- أ. د. عماد عبد الحق، ممتحناً داخلياً
- د. محمود الاطرش، ممتحناً داخلياً
الإهداء

إلى من بلغ الرسالة وأدى الأمانة... ونصح الأمة... ورفع الغمة... إلى مسيحي الرحمة وثور العالمين.

(سيدنا محمد صلى الله عليه وسلم)

إلى من كل له الله بالهيبة والوقار..... إلى من أجمل أسمها بكل افتخار

(والدي العزيز)

إلى ملاكي في الحياة... إلى مهن الحنان والتفاني والأمان... إلى بسمة الحياة وسر الوجود إلى من كنا دعاها سر نجاحي وحنانها بسم جراحي إلى أغلى الحباب

(أم العزيزة)

إلى رفيقة دربي

إلى من سارت معي نحو الحلم... خطوة بخطوة... بذنناها معاً... وحضناها معاً... وسنتقى معاً

(زوجتي الغالية)

إلى القلوب الطاهرة الرقيقة والنفس البريئة إلى رياحين حياتي

إلى من جملتني حياتي وأسعدتني أوقاتي أبنتي (تالا ولين)

إلى أخوتي وأخواتي الأعزاء

إلى من توحاه الموت واختاره ربه ليكون إلى جانب الشهداء والأبرار

(الدكتور المرحوم صبحي الطيراوي)

إلى من حملوا أرواحهم على راحاتهم والقوا بها في مهاوي الردى (شهداء فلسطين)

إلى من سطروا أروع ملاحم البطولة وحفظوا كرامة أمتهم في معركتهم ضد الاحتلال

(أسرى الحرية)

إلى أصدقائي الذين تسكن صورهم وأصواتهم أجمل اللحظات والأيام التي عشتها

أهدي لهم جميعاً ثمرة جهدي وتعبي ت
الشكر والتقدير

الحمد لله رب العالمين، والصلاة والسلام على أشرف المرسلين، سيدنا محمد النبي الأمين، وعلى آله وصحبه ومن سار على نهجه واستن بستنه إلى يوم الدين وبعد،

لقد من الله تعالى علي بانجاز هذه الدراسة ولولا كرمه وعلمه لم أكن لأخط حرف واحدا فيهما، وانطلاقاً من قول الرسول صلى الله عليه وسلم: "من لا يشكر الناس لا يشكر الله" فإني أتقدم بجزيل الشكر والعرفان إلى من كان لي الحظ والنصيب لأنه من علمه كيف لا وهو علامه بكل ما تحمله الكلمة من دلائل فالشكر كله لمعي وأستاذي الأستاذ الدكتور: عبد الناصر عبد الرحمي القدومي الذي تكرم بالإشراف على رسالتتي المتوضعة، ومنحني من فكره الرشيد ورأيه السديد وبذل من جهده الكثير إذ كان لآرائه وانتقاداته البناءة أكبر الأثر في إخراج هذه الرسالة إلى حيز النور.

كما أتقدم بالشكر والتقدير لأعضاء لجنة المناقشة الذين تكرموا وقبلوا مناقشتي في هذه الرسالة.

ولا يسعني إلا أن أتقدم بعظيم الشكر والامتنان لإدارة جامعة فلسطين التقنية "خضوري" لما قدمه من دعم مادي ومعنوي أثناء دراستي، وأخص بالشكر الدكتور الفاضل سائد ملاك -القائم بمهام رئيس جامعة خضوري - والدكتور الفاضل بسام حمدا (عميد كلية فلسطين التقنية).

كما أنني أتقدم بعظيم الشكر والامتنان إلى أمبري الثاني إلى العاملين في قسم التربية الرياضية في جامعة "خضوري".

وابرق رسالة شكر وامتنان إلى الزملاء المساعدين (معتصم أبو عليا وؤزي حنون محمد الشوريجي، هشام الأسعد) لما بذلهم من جهد في إجراء الاختبارات وتطبيق البرنامج التدريب.

والشكر موصول أيضا إلى الصديق العزيز عماد شلبي لما بذل من جهد في مراجعة الرسالة وتفتيحها لغويًا ونحوياً.

و للجميع عظيم الاحترام والتقدير...
ÉÉ-

Declaration

The work provided in this thesis, unless otherwise referenced is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's Name:

Signature:

Date:

اسم الطالب:

التوقيع:

التاريخ:
<table>
<thead>
<tr>
<th>الصفحة</th>
<th>المحتوى</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب</td>
<td>قرار لجنة المناقشة</td>
</tr>
<tr>
<td>ت</td>
<td>الإهداء</td>
</tr>
<tr>
<td>ث</td>
<td>الشكر والتقدير</td>
</tr>
<tr>
<td>ج</td>
<td>إقرار</td>
</tr>
<tr>
<td>ح</td>
<td>فهرس المحتويت</td>
</tr>
<tr>
<td>د</td>
<td>فهرس الجداول</td>
</tr>
<tr>
<td>ذ</td>
<td>فهرس الأشكال</td>
</tr>
<tr>
<td>س</td>
<td>فهرس الملاحق</td>
</tr>
<tr>
<td>ص</td>
<td>ملخص الدراسة</td>
</tr>
<tr>
<td>الفصل الأول: مقدمة الدراسة وأهميتها</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>مقدمة الدراسة</td>
</tr>
<tr>
<td></td>
<td>أهمية الدراسة</td>
</tr>
<tr>
<td></td>
<td>مشكلة الدراسة وتساؤلاتها</td>
</tr>
<tr>
<td></td>
<td>أهداف الدراسة</td>
</tr>
<tr>
<td></td>
<td>حدود الدراسة</td>
</tr>
<tr>
<td></td>
<td>مصطلحات الدراسة</td>
</tr>
<tr>
<td>الفصل الثاني: الإطار النظري والدراسات السابقة</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>أولًا: الإطار النظري</td>
</tr>
<tr>
<td></td>
<td>ثانياً: الدراسات السابقة</td>
</tr>
<tr>
<td></td>
<td>التعليق على الدراسات السابقة</td>
</tr>
<tr>
<td>الفصل الثالث: الطريقة والإجراءات</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>منهج الدراسة</td>
</tr>
<tr>
<td></td>
<td>مجتمع الدراسة</td>
</tr>
<tr>
<td></td>
<td>عينة الدراسة</td>
</tr>
<tr>
<td></td>
<td>أدوات الدراسة</td>
</tr>
<tr>
<td></td>
<td>متغيرات الدراسة</td>
</tr>
<tr>
<td>127</td>
<td>التجرية الاستطلاعية</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>127</td>
<td>المعاملات العلمية لاختبارات الدراسة</td>
</tr>
<tr>
<td>127</td>
<td>صدق وثبات الاختبار</td>
</tr>
<tr>
<td>128</td>
<td>تطبيق الدراسة</td>
</tr>
<tr>
<td>129</td>
<td>المعالجات الإحصائية</td>
</tr>
<tr>
<td>130</td>
<td>الفصل الرابع: نتائج الدراسة</td>
</tr>
<tr>
<td>131</td>
<td>نتائج الدراسة</td>
</tr>
<tr>
<td>156</td>
<td>الفصل الخامس: مناقشة النتائج والاستنتاجات والتوصيات</td>
</tr>
<tr>
<td>157</td>
<td>أولًا: مناقشة النتائج</td>
</tr>
<tr>
<td>164</td>
<td>ثانياً: الاستنتاجات</td>
</tr>
<tr>
<td>165</td>
<td>ثالثاً: التوصيات</td>
</tr>
<tr>
<td>166</td>
<td>المراجع والمصادر</td>
</tr>
<tr>
<td>166</td>
<td>أولًا: المراجع العربية</td>
</tr>
<tr>
<td>177</td>
<td>ثانياً: المراجع الأجنبية</td>
</tr>
<tr>
<td>193</td>
<td>الملحق</td>
</tr>
<tr>
<td>b</td>
<td>الملخص باللغة الإنجليزية</td>
</tr>
<tr>
<td>الصفحة</td>
<td>الموضوع</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>50</td>
<td>الحد الأقصى لاستهلاك الأكسجين لدى لاعبي كرة القدم</td>
</tr>
<tr>
<td>61</td>
<td>متوسط نسبة الشحوم للذكور وللإناث حسب المرحلة العمرية</td>
</tr>
<tr>
<td>74</td>
<td>نبض القلب وحجم النبضة والدفع القلبي لرياضيين وغير الرياضيين</td>
</tr>
<tr>
<td>82</td>
<td>بعض المعادلات الدالة على أقصى نبض</td>
</tr>
<tr>
<td>122</td>
<td>نتائج اختبار (ت) لمجموعتين مستقلتين للتكافؤ بين المجموعتين التجريبتيتين</td>
</tr>
<tr>
<td>128</td>
<td>معاملات الثبات والصدق الذاتي لأهم متغيرات الدراسة.</td>
</tr>
<tr>
<td>132</td>
<td>نتائج اختبار (ت) للأزواج لدالة الفروق بين القياسين الفعلي والبعدي في المتغيرات قيد الدراسة لدى أفراد التدريب الفتري عالي الشدة (N=15)</td>
</tr>
<tr>
<td>142</td>
<td>نتائج اختبار (ت) للأزواج لدالة الفروق بين القياسين الفعلي والبعدي في المتغيرات قيد الدراسة لدى أفراد طريقة تدريب الفارتك (N=15)</td>
</tr>
<tr>
<td>153</td>
<td>نتائج اختبار (ت) لمجموعتين مستقلتين لدالة الفروق في القياس البعدي في المتغيرات قيد الدراسة بين أفراد طريقة التدريب الفتري عالي الشدة وطريقة تدريب الفارتك (N=30).</td>
</tr>
<tr>
<td>الصفحة</td>
<td>الموضوع</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>134</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز السرعة (ثانية) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>134</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز حمل السرعة (ثانية) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>135</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز الرشيقة (ثانية) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>135</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز القدرة اللاكمسجينية (كم/متر/ثانية) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>136</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز السمة اللاكمسجينية (كم/متر/ثانية) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>136</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز نسبة الشحوم (٪) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>137</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز كتلة الجسم الخالصة من الشحوم (كم) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>137</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز التمثيل الغذائي خلال الراحة (سعة/يوميا) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>138</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز ضغط الدم الانقباضي (ملم/زنبيقب) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>138</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز ضغط الدم الانقباضي (ملم/زنبيقب) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>139</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز نبض الراحة (دقيقة/دقيقة) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>139</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز حجم النبضة (ملليتر/دقيقة) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td>140</td>
<td>متوسط القياسين القبلي والبعدي لتميَّز جري كوبير 12 دقيقة (كم/متر) عند أفراد مجموعة التدريب الفقري عالي الشدة</td>
</tr>
<tr>
<td></td>
<td>متوسط القياسين القبلي والبعدي لمتغير أساليب نبض (نقطة دقيقه) عند أفراد مجموعة التدريب الفترى عالي الشدة</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>متوسط القياسين القبلي والبعدي لمتغير الحد الأقصى لاستهلاك الأكسجين (ملليتر/كم/دقيقة) عند أفراد مجموعة التدريب الفترى عالي الشدة</td>
</tr>
<tr>
<td>15</td>
<td>متوسط القياسين القبلي والبعدي لمتغير السرعة (ثانية) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>16</td>
<td>متوسط القياسين القبلي والبعدي لمتغير تحمل السرعة (ثانية) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>17</td>
<td>متوسط القياسين القبلي والبعدي لمتغير الرشاقة (ثانية) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>18</td>
<td>متوسط القياسين القبلي والبعدي لمتغير القدرة اللااكسبجينية (كم.متر/ثانية) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>19</td>
<td>متوسط القياسين القبلي والبعدي لمتغير السعة اللااكسبجينية (كم.متر/ثانية) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>20</td>
<td>متوسط القياسين القبلي والبعدي لمتغير نسبة الشحوم (٪) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>21</td>
<td>متوسط القياسين القبلي والبعدي لمتغير كتلة الجسم الخالية من الشحوم (كم) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>22</td>
<td>متوسط القياسين القبلي والبعدي لمتغير المثيل الغذائي خلال الراحة (سيرة/يوما) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>23</td>
<td>متوسط القياسين القبلي والبعدي لمتغير ضغط الدم الانقباضي (ملم.زئيقي) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>24</td>
<td>متوسط القياسين القبلي والبعدي لمتغير ضغط الدم الانقباضي (ملم.زئيقي) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>25</td>
<td>متوسط القياسين القبلي والبعدي لمتغير نبض الراحة (نقطة دقيقة) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>26</td>
<td>متوسط القياسين القبلي والبعدي لمتغير حجم النبضة (ملليتر/نقطة) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>رقم</td>
<td>متوسط القياس القبلي والبعدي لمتغير السدف القلبي خلال الراحة (لتر/ دقيقة) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>29</td>
<td>متوسط القياس القبلي والبعدي لمتغير جري كوبير 12 دقيقة (كيلو متر) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>30</td>
<td>متوسط القياس القبلي والبعدي لمتغير أقصى نبض (نبضة/ دقيقة) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>31</td>
<td>متوسط القياس القبلي والبعدي لمتغير أقصى دفع قلبي (لتر/ دقيقة) عند أفراد مجموعة تدريب الفارتك</td>
</tr>
<tr>
<td>32</td>
<td>متوسط القياس القبلي والبعدي لمتغير الحد الأقصى لاستهلاك الأكسجين (مليلتر/ كجم/ دقيقة) عند أفراد مجموعة التدريب الفكري عالي الشدة</td>
</tr>
<tr>
<td>33</td>
<td>المتوسطات الحسابية للقياس البعدي لمتغير السرعة (ثانية) تبعاً إلى متغير المجموعة 1= التدريب الفكري عالي الشدة 2= تدريب الفارتك</td>
</tr>
<tr>
<td>34</td>
<td>المتوسطات الحسابية للقياس البعدي لمتغير نسبة الشحم (%) تبعاً إلى متغير المجموعة 1= التدريب الفكري عالي الشدة 2= تدريب الفارتك</td>
</tr>
<tr>
<td>35</td>
<td>المتوسطات الحسابية للقياس البعدي حجم النبضة (مليلتر/ نبضة) تبعاً إلى متغير المجموعة 1= التدريب الفكري عالي الشدة 2= تدريب الفارتك</td>
</tr>
</tbody>
</table>
فهرس الملاحق

<table>
<thead>
<tr>
<th>رقم الصفحة</th>
<th>الموضوع</th>
<th>رقم الملحق</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>البرنامج التدريبي</td>
<td>1</td>
</tr>
<tr>
<td>214</td>
<td>الاختبارات المستخدمة</td>
<td>2</td>
</tr>
<tr>
<td>224</td>
<td>أسماء المساعدين ودرجاتهم العلمية ومكان عملهم</td>
<td>3</td>
</tr>
<tr>
<td>225</td>
<td>أسماء المحاكم ورتبهم العلمية والتخصص ومكان عملهم</td>
<td>4</td>
</tr>
</tbody>
</table>
تأثر التدريب الفتري عالي الشدة وتدريب الفارتكك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم

إعداد
حامد بسام عبد الرحمن سلامه
إشراف
أ.د. عبدالناصر عبد الرحيم قدومي

الملخص

هدف هذه الدراسة هو تحديد تأثير التدريب الفتري عالي الشدة وتدريب الفارتكك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم، إضافة إلى المقارنة بين الطرقتين، و لتحقيق ذلك أجريت الدراسة على عينة قومها (30) ناشئًا ممن تتراوح أعمارهم بين (14-16) عامًا، ووزعت عشوائياً على مجموعتين تجريبيتين هما التدريب الفتري عالي الشدة وتدريب الفارتكك، حيث تم تطبيق البرنامجين التجريبيين لمدة 8 أسابيع بواقع ثلاث وحدات تدريبية أسبوعياً ومرة (90-120) دقيقة لبرنامج التدريب الفتري عالي الشدة، و (65-90) دقيقة لبرنامج تدريب الفارتكك، قبل وبعد تطبيق البرنامجين التجريبيين تم إجراء قياسات: (نبض الراحة، وحجم النبضة، وزن الجسم، وضغط الدم الانقباضي، والدفعة القلبية خلال الراحة، والقدرة الالكتسجية، والسرعة الالكتسجية، ونسبة شحوم الجسم، وكثافة الجسم الخالية من الشحوم، والتمثيل الغذائي خلال الراحة، وأقصى نبض، وأقصى دفع قلبي، والمسافة المقطوطة في اختبار كوب، والحد الأقصى لاستهلاك الأكسجين)، وبعد أن تم التكافؤ بين المجموعتين وتنفيذ البرنامجين توصلت الدراسة إلى النتائج الآتية:

- أن برنامج التدريب الفتري عالي الشدة أثر على جميع المتغيرات قيد الدراسة وبدلاً

- إحصائية باستثناء الدفع القلبي أثناء الراحة وأقصى دفع قلبي بعد أداء اختبار كوب، وفيما يتعلق بالمتغيرات الدالة إحصائياً وصلاح القياس البديع كانت النسبة المنوية للتغير على النحو الآتي: السرعة (10.28%)، وتحمل السرعة (7.44%)، والرشاقة (13.13%)، والقدرة الالكتسجية (14.27%)، والسرعة الالكتسجية (14.27%)، ونسبة الشحوم (12.54%)، وكثافة الجسم الخالية من الشحوم (6.21%)، والتمثيل الغذائي خلال الراحة (0.76%)، وضغط الدم الانقباضي (11.12%)، وضغط الدم الانقباضي (15.40%)، ونبض الراحة ش
(12.24%)، وحجم النبضة (15.04%)، والمسافة المقطوعة في اختبار كوبير (61.6%).
وأقصى نبض (10.70%)، والحد الأقصى لاستهلاك الأكسجين (8.32%).
- أن برنامج تدريب الفارتلك أثر على جميع المتغيرات قيد الدراسة وبدلالات إحصائية بين القياسات البدنية والبدري وصالح القياس البدري، وفما يتعلق بالنسبة المئوية للتغير كانت على النحو التالي: السرعة (3.44%), وتحمل السرعة (7.20%), والرشيقة (8.17%)
والقدرة اللاكتسجينية (77.6%) والسرعة اللاكتسجينية (13.1%)، ونسبة الشحوم (34.20%)
وكتلة الجسم الخالية من الشحوم (1.01%)، والتمثيل الغذائي خلال الراحلة (1.20%)
وضغط الدم الانقباضي (11.81%) وضغط الدم الانقباضي (9.9%)
وبنض الراحة (13.97%), وحجم النبضة (66.20%), والدفع القلبي خلال الراحلة (6.77)
والمسافة المقطوعة في اختبار كوبير (12.74%) وأقصى نبض (8.78%)
وأقصى دفع قلبي (19.13%) والحد الأقصى لاستهلاك الأكسجين (16.03%).
- لا توجد فروقات ذات دالة إحصائية في القياس البدني لغالبية المتغيرات قيد الدراسة بين أفراد المجموعتين التجربتين في حين كانت الفروقات دالة إحصائيا في متغيرات السرعة، ونسبة الشحوم وحجم النبضة حيث كانت الفروقات في السرعة لصالح طريقة التدريب الفعلي العضلي
الشدة، بينما كانت الفروقات في نسبة الشحوم وحجم النبضة لصالح تدريب الفارتلك.
- أوصى الباحث بتوصيات عدة من أهمها: ضرورة استعداد المدربين من البرنامجين التدريبيين في تنمية الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم.

الكلمات الدالة: التدريب الفكري عالي الشدة، تدريب الفارتلك الخصائص البدنية الخصائص الفسيولوجية ناشئي كرة القدم، فلسطين.
الفصل الأول
مقدمة الدراسة وأهميتها

• مقدمة الدراسة
• أهمية الدراسة
• مشكلة الدراسة وتساؤلاتها
• فرضيات الدراسة
• أهداف الدراسة
• حدود الدراسة
• مصطلحات الدراسة
الفصل الأول

مقدمة الدراسة وأهميتها

مقدمة الدراسة

أصبحت الألعاب الرياضية الفردية منها والجماعية إحدى المظاهر الحديثة التي تعكس مدى تقدم الدولة ورقيها، فالألعاب العالمية والأولمبية والدولية والقارية والمحلية تعد محافلاً تجلب فيها روعة الأداء البدني والإعجاز الإنساني لصياغة المهارات الحركية والجمل الخططية في أفضل صورها فالأرقام التي تسجل والمستويات التي نجحت بعض الفرق والأندية العربية والأجنبية في تحقيقها أصبحت تجسد الجزء من قدرة الإنسان على أداء ما كان يعتقد البعض أنه صعب.

وتعتبر لعبة كرة القدم من أكثر تلك الألعاب شعبية، بل أنها الجالبة لأكبر عدد من عشاق الرياضة باعتبارها رياضة جماهيرية مبسطة، لا تتطلب تحضيرات مسبقة، يشعر بمعتقبها اللاعب أو المشجع صغيرا كان أم كبرى، ويجبها الرجال والنساء، حتى الكتّاب والقراء (المري، 2013). وكوأمة الكرة أيضاً من وجهة نظر (إبوبطامع، ومحمدان، 2010) رياضة جماهيرية تمتلك من الاهتمام والمتابعة ما جعلها الرياضية الأكثر شعبية في العالم، حيث يمارسها الصغار والكبار، كما أن ممارستها حاليًا لم تعد مقتصرة على الرجال فقط بل أصبحت تمارس من قبل الفتيات أيضاً، وأصبحنا نرى فرقًا ومنتخبات نسوية رياضية كروية محلية وعربيّة وقارية وعالمية، حتى إن باب الاحتراف في علم كرة القدم لم يعد حكراً على اللاعبين فقط بل قد فتح باب الاحتراف أمام اللاعبات أيضا.

فلم شهدت اللعبة في السنوات الأخيرة تطورا متزايداً على نطاق دولي واسع في النواحي البدنية والمهارية والخليطية والنفسية، كما حظيت اللعبة باهتمام كبير على المستويين المحلي والدولي، لذلك كان من الصعب بمكان في ظل التقدم التكنولوجي الهائل بعلم التدريب والطرق الدفاعية المتعددة والمعدة وكبيرة مساحة الملعب وحجم الجهد المطلوب خلال زمن المباراة.
والتطور الحادث في طرق اللعب وخططها الهجومية والدفاعية الجماعية والفردية، أن تبقى الإمكانات البدنية على ما هي عليه، حيث أصبح على اللاعب واجب خططي لا يمكن أن يؤديه دون أن يتمتع بقدر متزايد من اللياقة البدنية والحيوية واللياقة لفترة طويلة دون ظهور التعب.

وهذا ما دعا دول العالم المتقدمة للاهتمام اهتماماً كبيراً وشاملاً بتدريب الناشئين باعتبار أنهم القاعدة الواسعة التي يتم خلقها أبطال كرة القدم، فقد فتحت لهم مدارس خاصة يتلقون فيها الدروس البدنية التي يتلقاها أقرانهم في المدارس الأخرى، إضافة إلى تدريس لعبة كرة القدم نظرياً وعملياً وبالتالي صقل المهارات والمواهب الرياضية لديهم بأحدث الطرق والأساليب العلمية الحديثة التي تتعامل مع ظروفهم وخصائصهم الفسيولوجية والعقلية والبدنية والنفسية وبإشراف مدربين ذوي كفاءة ومهارة عالية.

وهناك اتفاق بين الدراسات التي اهتمت بالانتماء وإعداد البرامج التدريبية في كرة القدم مثل دراسات كل من: ريلي وآخرون (2000)، ودراسة جيمس وآخرون (Williams,2000)، ودراسة بيرسون وآخرون (Gissis,etal,2006) على أن المتغيرات الحيوية والهامة عند انتقاء وتدريب ناشئي كرة القدم هي دراسة المتغيرات الفسيولوجية والبدنية والصحية، والتي من أهمها الحد الأقصى لاستهلاك الأكسجين وكفاءة الجهاز الدورى، والقدرة والسعة اللااكسيجنيية، وتركيز الجسم، والتمثيل الغذائي، إضافة إلى الخصائص البدنية، وذلك نظراً لأهميتها في تحداث النمو وتوجيه التغذية والناحية الصحية للاعبين إضافة إلى أهميتها في تقوم البرامج التدريبية وارتباطها في مستوى النجاح في اللعبة.

فما يتعلق بإنتاج الطاقة وكفاءة الجهاز الدوري التنفسي تعد كرة القدم من الألعاب الفترة التي تتضمن العمل والراحة، وبشدة مختلفة لمدة (90) دقيقة مما يؤكد على أهمية النظامين اللااكسيجنييين ممثلاً في الحد الأقصى لاستهلاك الأكسجين، واللااكسيجنييين ممثلاً في القدرة اللااكسيجنيية والسعة اللااكسيجنيية، ويظهر ذلك فيما أشار إليه توماس وآخرون (Tomas, et al 2005) من خلال دراسة تتبعته لبعض الدراسات التي أجريت على لاعبي كرة القدم إذ بينت

من القياسات الأثربوبومترية المهمة للاعبي Body Composition ويعد تركيب الجسم
Resting Metabolic Rate (RMR) (Wilmore & Costill, 2004)

RMR is the metabolic rate at rest, and it represents the energy expenditure of the resting individual. It is a measure of the basal metabolic rate (BMR) and is used to estimate the energy expenditure of the individual at rest. The BMR is the minimum energy expenditure required to maintain vital functions such as breathing, heart rate, and temperature regulation.

According to Wilmore & Costill (2004), the RMR of a person is determined by their body weight, age, sex, and activity level. The RMR for an average adult ranges from 50 to 60% of the total daily energy expenditure (TDEE).

Heyward (1991) reported that the RMR of an average adult is approximately 50% of the TDEE, while Schutze (1997) found that the RMR of a sedentary individual is approximately 60% of the TDEE.

The RMR differs from the total daily energy expenditure (TDEE), which includes all energy expenditure over a 24-hour period, including physical activity. The TDEE is a more comprehensive measure of energy expenditure and is used to estimate the energy requirements for weight management, athletic performance, and overall health.

In summary, the RMR is a critical component of energy expenditure and plays a significant role in determining the energy requirements of the individual. Understanding the RMR is essential for developing effective nutrition and exercise programs for optimal health and performance.
لقد أصبح الإعداد البدني للاعبي كرة القدم الشغل الشاغل للأجهزة الفنية في الإعداد والتخطيط للموسم التدريبي من خلال برامج مقتة الحمل موضوعة على أسس علمية للوصول باللاعبين إلى أعلى مستوى ممكن من اللياقة الخاصة بكرة القدم والتي يعتبر التحمل والقوة والسرعة والمرودة والرشاقة أهم المقومات والعناصر والصفات الأساسية لتحقيق اللياقة البدنية.
ولذلك فقد أصبحت تنمية تلك الصفات للاعب إحدى الأركان الأساسية في خطة التدريب اليومية والأسبوعية والترنيمية والسنوية (أبو عبده، 2008).

كذلك أكد (السعود، 2005) على الدور الإيجابي الذي يحققه النظام في البرامج التدريبية الاوكسجينية على حميات القلب ووقايتها وتفادي الآثار السلبية للضغوط الإجهادية إضافة إلى فاعلية هذه البرامج في تحسين القدرة الالوكسجينية.

وتشير مالح، وأخرون (2011) إلى أن الخصائص البدنية تساهم في تطوير الأجهزة البدنية اللائحة للاعب، حيث تعمل على زيادة حجم القلب، وقوة الدفع القلبي مما ينتج عنه زيادة في كمية الدم المتدفقة في كل ضربة من ضربات القلب، كما أنها تؤثر في ضغط الدم فتزيده لدى الشخص الرياضي وتميزه من الشخص غير الرياضي، وكذلك فإنها تزيد من السعة الحيوية للرئتين وتزيد من اتساع القفص الصدر، وتبعثر سرعة التنفس ويزداد عمقاً، وتعمل على تطوير الجهاز العضلي من خلال زيادة سمك وقوة غلاف الليفة العضلية وكذلك تضخم كمية النسيج داخل العضلة ويزداد حجمها وقوتها وتكسب التحمل.

ولما كان في التدريب الرياضي قد أوجد الكثير من طرق التدريب وأساليبه فقد جاءت هذه الدراسة محاولة عملية من قبل الباحث للمقارنة بين أهمية وأثر طريقي التدريب القلبي والتنفس والتعرف إلى أفضلهما في تطوير مستوى بعض عناصر اللياقة البدنية كالسرعة وتحمل السرعة والرشاقة كهدف أولى لدى ناشئي كرة القدم وكذلك على بعض المتغيرات الفسيولوجية مثل الحد الأقصى لاستهلاك الأكسجين والقدرة الالوكسجينية والتمثيل الغذائي خلال الراحة وتركيب الجسم الدفع القلبي.
يرى عـي عبد الفتاح (1993) أن تدريب الفارتك، والتدريب الفني عالي الشدة يناسبان بصورة كبيرة مع طبيعة الأداء في كرة القدم، فتدريبات الفارتك تهدف إلى تنمية السرعة والتحمل والقوة وتحمل السرعة والتكيف لثورة طويلة خلال المباراة مع الاحتفاظ بقدر كبير من اللياقة البدنية والفنية حتى أخر أوقات المنافسة، بينما تهدف تدريبات التدريب الفني عالي الشدة إلى تطوير السرعة الانتقالية والقوة العظمى والقوة المميزة بالسرعة وتحمل السرعة لمـسافات متوسطة أو قصيرة.

ويأمل الباحث أن تقدم هذه الدراسة نتائج تساعد العاملين في مجال التدريب للارتقاء بمستوى الرياضيين والوصول بهم إلى أعلى المستويات.

أهمية الدراسة

تلقى طرق التدريب المختلفة اهتماماً كبيراً من قبل العاملين في مجال التدريب الرياضي والإعداد البدني، نظراً لما لها من أثر في تنمية اللياقة البدنية لدى الرياضيين حيث يتبين المختصون بعلم التدريب الرياضي الكثير من الجهد لغرض الوصول بالعملية التدريبية إلى أسمى درجة لها، ويتراوح ذلك من خلال التجارب الميدانية استناداً إلى الخبرات المتراكمة لدى المدرسين فضلاً عن مواقبة التطورات الهائلة التي تحدث على مستوى العالم في مجال التدريب وربط تلك الخبرات مع هذا التطور للوصول إلى نتائج تصب بالنهاية في مصلحة الرياضية وتقدمها عامة وتطور الرياضي بصورة خاصة.

ونظراً للنصص الحاصل في الأبحاث التجريبية لتقسيم أثر كل من طريقتي التدريب الفني عالي الشدة وتدريب الفارتك فقد جاءت هذه الدراسة للمقارنة بين أثر هاتين الطريقتين على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم في الضفة الغربية، وهذا ما دفع الباحث ليقوم بهذه الدراسة، حيث يمكن إقبح أهمية هذه الدراسة بما هو آت:

1- تعد الدراسة الحالية من الدراسات الرائدة والتي تهتم بالمقارنة بين أثر طريقتي التدريب الفني عالي الشدة والفارتك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة
القدم، وبالتالي سوف تلقى الضوء على مستوى هذه المتغيرات وتحديد أكثر المتغيرات تأثيراً بكل طريقة من الطرقتين.

2- قلة البرامج التدريبية التي تناولت هاتين الطرقتين مما يساعد المدربين ويوجههم لاستخدام مثل هذه الطرق في التدريب.

3- تعد هذه الدراسة محاولة علمية من قبل الباحث لمقارنة أثر طريقي التدريب الفردي عالي الشدة وتدريبات الفارثيك للتعرف على أفضلها من حيث تأثيرهما على بعض عناصر الياقية البدنية (كالسرعة وتحمل السرعة، والرشاقة) وبعض الخصائص الفسيولوجية (كالحجم الأقصى لاستهلاك الأكسجين، والقدرة اللاكتوسية، والدفع القلبي، وتركيب الجسم).

4- يتوقع من خلال الإطار النظري للدراسة وما تتوصل إليه من نتائج إفادة الباحثين في المجال في إجراء دراسات مشابهة على العاب وفعاليات رياضية أخرى ولكلا الجنسين.

مشكلة الدراسة ومسائلاتها

من خلال عمل الباحث في المجال الرياضي، وكونه عمّد مدربًا لناشئي كرة القدم في نادي فرعون الرياضي، ومن خلال متابعته لمستوى كرة القدم في فلسطين لاحظ أن تأثير قصورًا ملحوظة في أداء اللاعبين، وقد يرجع ذلك إلى قلة البرامج التدريبية المبنية على الأسس العلمية لإعداد الناشئين سواء في المدارس أو الأندية، فنلاحظ أن اللاعبين المبتدئين والناشئين يمارسون كرة القدم في الشوارع والحارات وبين الرفاق وبالتالي ينشأ اللاعبون دون إشراف في أو توجيه متخصص فيكتسب العادات運動ية الخاطئة بمهارات كرة القدم ويغفل عن تنمية بعض العناصر البدنية التي تحتاج إلى تطوير في سن محدد مما يتسبب في ألام تطوره وتقدمه في المستقبل. كما لاحظ الباحث أن طرق التدريب المستخدمة من قبل المدربين وحتى المحترفين منهم ما زالت تقليدية، عوضًا عن النقص في الدراسات التي أجريت للمقارنة بين طرق التدريب المختلفة من هنا ظهرت مشكلة الدراسة لدى الباحث والتي يمكن إيجابها في الإجابة عن الموارد الآتية:
1 - ما أثر طريقة التدريب الفتري عالي الشدة على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم؟

2 - ما أثر طريقة تدريب الفارتك على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم؟

2 - ما الفرق بين أثر استخدام كل من طريقة التدريب الفتري عالي الشدة وتدريب الفارتك على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم؟

فرضيات الدراسة

لقد اتبعت عن تساءلات الدراسة الفرضيات الاتية:

1. توجد فروق ذات دلالة إحصائية في أثر طريقة التدريب الفتري عالي الشدة على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم بين القياسين القبلي والباعدي.

2. توجد فروق ذات دلالة إحصائية في أثر طريقة تدريب الفارتك على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم بين القياسين القبلي والباعدي.

3. توجد فروق ذات دلالة إحصائية في أثر طرقيتي التدريب الفتري عالي على الشدة وتدريب الفارتك على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم في القياس البعدي.

أهداف الدراسة

سعت هذه الدراسة إلى التعرف إلى الآتي:

1 - أثر طريقة التدريب الفتري عالي الشدة على بعض الخصائص البدنية والفيزيولوجية لدى ناشئي كرة القدم.
10 - أثر طريقة تدريب الفارتلوك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم.

3 - الفرق بين أثر استخدام كل من طريقة التدريب الفتري عالي الشدة وتدريبات الفارتلوك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم.

حدود الدراسة

النظام البحثي في أثناء الدراسة بالحدود الآتية:

1. الحد العلوي: ناشئي كرة القدم في الضفة الغربية ممن تتراوح أعمارهم بين (14-16) سنة.
2. الحد المكاني: ملعب جامعة فلسطين التقنية خضوري، وملعب نادي فرعون الرياضي.
3. الحد الزمني: تم تطبيق البرنامج التدريبي على أفراد العينة في الفترة الواقعة ما بين 20/11/2012 ولغاية 20/1/2012.

مصطلحات الدراسة:

- التدريب الفتري: هو نظام تدريبي يتميز بالتبادل المتتالي بين الجهد والراحة. وتنسب كلمة الفتري إلى فترة الراحة البينية، بين كل تدريب والتدريب الذي يليه (الرياضي، 2004).

- التدريب الفتري عالي الشدة: هو أحد طرق التدريب الفتري والذي يتميز بزيادة شدة حمل التدريب وقلة حجمه نسباً، والذي يهدف المدرب من خلاله إلى تطوير التحمل الخاص عند اللاعب، ممثلاً في تحمل القوة وتحمل السرعة والقوة المميزة بالسرعة، كما يمتاز هذا النظام بالعمل تحت ظروف البدن الأركنسي نتائج لاستخدام الشدة العالية التي قد تصل الى 90% من الحد الأقصى لقدرات اللاعب (الرياضي، 2004، ص. 217).

- الفارتلوك: مصطلح سويدي يعني حرفيًا اللعب بسرعة وهو عبارة عن الجري Fartlek لمساحات مختلفة الطول قصيرة ومتوسطة وطويلة وبسرعات متغيرة من المشي (أكسجيني) حتى الشدة القصوى (لا أكسجيني) دون أي تخطيط مسبق للتغير الذي يحدث في السرعة وسرعة المشي.
ليس في مسافة الجري وغالباً ما يتم ذلك في الخلاء وتتتم مساحة الجري بالتغير في طبيعتها (رملية - خضراء - مرتفعة - منخفضة - هول - مهده) (عبد الفتاح 1993).

- الناشطون: هم الأفراد صغار السن من الجنسين الذكور والإناث الذين تراوح أعمارهم ما بين (14-16) سنة، حسب تصنيفات الاتحاد الفلسطيني لكرة القدم، ويرصد بفهم في هذه الدراسة ناشئي بعض أندية كرة القدم في الضفة الغربية (تعريف إجراي).

- الحد الأقصى لاستهلاك الأكسجين (VO2 max): هو أقصى كمية أكسجين يتم استهلاكاً أثناء العمل العضلي باستخدام أكثر من (50%) من عضلات الجسم في الدقيقة (عبد الفتاح 1993).

- القدرة اللاكسجينية: "هي القدرة على إنتاج الطاقة لفترة زمنية قصيرة دون الحاجة إلى استخدام الأكسجين وتمتد حتى (30 ث)، بينما القدرة اللاكسجينية القصوى هي القدرة على آداء أقصى انقباض عضلي في أقل زمن ممكن يقدر من (5 – 10 ث) (مـي، 2003: ص 22).

- الدفع الالقيبي: هو كمية الدم المدفوعة من كل بطين في الدقيقة وينقُد حوالي 5 لتر/دقيقة، ويعتمد على معدل التبض، وحجم النبضة (سيلة، 2008).

- ضغط الدم: هو الضغط الذي يحدث على الجدران الداخلية للشرايين بسبب اندفاع الدم من القلب إلى الشرايين ويكون معدله الطبيعي في الراحة 120/80 ملم زئبقي (مـي، 2003 ص 173).

- حجم النبضة (Stroke Volume): حجم الدم المدفوع من القلب في كل ضربة من ضرباتها وصولاً إلى الراحة إلى 60 مليلتراً (الهزاير 2009 ص 443).

- التمثيل الغذائي (RMR): كمية السعرات الحرارية التي تستهلكها عندما يكون الجسم في حالة استرخاء كامل، وأضاف بأن RMR يشمل كافة العمليات الجسدية والكيميائية والتشيكلية وتعمل الطاقة مثل (هضم الطعام والمواد الغذائية، التخلص من الفضلات من خلال البول والبراز، التنفس، الدورة الدموية، تنظيم درجة حرارة الجسم) (الجبور، 2012).
الفصل الثاني

الإطار النظري والدراسات السابقة
الفصل الثاني
الإطار النظري والدراسات السابقة

يشمل هذا الفصل الإطار النظري المتعلق في المتغيرات قيد الدراسة إضافة إلى الدراسات السابقة التي تتعلق في متغيرات الدراسة، إذ سيتناول البحث العناصر الآتية، متحدثاً عنها بإسهاب وذلك من أجل أن تكون مدخلاً للدراسة النظرية، وذلك على النحو الآتي:

أولاً: الإطار النظري
التدريب الفتري

يعد العالم الفسيولوجي (رايندنل) أول من دون هذه الطرقية، في حين أن العداء الألماني (هابي) هو الذي استخدمها وطبقها في تدريباته. كما ان العداء التشكيكي (ميل زاتوبسك) استخدمها في تدريباته أثناء جري المسافات الطويلة واستطاع من خلالها تحظيم عدة أرقام قياسية عالمية وأولمبيية، لذلك لقب (بالقاطرة البشرية) لأنه حصل على ثلاث ميداليات ذهبية في سباق الـ 5000م، و1000م، والماراثون بدورة هسلنكي عام 1952 (الربيع، 2004 ص216).

تعد طريقة التدريب الفتري من أهم الطرق المستخدمة في تنمية القدرات البدنية، كالتحمل الأكسجيني وتحمل القوة، وتحمل السرعة. حيث أن هذه الطرقية تعد من طرق التدريب التي تتميز بالتبادل المنتظم لبذل الجهد والراحة أثناء وحدة التدريب، أي أن هناك فواصل زمنية للراحة بين كل تكرار والآخر، حيث تحدد فترة الراحة هذه طبقاً لاتجاه التمثيل (أبو عبده، 2008، ص 285-286)، كما اتفق كل من مالح، وآخرون (2011) والبصامي (1998) على أن فترة الراحة تتحديد بوصول البض من (120 - 140 نبضة/ دقيقة) أي بمتوسط من الشدة تصل ما بين (30 - 45%) من اقصى معدل لضربات القلب بين التكرارات، و (120 نبضة/ دقيقة) بين المجموعات، وغالباً ما تكون فترة الراحة إيجابية ومستوى من الشدة تصل بالنض من (130 - 145 نبضة/ دقيقة) من اقصى معدل من ضربات القلب لسرعة استعادة الشفاء، كما يمكن تشكيح الحمل الفتري طبقاً لزمن أداء التمرين، فقد أثبتت الدراسات أن العلاقة

14
بين زمن الأداء والراحة تختلف باختلاف المدة الزمنية التي يتم فيها الأداء، فإذا كان زمن الأداء مثلاً ما بين (10-20 ثانية)، فإن الراحة تكون بنسبة (1:3)، أما إذا كان زمن الأداء ما بين (1.30-2.40 ثانية)، فإن فترة الراحة تكون بنسبة (1:2)، وإذا كان زمن الأداء ما بين (2.50-4 ثانية)، فإن فترات الراحة تكون بنسبة (1:1).

ويعتبر التدريب الفنتري على النظام الفسواني لإنتاج الطاقة (ATP-PC) بالإضافة للأنظمة الأخرى، حيث تبلغ شدته ما بين (60-90%) طبقاً لاتجاه التمثيل (أكسجيني أو لاكسجيني) ويستخدم في معظم الرياضات، إنه لم يكن جميعها، حيث يؤثر على القدرات الأكسجنسية والأوكسجينية، وهو بذلك يسهم في إحداث عملية التكيف بتأثيره الفعال من خلال التحكم في متغيراته في جميع الأنشطة الرياضية (الباسمي، 1998، ص.88).

وتتقسم طريقة التدريب الفنتري إلى نوعين تختلف كل منها عن الأخرى طبقاً لدرجة الحمل، كما تختلفان في درجة تأثيرهما على تنمية القدرات البدنية. ويسعى النوع الأول من التدريب منخفض الشدة ويتميز بزيادة حجم الحمل ونسطر شدته. أما النوع الثاني من التدريب فيسمي التدريب الفنتري عالي الشدة ويتميز بزيادة شدة الحمل ونسطر حجمها. (أبو عبيدبة، 2008 ص.286).

ويبدو أن ثمة فوراً في تعريف هذه الطريقة، حيث تختلف طرق من طرق التدريب وهذا ما نجد واضحًا عند بعض العلماء، فقد عرفت مالح، وآخرون (2011) التدريب الفنتري: "أنه، أحد الطرق الرئيسية التي تعمل على رفع الكفاءة البدنية معتدمة على مبدأ التكيف بين فترات العمل والراحة الغير كاملة.

في حين رأى بسطوسي (1984) أن التدريب الفنتري "طريقة من طرق التدريب الأساسية لتحسين مستوى القدرات البدنية معتدمة على تحسين التكيف بين فترات العمل والراحة البيئية المستحقة".

وعلى سبيل المثال، يتم استخدام التدريب الفنتري على النظام الفسواني لإنتاج الطاقة (ATP-PC) بالإضافة للأنظمة الأخرى، حيث تبلغ شدته ما بين (60-90%) طبقاً لاتجاه التمثيل (أكسجيني أو لاكسجيني) ويستخدم في معظم الرياضات، إنه لم يكن جميعها، حيث يؤثر على القدرات الأكسجنسية والأوكسجينية، وهو بذلك يسهم في إحداث عملية التكيف بتأثيره الفعال من خلال التحكم في متغيراته في جميع الأنشطة الرياضية (الباسمي، 1998، ص.88).

وتتقسم طريقة التدريب الفنتري إلى نوعين تختلف كل منها عن الأخرى طبقاً لدرجة الحمل، كما تختلفان في درجة تأثيرهما على تنمية القدرات البدنية. ويسعى النوع الأول من التدريب منخفض الشدة ويتميز بزيادة حجم الحمل ونسطر شدته. أما النوع الثاني من التدريب فيسمي التدريب الفنتري عالي الشدة ويتميز بزيادة شدة الحمل ونسطر حجمها. (أبو عبيدبة، 2008 ص.286).
ومن وجهة نظر الباحث فانه يختلف مع تقسيم أبو عبده (2008) في تسمية النوع الأول (منخفض الشدة)، وذلك لأن التدريب منخفض الشدة تكون شدته أقل من (50%)، ومن هنا رأى الباحث أنه كان من الأولى أن يسمى هذا النوع بالتدريب الفترى (متوسط الشدة) والذي تتراوح شدته ما بين (60-80%).

أما محور هذه الدراسة فسيكون النوع الثاني (التدريب الفترى عالي الشدة) حيث سيقوم الباحث بتقسيم الحديث عنه، وتقديم ذلك للمدربين من أجل الإفادة في عالم التدريب وذلك على النحو الآتي:

التدريب الفترى عالي الشدة:

هو أحد طرق التدريب الفترى الذي يتميز بزيادة شدة حمل التدريب وقلة حجمه نسبياً، والذي يهدف المدرب من خلاله إلى تطوير التحمل الخاص عند اللاعب، ممثلا في تحسين القوة وتحمل السرعة والقوة المميزة بالسرعة، كما يمتاز هذا النموذج بالعمل تحت ظروف يددين الأكسجيني نتيجة لاستخدام الشدة العالية التي قد تصل إلى 90% من الحد الأقصى لقدرات اللاعب (الرياضي، 2004، ص 217-218).

ويؤكد أبو عبده (2008) أن هذه الطريقة تتميز بالشدّة العالية، إذ تبلغ في تدريبات الجري ما بين(80-90%) من أقصى مستوى للاعب، أما في تدريبات القوة فتصل إلى (75%) من أقصى مستوى للاعب.

أما بالنسبة لحجم التدريبات فيرتبط بصورة مباشرة بشدة التدريب المستخدمة. إذ نجد أن حجم التدريبات يقل نتيجة لزيادة الشدة وذلك بالمقارنة بطريقة التدريب الفترى المتوسط الشدة.
وعلى ذلك يمكن تكرار تدريبات الجري لحوالي (10-15) مرة، وتكرار تدريبات القوة لحوالي (8-10) مرات لكل مجموعة.

وفيما يتعلق بفترة الراحة فتطول هذه الفترة نتيجة زيادة شدة التدريبات مع مراعاة ألا تصبح فترات الراحة كاملا، حيث تقدر هذه الفترة بحوالي (90-120) ثانية للاعبين ذوي المستويات العليا، و(110-240) ثانية للاعبين الناشئين، مع مراعاة عدم هبوط نبضات القلب عن (110-120) نبضة في الدقيقة.

الجوانب التي يجب مراعاتها لحمل التدريب القيتي عالي الشدة:

لإمكانية التقدم بحمل التدريب الرياحي الآتي:

1- استخدام مبدأ الراحة الإيجابية أثناء فترة الراحة البيئية.
2- التقدم بحمل التدريب من خلال إنقاص فترات الراحة البيئية أو زيادة سرعة الجري أو زيادة عدد مرات التكرار مرة واحدة أو مرتين.
3- استخدم تدريبات القوة باستخدام وزن الجسم أو أفعال إضافية تبلغ حوالي 1/2 إلى 3/2 وزن الجسم للاعب أو ما يوازي 75% من مستوى قدرة اللاعب.
4- عدم تكرار تدريبات القوة لأكثر من 10 مرات مع مراعاة الأداء الصحيح بصورة سريعة.
5- يتم الزيادة التدريبية للحمل بتقسيم فترات الراحة البيئية، أو التقدم بزيادة سرعة الأداء.

(أبو عبدة، 2008، ص 289-290)

تدريب الفارتك

يعد السوديون أول من ابتكر هذا النوع من التدريبات على يد العالم السودي (جوسهالومر) (1930) في المناطق الساحلية والشواطئ وفي المناطق المفتوحة، إذ توجد العوائق الطبيعية، وأصل هذه الكلمة هو مصطلح "اسكيدنيفا" الذي ترجم إلى الإنجليزية بمعنى "العبا السرعة" ويعد هذا التدريب مناسبًا للاعبي المسافات الطويلة، والسباحة لمسافات متوسطة.
وطولية والألماب الجماعية "أنشطة التحمل". ثم امتدت هذه الطريقة إلى أن شملت معظم الدول الأوروبية ومنها إلى دول العالم. (مالح، وأخرون 2011، ص 164).

ومع فوائد هذه الطريقة أنها تستخدم لاكتساب التحمل وتحمل السرعة فضلاً عن تحمل القوة. ويمكن أن تؤدي بعض النظر عن السن والجنس والمستوى والزمان والمكان والأسلوب والهدف، حيث تتزايد بالمرح والسرور وتبحث في نفس اللاعب روح المنافسة والشجاعة في الاداء وخاصة إذا كانت جماعية. (الرفيديي 2004، ص 230).

ويرى صالح، وإبراهيم (1985) أن طريقة هولمر لتدريب الفارتك لتدريب القدم وكبداء ي-nullي المجموعات، ويかもしれない أن تدريب الفارتك لعدة مجموعات، ويمكن إضافة أشكال جديدة للتذراع.

وتتميز تدريب الفارتك بالمرودة وإمكانية ضبطه والتهذيب والتعديل وفقاً لاحتياجات اللاعبين الخاصة، كما يعمل على تنمية العملين الأكسيجني واللاكسيجني، وذلك بتركيزه على التمارين لإنتاج الطاقة معاً بحسب محتوى خلال الوحدة التدريبية الواحدة، فهو يجمع بين الآثار الفسيولوجية لكل من العملين الأكسيجي واللاكسيجي، كما أن التدريب الفريجي يتميز بشكل أساسي على المضمار مما يصيب اللاعبين بالمثل، وبالتالي آداء التدريب بتراب ومن هنا تظهر أهمية الفارتك، والذي يتميز بتغيير الأمكان وتقوية سرعات الأداء لإضفاء التشويق والإثارة والجدية والنشاط على الأداء (محمد، 2004، ص9).

وينصح الفارتك بهذه الطريقة من التدريب هي إمكانية الكرة بسرعات مختلفة (بطيئة، متوسطة، سريعة)، (بطيئة، سريعة)، (صعود، نزول، واجتياز الموانع، وتجاوز حفر المياه). إن هذه التمارين تسمح بتغيير سرعة النبض وتغيير شدة الجهاد المبذول لتتراوح من 140-160 نبضة/ دقيقة ثم تزداد لتتراوح إلى 180-200 نبضة/ دقيقة من خلال الارتفاع بإيقاع الكرة إلى فترة زمنية قصيرة تصل من 5 إلى 8 ثوان (أبو عبد الله، 2008). وتؤدي هذه التدريبات جميعها دون توقف ودون حساب للمسافة أو الزمن، ويمكن أن تكون هذه الطريقة في الغالب والطرق العامة والمزارع والجبال وشواطئ البحر (مالح، وآخرون، 2011).

وييري الباحث أن تدريبات الفارتك تتناسب بصورة كبيرة مع نوعية الأداء في كرة القدم، والتي تتضمن بالسرعة والتحمل وتحمل القوة وتحمل السرعة والكافح لمدة طويلة خلال المباراة مع الاحتفاظ بقدر كبير من اللياقة البدنية والفنية حتى آخر أوقات المنافسة.

ويتم تدريب الفارتك بالمرودة وإمكانية ضبطه وفقاً لاحتياجات اللاعبين الخاصة حيث يمكّن أداء الفارتك في أي مكان (ملعب كرة القدم - ملعب هوكي - المسارات الخضراء - شواطئ البحر - التلال - المرتفعات - المنحدرات) كما يعمل على تنمية العملين الأكسيجي واللاكسيجي، وذلك بتركيزه على نظامي إنتاج الطاقة الأكسيجي واللاكسيجي معاً بنسبة
طريق تدريب الفارتلك

أوضح الربضي (2004) أن ثمة طرقا عدة لتدريب الفارتلك، وهي على النحو الآتي:

1 - طريقة فارتلك القصيرة: وهي عبارة عن تكرار الجري 15 مرة×30 ثانية بسرعة تصل إلى 80% والراحة من (1-2) دقيقة. أو الجري 6 مرات×2 دقيقة بجهد يصل إلى 80% من قدرة اللاعب والراحة حوالي 2 دقيقة تؤدى بالجري الخفيف. أو الجري 12 مرة×1 دقيقة تؤدى بجهد يصل إلى 90% والراحة دقيقتين تؤدى بالجري الخفيف.

2 - طريقة فارتلك الطويلة التي اعتمدها المدرب ليديارد فهي تكرار الجري 6 مرات×4 دقائق×4 دقائق للراحة تؤدى بالجري الخفيف.

3 - الطريقة التنازلية: فهي عبارة عن تكرار الجري 3 مجموعات×(1 2 3) دقيقة على التوالي بجهد يصل إلى 80%×2 دقيقة جري خفيف بين التكرارات، و3 دقائق راحة بين المجموعات على شكل جري خفيف أيضاً.

4 - الطريقة التصاعدية: فهي عبارة عن تكرار الجري 2-4 مجموعات×(45 15 30 60) ثانية×80% جهد × دقيقة جري خفيف بين التكرارات و4-5 دقائق جري خفيف بين المجموعات.

5 - الطريقة الترمحية أو التصاعدية أو التنازلية: حيث تجمع هذه الطريق بين الطرقتين السابقتين التنازلية والتصاعدية. ويمكن تنفيذها عن طريق الجري 2-3 مرات×(30, 1.30 1.30) دقيقة) × 80 -85 جهد خلال دقيقة راحة بين التكرارات و6 دقائق بين المجموعات.

6 - وهناك ما يعرف بالطريقة البولندية التي أضافت لما ذكر القوة إلى جانب السرعة والتحمل، حيث تضاعف ترمنات القوة للذراعين والرجلين والظهر والبطن.
أما محمود (2007) فقد قسم تدريبات الفارتلك على النحو الآتي:

Saltine Fartlek

1 - سالتين فارتلك
- وهو تدريب جيد لجري مسافات 1500 - 3000 متراً
- 10 دقائق إحماء بالعدو البطئ.
- عدو سريع 3 دقائق يتبعة دقيقة بطي للإسترخاء ويكرر ذلك 6 مرات.
- 10 دقائق تهدئة بالجري البطئ.

Astrand Fartlek

2 - استراند فارتلك
- وهو جيد 800 1500 مترًا.
- 10 دقائق إحماء بالجري البطئ.
- أقصي طاقة لمدة 75 ثانية يتبعة عدو بطي لمدة 120 ثانية ويكرر ذلك 3 مرات.
- 10 دقائق إنهاء بالعدو البطئ.

Grishied Fartlek

3 - جرشيلد فارتلك
- وهو جيد للحصول على لياقة بدنية جيدة في زمن قصير مع العدو المستمر.
- 10 دقائق إحماء بالعدو البطئ.
- عدو أقصي طاقة 30 ثانية ثم عدو بطي 90 ثانية ويكرر ذلك مع تخفيف زمن العدو البطئ لمدة 15 ثانية 30 ثانية عدو ثم 90 ثانية بطي 30 ثانية عدو ثم 75 ثانية بطي 30 ثانية عدو ثم 60 ثانية بطي 30 ثانية عدو ثم 45 ثانية بطي 30 ثانية عدو ثم 30 ثانية عدو ثم 15 ثانية بطي 30 ثانية عدو بأقصي طاقة.
10 دقائق إنتهاء بال العدو البطني.

Hill Fartlek

4 - فارتك الهلال

10 دقائق إنتهاء بال العدو البطني.

- يتم اختيار مسار كثير التلال حيث يتم عوده صعوداً بخصوصية طاقة كل تل مرتين قبل الانتقال إلى التل التالي مع العدو البطني.

الخصائص البدنية

اختفى مفهوم الخصائص البدنية في مجال التدريب الرياضي ومعناها نتيجة للخبرات الجديدة المتاحة للدارسين العرب في مجال التربية البدنية والرياضية في المدارس الأجنبية المختلفة كالمدرسة الألمانية، والأمريكية، والروسية، حيث أصبح لمصطلح الخصائص البدنية غير مرادف نتيجة اختلاف الترجمات عن تلك المدارس، وبالتالي يمكن تسمية هذه الخصائص البدنية بمساند أخرى مثل (القدرات الحركية، القدرات الفسيولوجية - الصفات البدنية، الصفات الوراثية، الصفات الفسيولوجية، العناصر البدنية. وعلى ذلك يذكر رود ايتسولد (Etzold حيث أن كل المرادفات تعني كلا من (القوة العضلية، والسرعة، والتحمل، والرشاقة، والمرونة) كخصائص بدنية أساسية (بيسطوليسي 1999، ص 107).

وقد حددت المدرسة الشرقية الخصائص البدنية في (التحمل، السرعة، القوة، الرشاقة، المرونة). بينما رأت اللجنة الدولية للياقة البدنية الخصائص البدنية (بالسرعة، القدرة، القدرة الثابتة، المرونة، الجلد، التوازن، التوافق، زمن رد الفعل. ومن خلال المسمح المرجعي للمراجع المتخصصة لعلماء الغرب والشرق المتخصصين في اللياقة البدنية فقد اتبعت الأمر إلى ترتيب الخصائص البدنية إلى (القوة العضلية، الجلد (التحمل)، المرونة، الرشاقة، السرعة، التوافق، التوازن، القدرة الوراثية الدقيقة، زمن رد الفعل)، ومن خلال الأبحاث العلمية والمراجع المتخصصة في مجال كرة القدم، فإن أهم الخصائص الخاصة باللياقة البدنية في نشاط كرة القدم تتحدد وفقاً لل التالي: (التحمل، السرعة، القوة، الرشاقة، المرونة) (أبو عبده، 2008، ص 30).
بينما قامت الجمعية الأمريكية للطب الرياضي والجمعية الأمريكية للقلب بتصنيف حدث
يقوم على ارتباط عناصر اللياقة البدنية بمبدأين؛ وهما: خصائص اللياقة البدنية المرتبطة بالصحة (التركيز الجسماني واللياقة البدنية النفسية والقوة العضلية الهيكليات والتحمل العضلي والمرونة) والمبدأ الثاني هو عناصر اللياقة المرتبطة بالأداء الرياضي الحركي أو المهاري (وهي بالإضافة إلى العناصر المرتبطة بالصحة السرعة والرضافية والتوازن والتوافق والدقة) (الجبر، وقينان، 2012، ص. 238).

وفي هذه الدراسة سيقوم الباحث بالحديث عن أهم تلك الخصائص وذلك لأهميتها لناشئي كرة القدم، وهي على النحو الآتي:

أولا: السرعة

تعد السرعة من المكونات الأساسية للأداء البدني في معظم الأنشطة الفردية والجماعية، وهي إحدى مكونات الخصائص البدنية التي تلعب دوراً رئيسيًّا هاماً فيما يحتاجه لاعبو كرة القدم. سرعة اللاعب تظهر في قدرته على الانطلاق والجري السريع لمسافة قصيرة وذلك لأن حالات اللعب متغيرة ومتتالية أثناء أداء الحركات المتشابهة أو غير المتشابهة بصورة متتالية وناجحة في أقل زمن ممكن (أبو عبد الله، 2008، ص. 114). وبذلك ينظر إلى السرعة مؤشرًا لمدى توافق الاستجابات العضليّة مع الاستجابات العصبية اللازمة للتوزيع والتدريج الحركي الخاص بالمهارات الرياضية المختلفة حيث يتطلب ذلك كفاءة الجهاز العضلي والعصبي، وبذلك يمكن تعريف السرعة بأنها: "القدرة على إنجاز حركة أو حركات متكررة في أقل زمن ممكن" (بسطوليسي، 1999، ص. 148).

في حين حدد أبو عبد الله (2008) مفهوم السرعة في كرة القدم وعرفه بقوله أنها: "مقدرة اللاعب على أداء الحركات الرياضية المتتالية مع الكرة أو بدونها في أقل فترة زمنية ممكنة". كما قد يستخدم مصطلح السرعة للإشارة إلى القدرة على الاستجابة لمتغير معين أو لمتغيرات ممتعة في أقل زمن ممكن، كذلك يمكن التعبير عن السرعة بأنها تلك الاستجابات العضليّة الناتجة من التبادل السريع ما بين حالة الانقباض وحالة الاسترخاء العضلي.
وقد عرفت مالج، وأخرون (2011) السرعة على أنها: "قدرة الفرد على أداء حركات متتالية من نوع واحد في أقل مدة زمنية ممكنة وتمتاز هذه القدرة بالشدة العالية، وتتأثر السرعة بكون الجهاز العصبي والعضلات".

أما كماسح (2002) فينظر إلى السرعة على أنها: "مجموعة الخصائص الوظيفية التي تحدد بصورة مباشرة وغير مباشرة سرعة أداء الحركة وكذلك زمن رد الفعل، وهي تعني مقدرة الفرد على أداء حركات معينة في أقصر زمن ممكن".

يري الجبلي (2003) أن أفضل عمر لنمية سرعة رد الفرد الحركي (الجري) هو سن من (9-10) سنة، كما أشار إلى انخفاض الحركات المتكررة من (14-15) سنة ويعتبر سن (14-15) سن高位 الذي يلاحظ فيه تقدم سرعة أداء هذه الحركات، ويعتبر المراحل العمرية من (11-12) ومن (13-15) سنة هي أفضل مرحلة لإكتشاف الموهوبين بالسرعة، كما أضاف أن العاملين مع الناشئين في سن (14-16) سنة يواجهون صعوبات في تنمية السرعة نتيجة ضعف التوافق الحركي بين العضلات القابضة والباسمطة والتي تتقبض معاً.

ويؤكد الصفار، وأخرون (1987) إلى أنه من الممكن تطوير السرعة بدرجة كبيرة للأطفال الذين تتراوح أعمارهم بين (10-14 سنة)، وفي سن (23-24) لعمر اللاعب فصاعداً يكون الهدف من تدريبية على السرعة هو الحفاظ على مستوى السرعة.

أهمية السرعة

إن السرعة أهمية كبيرة في تنمية الأداء الناجح في لعبة كرة القدم ويمكن تلخيص أهميتها على النحو الآتي:

1- تؤثر بصورة مباشرة في جميع خصائص اللياقة البدنية الأخرى.

(Muscular Power).

2- ترتبط بالقوة فيما يعرف بالقدرة العضلية.

3- إن الرشاقة تتطلب أن يكون اللاعب قادرًا على تغيير أوضاع جسمه أو تغيير اتجاهه بسرعة عالية.
- التحمل والمرونة لهما اتصال أساسي ومباشر مع السرعة.

- كما تعتبر السرعة من مكونات اللياقة البدنية (Physical Power) وأيضا من مكونات اللياقة البدنية (Motor Ability) وكذلك من مكونات القدرة البدنية (Motor Fitness).

- تتأثر الوزن الجسم وزوجة العضلات والصفات الميكانيكية والتكوينية للجسم كطول الأطراف ومرونة المفاصل.

- تعد السرعة أحد المتطلبات الرئيسية للأداء في كرة القدم الحديثة لما لها من أهمية في ارتباطها بباقي عناصر القدرات البدنية الخاصة الأخرى حيث تظهر أهميتها بلعبة كرة القدم في قدرة اللاعب على أداء المهارات الأساسية والحركة بسرعة كبيرة حسب ظروف المباراة ومدى قدرته على سرعة العدو لمسافات بعيدة سواء بالكرة أو بدونها وسرعة الهدف للاعب لضرب الكرة بالرأس سواء بغرض التمرير أو إصابة الهدف أو حماية المرمى من إحراز هدف الفريق الخصم، كذلك سرعة تغيير إتجاه اللاعب وسرعة الاستجابة لمواقف اللعب المختلفة.

- إن جميع أنواع السرعة تحتاج إليها لاعب كرة القدم للفوز بالقدرة على أداء متطلبات المواقف اللعبة المختلفة بالسرعة اللازمة لكل موقف (أبو عبده، 2008، ص 115-116).

أنواع السرعة:

تنقسم السرعة إلى ثلاثة أنواع يمكن إجمالها على النحو الآتي:

Movement Speed:

1 - السرعة الانتقالية (العدو): هي السرعة ذات الاتجاه الثابت التي يقطع فيها الجسم مسافات متساوية في زمن متساوي مهما صغرته مقاير هذه الأزمة، أي أنها تعتبر للحركة المنتظمة (بسطوسي 1999، ص 157) وقد عرف أبو عبده (2008) السرعة الانتقالية على أنها: "قدرة اللاعب على أداء واجب حركي لحركات متشابهة متابعة في أقصر زمن، وذلك بالتحرك باستخدام أقصى قوة وأعلى
سرعة ممكنة". ومن أمثلة ذلك العدو السريع لمسافات محددة، أو من مكان لأخر سواء بالكرة أو بدونها أو الجري السريع للحاق بالكرة قبل الخصم أو في قدرة المهاجم في التضارع والختام من المدافع كذلك في قدرة المدافع في الالتحاق بالكرة قبل إحراز هدف، بالإضافة لقدرة اللاعبين في سرعة التحول من الهجوم إلى الدفاع وبالعكس. وتبتكر المراكز والهروب من الرقاب.

أما الجبور (2012) فقد عرف السرعة الانتقالية بأنها: "محاولة الانتقال أو التحرك من مكان إلى آخر في أقصى سرعة ممكنة، يعني ذلك محاولة التغلب على مسافة معينة في أقصر زمن ممكن، وغالبًا ما يستعمل اصطلاح سرعة الانتقال "Sprint".

2- سرعة الأداء (السرعة الحركية):

لقد اختفى العلماء في تحديد مفهوم هذا النوع من السرعة فقد عرفها الجبور (2012) بأنها: "سرعة اقتصاد عضلة أو مجموعة عضلية عند أداء الحركات العينية كسرعة ركض لركبة، أو سرعة الوُثب، وكذلك عند أداء الحركات الحركية سرعة استلام الكرة وتمريرها أو كسرعة الاقتراب والوثب أو كسرعة نهاية أداء مهارات الجمباز المركبة كالـسكونة الهوائية الخليلة المستقيمة مع أثل النصف لفة المحور الطولي للجسم". في حين رأى أبو عبده (2008) أن سرعة الأداء هي "قدرة اللاعب على أداء واجب حركي سواء بسيط أو مركب في أقل زمن ممكن". ومن الأمثلة التطبيقية في كرة القدم سرعة ركض الكرة أو سرعة الوُثب عاليًا لضريب الكرة بالرأس وسرعة التمرير والتصويب والسيطرة على الكرة وسرعة الجري بالكرة وسرعة الجري بالكرة والحفرة للتخلص من مدافع سرعة كذلك قدرة اللاعب على أداء الحركات المركبة خصوصاً عندما يكون واقعا تحت ضغط المنافس كما في حركات الدفاع والهجوم، وتعتمد السرعة الحركية للاعب كرة القدم على مقدمة العضلات على سرعة الاتقان والترفيه.
3- سرعة الاستجابة (سرعة رد الفعل):

يرى أبو عبده (2008) أن سرعة الاستجابة هي قدرة اللاعب للاستجابة الحركية لمشير معين في أقل زمن ممكن، ويعني آخر تمثل سرعة الاستجابة (سرعة رد فعل) المدة الزمنية بين ظهور مثير ما والمبادرة الأولى للاستجابة له بالحركة، أي أن الزمن الذي يستغرقه اللاعب لبدء مبادرة الاستجابة بالحركة لمؤثر معين.

ويمكن تقسيم سرعة الاستجابة (سرعة رد الفعل) إلى:
أ. زمن الإحساس: وهو زمن استقبال الأعصاب الحسية في جسم اللاعب للمؤثر وتوصيله إلى الجهاز العصبي المركزي.
ب. زمن التفكير واتخاذ القرار: هو الزمن الذي يستغرقه الجهاز العصبي المركزي للتفكير واتخاذ القرار لبدء الحركة.
ت. زمن المبادرة لبدء الحركة: وهو زمن إرسال الإشارات العصبية من الجهاز العصبي المركزي عن طريق الأعصاب الحركية إلى العضلات العاملة لبدء تنفيذ الحركة.

العوامل المؤثرة في السرعة

يرى علماء التدريب أن هناك بعض العوامل الهامة المؤثرة في تنمية السرعة وتطويرها، ويمكن إجمال تلك العوامل في النقاط الآتية:

1- الوراثة:

2 - الخصائص التكوينية للألياف العضلية:

الإنسان يحتوي جسمه على نوعين أساسيين من الألياف العضلية هما:

1. الألياف العضلية السريعة (البيضاء): وهذا النوع من الألياف يتميز بقوة وسرعة الانتقاب غير أنه سريع التعب (الجبور، 2012، ص 225)، ولها القدرة الكبيرة على العمل اللاكتوجيني وإنتاج أكبر ما يمكن من جهد العمل الكلي للجسم، وهي مهمة جدا للحركات السريعة والقوية العضلية (مذكور، وشغاتي، 2011، ص 117)، حيث يذكر عبد الفتاح (1997) بأن سرعة انقباض الألياف السريعة يصل أقصى توتر لها في أقل من (0.3) ثانية، وتبلغ عدد الألياف العضلية لكل وحدة حركية ما بين (300-800) وحدة حركية، بينما يرى سيد (2003، ص 47-48) أن هذه الألياف تصل إلى قمة انقباضها في زمن مقداره (8) ملي ثانية، كما ويعي:

معدل انقباضها في الثانية الواحدة

ويقسم عبد الفتاح (1997) الألياف العضلية السريعة إلى ثلاثة أقسام:

1- ألياف عضلية سريعة (أ)، وتبلغ نسبتها 50% من مجموع الألياف العضلية السريعة.
2- ألياف عضلية سريعة (ب)، وتبلغ نسبتها 25% من مجموع الألياف العضلية السريعة.
3- ألياف عضلية سريعة (ج)، وتبلغ نسبتها 25% من مجموع الألياف العضلية السريعة.

في حين قسمها الجبوري (2012) إلى:

- ألياف بطيئة مؤكسة (حمراء).
- ألياف سريعة مؤكدة (حمراء).
- ألياف سريعة (بيضاء).

وقد ورد عن سيد (2003، ص 49) أن العالم تورتورا (2000، Tortora) قدقسم الألياف العضلية سريعة الانقباض إلى قسمين كما يأتي:
1- الألياف السريعة الجليكوجينية المؤكسة

Fast Oxidative Glycoltic

FOG

يعتمد هذا النوع من الألياف العضلية على إنتاج الطاقة بوساطة استخدام الأكسجين في أكمة الجليكوجين، بالإضافة إلى استخدامه لنظام آخر هو الجلوكوز اللا-لاكمسجينية (احتراق الجلوكوز دون استخدام الأكسجين) حيث تتركز تلك الألياف في عضلات الرجلين تحديدا.

FG

2- الألياف السريعة الجليكوجينية

Fast Glycolytic

(Glycolytic)

يعتمد هذا النوع من الألياف بدرجة أساسية على نظام الجلوكوز اللا-لاكمسجينية حيث يتركز تكوين تلك الألياف في عضلات الذراعين.

لقد أشار الجبور (2012) إلى أن السرعة ترتبط بدرجة كبيرة بعدد الألياف العضلية السريعة في العمل، كما أن الإنزيمات اللا-لاكمسجينية تزيد الضعف مرتين أكثر من الألياف البطيئة وبالتالي تكون عاملًا أساسيًا في تحرك الطاقة اللازمة لحدوث الانقباض العضلي، مثل: إنزيم Lactate (Phospho Fructokinase) وإنزيم لاكتات-ديهيدروجيناز (dehydrogenase).

كما أن سرعة انقباض العضلة ككل يعتمد تبعًا لنسبة الوحدات الحركية السريعة المشاركة في العمل، وتتحتاج الوحدات الحركية السريعة إلى درجات أعلى من التنبينه، بينما تحتاج الوحدات الحركية البطيئة إلى درجات أقل قوة من التنبينه، ويشير الجبور (2012) أن الإنسان يولد وجميع أليافه من النوع البطيء وخلال الأسابيع الأولى بعد الولادة تتشكل الوحدات الحركية السريعة تدريجيًا، ونتيجة للأبحاث التي أجريت في مجال التدريب وجد أن الأفراد الذين يتميزون بزيادة نسبة الألياف الحمراء في معظم عضلاتهم يحتاجون إلى وقت طويل لتنمية مستوى السرعة لديهم.
ويضيف ويلمور وكوستيل (Wilmore & Costill, 2005) بأن الألياف العضلية السريعة توجد بنسبة (76%) في العضلة التوأمية عند عدائي المسافات القصيرة، والوثب، وهذا يولد لديهم السرعة، والقوة، في أقل زمن ممكن، وتحقيق الإنجاز.

ب- الألياف العضلية البطيئة: يمثل هذا النوع من الألياف ما نسبته 50% من مجموع الألياف العضلية لدى الرياضيين، وهي ألياف بطيئة الانقباض وتظهر بلون (داكن) ولذلك تسمى بالألياف الحمراء (أبو عبده، 2008، ص 171)، وتتميز هذه الألياف بزيادة القدرة على العمل لفترة طويلة إعتمادًا على الكهشين، في إنتاج الطاقة، وذا فهذا تعرف أيضًا بالألياف البطيئة المؤكسة (الجبور، 2012، ص 224-225)， ويؤكد سيد (2003) أن هذه الألياف تحتوي على كمية كبيرة من اليمينوجلوبين الذي يعطيها هذا اللون مما يجعلها أكثر تميزًا للاستمرار في العمل، كما أنها تحتوي على عدد أكبر من الميتوكندريا والشعيرات الدموية، وكذلك فإنها تتميز بكفاءة أكبر في إنتاج ATP (بطريقة أكسجينية).

يتوافد هذا النوع من الألياف في عضلات اللاعبين الذين تتميز أنشطتهم بالتحمل كلاعبة المسافات الطويلة والعاب القوى والدراجات والسباحة (أبو عبده، 2008، ص 171)، ويشير عبد الفتاح (1997) بأن سرعة انقباض الألياف البطيئة يصل أقصى توتر لها في (0.8-0.9) ثانية، وتبلغ عدد الألياف العضلية لكل وحدة حركية ما بين 10-180 وحدة حركية، في حين يرى سيد (2003) أن هذه العضلات تصل إلى قمة انقباضها في زمن مقدره (12 ملي ثانية)، ويصل معدل انقباضها إلى (10 - 15) انقباضها في الثانية الواحدة، ويؤكد أبو عبده (2008) بأنه إذا تواجدت عضلات عضلات من النوع نفسه وكان طول إحداهما ضعيف طول الأخرى، فإن الليغة العضلية الأطول تستطيع أن تقصر أثناء انقباضها ضعيف ما تستطيع الليغة العضلية الأقل طولاً في نفس المدة الزمنية، وذلك يعني أن العضلات ذات الألياف العضلية الطويلة تتميز بسرعة انقباض عضلي أكبر من العضلة ذات الألياف القصيرة، بالإضافة إلى ذلك فإن العضلات التي تمتد أليافها متوازية على طول المحور الطولي الممتدة بطول العضلة تتميز بالسرعة أكثر من العضلات التي تمتد أليافها مائلة قطرياً بالنسبة إلى المحور الطولي للعضلة.
تأثير التدريب على نوعية الألياف العضلية:

تنشر مقالة في الوسط الرياضي مفادها أن العداء يولد ولا يصنع أي أن لاعب السرعة يولد مؤهلًا لأن يكون كذلك، وفقًا لما يُстранه من خصائص تكوينية تتمثل في زيادة نسبة الألياف العضلية سريعة الإنهيار.

يرى بعض العلماء أن التدريب الرياضي يمكن أن يؤثر على نوعية الألياف العضلية من حيث إكتسابها أو فقدانها لبعض خصائصها التكوينية أو الوظيفية، بمعنى أنه نتيجة لتركيز التدريب الرياضي على استخدام تمريدات التحمل لفترات طويلة مثل، سوف ينتج عن ذلك اكتساب بعض الألياف العضلية سرية الإنهيار خاصية التحمل، ومن المرجح أن يكون ذلك على حساب الألياف السريعة الوسيطة (السرعة الجليكوجينية المؤكسة) (سيد، 2003، ص 51).

حيث أشار عبد الفتاح، وسيد (2003) إلى أن التدريب الرياضي وخاصة تدريبات السرعة يمكن أن يؤثر على خصائص الألياف البطيئة الحمراء لنتخذ نفس خصائص الألياف السريعة البيضاء فزاد لدى اللاعب عنصر السرعة، كما توصلت بعض الدراسات إلى أن تدريب متسبق المسافات القصيرة على الركض ينجم عن زيادة عنصر التحمل لديهم ولكنهم يفقدون بعضًا من سرعتهم، كذلك الحال عند تدريب لاعبي التحمل على تدريبات السرعة أو القوة ذات الشدة العالية، فإن أليافهم تفقد من قدرتها على التحمل، ويشير بعض العلماء إلى أن هناك نوعاً خاصاً من الألياف الحمراء تتميز بقدرتها على الانقباض السريع على الرغم من الاحتفاظ بخصائصها الأخرى كألياف حمراء (بطيئة الانقباض).

3- نمط الجسم:

يرى أبو عبد (2008) أن اللاعبين ذوي الوزن الزائد بالدهون يفقدون المقطرة على سرعة الحركة ويرجع ذلك إلى:

أ - الوزن الزائد، بسبب تراكم الدهون في الجسم يجعل عبئًا يحتاج للاعب إلى قوة كبيرة لتحريره.

ب - الأنسجة الدهنية داخل العضلات لا تنقبض بل تسبب الاكتئاب الداخلي في العضلة وتعوق الانقباض العضلي.

31
وللجري بسرعة حركية أفضل يفضل اللاعبون من ذوي الجسم المتوسط ممن يصنفون بالنمط العضلي الرفيع، ولكن تلك متطلبات لها إستثناءات كثيرة وخصوصة بالنسبة لرحلتي السرعة والسرعة القصوى.

ويشير الرملي، وشحاته (1991، ص178) إلى أن الوزن الزائد يعيب عملية الانقباض العضلي، نتيجة احتكاك الألياف العضلية ببعضها، كما أن الوزن الزائد يزيد من المقاومة ضد الحركات.

4- النمط العصبي:

من أهم العوامل التي تتأسس عليها قدرة اللاعب على سرعة أداء الحركات المختلفة

بأقصى سرعة هي عملية التحكم والتوجيه التي يقوم بها الجهاز العضلي المركزي وهي من العوامل الهامة التي تتأسس عليها قدرة اللاعب على السرعة أداء الحركات الرياضية بأقصى سرعة، نظرا لأن مرونة العمليات العصبية في تنظيم التبادل السريع بين عمليات الكف (التنبيط) والإثارة (التهيج) أي إعطاء إشارات لعضلات معينة بأن تكتف عن العمل وتكشف عضلات معينة بالعمل تعتبر الأساس لقدرة اللاعب على أداء الحركات الرياضية بسرعة وبتسرد كبير وبأقصى زمن ممكن، لذلك نجد أن التوافق التام بين الوظائف المتعددة للمركز العصبي المختلفة من العوامل التي تسهم في تحسين وتطوير صفة السرعة (أبو عبد الله، 2008).

وتؤكد مالح، وأخرون (2011) على أنه كلما كان التوافق أفضل بين انقباض العضلات وارتخائها أمكن تحقيق سرعة أفضل.

5- القدرة العضلية:

يشير بسطويسي (1999) إلى أن السرعة ترتبط بمستوى القوة العضلية ارتباطاً وثيقاً حيث لا توجد سرعة دون قوة عضلية، هذا الارتباط يظهر فسيولوجي من خلال النسبة الكبيرة لعدد الألياف العضلية السريعة خصوصا في عضلات الرجليين والذراعين، نظرا لما يتميز به تلك الألياف من سرعة انقباضها.
وتوفر مالح، وآخرون (2011) إلى أنه كلما زادت القوة العضليّة أمكن التغلّب على المقاومات التي تواجه جسم اللاعب وبالتالي تحسنت السرعة.

وذكر أبو عبده (2008) إلى أن تنمية القوة العضليّة بالطريقة الديناميكية (الحركية) تسهم في تنمية السرعة أفضل مما لو تم تنمية القوة العضليّة بالطريقة الاستراتيجية (ثابتة).

6- المهرونة وقابلية العضلة للامتطاط

يرتبط مستوى السرعة عموماً بما يتمتع به اللاعب من مدى حركي بالنسبة للمفاصل والذي يعتبر عنه مرونة المفاصل، ومدى حركة المفصل تعتمد أساساً على كل من القوة الخاصة بالعضلات العاملة وإطالة للعضلات المقابلة لهذا المفصل، وبذلك من الأهمية أن يكون العمل على تحسين مدى الحركي للمفاصل، حيث أن ذلك يعمل على زيادة اتساع الخطة، وإمكانية زيادة ترددها، إذ أن ذلك يعتبر من الأسس الكينماتيكيّة لتحسين السرعة، وبذلك تعمل إطالة العضلات على المفاصل على تحسين مدى التوافق العضلي العصبي والقدرة على استرخاء العضلات العاملة عليه يساعد على الانقباض العضلي السريع (بستويسي 1999، ص151).

السن والجنس:

يعد السن والجنس عاملين هامين يؤثران بصورة مباشرة على السرعة، إذ يختلف مستوى السرعة باختلاف الجنس، وسرعة الرجال تزداد بجميع أشكالها حيث يصل الفرد إلى أقصى سرعة له في سن العشرين، ويستطيع الفرد أن يحتفظ بثقة السرعة في نفس المستوى لمدة ثلاث أو أربع سنوات، وبعدها تميل السرعة إلى الانخفاض تدريجيًا بمعدل ثابت مع تقدمه في العمر.

في حين تشير مالح، وآخرون (2011) إلى أن الفرد يصل إلى أقصى سرعة له في سن (25-26) سنة.
أما السيدات فيصلن إلى قمة السرعة في سن 16-18 سنة تقريباً (أبو عبده، 2008، ص 120)، وتشير مالح، وآخرون (2011) إلى أن سرعة النساء تصل إلى (80%) من سرعة الرجل، ويرجع أبو عبده (2008) السبب في ذلك إلى الفرق بين الرجل والمرأة في القوة العضلية حيث إن القوة تؤثر على سرعة الحركة ضد مقاومة، كما قد يرجع الفرق في سرعة الجري بينهما إلى أن تركيب حوض المرأة أعرض من حوض الرجل وذلك يعوق الحركة الميكانيكية للجسم عند الجري.

ويؤكد أيضاً أن أقصى سرعة رذ الفعل الحركي تحتفظ بها النساء فترة أطول من الرجال، وأن أقصى سرعة يحتفظ بها الرجال فترة أطول من النساء.

الأسس الفنية لقواعد تحسين أنواع السرعة:

يذكر أبو عبده (2008) أنه يجب على أخصائي الأحمال التدريبية ومدربي كرة القدم

مراعاة ما يلي عند وضع البرامج التدريبية الخاصة بتتمية وتحسين أنواع السرعة:

1- اختيار التدريبات التي يمكن توظيفها في البرنامج، مع مراعاة البدء بتدريبات السرعة الأقل من القصوى ثم التدرج بسرعة الأداء حتى الوصول إلى سرعة القصوى في غضون خطة التدريب السنوية.

2- تحتاج السرعة إلى قيام اللاعب بعمل فترة إحماء جيد قبل الأداء، ويعمل ذلك على تحسين مطاطية العضلات ومرونة المفصلات وتنمية الجهاز العصبي والوقاية من الإصابات.

3- يجب العمل على تقوية عضلات الرجلين والجذع والذراعين أثناء فترة الإعداد لما لها من

تأثير إيجابي في تحسين السرعة الانتقالية والسرعة الحركية.

4- نظراً لاعتماد السرعة على الجهاز العصبي مسترحاً، والعضلات العاملة غير مجهدة فيجب أن تعطي تدريبات السرعة في بداية الجزء الرئيسي من وحدة التدريب اليومية بعد المقدمة والإحماء مباشرةً.
5 - خلال التدريب على السرعة يجب أن تأتي دقة الأداء أولًا قبل السرعة ومع زيادة دقة الأداء تزداد سرعة اللاعبين، ملاحظة أن السرعة تنقسم عند الأداء إلى مراحلتين الأولى مرحلة تنزيد السرعة حيث تزداد السرعة تشريجاً والثانية هي مرحلة تثبيت السرعة نسبياً.

6 - يجب ملاحظة تنمية السرعة الانتقالية أولًا بدون استخدام الكرة ثم يلي ذلك تنمية السرعة الانتقالية باستخدام الكرة في أداء التدريبات البدنية الخاصة والمهارات الأساسية.

7 - يجب تنمية أنواع السرعة واحدة ثالث الأخرى بالتمثيل قبل أن تنمي السرعة كقدرة بدنية حرادية لأن مستوى تطور سرعة الأداء كقدرة بدنية مرتبة تعتمد بالدرجة الأولى على المستوى تطور أنواع السرعة المنفردة.

8 - ترتبط السرعة بمراعاة العضلات وخططية العضلات وخاصة بالنسبة للسرعة الانتقالية وتصبح ذات فائدة كبيرة لللاعبين كذلك في حالة مقدرة اللاعبين على الاسترخاء العضل.

9 - تبدأ تدريبات السرعة في الأسبوع الثالث من فترة الإعداد، ويجب أن يراعى التدرج في شدة الحمل عند التدريب على السرعة، والبدء بشدة متوسطة أقل من الأقصى ولمسافات مساعدة (100:40 م) لمدة تتراوح ما بين (4:2) أسابيع.

10 - يجب على أخصائيي الكمال التدريبي والمديرين أن يفرقوا بين التدريب على السرعة القصوى وتحمل السرعة من حيث قوة وسرعة الأداء وفترات الراحة بين التكرارات.

11 - مراعاة زيادة شدة تدريبات الجري بالتدريج حتى تصل ما بين (100:85%) من أقصى مقدرة للاعب ومسافات تتراوح ما بين (50:20) متر بدون كرة وبالكرة مع التنويع في تدريبات السرعة مع تقدم مراحل التدريب وإدخال غرض التشويق وزيادة حماس اللاعبين وزيادة دافعيتهم لتكملة أداء التدريبات بسرعات عالية وبأعلى جهد حتى نهاية الوحدة التدريبية.

12 - أن تشمل مجموعات الوحدة التدريبية اليومية (3:6) مجموعات تتخللها فترة راحة بعد كل مجموعة تصل إلى (2:6) دقائق والتكير (2:4) مرات أسبوعياً في فترة المنافسات.
تناسب مع مراعاة تناسب عدد التكرارات مع مستوى اللاعبين مع ملاحظة ضرورة عدم الاستمرار في أداء التدريبات السرعة في حالة شعور اللاعب بالتعب والإجهاد حتى لا يصاب اللاعب.

13 - يجب الاستفادة من فترات الراحة بين فترة عمل وأخرى لتنفيذ تدريبات إطالة واسترخاء العضلات لأن هذه التدريبات تساعد على الحفاظ على مطاطية العضلات.

14 - في مرحلة الإعداد للمباريات تدوم تدريبات التحمل والسرعة معاً في تدريبات واحدة تؤدي غرضاً واحداً. وتؤدي التدريبات المركبة والتدريبات بهدف تنمية القدرة في فترات الإعداد للمباريات بعد الانتهاء من التدريب على المهارات الفنية ويتمر التدريبات الكرة التي تساهم في زيادة قوة التحمل والسرعة معاً.

15 - تستمر تدريبات السرعة طوال فترة المباريات وبشدة قصوى يجب الا تعطى تدريبات السرعة نهائياً خلال الفترة الانتقالية نظراً للمجهود البدني الكبير الذي تتطلبه تدريبات السرعة.

ثانياً: الرشاقة

تحتل الرشاقة مكاناً حيوياً وبارزاً بين القدرات البدنية الخاصة التي يحتاج إليها لاعب كرة القدم كالتحمل والقوة والسرعة والمرونة والقدرة، وتتعتبر من أكثرها استخداماً أثناء المباريات والتدريب، تظهر في مواقف كثيرة، منها تغيير الاتجاه والسرعة في الجري سوياً بالكرة أو بدونها وما يرتبط بها من تغيير الاتجاهات اللاعب وتظهر أيضًا في المحاورة والمهامدة وضربة الكرة بالرأس والسيطرة على الكرة والتصويب على المرمى مع الاقتصاد في الجهد المبذول أثناء تأدية هذه المهارات (أبو عبده، 2008، ص 226).

يزدكر سلامة عن فليشمان (Fleischmann) بأن عوامل الرشاقة والتوافق من العوامل التي ما زالت لأنها تجد إجابة دقيقة من حيث اعتبارها عوامل مستقلة متفرقة، وإنها ضمن عوامل أخرى لتحكم القيادة البدنية، وعلى ذلك ينظر فيلمشمان إلى الرشاقة كونها عاملًا مملاً عوامل سرعة تغيير الاتجاه، ويتفق كل من لوياخ (Lau Baach)، وتسابورسكي على ارتباط الرشاقة بكل من التوافق والدقة والسرعة كثلاثة عناصر محددة (Zasiorisk)
لمستوى الرشاقة، حيث يذهب تسابورسكي إلى تحديد الرشاقة بمعايير محددة كزمن ودقة الأداء.
ومستوى التوافق الحركي حتى تظهر الرشاقة بشكلها الجيد (بسطويسي 1999، ص 255).

كما أكد خاطر، والبيك عن مور (Moor) ارتباط الرشاقة ببعض الأسس الفسيولوجية والنفسية والتي تظهر من خلال بناء توافق حركي جديد مبني على خبرات حركية سابقة متراكمة في الجهاز العصبي للاعب، حيث يتوقف الأداء المهاري على نشاط الحواس عامة والحواس الحركية خاصة وهذا ما أكده كل من تيوفتسيكي (Pani) وبووني حيث يربطان عنصر الرشاقة ليس فقط بالحواس، بل بالإدراك والموارد اللعبة المحيطة باللاعب والتي قد تواجهه وتفاجئه كرد فعل مركب (بسطويسي 1999، ص 258).

وفي ضوء ذلك تعرف الرشاقة بأنها "مقدرة اللاعب على تغيير أوضاع جسمه أو جزء منه أو سرعته أو اتجاهه سواء على الأرض أو في الهواء بسرعة مناسبة لمتطلبات الأداء الفنية بايقاع سليم مع الاقتصاد في الجهد" (أبو عبده، 2008).

في حين عرف النهار، وآخرون (2010) الرشاقة على أنها: "القدرة على إتقان حركات التوافق المقدمة والسرعة في تعلم الأداء الحركي وتطويره واستخدامه من الأداء الحركي وفق متطلبات الموقف الذي يتغير بسرعة ودقة والقدرة على إعادة تشكيل الأداء تبعا لهذا الموقف وسرعة".

يفضل أبو عبده (2008) الاهتمام بتدريبات الرشاقة في مراحل العمر الأولى (مرحلة مدرسة الكرة والناشئين) لما لهذه المراحل من تأثير للتشكيل والتعليم والتدريب والاستعداد بصورة كبيرة بالإضافة إلى ارتباط الرشاقة بالتوافق العضلي العصبي والدقة في أداء التكتيكل المهاري، ومن هنا تظهر أهمية التدريب على الرشاقة في سن مبكرة من حياة اللاعب.

و هذا ما أكد عليه خنفر (2010) حيث يحدث تطور في عنصر الرشاقة وكذلك يتحسن التوافق العضلي العصبي في سن (6-9) سنوات.
يرى بسطوسي (1999) أنه لتنمية الرياضة ينبغي العمل على إكساب اللاعب عدداً كبيراً من المهارات الحركية الرياضية المختلفة، بالإضافة إلى قيامه بآداء تلك المهارات تحت ظروف مختلفة ومتداعية الصعوبة، وبذلك تعتبر الرياضة في نظر الكثير كمؤشر يمكن الاستدلال به على جمال الحركة.

ويرى الباحث أنه يمتاز الآراء في تعريف الرياضة وتحديد عناصرها، فإن السرعة والدقة عاملان هامان يحددان مفهوم الرشاقة، وأن الرشاقة عنصر أساسي للمتدربين تعمل على إظهار الفروق الفردية بينهم.

مكونات الرشاقة:

يرى أبو عبلة (2008) أن تتضمن مكونات الرياضة للاعبي كرة القدم على عدة مكونات مميزة تساهم في كفاءة اللاعب ونجاحه في أداء الرياضة منها:

1 - المقدرة على رد الفعل الحركي بالاستجابة السريعة للمواقف المتغيرة.
2 - المقدرة على التوجيه الحركي.
3 - ضبط الحركات المركبة بدقة نحو الهدف.
4 - المقدرة على التنسيق الحركي.
5 - التوافق الحركي عند إقناع بعض الحركات والمهارات وربطها ببعضها.
6 - المقدرة على الاستعداد الحركي.
7 - المقدرة على التوازن والتحكم المكاني للجسم في الحركات المركبة.
8 - التكيف الصحيح لواجبيات متغيرة ومواصفات ممكنة.
9 - المقدرة على خفة الحركة.

أنواع الرشاقة:

يرى أبو عبلة (2008) أن هناك نوعين من الرشاقة هما:

1 - رشاقة عامة: وهي رشاقة الجسم ككل، أي أنها حركات الرشاقة التي يقوم بها اللاعب بجسمه كاملاً كل واجب حركي بتصرف منطقي سليم في النشاط الممارس، ويظهر ذلك أثناء قيام لاعبي كرة القدم بأداء المحاورة أو الجري بالكرة مع تغيير الاتجاه والسرعة.
أما شتيبلر (Stubler) فقد عرفها بمقدرة اللاعب على مدى التوافق والانجاز الجيد للمهارات الحركية العامة (بسطوسي 1999، ص 256).

2- رشاقة خاصة: وهي رشاقة عنصر معين أو مجموعة أعضاء من جسم اللاعب، أي أنها حركات الرشاقة التي يؤديها اللاعب بأحد أعضاء جسمه مع القدرة على الأداء الحركي في تناسق وتطبيق مع نواحي وتكوين الحركة في المنافسة تبعا لطبيعة الأداء الهمائي في كرة القدم (أبو عبده، 2008، ص 229).

أما شتيبلر (Stubler) فقد عرفها بمقدرة اللاعب على التصرف في انجاز تكتيكي المهارات الرياضية بأعلى كفاءة ممكنة (بسطوسي 1999، ص 256).

العوامل التي تؤثر على الرشاقة:

يرى أبو عبده (2008) أن هناك عوامل عدة تؤثر على مستوى الرشاقة للاعبي كرة القدم منها:

1- أنماط الجسم:

يتمتع اللاعب العضلي المتوسط الطول والعضلي القصير بقدرة كبيرة على المحاورة والمناورة والتحكم في حركات الجسم وبالتالي التعرف بالرشاقة، بينما اللاعب الطويل النحيف والبدين جداً لا يتمتع بالرشاقة.

2- الوزن الزائد:

تؤدي زيادة الوزن إلى انخفاض مستوى الرشاقة بشكل مؤثر ومباشر على اللاعبين لأن ذلك يؤثر على القصور الذاتي للجسم وأجزائه، كما أن الدهون في الجسم تقلل من سرعة الانقباض العضلي وقوته مما يؤثر على قدرة اللاعب في سرعة تغيير اتجاهات الجسم.
3 - السن:

تنمو الرشاقة لدى الأطفال حتى يصلوا إلى سن (12) سنة تقريباً وهي بداية السن المبكرة لمرحلة النمو السريع وخلال الفترة من (12: 15) سنة يقف نمو الرشاقة لدى أطفال هذه المرحلة السنية وعندما تنتهي تلك الفترة يزداد مستوى الرشاقة مرة أخرى تدريجياً باستمرار حتى سن النضج فتصل الرشاقة إلى أقصاها.

4 - التعب:

يؤثر التعب سلبياً على الرشاقة، فالتعب له تأثير ضار على العناصر التي تتكون منها الرشاقة مثل القوة، وسرعة رد الفعل، سرعة الحركة والقدرة، بالإضافة إلى أن التعب يؤدي إلى انخفاض التواصل العضلي العصبي لللاعب.

في حين ترى مالح وأخرون (2011) بأن العوامل المؤثرة في الرشاقة هي:

- إقناع اللاعب في الأداء الحركي.
- استخدام وسائل لتنمية الرشاقة.
- توفير أنماط جسدية مناسبة.
- الجهاز العصبي الذي يلعب دوراً حيوياً من حيث كفاءة استقبال المعلومات البيئية التدريبية أو التنافسية ومن حيث إصدار الأوامر الحركية للعضلات المنفدة.

يري أبو عبده (2008) أن هناك مجموعة من المبادئ يجب مراعاتها عند تنمية وتطوير الرشاقة والتي يمكن توضيحها بما هو آت:

1 - يجب أن تعطي تدريبات الرشاقة في الفترات الأخيرة من مرحلة الإعداد بعد اكتمال اللاعب للقدرات البنائية الأخرى كالسرعة والمرونة والقوة والدقة لاحتياج أداء الرشاقة لهذه القدرات.
2- لتطوير قدرة الرشاقة يجب اكتساب اللاعبين مجموعة كبيرة من المهارات الحركية يمكن استخدامها في تغيير وتشكيل التدريبات خلال المواقف والظروف المختلفة.

3- مراعاة مبدأ التدرج من البسيط إلى المركب في تدريب الرشاقة والبدء بتدريبات الرشاقة العامة في الجزء الإعدادي (الإمضاء) وتدريبات الرشاقة الخاصة في بداية الجزء الأساسي من وحدة التدريب.

4- يجب إعطاء حارس المرمى خصوصية في التدريب على الرشاقة العامة في سن مبكرة أثناء مدرسة الكرة (10-12) سنة ثم بدأ التدريب على الرشاقة الخاصة في سن 14 سنة لما لها القدرة من أهمية خاصة لمركز حارس المرمى.

5- أن تستمر تدريبات الرشاقة على مدار الموسم التدريبي أثناء الفترة الإعدادية والمسابقات والانتقالية مع زيادة التركيز عليها أثناء فترة الإعداد.

6- أن يراعى تشكيل التدريبات أثناء تنمية الرشاقة على أداء المشابك لمواقف اللاعب في ظل ظروف متغيرة ومتعددة و باستخدام وسائط تدريبية خاصة بكرة القدم مما يساعد على وصول اللاعب إلى مرحلة الإمكانيات الإنجازية أثناء تأديتها.

ثالثًا: تحمل السرعة:

يعد تحمل السرعة أحد العوامل الأساسية للإنجاز في كرة القدم، حيث تتطلب المباراة قدرة فائقة على تكرار التجاوب بالانتقال من مكان لأخر بأقصى سرعة في أي وقت خلال الـ(90 دقيقة) (زمن المباراة) للقيام بالواجبات الهجومية والدفاعية، والتي تتضمن أثناء المباراة في تكرار التحول المستمر من الدفاع للهجوم والعكس، وتبادل المراكز كخطوة للاحتفاظ بالكرة أو خلء دفاع الفريق المضاد ومن ثم زيادة فعالية أداء الفريق، حيث تشير الدراسات الخاصة بتحليل النشاط الحركي بان لاعب كرة القدم يجري ما بين (60:40) تكرار لمسافة (30 م) بسرعة عالية خلال المباراة الفعلية (الباستي، 1998، 159). ويضيف الهزاع (2010) أن ناشئ كرة القدم يقضي ما يقارب (8-9%) من وقت المباراة (أي 7-8 دقائق) في جهد بدني عالي السهولة (يشمل ذلك الجري السريع، وحركات تغيير الاتجاه، والوقف، والتوقف المفاجئ) مما يعني أن اللاعب في هذه الفترات يستخدم النظام الالكسيجيني كمصدر لطاقة العضلات.
ويرى أبو عبد (2008) أن طريقة التدريب الفترى عالي الشدة من أفضل الطرق المستخدمة لناتجية وتطوير تحميل السرعة حيث تصل فيها شدة الحمل إلى الحد الأقل من الأقصى بمعدل نبض يتراوح ما بين (170-190) نبضة/دقيقة، أما فيما يتعلق بفترة الراحة فيجب أن يهبط النبض إلى معدل (140-150) نبضة/دقيقة قبل البدء في الجري من جديد.

أما عبد الفتاح، وسيد (2003) فقد أوصيا باستخدام طريقة سرعات بيك أب (Pick up) لتدريب تحميل السرعة والتي يكون فيها الأداء بسرعة تدريبية من الهروفة إلى العدو السريع بنسبة (75%) ثم إلى أقصى سرعة، مثل المشي لمسافة (25m)، ثم العدو لمسافة (25m)، بسرعة بنسبة (75%) من أقصى سرعة للاعب، يليه العدو لمسافة (25m)، ببلوط سرعة، يلي ذلك (25m) مشي للراحة واستعادة الشفاء. ويشير أن تنمية تحميل السرعة في العاب الكرات يجب أن يشمل على مسافات قصيرة في حدود (25-50م) نظراً لأن الغرض من التدريب هو التركيز على الألياف العضلية السريعة.

ويذكر سلامه (1988) أن تدريبات تحميل السرعة تتطلب كفاءة في قدرة العضلة على تحميل نقص الأكسجين واستخدام نظام الطاقة اللااكسجيني، وتحمل زيادة اللااكتيك نتيجة عملية الجلكوزيلاكسيسية التي تؤدي إلى سرعة التعب العضلي. ويشير أن تدريبات تحميل السرعة تعمل على تأخير ظهور التعب عن طريق:

1- تقليل معدل تركيز حامض اللاكتيك في العضلات عن طريق زيادة استهلاك الأكسجين.
2- سرعة التخلص من حامض اللاكتيك عن طريق استهلاكه من قبل العضلات الأخرى غير العاملة وكذلك عضلة القلب والكبد الذي يقوم بتحويله إلى جليكوجين.
3- تحميل الألمن الناتج من زيادة تراكم حامض اللاكتيك، فان التدريب بحسن سمعة المنظمات الحيوية مما يحافظ على مستوى (PH) في الدم.

ويذكر بومبا (2005) أن تحميل السرعة مهم وضروري للكثير من الفعاليات الرياضية التي تتطلب أداء بشدة قصوى أو شبه قصوى، بحيث تجعل الرياضي يقاضى النقص النتائج تراكم كميات من حامض اللبنيك في العضلات والمدة نتيجة نقص الأكسجين الذي استهلك جراء شدة الإداة.
ويشير المولوي (1999) إلى أنه تتم الحاجة إلى هذه الصفة البدنية في الفعاليات الرياضية التي فيه الحركات ثانية أو متشابهة كالركض والسباحة والدراجات وفي الحركات غير الثانية مثل الألعاب الفردي كالقدم والملة والرياح والألعاب التزلجية مثل الملاكمة والجمناستك لما تحتاجه من لعب سريع بحركات متغيرة ومتكبدة بشدة عالية طوال مدة المباراة.

وبناة على هذا فقد عرف زيمكن (Zimkin) (كماش، 2002، ص 53) تحمل السرعة بأنه مقدرة اللاعب على الاحتفاظ بمعدل عالم من توقيت الحركة بأقصى سرعة خلال مسافات قصيرة ولفترة طويلة.

في حين نظر ماتفي (Matvive) (1999، ص 208-209) في حين نظر ماتفي (Matvive) في تحمل السرعة على أنه مقاومة التعب عند إنجاز عمل عضلي والذي يتطلب سرعة عالية (بسطوسيي، 1999، ص 208-209).

بينما يعرف سيمكين (Semekin) تحمل السرعة على أنه إمكانيات البقاء على أعلى سرعة إيقاع حركي ممكن عند عدو المسافات القصيرة (بسطوسيي، 1999، ص 208-209).

أما إيجولونسكي (Igolonsky) فقد عرفة على أنه إمكانيات الرياضي الحفاظ على مستوى سرعته طيلة سباقه (بسطوسيي، 1999، ص 208-209).

ثالثًا: الخصائص الفسيولوجية

لا شك في أن لعبة كرة القدم هي إحدى الألعاب الجماعية ذات المتطلبات الفسيولوجية المتعددة والمعقدة، نظراً لما تتطلب من عدو سريع من أجل الاستحواذ على الكرة قبل أن يصل الخصم إليها، وكذلك سرعة تبادل وتغيير الاتجاهات، والركل لضرب الكرة بالرأس وتكرار الجري للإشراف في الهجوم والدفاع بفاعليا طوال الـ(90) دقيقة المحدودة لـ زمن المباراة (البساطي، 1998، ص 70).

إن هذا الاختلاف في شدة الأداء يؤدي إلى اختلاف مصدر إنتاج الطاقة التي تعتمد عليه العضلات للقيام بالجهود البدنية المختلفة، حيث أشار السعد (2005) إلى أن لعبة كرة القدم تتطلب خليطاً من العامل الأكسجيني واللاكسميجني، بحيث تكون شدة الأداء مختلفة من فترة

والمسمى الثاني للأكسجيني ويشمل: النظام الفوسفاجيني (ATP+PC)، والنظام اللاكتاتي (نظام حامض اللاكتات)، نتيجة الاحتراق غير الكامل للسكر.

وفي هذه الدراسة سبقت الباحثة دراسة أهم الخصائص الفسيولوجية التي تعتمد على أنظمة إنتاج الطاقة، وذلك على النحو الآتي:

1. الحد الأقصى لاستهلاك الأكسجين

يعد الحد الأقصى لاستهلاك الأكسجين (VO2max) أفضل مؤشر فسيولوجي لقياس القدرة الأكسجينية، نظرًا لاعتباره مؤشرًا على قدرة الجسم على إنتاج أكبر كمية من الطاقة الأكسجينية في الدقيقة الواحدة (عبد الفتاح، 1997، ص 172). وقد عرف مذكور وشغالي (2011) الحد الأقصى لاستهلاك الأكسجين بأنه مقدار الأكسجين الأقصى الذي يكون الجسم قادرًا على استهلاكه في الدقيقة خلال النشاط البدني، ويعبّر عنه بوحدات قياس مللتر/ كغم/ دقيقة، وهو أفضل مؤشر للجهاز القلبان التنفسي أو اللياقة الأكسجينية.

ووجد للحد الأقصى لاستهلاك الأكسجين تعريفات أخرى كما هو عند الهزاز (2009) الذي عرفه بقوله "أقصى قدرة للجسم على أخذ الأكسجين بوساطة الجهاز الرئوي التنفسي، ثم نقله عبر الجهاز القلبي الوعائي، وأخيرًا استخلاصه من قبل العضلات العاملة"، ويضيف أيضًا
بأن الحد الأقصى لاستهلاك الأكسجين (VO2max) يساوي حاصل ضرب أقصى إنتاج للقلب في أقصى فرق شرياني وردي للأكسجين (Maximal a - v O2 diff)، وهو مؤشر جيد لكفاءة القلب والرئتين والعضلات، ويربط طرديا مع الأداء البدني التحصيلي، ويتم الوصول إلى حجم الاستهلاك الأقصى للأكسجين من خلال أداء جهد بدني أقصى حتى التعاب مستخدمين جيدا يتم فيه استخدام كتلة عضليه كبيرة مثل الجري، ويشير دروبش وآخرون (1998) أن معدل استهلاك الأكسجين أثناء الراحة للفرد العادي يتراوح ما بين (0.20-0.25) لتر/دقيقة، ويزداد هذا المعدل أثناء التدريب تبعا لشدة المجهود المبذول، فالأداء المجهودي الخيفي يزداد استهلاك الأكسجين إلى ما بين (0.4-0.8) لتر/دقيقة، بينما يصل أثناء المجهود الشاق إلى (2.4) لتر/دقيقة.

وبعد الجري من أهم الوسائل التدريبية المستخدمة لتحسين اللياقة البدنية والتنفسية لدروي الألعاب كرة القدم، فأي رياضي في أية لعبة لا بد له من أن يعتمد على الجري كجزء أساسي في مكونات برنامج التدريب لما يتميز به من استمرارية أقصى مواد الطاقة بالطرق الأكسجينية وهو بذلك يزيد من نسبة استهلاك الأكسجين، فالعدو يشكو من المسافة المقطوعة في المباراة ما نسبة (11%) (1991) и من هنا تظهر أهمية دراسة مفهوم الحد الأقصى لاستهلاك الأكسجين؛ بسبب اشتراع معظم العضلات الإرادية أثناء الجري، كما أشارت إستديه (2012، ص14-15) إلى أن الجري لدى الشخص يكشف الصحة ويفيد القلب وهو نابسب جميع الأعمار والأجناس وخاصة أن الشخص أثناء الجري يتنافس مع قدراته في بعض الأحيان وفي أحيان أخرى يتنافس مع غيره لتحقيق زمن معين أو لكسب بطولة محددة.

يرى البحراز (2009) أن الاستهلاك الأقصى للأكسجين يتم تسجيله بثلاث طرق، أولا

technique

الطريق الأولى فهي باللتر في الدقيقة (الاستهلاك المطلق)، والطريقة الثانية أن يسجل ملسوبا إلى كل كيلوجرام من وزن الجسم (ملتر/كلم/ دقيقة)، أما الطريقة الأخيرة فهي التي تسمى الاستهلاك النسيبي، حيث يعتبر الأخير أفضل مؤشر للتعبير عن الاستهلاك الأقصى للأكسجين وخاصة في الرياضات التي يتم فيها حمل الجسم مثل الجري أو التزلج. حيث بلغ الحد الأقصى لاستهلاك الأكسجين لدى بعض الرياضيين البازنين أكثر من 5 لتر في الدقيقة وقد يصل إلى (6 أو 7) لترات في الدقيقة كما هو الحال لدى بعض المتزلجين الإسكندنافيين، أما الاستهلاك
الأقصى للأكسجين النسبي، فيصل لدى بعض الرياضيين المتميّزين في رياضة جري المسافات الطويلة والماراثون إلى (80) ملليتر/كم. دقيقة، بينما بلغت نسبة الاستهلاك الأقصى للأكسجين لدى الناشئين السعوديين مسن تتراوح أعمارهم بين (11 و 15) عام إلى (55.5) ملليتر/كم. دقيقة.

كما أشار ولمر، وكوستيل (2004) إلى أن الحد الأقصى لاستهلاك الأكسجين VO2max يختلف من لعبة إلى أخرى وذلك نظراً لاختلاف طبيعة ومتطلبات المجهود في تلك اللعبة، حيث أن أعلى قياسي وصل إلى (94) ملليتر/كم/ دقيقة للذكور، و(70) ملليتر/كم/ دقيقة للإناث، في رياضة اختاراً الضاحية للترنلج على الجليد.

وفيما يتعلق باللاعبين النخبية فقد أوضح ريلي (2000، B)، بوجود عدد إنقاص الحد الأقصى لاستهلاك الأكسجين عن (60 ملليتر. كغم/ دقيقة).
ترى أشتيقه (2012) بأن استهلاك الأكسجين للرياضيين يقل وقت الراحة نظرًا لاكتفاء أجهزته الوظيفية في استيعاب الأكسجين قياسا إلى غير الرياضيين، بينما يزداد هذا الاستهلاك خلال الجهد البدني فالتدريب الرياضي المنظم والمستمر لفترة طويلة يزيد من القابلية (0) مرة، وعند الجهد البدني العالي يزداد الناتج القلبي - الأكسجينيني بعدد () مرات مع زيادة الاستهلاك الأقصى لل랙سين. فكلما كان استهلاك الأكسجين كبيرًا استطاع الرياضي أن ينفد عملاً كبيراً.

إن الجسم يستهلك أثناء الراحة (200 300) ميلتر أكسجين الدقيقة، وحتى يصل الشخص إلى الحد الأقصى لاستهلاك الأكسجين فيجب أن يستمر في أداء العمل لفترة لا تقل عن (3) دقائق. ويتراوح الحد الأقصى لدى الرياضيين (2.5-3) لتر/دقيقة (عبد الفتاح وحساني 1997).

1 - عدم زيادة استهلاك الأكسجين عند زيادة شدة الحمل البدني.
2 - زيادة معدل القلب عن (1850 ضربة/دقيقة).
3 - زيادة عدد مرات التنفس لدرجة لا يستطيع الفرد معها الاستمرار في الأداء زيادة نسبة التنفس RQ عن (0.1).
4 - لا يقل تركيز حامض البنزك في الدم عن (80 100 مليلجرام).

محددات أقصى استهلاك للأكسجين:

يربط مستوى الحد الأقصى لاستهلاك الأكسجين بمدى كفاءة عمليات نقل الأكسجين إلى الأنسجة. حيث تتأثر هذه الأنسجة بمقدار محتوى الأكسجين في الدم الشرياني وحجم الدفع القلبي ومحتوى الأكسجين في الدم الوريدي، كما يرتبط أيضا بعمليات استهلاك هذه الأنسجة

47
حيث تحدد سرعة وحجم الاستهلاك بمقدار ما يحتويه الدم الوريدي من الأكسجين وذلك تبعاً للعناصر الآتية:

أ - امتصاص الأكسجين من البيئة الخارجية.
ب - نقل الأكسجين بوساطة الدم.
ج - استهلاك الأكسجين في العضلات العاملة. (عبد الفتاح وسيد 2003).

معوقات الحد الأقصى لاستهلاك الأكسجين:

يرى الباحث أن هناك عدة عوامل من أهمهم: العوامل الفسيولوجية والتدريب الرياضي، والثاني، والثالث، والرابع، عن سطح البحر، والوراثة، وفيما يلي بيان وشرح وتفصيل لكل عام من هذه العوامل.

- العوامل الفسيولوجية (Physiological Factors) وتمثل في كفاءة القلب والرئتين والدم في نقل الأكسجين للعضلات العاملة، حيث إن هذه العوامل تعتمد على حجم الأكسجين المنقول (SV) وحجم النبضة (HR) وفقاً بين أكسجين الدم الوريدي والثديي (A- V\(^2\)diff). وتمثل ذلك بالمعادلة الآتية:

\[
(VO^2 = SV \times HR \times A- VO2diff)
\]

(سون 1979).

كما أنه يعتمد أيضاً على كفاءة العضلات في استهلاك الأكسجين عندما تتشكل (50%) من العضلات في العمل العضلي. (عبد الفتاح، وسيد 2003).

- التدريب الرياضي:

يرى الهزاع (2009) أنه لا شك في أن التدريب البدني يؤدي إلى تحسن مستوى الاستهلاك الأقصى للأكسجين، وهذا التحسن مختلف من فرد لآخر، فكلما كانت لياقة الفرد عالية قبل الانخراط في البرنامج التدريبي كان التحسن أكثر ضالة، والعكس صحيح، فالتبغ في مقدار الاستهلاك الأقصى للأكسجين بعد التدريب البدني بلغ في المتوسط 19% لـ 90% حوالي
5% من الأفراد لم تتجاوز نسبة التحسن لديهم 5%. في حين وصلت لدى 5% من المشاركين
في الدراسة (40 - 45%) مقارنة بمن قبل التدريب.

كما أشار كاتش، وماك أردل (1988) إلى إن زيادة
(5% - 25%) وتعد هذه الزيادة على عدة عوامل منها (شدة التدريب، ومدته، وتكراره،
وطريقة التدريب المستخدمة، ونوع المستوى التدريبي للشخص).

- العمر:

أشار الهزاز (2009) إلى دور السن في موضوع استخدام الحد الأقصى للأكسجين،
فالشخص يصل إلى أقصى استهلاك أكسجين نتيجة لنمو بين عمر (15 - 17) سنة، ويبل عند سن 60 سنة إلى 30% حيث يعتقد أن سبب الانخفاض يعود إلى الانخفاض الجزئي في ضربات القلب القصوى والانخفاض في حاصل القلب الأقصى مع التقدم في العمر، بالإضافة إلى
الانخفاض في مستوى النشاط البدني للفرد.

ويؤكد شاركي (1989) (Sharkey, 1989) على أن التراجع في (VO2Max)
(30) سنة، ويرى الفسيولوجيين أمثال روبنسون (1988, Fleg & Lekatta
Robinson et al, 1986), أن مثل هذا التراجع يعود بدرجة رئيسية إلى التراجع في
الدافع البدني.

عند الشباب في العشرينات من العمر (200) نبضة دقيقة، يترجع لكفي يصل إلى (160)
نبضة دقيقة في عمر (65) سنة وتكون نسبة النقص كما يشير وصور، وكوستل (2004)
(10%) لكل (10) سنوات بعد عمر (30) سنة (القلمي Wilmore & Costill
ونشر 2004).
الجنس:
يرى فوكس (1989، et al) أن نسبة (VO2Max) عند الإناث تقل بنسبة تتراوح بين (15-25%) عنها عند الذكور ولعل ذلك يعود إلى عدة أسباب منها: زيادة حجم المقطع العضلي عند الذكور مقارنة بالإناث (Davies et al، 1972)، وزيادة تركيز الهيموجلوبين (Hemoglobin) عند الذكور وعن الإناث، ويتم نقل الأكسجين من خلال الهيموجلوبين (Oxyhemoglobin) على شكل أوكسي هيموجلوبين (Hb) إضافة إلى أن الدفع القلبي عند الذكور أعلى منه عند الإناث، وقد يصل الدفع القلبي (22 لتر/ثانية للذكور)، و(15 لتر/ثانية) عند الإناث كما في دراسة هاسك، وآخرون (1981).

تصل قيمة (VO2Max) لدى الإناث غير المدربات إلى (38 مل/كم/ثانية)، وترتفع هذه القيمة مع التدريب وتقل مع الازدياد بالعمر جيدًا، وآخرون (2007).

يوضح ويلمور ووكست (2004، Wilmore، and، Costill) بعض القياسات الخاصة بالحد الأقصى للاستهلاك الأكسجيني لدى مجموعات مختلفة فيما يتعلق بلعبة كرة القدم كما يبين الجدول رقم (1) الآتي:

الجدول رقم (1)

<table>
<thead>
<tr>
<th>العمر</th>
<th>الفئة البدنية</th>
<th>المجموعة</th>
</tr>
</thead>
<tbody>
<tr>
<td>الإناث</td>
<td>الذكور</td>
<td></td>
</tr>
<tr>
<td>38-46</td>
<td>47-56</td>
<td></td>
</tr>
<tr>
<td>35-45</td>
<td>42-60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>اللاعبين غير المحترفين</td>
</tr>
<tr>
<td></td>
<td></td>
<td>المحترفون</td>
</tr>
</tbody>
</table>

(Wilmore، and، Costill، 2005، عن*)

الارتفاع عن سطح البحر:

حدث نقصان واضح في الحد الأقصى للاستهلاك الأكسجيني، كلا ما زاد الارتفاع عن (1600 م)، ولكل (1000 م) فوق ذلك الارتفاع (1600 م) يقل الحد الأقصي بمقدار (8-11%) ويعزى هذا النقص بشكل كبير للنقص الحاصل في الحد الأقصي للناتج القلبي الذي هو (ناتج
المعدل القلبي وحجم الضربة) فتقلّ حجم الضرربة نتيجة للنقص المباشر لحجم بلازما الدم. ومثال ذلك المباريات التي تتخوضها المنتخبات في أمريكا الجنوبية في دولة بوليفيا المرتفعة عن سطح البحر ومعاداة اللاعبين من نقص الأكسجين.

- الوراثة:

يرى بوشيرد (Bouchared, et al., 1992) أن الوراثة تؤثر بنسبة (25-50%) في الفروقات في (VO2Max) ويبقى (50%) من التأثير لعوامل أخرى.

طريق قياس الحد الأقصى لاستهلاك الأكسجين:

استخدم الباحثون طرق عديدة لاستخراج قيمة هذا المؤشر وأهم تلك الطريقة المباشرة، إضافة إلى طرق أخرى غير مباشرة تعتمد أغلبها على قيام الرياضي بجهود دون الأجسامية، ولا يعد قياس الحد الأقصى لاستهلاك الأكسجين إذن شهادة كافية وحدها بل يتبعه معرفة مقدار استهلاك الأكسجين لكل كغم من وزن الجسم في الدقيقة (عبد الكريم وظاهر، 2001).

أولا: الطرق المباشرة:

تقاس الطرق المباشرة في المختبر كقياس الحد الأقصى لاستهلاك الأكسجين (VO2Max) بتعريف محوسب لجهد بدني مدرج من خلال أجهزة تعاكي الأنشطة الأكسجينية كالسير الكهربائي أو الدراجة الثابتة، وفيما يلي توضيح ذلك.

أولا: اختبار الحد الأقصى لاستهلاك الأكسجين باستخدام السير المتحرك.

1- اختبار ميتشل وسبرو وشايمان.
2- اختبار سالتين استرلاند.
3- اختبار ولاية أوهياو.
ثانيًا: اختبار الحد الأقصى لاستهلاك الأكسجين باستخدام الدراجة.

1 - طريقة الزيادة غير المستمرة لحمل الشغل.

2 - طريقة الزيادة المستمرة لحمل الشغل.

ثانيًا: الطرق غير المباشرة لاختبار الحد الأقصى لاستهلاك الأكسجين:

1 - اختبار (استرا ند رهيمنج - Astrand and Rhyming Test).

2 - اختبار (فوكس - Fox Test).

3 - اختبار (الخطوة لكلية كويزنز - Queens college test).

وتتم هذه الاختبارات بحساب عدد ضربات القلب في الدقيقة ثم حساب أقصى استهلاك للأكسجين.

أيضاً يمكن استخدام المعادلة الآتية في تحقيق هذا الاختبار:

- الحد الأقصى لاستهلاك الأكسجين (للذكور) = الثابت 111.33 - (0.42الثابت بضربه بمعدل البضب بعد اختبار الخطوة).

- الحد الأقصى لاستهلاك الأكسجين (للإناث) = الثابت 65.81 - (0.1847الثابت بضربه بمعدل البضب بعد اختبار الخطوة). وهذه المعادلة تم استخدامها في الدراسة الحالية.

(عبد الفتاح حسانين 1997).

2. القدرة اللاكسجينية

تتضم الأنشطة الرياضية التي ترتبط بالعمل العضلي اللاكسجيني إلى قسمين أساسيين، يتمثل أحدهما في الأنشطة الديناميكية (المحركية) مثل سباقات السرعة في العدو والسباحة والدراجات وكذلك مهارات ورياضات الوثب والقفز والرمي، بينما يتمثل القسم الثاني في الأنشطة الاستاتيكية (الثابتة) مثل الثبت في أوضاع جسمية تستلزم القوة العضلية كرفع الأثقال.
وأوضح الجمباز ومسكات المسارعة (سي، 2003، ص 85)، حيث يشير البيك، واخرون
(2009ا، ص 103) إلى أن القدرات اللاكسجينية تعمد على النظام اللاكسجيني في إنتاج الطاقة والذي تمثل بالنظام الفوسفاتي (ATP-PCR) إذ تتدرج تحته الخصائص البدنية المتمثلة (القوة العضلية، السرعة، القوة العضلية) ونظام الطاقة قصير المدى (الجلوكزية اللاكسجينية - نظام حامض اللاكثيد) حيث تتدرج تحته الخصائص البدنية المتمثلة (تحمل السرعة، تحمل القوة).

وبناء على ذلك فقد قسم البيك، واخرون (2009ب) القدرات اللاكسجينية إلى الأنواع الآتية:

1 - القدرة اللاكسجينية القصوى

عرف الهزاز (2009) القدرة اللاكسجينية بأنها قدرة الفرد على استخدام الطاقة اللاكسجينية القادمة من نظام إنتاج الطاقة السريع (الذي يتمثل في اديوسين ثلاثي الفوسفات (ATP) المخزن وفوسفات الكرياتين)، وغالباً ما يكون ذلك عند أداء جهد بدني أقصى في فترة زمنية قصيرة جداً لا تتجاوز بضع ثانوي (غالباً أقل من 10 ثوان).

حيث أشار مذكور (2011) إلى أن الكمية المخزنة من الأدينوسين ثلاثي الفوسفات (ATP) في العضلة تعد محدودة، حيث تقدر بـ (3.0 مول) للسيدات و (6.0 مول) للرجال، فهي لا تكفي إلا لبضعة انقباضات عضلية تدوم حوالي ثانية واحدة فقط.

كما يؤكد النهار، واخرون (2010) بأن قيمة هذا النظام تكم في سرعة إنتاج الطاقة أكثر من وفرتها، في حين رأى الهزاز (2009) أن إعادة شحن اديوسين ثلاثي الفوسفات تتم من خلال مصادر لاكسجينية وأخرى لاكسجينية، ويرى مركب فوسفات الكرياتين (CP) من أهم المصادر اللاكسجينية القادرة على إعادة الشحن، حيث يتخلل فوسفات الكرياتين إلى مادي كرياتين وفوسفات مع إنطلاق طاقة من عملية التحلل تستخدم في دمج اديوسين ثاني الفوسفات مع الفوسفات اللاخصوي، ومن المعروف أن مخزون فوسفات الكرياتين في العضلة يبلغ حوالي خمسة أضعاف كمية الأدينوسين ثلاثي الفوسفات المخزون في العضلة. وصلى معدل تحلل فوسفات الكرياتين أقصاه بعد ثانيةتين من بدء الجهد البدني الأقصى، ثم يخفض بعد ذلك بمقدار...
50% عند 10 ثوانٍ من الجهاد البدني الأقصى، أما في الجهاد الأقصى الذي يدوم لفترة 30 ثانية، فيعتبر أن معدل تحمل فوسفات الكربيات في العشر ثواني الأخيرة من الجهاد ينخفض إلى حوالي 2% من معدل تحمله الأقصى في الثواني الأولى من الجهاد.

2 - السعة اللاكسيجينية

يطلق عليها أحياناً التحمل اللاكسيجيني (Anaerobic endurance)، تعرف بأنها:
المقدرة على المثارة في تكرار انقباضات عضلية عنفية تعتمد على إنتاج الطاقة بطريقة لاكسيجينية وتمتد لأكثر من 10 ثواني وحتى أقل من دقائقين (سيد، 2003، ص 86).

لقد اتفق كل من النهار، (2011)، وذكور، وآخرون (2010)، وسيد (2003) على أن السعة اللاكسيجينية تعتمد على نظام حامض اللاكتيك في إنتاج الطاقة، حيث يتم إعادة بناء (ATB) للاكسيجيني بالاعتماد على مصدر غذائي للطاقة، يأتي من التمثيل الغذائي للكربوهيدرات والذي يتحول إلى جلوكوز يخزن في الدم يمكن استخدامه مباشرة لإنتاج الطاقة أو يمكن تخزينه على شكل جلايكوجين يخزن في الكبد والعضلات لاستخدامه فيما بعد، وعند الاعتماد على الجلايكوجين والجلوكوز لإنتاج الطاقة في غياب الأكسجين فإنه يسبب تراكم حامض اللاكتيك والبيروفيك في العضلات والدم مما يؤدي إلى حدوث التعب العضلي. وهذا ما أكد عليه النحاز (2009) حيث أشار إلى أن ارتفاع شدة الجهاد البدني يؤدي إلى زيادة الحاجة إلى الطاقة (أي شدة الاحتياج للاكسيجيني ثلاثي الفوسفات) وبالتالي فإن معظم حمض البيروفيك لزاماً عليه أن يتحول إلى حمض البنيك وبذلك ينتج بذلك ثلاثة مرات من اكسيجين ثلاثي الفوسفات(في حالة البدء بالجلوكوز يحصل على أثنتين من اكسيجين ثلاثي الفوسفات، نظراً لأنه يتم فقدان واحد من اكسيجين ثلاثي الفوسفات أثناء خطوات تحمل الجلوكوز، وهي خطوة تحويل فركتوز 6- فوسفات إلى فركتوز 1- ثنائي الفوسفات).

قسم كل من (عبد الفتاح، وحسان، 1997) السعة اللاكسيجينية حسب دوامها إلى ثلاثة أنواع وهي:
1- السعة اللااكسيجينية القصيرة (Short-term Anaerobic) والتي تتضمن الأداء الرياضي الذي يستمر لفترة زمنية قصيرة (10 ث) أو أقل، مثل البدء السريع في اللاعب، والقدرة على الارتداء الذي يؤدي إلى ضربة رأسية، وكذلك القدرة على رك الكرة بقوة، ولذلك يجب أن يمر لاعب كرة القدم بتمارين مكثفة تعتمد بشكل أساسي على السعة اللااكسيجينية.

2- السعة اللااكسيجينية المتوسطة (Intermediate Anaerobic)، حيث يستمر الأداء العضلي من (20 - 50 ث)، ويدخل هذا عمل النظام اللاكتاتي باعتبار أن لاعب كرة القدم يتميز بتحمل السرعة وتحمل العمل العضلي.

3- السعة اللااكسيجينية الطويلة (Long-term Anaerobic)، ويستمر فيها الأداء العضلي من (60 - 120 ث)، ويمكن أيضا بالتحمل العضلي اللااكسيجيني، وهذا يتفق مع أدمز وآخرون (2009) في تقسيم النظام اللااكسيجيني حسب الزمن.

العوامل المؤثرة في النظام اللااكسيجيني:

- العمر (Age):

- الجنس (Gender):

أشار ويبرشتيدر (2006) أن الذكور أفضل من الإناث في أداء الاختبارات اللااكسيجينية التي تتراوح من (10 - 90 ث)، كما أن الإناث يتنحن قدرة تقل عن الذكور بنسبة (15%).
- **الوراثة:**

- (Muscle Fibers Type)

أشار فوس وكتيان (1998) إلى أن الرياضيين الذين يمارسون فعاليات الوثب والعدو، والرمي، لديهم نسبة منوية عالية من الألياف العضلية السريعة (FT) التي تولد السرعة، والقوة، والطاقة العالية، في أقل زمن ممكن. ويرى فاسكيوني أن استخدام تمرينات المقاومة والسرعة تساعده في توظيف الألياف العضلية السريعة للقيام بالمجهود اللاكروسجيني بكفاءة عالية.

تعتمد القدرة اللاكروسجينية بشكل أساسي على ثلاثي المخازن العضلات (ATP – PCr)، أدينوسين الفوسفات (ATP)، وفوسفات الكبريتات (PCr)، إذ إن زيادة هذه المركبات داخل العضلة يعد عاملً مؤثراً على العمل اللاكروسجيني هيرمنسن (1969).

(Barnett & et al, 2004) يرى بارنت وآخرون (Physical Training) أن التدريب البدني يعمل على زيادة كفاءة العمل اللاكروسجيني كما أشار ثاوب والمثرون (Tharp, & et, al, 1984) إن الاشتراك في برنامج تدريبي منتظم يزيد في العمل اللاكروسجيني من (5% - 30%).

- **الجفاف:**

ذكر جونز وآخرون (2008) أن متوسط القدرة اللاكروسجينية يتناقص عندما تكون نسبة الجفاف (3%).
طرق قياس القدرة اللاكسجينية: كما أشار (عبد الفتاح وحسنين 1997)

أولا: الاختبارات اللاكسجينية القصيرة.

1. اختبار الدرج لمارجاريا.
2. اختبار القدرة لمارجاريا كالأمن.
3. اختبار الوثب لسراجنت.
4. اختبار الوثب المعدل لسراجنت.
5. اختبار نوموجرام لويس.
6. اختبار العدو (50 باردة).
7. اختبار السير المتحرك.
8. اختبار (10) ثوانٍ لكيوبيك.

ثانيا: الاختبارات اللاكسجينية المتوسطة.

1. اختبار (30) ثانية لويجات.
2. اختبار دي برون بروفست للحمل الثابت.

ثالثا: الاختبارات اللاكسجينية الطويلة:

1. اختبار الوثب العمودي لمدة (60) ثانية.
2. اختبار (90) ثانية لكيوبيك.
3. اختبار السير المتحرك لكوننجهام وفولكنز.
4. اختبار أقصى (120) ثانية.
3. تركيب الجسم

يتضمن هذا المسمى أجزاء الهيكل العظمي وأجزاء الهيكل العضلي (الهزراع، 2009). كما يشير ولومور وكوستول (2004) إلى وجوب التفريق بين ثلاثة مصطلحات رئيسية هي:

أ - تركيب الجسم (Body Composition) المرتبط بالتركيب الكيميائي للجسم، والذّي يشمل على (الشحوم، البروتين، الجليكوجين الماء، والمعادن).

ب - بناء الجسم (Body Build) الذي يعود إلى النواحي الشكلية للجسم والنمط الجسماني (عضلي، تحيل سمين).

ت - وحجم الجسم (Body Size) والذي يعود إلى طول وزن الشخص، وحجم الجسم كمكوّنين (Lean Body Weight) وفق تقسيم (Behnke) حيث يشمل على الشحوم (fat) والعضلات (Brooks & Fahey، 1984,539) ويشير بروكس وفيهي (Wilmore & Costill، 2004، p 382) إلى أنه يقصد في (LBW) الهيكل العظمي، والماء، والعضلات، والأنسجة الضامة والأعضاء، ولكن نظراً لأن العضلات هي المكون الأساسي يستخدم المصطلح للدلالة على العضلات، وغالبية الدراسات في الوقت الحالي تستخدم مصطلح كتلة الجسم الخالية من الشحوم (Fat Free Mass) (FFM) بدلاً من (LBW).

يرى عبد الفتاح، وسيد (2003) أن جسم الإنسان يتكون من أنسجة عدة مختلفة معظمها أنسجة عضلية وعظمية وشحمية تشكل تركيب الجسم، حيث تميز الكتل العظمية عادة بالثبات في حين تميز كل من الأنسجة الشحمية والعضلية بالزيادة والنقصان تبعاً لحركة الإنسان ونشاطه، فدراسة تركيب الجسم هي دراسة المكونات الأساسية التي يتكون منها جسم الإنسان من عظام، وعضلات، وشحوم، ومعادن وسوائل وتأثير المتغيرات البيئية على (الجسد البدني، التغذية، الخ...).

وقد اعتبر تركيب الجسم ضمن المكونات الأساسية لللياقة البدنية منذ عام 1980 م بناءً على توصيات الاتحاد الأمريكي للصحة والتربية البدنية، والترويج والرياضة، وقد أكد على ذلك المؤتمر الدولي للتدريب واللياقة والصحة عام 1988م، وفي الحقيقة أن نسبة الشحوم والنسج العضلي لهما علاقة وثيقة بتكوينات اللياقة البدنية الأخرى كافية وبؤثر كل منهما في الآخر، فعل صعب المثال تأثر زيادة الدهن سلبًا على بعض مكونات اللياقة البدنية 58

كما أكد بوشيرك (1986) (Bushirk, 1986) على أهمية تركيب الجسم في المساعدة في تصنيف الفرد ودراسة الفروق بين الجنسين، والمجتمعات ووصف النمو الصحيح والبلغة والشيوعة من حيث كونه طبيعي أم غير طبيعي، وتوفير أسس مرجعية للإرشادات الغذائية، والتغيرات الفسيولوجية، ورفع مستوى اللياقة البدنية، ودليل للرياضيين الذين يستعدون للمنافسة.

وأشار القدومي (2005) أن قياسات مؤشر كتلة الجسم (BMI)، ونسبة شحوم الجسم (Fat%)، وكتلة العضلات (Laen Body Mass) (LBM)، ومساحة سطح الجسم (Body Surface) (BSA)، والتي تمثل الغذائي خلال الراحة (Resting Metabolic Rate) (RMR)، وتمثيل القيمة المرتبطة بالصحة، والتي تقيسها دور في تقليل الحالة الصحية للأفراد، حيث يشير رافسون وسونبرن (1999, Ravussin & Swinburn, 1999) أن مؤشر كتلة الجسم يعد من الطرق السليمة للحفاظ على كتلة الجسم، ويعبر بأنه وزن الجسم بالكيلوغرام مقسوماً على مربع الطول بالمتر. وظهرت أهمية قياس كتلة مؤشر الجسم في ارتباطه باللياقة البدنية المرتبطة بالصحة لذلك اعتمدت كآد القياسات الأساسية في البطارية الأمريكية للياقة البدنية والصحة للنخبة (AAHPERD, 1988).

مكونات تركيب الجسم:

- **Fat-free (أجزاء أخرى غير شمية)**: يتكون جسم الإنسان من الشحوم (mass) وتتكون الأجزاء غير الشمية من العضلات، والغدد، والأنسجة الرخوة من غير العضلية، وتنقسم الشحوم في الجسم إلى العناصر الآتية:

1- **Shehoom أساسيه (Essential fats)**: يوجد هذا النوع في نخاع العظام، حول القلب والرئتين والكبد والجلد والكالسيوم والأمعاء، وفي الجهاز العصبي بالإضافة إلى منطقة
الحوض والثديين في النساء. وتعد الشحم الأساسى ضرورية للعديد من الوظائف الفسيولوجية في الجسم، كما تبلغ نسبتها لدى الرجل البالغ 3-5% من كتلة الجسم، وترتفع هذه النسبة إلى 9-12% لدى المرأة. وتقاسها يؤدي إلى احتمال وظائف أجهزة الجسم الطبيعية في حال انخفاض نسبة الشحم في الجسم عند حدود معينة (الهؤلاء، 2010).

إذا قلت نسبة هذه الشحم فإنه سينتج من ذلك مشكلات صحية أشارت إليها إشتر (2012) إذ أنها من الناحية الصحية تكون من (16-25%) مناسبة وإذا زادت على (25%) فهي غير مناسبة يجب أن تكون ما بين (12-23%) لدى الرياضيين.

تبلغ نسبة الشحم بجسم الإنسان مقدار (15 -20%) لدى الذكور وبين (22 - 28%) لدى الإناث. وبالمثل للعديد الرياضيين تقل تلك النسبة في حين تزداد الشحم بزيادة العمر.

(Stored fats): مناطق مختزنة (Adipose tissues) في مناطق حيوية، هما: تحت الجلد، وفي الأحشاء.

وبرى الهؤلاء (2010) أن الشحم تعتبر أكثر مخزون للطاقة وخاصة أثناء الجهد البدني، حيث تستمد العضلات العامة حوالي 50% من طاقتها من شحم الجسم، كما أنها تعمل على توفير عازل حراري، وحماية الأجهزة الحيوية في الجسم مثل الدماغ والكليتين والطحال من الارتجاجات والصدامات، بالإضافة إلى عملها كحامل للفيتامينات الذائبة في الدهون مثل (A, D, E, K).

(فيتامينات)

(بما): مؤشر كتلة الجسم

يعتبر مؤشر كتلة الجسم من المؤشرات الهامة لتحديد السمنة لدى الأفراد، وزاد الاهتمام به في السنوات الأخيرة حيث أصبح مؤشر كتلة الجسم من القياسات الرئيسية في جميع الأبحاث المرتبطة بالرياضة والصحة، ويمكن قياسه من خلال قسماً كتلة الجسم بالكلوغرام على مربع الطول بالمتر. (ملحم، 1999).

ولا يؤخذ هذا المقياس بعين الاعتبار للذين فإن لكل من الشخص السمين والخيل اللذين يتساويان في الطول والوزن نفس (BMI). ويشمل مثال فان للرياضي للشخص الذي يعاني من السمنة نفس (BMI) لأن العضلات تزن أكثر من الشحم.
ويؤكد كل من أبو صالح، وحمادة (2009) أن الاعتماد على مقياس كتلة الجسم بوصفها علامة لبية الجسم لا يمثل الصورة الكاملة، وإنما يجب أن يهمم بتعريف نسب الشحوم في الجسم، وليس بكتلة الجسم فقط. للكمية القليلة من الشحوم ضرورية للجسم فهي تخدم بعض الوظائف الفيزيولوجية مثل حماية أعضاء الجسم وهي تحافظ الفيتامينات الذائبة في الدهون وتحافظ الطاقة (ADKE)

يشير (ملحم 1999) إلى أن مؤشر كتلة الجسم مرتبطةً إيجابياً مع السمنة حيث أن العلاقة بين مؤشر كتلة الجسم والسمنة علاقة طردية و كلما زاد مؤشر كتلة الجسم، كلما زادت قابلية للسمنة عند الشخص.

وفي دراسة شاكر (1999) التي هدفت إلى تحديد مستوى مؤشر كتلة الجسم لدى طلبة جامعة النجاح الوطنية لكل من الإناث والذكور، فقد بينت الدراسة أن متوسط مؤشر كتلة الجسم كان جيداً في ضوء المعايير العالمية حيث وصل المتوسط عند الإناث (30.21 كجم/م).

نسبة الشحوم:

ومن المؤشرات الهامة التي تستخدم لقياس السمنة هي تحديد نسبة الشحوم في الجسم، حيث يكون الشخص سميناً إذا زادت نسبة الشحوم عن نسبة (25% للذكور) (30% للإناث).

وصف شاركي (1989) M وسط نسبة الشحوم للذكور والإناث حسب المرحلة العمرية كما هي مبينة في الجدول رقم (2) الآتي:

<table>
<thead>
<tr>
<th>العمر</th>
<th>نسبة الشحوم للإناث</th>
<th>نسبة الشحوم للذكور</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>21.2%</td>
<td>12%</td>
</tr>
<tr>
<td>22-18</td>
<td>25.7%</td>
<td>12.5%</td>
</tr>
<tr>
<td>29-23</td>
<td>29%</td>
<td>14%</td>
</tr>
<tr>
<td>40-30</td>
<td>30%</td>
<td>16.5%</td>
</tr>
<tr>
<td>50-41</td>
<td>32%</td>
<td>21%</td>
</tr>
</tbody>
</table>
كتلة الجسم الخالية من الشحم (FFM)

يفترض بها الجزء المتبقى من العظام والأنسجة العضلية وكل الأجزاء باستثناء الأنسجة الدهنية. وأهم ما نتهم به النسيج العضلي، حيث أنه أكثر الأنسجة تأثراً بالتدريب البدني، ويشمل بالإضافة إلى ذلك نسبة الشحم (3% للرجال و12% للسيدات) الذي يمثل الجزء الأساسي من شحم الجسم الذي لا غنى عنها، وتحسب كتلة الجسم بدون شحم (L.B.M) عن طريق طرح وزن الشحم من الوزن الكلي للجسم.

كتلة الجسم الخالي من الشحم=كتلة الجسم الكلية - كتلة الشحم في الجسم (عبد الفتاح وسید 1994، ص 74).

السوائل:

يدخل الماء في تركيب الجسم مشكلاً ما نسبته (40-60%) من جسم الإنسان ويشكل ما نسبته (65-75%) من وزن العضلات وأقل من (25%) من كتلة الشحم و(25-30%) من كتلة الأنسجة العظمية. إذ يشير الكبيسي (2002) إلى أن جسم الإنسان يحتوي على ما نسبته (60-70%) من الماء بالنسبة إلى كتلة الجسم وتتعدد نسبة الماء إلى وجود المواد الشحمية فجسم الشخص البشري يحتوي على نسبة أقل من الماء بالمقارنة مع جسم الشخص النحيف. وجسم المرأة يحتوي على نسبة أقل من الماء لأن بنها كمية عالية من الشحم. إضافة إلى أن حجم الماء يختلف حسب العمر، فالرضع تصل نسبة الماء في أجسادهم إلى حوالي (80%) وهذه النسبة تبدأ بالانخفاض في السنوات العشرة الأولى من الحياة.

وقد يجب أن يتصف لاعب كرة القدم بدرجة عالية بكل ما تحتاجه المباردة والعمل على رفع كفاءته حتى يتمكن من تنفيذ المهام المهارية والخطيطة المختلفة بفاعلية، فقد أصبح جلياً أن من وجوب الهجوم الانتشار في الدفاع في حالة امتلاك المنافس للكرة، وأيضاً من واجب الدفاع المساعدة في الهجوم عند امتلاك الفريق للكرة، و تدال نتائج التحليل العلمي لمباريات كأس العالم على أن نجاح الدفاع والهجوم أصبح يتم من اشتراك أكبر عدد ممكن من لاعبي الفريق في الحالتين إضافة إلى حسن انتشارهم وتحركهم داخل الملعب (البسيطاوي 1995).
أهمية تركيب الجسم:

تظهر أهميتها تركيب الجسم من خلال ارتباطه بالجانب الصحي للفرد، فزيادة السمنة أو زيادة النحافة يعني ظهور مشكلات صحية للفرد، وانخفاضاً في مستوى اللياقة البدنية له، وتعتبر السمنة مصدرًا لظهور العديد من الأمراض مثل السكر الخبيث، والسرطان، وأمراض القلب، وهشاشة العظام، وأمراض الكلى، وأمراض الجهاز التنفسي وألام أسفل الظهر، كما تسبب حملًا زائداً على مفاصل الجسم المختلفة، وزيادة السمنة يعني صعوبة للحركة وفقدان صفة المرونة والرشاقة، وبالتالي يصبح الفرد عرضة للإصابة في حين أن النحافة الزائدة تعتبر ضرراً صحياً وبدنياً ونفسياً، وتضاعف العضلات هشاشة مما لا يسمح للفرد القيام بأداء الأعمال والواجبات اليومية المكملة إليه، وكذلك فإن الشخص النحيف يكون أكثر عرضة للإصابة من غيره نظرًا لعدم وجود طبقة من الدهون لحماية الجسم من الصدمات مما يكون هناك عرضة للإصابة بالكدمات الخارجية، بالإضافة إلى أن الوصول إلى تحديد دقيق لتركيب الجسم، فإن ذلك يساعد في عملية انتقاء الأفراد لممارسة النشاط البدني المناسب.

وتظهر أهمية التركيب الجسمي من خلال ارتباط العديد من الأنشطة الرياضية بتنوعية التركيب الجسمي، ففي بعض الأنشطة الرياضية تتطلب زيادة كتلة الجسم من النسيج العضلي والدهني، مثل المصارعة، ورمي القرص، والمطرقة، ودفع الكرة الحديدية، وأنشطة أخرى تتطلب زيادة واضحة في النسيج العضلي مثل الجمباز على الأجهزة وقد تقل نسبة الشحوم في جري المسافات الطويلة.

إن المحافظة على جسم الطفل خلال مراحل نموه الأولى تعد عاملاً مهماً للوقاية من الإصابات بالسمنة. فسمنة الطفل حتى عمر (16 سنة) تكون على حساب زيادة عدد الخلايا الدهنية من جهة وزيادة حجم كل خليه بينما بعد سن (16 سنة) يزيد حجمها دون زيادة عددها نظراً لتأثير ذلك على نسبة الزيادة في عدد الخلايا الدهنية وخاصة قبل سن (16 سنة) مما يقلل من احتماليات السمنة خلال سنوات العمر التالية. لذلك فإن الأمر يتطلب العناية بتوجيه الفرد لممارسة الأنشطة الرياضية بشكل منتظم منذ مراحله الأولى للمحافظة على تركيب الجسم بالشكل المطلوب.
كما يلعب تركيب الجسم دوراً كبيراً في عملية الانتقاء. واستخدام معيار تركيب الجسم في انتقاء الأفراد لمارسات الأنشطة الرياضية المناسبة يكون أفضل بكثير من الاعتماد على قوائم الطول والوزن، لأن تركيب الجسم يساعد على متابعة المتغيرات الجسمية للإفراد والتعرف على مدى تأثير ممارسة التكريب الرياضي عليهم بشكل دقيق وموضوعي (عبد الفتاح، وسيد، 2003).

العوامل المؤثرة على تركيب الجسم:

ثمان عوامل تؤثر في تركيب الجسم وسببها الباحث في الفوائد الآتية بشكل مفصل وذلك كما يلي:

- العمر الزمني:
تحدث تغيرات عدة في تركيب الجسم كلما تقدم الفرد في العمر، حيث تزداد نسبة الشحوم لتصل 15% - 20%، ويشير دلورينزو (75، P، 1999، 1999) إلى أن الزيادة في الشحوم تكون سريعة جداً في مرحلة المراهقة (Puberty)، حيث تتمثل الزيادة في نسبة الشحوم كما أشار إليها هاملتون (945، P. 1995) في زيادة عدد الخلايا الدهنية وحجمها بدءاً من مرحلة الولادة وحتى سن 16، وبعدها تحول الزيادة في حجم الدهون، لذلك فإنه من الواجب علينا المحافظة على جسم الطفل خلال هذه المرحلة لوقاية من السمنة لتفتيح من إحتمالات حدوثها خلال السنوات اللاحقة من العمر بسبب زيادة نشاط هرمون اللبتين (Leptin) والذي يرتبط مع جين السمنة (ob) والتي يعمل على زيادة النسبيات الدهنية.

- الجنس:
ذكر عبد الفتاح، وسيم (1994) أن نسبة الشحوم عند الإناث في سن 16 حوالى (25%)، في حين تراوحت ما بين (13% - 15%) للذكور، ثم تزداد نسبياً في سن (40) لتصبح (30%) عند السيدات و (20%) عند الرجال، ويرى (الكيلاني، 2003، 64)
17 أن إتباع أساليب برنامج اللياقة البدنية المتبع مع حالة الغذائي إضافة إلى إتباع برامج
غذائي يعتبر من الطرق المفضلة للمحافظة على الوزن بعد سن الأربعين.

- نوع النشاط الممارس:

إن التركيب الجسمي يتأثر بشكل واضح تبعاً لممارسة النشاط الرياضي من عدمه، ومن
حيث حجم الممارسة للنشاط البدني أو الانتظام ببذل المجهود من عدمه وكذلك يتأثر تبعاً لنسبة
الأداء وكميتته وحجمه وتبعاً لنوع النشاط الرياضي الممارس فمثلاً لاعب كرة القدم لديه تركيب
جسمي خاص به يختلف عن تركيب جسم لاعب الجماهير أو لاعب رفع الأثقال وكذلك الأمر
بالنسبة للاعبي جري المسافات الطويلة فانهم لديهم تركيب جسمي مختلف عن تركيب جسم
لاعبي جري المسافات القصيرة.

يرى الباحث أن هناك عوامل أخرى تؤثر في تركيب الجسم تتضمن في طبيعة الحياة
اليومية الواقعة على كاهل الفرد، وعلى عدد الوجبات الغذائية اليومية ومكوناتها، وكذلك الوضع
الاقتصادي والمادي للعائلة ومكان السكن (قرية مدينة مخيم).

(Resting Metabolic Rate) (RMR)

4. التمثيل الغذائي خلال الراحة:

مفهوم التمثيل الغذائي خلال الراحة

عرف الجبور (2012) التمثيل الغذائي (RMR) بأنه كمية السعرات الحرارية التي
نستهلكها عندما يكون الجسم في حالة استرخاء كامل، وأضاف بأن (RMR)
يشمل العمليات الجسدية والكيميائية كافية والتي تخلق وتستخدم الطاقة مثل (الهضم الطعام والمواد الغذائية،
tخليط من الفضلات من خلال البول والبراز، التنفس، الدورة الدموية، تنظيم درجة حرارة
الطاقة التي يستخدمها الفرد أثناء الراحة وذلك لقيام أجهزة الجسم بالوظائف المختلفة حيث
تتراوح هذه النسبة بين (60% - 70%) من الطاقة المستهلكة يومياً عند الأشخاص غير
الممارسين للأنشطة الرياضية.
قيمة التمثيل الغذائي خلال الراحة

Wilmore, & Costill, (ZiMian et al. 2001) يرى Ziemian (2004) أن (RMR) يشكل ما نسبته (60-75%) من إجمالي الطاقة التي يستهلكها الفرد يومياً، وعادة تتراوح بين (1200-2400) سعر/يومياً، ويعد المكون الأساسي من الطاقة اليومية المستهلكة عند الشخص حيث تتراوح نسبته ما بين (50-60%) من الطاقة الكلية اليومية عند الأطفال والمراهقين (Bertini et al., 1999)؛ بينما يرى هاورد (Heyward, 2001) أنه يتراوح بين (50-70%) من الطاقة اللازمة للشخص يومياً، ويعتمد ذلك على مستوى الأنشطة التي يقوم بها الشخص، أما بالنسبة لمك أدل وآخرون (McArdle, 1991) فهم يرون أن نسبة (RMR) عند الإناث تقل عن الذكور بما يتراوح بين (5-10%) من السعرات المستهلكة يوميا، والسبب في ذلك زيادة نسبة الشحوم عند الإناث، ونقص وزن العضلات (LBW) لديهن مقارنة بالذكور. ويؤكد الجبوري (2012) بأن (RMR) يستهلك ما نسبته ثمانية السعرات الحرارية المتغذية، كما يستهلك (10%) من السعرات الحرارية في هضم الطعام، ويبقى (20%) من السعرات الحرارية كرصيد للنشاط البدني، وأوضح هيجارت (Hegart,1988) أن هذه الطاقة تشكل ما نسبته (60%) من مجموع الطاقة المستهلكة يومياً من قبل الشخص، ويرى هيجارت (1988) أن توزيع الطاقة المستهلكة يومياً عند الشخص تكون على النحو التالي: (RMR) (30%)، والأنشطة البدنية (60%)، و(10%)، تصرف في عملية تكوين الحرارة من الغذاء المتداول خلال عملية تحليل الغذاء (Thermogenesis).

العلاقة بين التمثيل الغذائي خلال الراحة والسمنة

يرى ملمح (1999) أن هذا المؤشر (RMR) يرتبط سلباً مع السمنة، أي أنه كلما زاد التمثيل الغذائي خلال الراحة كان لاعب كرة القدم أقل عرضة للسمنة، والسبب في ذلك أنه مؤشر على زيادة حجم العضلات حيث يشير زورلو وآخرون (1990) إلى أن العضلات تستهلك ما نسبته (20-30%) من القيمة الكلية للتمثيل الغذائي خلال الراحة.

66
Tobecher et al (1990) demonstrated that radium-226, a naturally occurring radioactive element, can be inhaled and enter the body through breathing and ingesting food. This process involves the radium-226 being converted into radon-222, which then decays into elements such as polonium-218 and lead-214. These elements can accumulate in different parts of the body, leading to potential health effects. Further research is needed to fully understand the long-term implications of exposure to radium-226.

وأشار ماك أرلد وآخرون (1986) إلى أن الإناث دائما أقل من الذكور في (RMR) بنسبة تتراوح بين (5-10%) من السعرات المستهلكة يوميًا بسبب زيادة نسبة الشحم عند الإناث، ونقص الوزن الخالي من الشحم (العضلات (FFM)) لذوي مقارنة بالذكور.

طرق قياس التمثيل الغذائي خلال الراحة

نظراً لأهمية قياس التمثيل الغذائي لكل من الأطباء والمدربين والباحثين، ظهرت عدة طرق لقياس (RMR) منها ما هو مخبرى عن طريق استخدام الأجهزة، ومها ما هو ميداني مبني على أساس معدلات خط الانحدار (R^2).

ومن الطرق التي استخدمت في تحديد الطاقة اليومية المستهلكة الطرق المخبرية في القياس والتي تعتبر غير عملية للمقيس وعلى وجه الخصوص للعاملين في حقل التدريب الرياضي وبرامج اللياقة البدنية المرتبطة بالصحة، وذلك نظرًا لارتفاع التكلفة المادية للأجهزة المستخدمة، والحاجة إلى أشخاص مدربين للتعامل مع الأجهزة والوصول إلى دقة في القياس، ولتجنب ذلك تم اللجوء إلى الطرق الميدانية وذلك عن طريق تطوير معدلات عدة لقياس (RMR) وذلك بالاعتماد على متغيرات بسيطة سهلة القياس مثل (الطول، والوزن، والعمر، ومساحة سطح الجسم، وزن الجسم الخالي من الشحم).

أما ذبابة، والجبور (2012، ص206-208) فقد قسم الطرق قياس كمية التمثيل الغذائي إلى عدة طرق، وهي على النحو الآتي:

1- الطريقة المباشرة: تقاس الحرارة الخارجية من الشخص مباشرةً بواسطة غطية التنفس (AT) Water- Roas- Benedict.

2- الطريقة غير المباشرة وتنقسم إلى:

أ - الطريقة غير المباشرة (المغلقة): تقاس كمية الأكسجين التي استهلكها الشخص كمية ثانية لأكسيد الكربون المتبقي من خلال فترة زمنية محددة ثم تقارن بكمية الأكسجين المستهلكة أو بكمية ثاني أكسيد الكربون الخارجة من شخص طبيعياً في نفس الفترة الزمنية المحددة، فإذا كانت متساوية أو بزيادة أو نقصان بنسبة (15%) فإن الشخص يعد طبيعيًا. ويستخدم لهذا الغرض جهاز يسمى Colins and Benedict.

69
التشخيص الطبي الدقيق في حالة زيادة أو نقصان في إفرازات بعض الغدد مثل الدرقية والخدرائية والكبدية.

ب - الطريقة غير المباشرة (المختصرة): تقاس كمية ثاني أكسيد الكربون الخارجة من الزفير خلال فترة زمنية تقارن بهواء الغرف ويستخدم في هذه الطريقة حقبة دوكلاس Doglas.

ت - الطريقة الحسابية:

1- معادلة: التمثيل الغذائي القاعدي للرجال في اليوم = Harris and Benedict (الوزن بالكيلوغرام) × (66.473 + 13.752 × الطول بالسنتيمتر) - (5.003 × العمر بالسنوات) - (1.855 × الرطوبة) - (4.673)

2- معادلة: التمثيل الغذائي القاعدي للرجال في اليوم = Drayer (الوزن بالكيلوغرام) × (0.1015 × العمر بالسنوات) ÷ 3.13.

3- الطريقة التقديرية: التمثيل الغذائي للرجال في اليوم = سعر الوزن بالكجم × 24 ساعة.

ويشترط أن تقاس تحت الظروف التالية:

1- الراحة الجسمية والعقلية التامة لمدة نصف ساعة على الأقل قبل بدء القياس. ويجب أن يكون الشخص يقطن غير نائم أثناء التجربة.

2- أن تكون درجة حرارة الجو مناسبة للشخص أي تتراوح بين (20-25) درجة مئوية على الأقل مع ارتداء ملابس ملائمة مع حرارة الجو حتى لا تدعو برودة الجو إلى ارتفاع العضلات وزيادة حرارة الجو إلى إفراز العرق.

3- يجب أن يتم القياس بعد (12-14) ساعة من تناول الطعام.(درويش وعبد السلام 2006).

اما الدراسة الحالية فقد استخدم الباحث جهاز التأثث لقياس سرعة التمثيل الغذائي خلال الراحة.
العوامل التي تؤثر على سرعة التمثيل الغذائي:

يري ذيابات، والجبور (2012، ص 204-205) أن العوامل المؤثرة في التمثيل الغذائي يمكن حصرها بما هو أت:

- العمر: معدل التمثيل الغذائي القاعدي في سن الطفولة يزيد نتيجة سرعة النمو أثناء المرحلة العمرية التي يصاحبها زيادة في عمليات التمثيل الغذائي وعند سن 25 سنة تنخفض عمليات التمثيل القاعدي (ذيابات، والجبور، 2012، ص 204) بينما يرى درويش علي (2006) أن سرعة التمثيل الغذائي القاعدي عند الأطفال بعد الولادة مباشرة قليلة وتصل إلى حوالي (25 سعر حراري لكل متر مربع من سطح الجسم بالساعة) ترتفع بعد ذلك تدريجياً حتى تصل لأعلى مستوى عند سن 2-3 سنوات (60 سعر حراري) تقل تدريجيا بعد ذلك ثم تزداد مرة أخرى في سن العشرين لتصل إلى حوالي (40 سعر حراري) ثم تبقى ثابتة وتقد بمعدل سعر حراري لكل عشر سنوات وبعد السبعين تقل بسرعة أكبر.

- الجنس: تقل سرعة التمثيل الغذائي القاعدية في الإناث بحوالي (10%) عن الذكور، وهذا الفرق غير مبني على الهرمونات التناسلية حيث إنه يوجد في الأطفال قبل سن البلوغ وسببه غالباً قلة الشحم وكثرة العضلات في الذكور عنه في الإناث.

- حرارة الجو: تزداد سرعة التمثيل الغذائي في المناطق الباردة عنها في المناطق المعتدلة.

- الغذاء: تقل الطاقة عند النباتيين بمقدار (4%) عند الأشخاص غير النباتيين.

- العادات الجسدية: تزداد سرعة التمثيل الغذائي قليلاً في الرياضيين عنه في غير الرياضيين كما أنها تزيد أيضاً عند الحوامل في نهاية فترة الحمل ويظهر أن هذه الزيادة نتيجة أكسدة المواد الغذائية في أنسجة الجنين.
النوع: تقل سرعة التمثيل الغذائي في الشعوب الشرقية كالهنود مثلا عنها في الأمريكيين.
وقد وجد أن بعض الصينيين الذين يعيشون في أمريكا في نفس الظروف تقل سرعة التمثيل لدىهم عن زملائهم الأمريكي وذا الاختلاف نوعي.

النوم: تقل سرعة التمثيل الغذائي في النوم بمقدار (10%) أثناء اليقظة، نتيجة ارتفاع العضلات وانخفاض مستوى سرعة القلب والتنيس والعمليات الحيوانية الأخرى أثناء النوم.

الصياح: يبقى الإيض القاعدي ثابتا في اليوم الأول والثاني للصيام ثم يبدأ في الانخفاض في اليوم الثالث وتصل إلى (50%) في حالة الجوع.

الحالة العقلية: تزيد الطاقة بمقدار (4.2%) من الطاقة الأساسية.

حجم الجسم أو مساحة مسطح الجسم (Body Surface Area) : كلما كبر حجم الجسم أو زاد سطحه وزادت كمية النسيج العضلي فيه أرتفع التمثيل القاعدي، ولذا فإن الأشخاص طوال القامة وذوي الهيكل الجسمي الكبير زاد معدل التمثيل الغذائي القاعدي عن معدلهم عند الفرد القصير ذو الهيكل الصغير أو المتوسط.

تركيب الجسم: هناك علاقة طردية بين النسيج العضلي ومعدل التمثيل القاعدي وعلاقة عكسية بين النسيج الدهني ومعدل التمثيل القاعدي.

الحالة الصحية: يتأثر معدل التمثيل القاعدي ببعض الأمراض التي يتعرض لها الإنسان حيث أن ارتفاع الحرارة يزيد من معدله بينما تؤثر أمراض سوء التغذية في انخفاضه.

نشاط الغدد الصماء: هناك علاقة طردية بين الهرمونات مثل التيروكسين وإفرازات الغدد النخامية وهرمون الاردناليين الذي تفرزه الغدة الكظرية حيث تسبب زيادة الأيض.

5. الدفع القلبي (Cardiac Out Put)

لقد عرفه الهزاع (2009) بأنه مقدار حجم الدم الذي يضخه البطين الأيسر باللتر في الدقيقة. ويساوي حساباً، حاصل ضرب عدد ضربات القلب في الدقيقة، في حجم الضربة (كمية الدم التي يضخها القلب في كل ضربة من ضرباته). ويلعب إنتاج القلب في الراحة لدى الشباب 72
السليم متوسط الحجم، حوالي خمسة نرات في الدقيقة، على أن هذا الحجم يرتفع أثناء الجهد
البدني الأقصى لدى الشباب غير الرياضي، ليبلغ حوالي (6 نتراد). أما لدى الرياضي، فقد
يصل حجم ناتج القلب لديه إلى حوالي (8 نتراد أو زيد.

أما الجبور، وقبلان (2012) فقد عرفوا الدفع القلبي بأنه كمية الدم التي يضخها القلب في
الدقيقة الواحدة باللتر أو المليتر، ويتراوح عادة حجم (6 نتر) ويعتمد الدفع القلبي على مقدار
الدم الوريدي العائد إلى القلب من جميع أجزاء الجسم المختلفة، فكلما زاد العائد الوريدي للقلب
زاد الدفع القلبي.

بينما عرف ملحم (1999) الدفع القلبي بأنه كمية الدم التي يضخها القلب في الدقيقة
الوحدة باللتر وتقدر بحوالي 5 لتر، ويعتمد على عاملين هما: حجم النبض (Stroke volume)
وهي كمية الدم المدفوع بالضربة الواحدة، ومعدل النبض (Heart rate) وهي عدد ضربات
القلب بالدقيقة.

كما عرف سلامة (2008) الدفع القلبي بأنه كمية الدم الذي يقوم القلب بضخها في كل
ضربة، حيث أشار إلى أن الدفع القلبي بين المتربين وغير المتربين يتراوح ما بين (4.800 -
5.600 لتر / دقيقة)، ولكن نبض الراحة عند المتربين يكون أقل وحجم النبض أكبر، وأثناء
الجهد البدني يكون عند المتربين مرتفعاً، حيث يكون معدل النبض وحجم النبضة مرتفعاً عند
المتربين مقارنة مع غير المتربين عند أداء نفس المجهود البدني.

ويؤكد على ذلك دراسة زهوي، وآخرون (2001) (Zhou, & at, al) التي تناولت
مجموعة من عدائي المسافات الطويلة، والرياضيين الجامعيين، والجامعيين غير الرياضيين، فقد
أهتمت بدراسة الفروق في حجم الضربة، والدفع القلبي، ووصلت دراسته في أن الدفع القلبي
وصل عند عدائي المسافات الطويلة إلى (33.8) نتراد، وعند الطلاب الرياضيين (26.3)
نتراد، وعند الطلاب غير الرياضيين 21.3 نتراد.
ويعود الدفع القلبي من المؤشرات الهامة في تطوير كفاءة القلب، والجهاز الدوري التنفسي، حيث تحدث عند الرياضيين زيادة في حجم النبضة، مما يؤدي زيادة في الدفع القلبي (خليل، 2008، ص155). ويؤكد على ذلك عبد الفتاح، وسید (2003)، بقوله إن الدفع القلبي يمكن أن يزداد بزيادة معدل نبض القلب أو حجم النبضة، وأن سبب زيادة الدفع القلبي أثناء التدريب هو زيادة حاجة العضلات لاستهلاك الأكسجين، ومن الممكن أن يصل الدفع القلبي للاعبين الماراثون إلى (40) لتر/ دقيقة، كما أنه كلاً ارتفع مستوى الفرد في الحد الأقصى لاستهلاك الأكسجين، ارتفع مستوى الدفع القلبي، ويبين الجدول رقم (2) مستويات معدل النبض، والدفع القلبي، وحجم النبضة لرياضيين، وغير الرياضيين لكلا الجنسين:

جدول رقم (3)

<table>
<thead>
<tr>
<th>الدفع القلبي</th>
<th>معدل النبض</th>
<th>حجم النبضة</th>
<th>العينة</th>
<th>الحالة</th>
</tr>
</thead>
<tbody>
<tr>
<td>73 ن/د × 70 مليلتر</td>
<td>ذكور غير رياضيين</td>
<td>راحة</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 ن/د × 60 مليلتر</td>
<td>إناث غير رياضيات</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 ن/د × 100 مليلتر</td>
<td>ذكور رياضيين</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 ن/د × 80 مليلتر</td>
<td>إناث رياضيات</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ن/د × 110 مليلتر</td>
<td>ذكور غير رياضيين</td>
<td>مجهود</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 ن/د × 90 مليلتر</td>
<td>إناث غير رياضيات</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.2 ن/د × 180 مليلتر</td>
<td>ذكور رياضيين</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9 ن/د × 135 مليلتر</td>
<td>إناث رياضيات</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

وأشار ويلمر وكوستيل (2004) (Wilmore & Costill,) إلى أنه يمكن حساب الدفع القلبي عن طريق حاصل ضرب حجم النبض في معدل النبض بالدقيقة، والتي يعبر عنها بالمعادلة الآتية:

\[
\text{الدفع القلبي (SV)} = (\text{معدل النبض (HR)}) \times (\text{حجم النبضة (CQ)})
\]

74
أتشار سيد (2003) إلى الطريقة اليدوية لقياس معدل النبض (Heart rate) وذلك من خلال الأماكن الأثنتي: (الشريان السباتي، والشريان الصدغي، والشريان الكعبري)، ولحساب معدل النبض بالدقيقة يتم على النحو الأثني ((10 ث × 6) (15 ث × 4) (30 ث × 2). 60 ث).

ولقياس معدل النبض بالدراسة الحالية استخدم الباحث ساعة بولر (Polar) لقياس النبض.

6. حجم النبضة (Stroke Volume)

أثناء انقباض البطينين يتم انفاذ كمية من الدم من البطين الأيسر، وهذه الكمية تعرف بحجم النبضة، ويرمز لها بالرمز (S.V) وتعرف بأنها كمية الدم المدفوعة إلى الدورة الدموية خلال انقباضه واحدة، وتبلغ قيمتها أثناء الراحة عند الإنسان الطبيعي وغير الممارس للنشاط الرياضي حوالي (70ملتر) وتبلغ قيمتها القصوى (200ملتر) لدى الذكور و(160ملتر) لدى الإناث الممارسين للأنشطة الرياضية (الجبور، وقبلان، 2012، ص 162-163).

ويرتبط حجم الضربة إلى حد ما بحجم القلب، الذي يعتمد بدوره على مساحة سطح الجسم، ومن المعلوم أن حجم الضربة يؤثر بوضوح الجسم سواء في الراحة أم في الجهد البدني، فالحجم أثناء الوقوف أو الجلوس، يعد أقل منه في حالة الاستقاء، وذلك ناتج من زيادة العائد الوردي أثناء الاستقاء، مما يجعل القلب قادراً على دفع الكمية نفسها من نتاج القلب. بمعادل أقل من ضربات القلب، كما يؤثر حجم الضربة بقدر العضلات المشاركة أثناء الجهد البدني، ففي الجهود البدنية التي تستخدم فيه عضلات كبرى من الجسم كما في الجري، يكون مقدار حجم الضربة أعلى مما هو أثناء استخدام كتلة عضلية صغيرة كما في حال استخدام مجهود اليدتين (الهزاع، 2009). ويضيف القط (2006 ص 119)، أن تدريبات التحمل تؤدي إلى زيادة حجم الضربة، كما يذكر عبد الفتاح، وسيد (2003،ص 411)، أن حجم النبضة، يقل لدى الإناث عند الذكور بحوالي (25%). كما يرتبط حجم النبضة في الكفاءة البدنية للفرد.
ويعرف الهزاع (2009) حجم الضربة بأنه: حجم الدم المدفع من القلب في كل ضربة من ضرباته، ويبلغ في الراحة لدى الشباب المتوسط الحجم غير المتدرّب حوالي (60) ملّيتر، ويرتفع في الجهد البدني المرتفع الشدة لينبغي من (100-110) ملّيتر، أما لدى الشخص الرياضي فيبلغ حجم الضربة في الراحة حوالي (80) ملّيتر، ويزداد في الجهد البدني الأقصى إلى أن يصل حوالي (150-160) ملّيترًا، ومن الممكن أن يصل إلى (200) ملّيتر. وتؤكد على ذلك دراسة زهوى وآخرون (2001،). حيث تم دراسة حجم النبضة على عدد مسافات طويلة، وعلى طلاب جامعيين رياضيين، وطلاب غير رياضيين، ووصفت الدراسة أنه لتم فروق في حجم نبض القلب أثناء الراحة لدى الثلاث مجموعة مجموعات، بينما كانت هناك فروق أثناء الجهد البدني، ووصل حجم النبض لدى عدد مسافات طويلة، إلى (187) ملّيتر عند أقصى نبض، والطلاب الرياضيين، إلى (145) ملّيتر عند أقصى نبض، والطلاب غير الرياضيين، ووصلت إلى (128) ملّيتر عند أقصى نبض.

(Travis & et al, 1956) ولقياس حجم النبضة (SV) قام ترافيس وأخرون (250: 1956) باستخدام معادلة ستارز التنوبية (Starr’s Equation) لتطوير معادلات تنوبية أخرى والتي تضمنت المتغيرات الآتية: معدل الضغط (PP) وهو الفرق بين الضغط الانقباضي والضغط الأنتساضي (DP)، والعمر بالسنوات (Age)، حيث إن قياس حجم النبضة يتم باستخدام المعادلة الآتية:

جـ حـ يـ ضـ حـ مـ النبضة (SV) = (91.0 + 0.54 ((PP - 0.57) - (DP) 0.61). (Age)

7. نبض القلب:

ينبض القلب حوالي (100000) مرة في اليوم ليقوم بإيصال الدم إلى أكثر من (6000) ميل من الأوعية الدموية، يوصل من خلالها الغذاء إلى (75 تريليونًا) خليّة في الجسم وينبغي مقدار ما يضخ القلب (2000) جالون من الدم يوميًا وبناء على تقرير جمعية الأطباء الأمريكية فإن الجهد الذي يقوم به القلب في ضخ الدم إلى جميع أجزاء الجسم في اليوم الواحد كفيل بأن يرفع ثقلًا قادرًا (124) طناً (80) ضربة/د (الجبور، وقبلان، 2012، ص160) ويبلغ عدد
ضربات القلب حوالي (70-80) ضربة/ دقيقة لدى الشخص غير الرياضي في العشرين من عمره (الهيزاغ، 2009)، بينما تبلغ ضربات القلب في الراحة لدى المولود حديثا حوالي (125) نبضة في الدقيقة (سلامه، 1994، ص 260)، ومع التقدم في العمر تتناقص بالتدرّج لتصل إلى (100-110) ضربة/ دقيقة لدى الطفل في عمر أربع سنوات في حين تصل ضربات القلب لدى الإنسان الرياضي حوالي (40-60) ضربة/د. بينما وصل نبض القلب لدى عدائي الماراثون (28) نبضة/د، كما أن أحد لاعبي كرة الماء بلغ نبضه (26) نبضة/د (الهيزاغ، 2009).

وقد أوضح الجبور، وقبلان (2012) أن سبب انخفاض معدل ضربات القلب (النبض) عند الرياضيين يعود إلى كبر تجاوزات القلب، وهذا يؤدي إلى استيعاب كمية أكبر من الدم وبالتالي يحصل الرياضيون على كمية أكبر من الأوكسجين لغرض إنتاج الطاقة بعدد أقل من ضربات، بالإضافة إلى زيادة حجم الضربة الناتجة عن زيادة حجم القلب كتكيف للبرامج التدريبية والأعمال البدنية التي يخضع إليها هؤلاء الرياضيين.

وفيما يتعلق بأقصى نبض يصل إليه الرياضي فقد أشار الهيزاغ (2009) إلى أن معدل ضربات القلب القصوى عادة يتم قياسها أثناء جهد بدني بشدة قصوى حتى ظهور التعب، وذلك باستخدام معادلات تنبؤية معينة معتدلة على العمر مثل معدل ضربات القلب القصوى= 220-0.67 (Gellish، 2007) بتطبيقات معادلة خطية بالاعتماد على المعادلات السابقتين وكانت على النحو الآتي: معدل ضربات القلب القصوى = 206.9 (0.67 × العمر بالسنوات).
ويضيف الهرع (2009)، أن ضربات القلب داياناتها في الصحة والمرض، وأن
انخفاض معدل ضربات القلب في الراحة وتجاوز حدود معينة، له دلالات مرضية، كما أن
عدم انتظام ضربات القلب أو ضعف ضرباته له دلالات إكلينيكية، وأن معرفة معدل ضربات
القلب القصوى للفرد أثناء الجهاد البدني الأقصى، ومدى وصولها إلى المعدل المتوقع للشخص
تبعاً للعمر، لها دور في التنبؤ بالحالة الصحية للقلب، كما أن ضربات القلب تستخدم في وصف
النشاط البدني، سواء لتعزيز الصحة، أو لتنمية اللياقة البدنية، سواء للعامة، أو المرضى، أو
 الرياضيين.

ويعد معدل ضربات القلب من أهم القياسات عند الرياضيين التي يمكن من خلالها بناء
الشدة التدريبية، والحمج التدريبي (فتحي وناصر. 2009، ص 21) كما يؤكد كمال وسعود
(2006)، أن سرعة عودة معدل ضربات القلب إلى وضعه الطبيعي كما في الراحة بعد أداء
مجهود بدني، يعد مؤشر جيداً لحالة اللياقة البدنية.

ويضيف سلامة (1988، ص 194)، أن الرياضيين يكتسبون ظاهرة انخفاض النبض بعد
ثلاث سنوات من ممارسة التدريبات الرياضية، وهي مرتبطة بنوع الرياضة، ويستدل على
تحسن عمل القلب من خلال طول فترة إنسابه، حيث تصل إلى ثانية كاملة بدلاً من (0.56)
من الثانية لدى الفرد العادي، وهذا يساعد على إتمال القلب بالدم ويزيد من فترة تغذيته. وينكر
الهرع (2005)، في دراسة له أثبتت أن الانقطاع عن التدريب لمدة ثمانية أسابيع، زاد من
معدل النبض عند لاعبي كرة القدم.

وبيرى الهرع (2009) أن تجاوز نبضات القلب عن (100) نبضة/د، يسمى تسارع في
ضربات القلب (خفقان)، بينما نقصان ضربات القلب عن (60) نبضة/د، يسمى بـ نبضات
القلب، إلا أن التدريب البدني المنتظم، يقود إلى تألق في عضلة القلب، مما يؤدي إلى رفع كفاءة
القلب، وبالتالي انخفاض طبيعي في ضرباته وقت الراحة.

ويضيف الهرع (2009) فيما يتعلق بقياس النبض بأن أكثر الوسائط المستخدمة في قياس
النبض، السماعة الطبية، وجهاز تخطيط القلب، وأجهزة رصد ضربات القلب، وأجهزة رصد
العوامل المؤثرة على نبض القلب

يذكر سيد (2003، ص 167)، أن هناك عدة عوامل تؤثر على نبض القلب سواء للرياضيين أو غير الرياضيين وهى:

- أعراض القلب: العصب السميثاوي، يزيد سرعة النبض، ونظير السميثاوي، يقلل سرعة النبض.

- الانفعالات والحالات النفسية: يزيد معدل النبض في حالات الفرح، والغضب، والخوف، ويفق في حالات الحزن، والاكتئاب.

- حرارة الدم: يؤدي ارتفاع درجة حرارة الدم، إلى زيادة سرعة النبض، فارتفاع درجة حرارة الدم درجة متعدية واحدة، يؤدي إلى زيادة معدل النبض بمقدار (10) نبضة/د.

- كمية الدم الراجعة إلى القلب: يزيد معدل سرعة النبض، كلما زادت كمية الدم الراجعة إلى القلب، ويحدث هذا نتيجة إنعكاس عصبي يبدأ من النهاية العصبية الحسية الموجودة في جدران الأذين الأيمن، يعرف بالعكاس (نيبردج)، وهذا يدوره يعمل على زيادة كمية الدم المدفوعة للعضلات، ويمنع ركود الدم في القلب والأوردة.

- نشاط الهرمونات: تؤثر الهرمونات على معدل نبض القلب، وخاصة هرمون الأدرينالين، الذي يزيد سرعة وقوة نبض القلب، وكذلك هرمون النورأدرينالين، الذي يقلل من سرعة وقوة نبض القلب.

- غازات الدم: تزيد سرعة نبضات القلب في حالة زيادة ثاني أكسيد الكربون، كما يزيد سرعة نبضات القلب في حالة نقص الأكسجين، يؤدي الحرمان المطلق من الأكسجين إلى توقف القلب.
6- ضغط الدم الشرياني: - ويتاسب عكسياً مع نبض القلب، ويعرف بقانون "ماري".

- وضع الجسم: - يختلف معدل نبض القلب في الأوضاع التي تتخذه الجسم، فيزيد بمعدل من (5-10) نبضة قد عند تغيير وضع الجسم من ال الوقوف إلى الاحترام أو الجلوس، والسبب يعود في ذلك إلى تأثير الجاذبية الأرضية.

- حالة الجسم: - يتزايد معدل نبض القلب تبعاً للحالة الجسمانية فبعد الاسترخاء الإجري أو عقب جلسة تدليك ينخفض معدل النبض، كما ينخفض في حالة النوم العميق، ويزداد عند الاستيقاظ، أو عند البدء في نشاط.

- انقباض العضلات: - يؤدي انقباض العضلات إلى زيادة معدل نبض القلب، على أساس أن انبساط العضلات يضغط على رجوع الدم الوريدي إلى القلب، بسبب التأثير الذي تحدثه العضلات الهيكليه على عمل الأوردة، كما يزداد معدل النبض عند انقباضي العضلات، حتى يمكنه من إرسال الدم اللازم لها.

- الجهد البدني: - يزداد معدل النبض سرعة عند ممارسة الرياضة، وأداء جهد بدني، وتتناسب سرعة معدل النبض طردياً مع شدة الجهد المبذول، وتحدث تلك الزيادة نتيجة مجموعة متداخلة من العوامل التي تؤثر في النبض.

كما تضيف خليل (2008، ص 154)، أن الجهد يحدث تسارعاً في نبض القلب، لفترة تتراوح مع (2-3) ساعات، وهو يعتمد على نوع الغذاء وخصوصاً، إضافة إلى عامل آخر وهو الأيونات، حيث إن قوة ضربات القلب تدعم على الأيونات وخاصة الموجبة منها مثل الكالسيوم والبوتاسيوم والصوديوم.

8. معدل القلب الأقصى (HRmax) يعرفه عبد الفتاح، وسيد (2003، ص 404)، بأنه أعلى معدل للقلب يمكن الوصول إليه عند أداء العمل البدني الأقصى حتى التعب. كما يشير الهزاع (2009، ص 380)، أن معدل
ضرائب القلب، من المؤشرات المهمة التي يمكن الاستدلال بها على شدة الداء الطلق على الجسم، أثناء الجهد البدني، وضرائب القلب تتزايد طرديا مع الجهد البدني المبذول.

إن الرياضيين ينتقلون من أقصى نبض إلى أقصى نبض آخر، مع استمرار التدريب السليم، ففي كل عام يختلف معدل أقصى نبض عن العام الذي قبله، كما أن معدل أقصى نبض يرتبط بحجم الدم الوريدي العائد للقلب، والسعة البطينية، والذين يؤثران في السعة الامتصادية للبطين، كما يؤثران في الانقباض البطيني، والضغط الشرياني الأورطي والرئوي، وهما يؤثران في قدرة البطين على توريد الدم (سلامة 2008، ص172).

ويضيف وملمور وكوستيل (Wilmore & Costill, 2004, P427)، أن معدل ضرائب القلب القصصوي يصل إلى (200) نبضة في كل شاب مثالي من العمر 20 سنة، وأن معدل ضرائب القلب القصصوي يأتي في السنة، وينخفض تدريجيًا بمعدل (10%) لكل عشرة سنوات بعد الثلاثينيات من العمر، أي بواقع نبضة لكل سنة، عشر نبضات لكل عقد، على أن التدريب البدني يقلل من ذلك الانخفاض. ويؤكد على ذلك جيتش، وأخرون (2007)، حيث أشار في دراسته التي اهتمت في مراجعة مجموعة من الدراسات لمحة مكونة من (908) من كلا الجنسين، وتضم الرجع إلى (132) منهم، وتبين أن معدل الدراسات تشير إلى أن هناك تنافسًا في النبض الأقصى مع التقدم في العمر إلى حد ما، وتم التوصل إلى معاودة جديدة للحد الأقصى للنبض. وفي الجدول رقم (1) بعض المعادلات للتعرف على الحد الأقصى لمععدل نبضات القلب القصصوي:
جدول رقم (4)

بعض المعادلات الدالة على أقصى نبض ضغط الدم

<table>
<thead>
<tr>
<th>المعادلة الأولى</th>
<th>ضربات القلب القصوى=220 - العمر (بالسنوات)</th>
</tr>
</thead>
<tbody>
<tr>
<td>المعادلة الثانية</td>
<td>ضربات القلب القصوى=210 - (0.65 × العمر بالسنوات)</td>
</tr>
<tr>
<td>المعادلة الثالثة</td>
<td>ضربات القلب القصوى=200 - (0.50 × العمر بالسنوات)</td>
</tr>
<tr>
<td>المعادلة الرابعة</td>
<td>ضربات القلب القصوى: رجلان: 209 - (0.86 × العمر بالسنوات)</td>
</tr>
<tr>
<td></td>
<td>نساء: 207 - (0.78 × العمر بالسنوات)</td>
</tr>
<tr>
<td>المعادلة الخامسة</td>
<td>ضربات القلب القصوى=208 - (0.7 × العمر بالسنوات)</td>
</tr>
<tr>
<td>المعادلة السادسة</td>
<td>ضربات القلب القصوى=194.8 - (0.504 × العمر بالسنوات)</td>
</tr>
</tbody>
</table>

6. ضغط الدم (Blood Pressure)

عندما يدفع القلب الدم بضربات متتالية إلى أجهزة الجسم عبر الأوعية الدموية الشريانية فإنه يحدث ضغطاً على جدران الأوعية الدموية يسمى ضغط الدم. وهذا الضغط هو في الواقع نتاج قوة جريان الدم، الذي يتآثر بشكل رئيسي بقوة دفع القلب للدم وكذلك محتوى مقاومة الأوعية الدموية لهذا الدم، فكلما كانت الأوعية الدموية ضيقة أو غير مرنة كما يحدث في حالة تصلب الشرايين فإن ضغط الدم سيرتفع، كما أن زيادة حجم الدم (من خلال زيادة معدل ضربات القلب وبالتالي زيادة ناتج القلب) سيؤدي إلى زيادة الضغط على الأوعية الدموية وفي النهاية ارتفاع ضغط الدم. وبهذا يمكن تقسيم ضغط الدم الشرياني هذا إلى ضغط يحدث أثناء انقباض القلب (نتيجة لاندفاع الدم عبر الأوعية الدموية أثناء الانقباض)، وهو ما يسمى بالضغط الشرياني الأنقابضي (Systolic blood pressure)، وضغط يحدث أثناء انبساط القلب وهو ما يسمى بالضغط الشرياني الانبساطي (Diastolic blood pressure) (الهيزاع، 2009، ص 395).
ويضيف الهزاع (2009 ص 395)، أن الضغط يقاس في المليارات الزئتيقي، ويصل الضغط الانقباضي عند الشخص السليم (120) ملم زئتي، والانبساطي (80) ملم زئتي، كما يذكر أيضاً أنه كلما كانت الأوعية الدموية ضيقة أو غير مرنة، كما يحدث في حالة تصلب الشرايين، فإن ضغط الدم سيرتفع، من خلال زيادة معدل ضربات القلب، ومن ثم زيادة الدفع القلبي.

ويشير كمال وسعد (2006 ص 160)، أن التدريبات البدنية تحدث تغييراً في ضغط الدم، حيث يؤدي الجهد البدني إلى زيادة ضغط الدم، وهذا يؤدي إلى زيادة حجم الضغط على الأوعية الدموية، وبعد الانتهاء من التدريبات البدنية يعود الضغط إلى حالتة الطبيعية، وعلى أن ضغط الدم غير المرتغج يتعين من المؤشرات على اللياقة البدنية الجيدة لللاعب. ويؤكد على ذلك سلامة (1988 ص 195) بأن ضغط الدم غير المرتفع، وكذلك نقص معدل النبض، يعتبر من المؤشرات على الحالة التدريبية الجيدة التي وصل إليها اللاعب، وأن الضغط يرتفع أثناء التدريب، ولكن في بعض الأنشطة العنيفة التي تستمر لفترة طويلة، ويصاحبها إفراز للعرق، وبالتالي فقدان السوائل، فإن ضغط الدم يتغير، كما أن تدريبات التحمل تحدث زيادة في ضغط الدم الانقباضي، ولكن لا يغير من الضغط الانبساطي بشكل ملحوظ، على عكس التدريبات العضلية الثابتة التي تحدث زيادة في الضغط الانقباضي والانبساطي. ويضيف سلامة (1994) أيضاً أن التدريب البدني لمدة (7) أسابيع، ولثلاث مرات أسبوعياً، حسنات من كل مترول الدم وقلل من ضغط الدم الانقباضي والانبساطي.

ويذكر سلامة (2008 ص 100)، أن التدريبات ذات الشدة الأقل من القصوى، تؤدي إلى تغير في ضغط الدم، حيث يلاحظ انخفاض ضغط الدم للأفراد المدربين وقت الراحة، ويكون الانخفاض في ضغط الدم الانقباضي (11) ملم زئتي، والانبساطي (8) ملم.

ضغط الدم والجهد البدني:

تتطلب العضلات أثناء انقباضها كمية كبيرة من الدم مقارنة بالراحة، وللذا نجد أن حجم القلب يرفع مع زيادة شدة الجهد. وبالتالي زيادة جريان الدم في الأوعية الدموية للعضلات العاملة حتى تشبع بالدم من جراء زيادة نتاج القلب، الأمر الذي يؤدي إلى ارتفاع ضغط الدم الشرياني الانقباضي مع انخفاض في مقاومة الكلية للأوعية الدموية، أما ضغط الدم الشرياني الانبساطي فلا يتأثر تأثراً ملحوظاً بالجهد البدني المتحرك (الهزاع، 2009، ص 303-405).

يشير مذكور (2011) إلى أن معدل ضغط الدم الشرياني الانقباضي عند الشخص السليم يكون بحدود (120-140) ملم مزدوجي، ويزداد أثناء التدريب ليصل إلى (175) ملم مزدوجي، بينما يصل لدى الرياضيين ما بين (100-120) ملم مزدوجي، كما أن الضغط الشرياني الانقباضي لدى السيدات يكون أقل من الرجال بسبب الاختلافات الفسيولوجية لصغر القلب ومقادر الدم أثناء الدورة الشهرية، كما ينخفض أثناء النوم والنزف وفي حالة الصدمة العصبية والكهنوتية، ونتيجة ممارسة التدريب الرياضي بشكل منتظم. في حين يبلغ ضغط الدم الشرياني الانبساطي عند الشخص السليم ما بين (70-80) ملم مزدوجي، ويتميز بأنه أكثر استقرار ولا يتأثر بالعوامل الخارجية مثل الجهد الذهني والحالة النفسية، ويرتفع بسبب المرض مثل مرض الكلى وعيب في الشريان الكلوي، كما يرتفع بسبب عدم كفاية الصمام الأبهري.

كما يرى الهزاع (2009) أن نوع الانقباض العضلي يؤثر بشكل واضح في ضغط الدم الشرياني أثناء الجهد، حيث يرتفع الضغط عند أداء التمرينات العضلية الثانية، وللذا لا ينصح بعمل التدريبات العضلية الثانية لكبار السن أو الذين لديهم ارتفاع في ضغط الدم، كما أن التدريبات الهوائية ذات الشدة المنخفضة (كالمشي، والهرولة، والسباحة) تساعد على خفض ضغط الدم لدى الأفراد الذين يعانون من ارتفاع في ضغط الدم الشرياني. أما تدريبات الأقفال، واستخدام دراجة الجهد البدني، واستخدام العضلات الصغيرة مثل الذراعين يؤدي إلى ارتفاع ضغط الدم.
العوامل المؤثرة في الضغط

يشير سيد (2003، ص 173)، أن هناك عدة عوامل تؤثر في الضغط وهي:

- العمر: عند الأطفال يكون ضغط الدم منخفضاً، حيث يصل إلى (50/30) مليمتر زئبي، ويزداد عن عند البلوغ وعند النضج، ليصل إلى (120/80) مليمتر زئبي، وفي الشيخوخة يزيد، ليصل إلى (170/90) مليمتر زئبي.

- الجنس: - في سن الطفولة يكون الضغط متساويةً عند الجنسين، ومن عمر (10-16) عام يكون عند الإناث أعلى من الذكور، وعند البلوغ يكون الضغط عند الإناث أقل من الذكور، وفوق ال (40) عاماً يكون ضغط الدم عاليًاً عند الإناث.

- هضم الطعام: - هناك زيادة تحدث في ضغط الدم بعد تناول وجبات الطعام تصل من (5-10) مليمتر زئبي.

- الحالة الانفعالية والعاطفية: - تسبب الحالة الانفعالية والعاطفية زيادة في ضغط الدم.

- النوم: - يقل ضغط الدم في حالة النوم، إلا أثناء الأحلام.

- التدخين: - يرتفع ضغط الدم بعد التدخين، ويستمر تأثيره لساعة من الزمن.

- المجهود البدني: يرفع المجهود البدني ضغط الدم مؤقتًا، من (30-50) مليمتر زئبي، ولكن بعد الراحة يعود مستوى إلى وضعه الطبيعي.

قياس ضغط الدم

يتم قياس ضغط الدم المُشرِّعي بوساطة جهاز يُسمى (السغيمومانوميتر، Sphygmomanometer) ويكون الجهاز من كيس مطاطي، يتصل بمضخة يدويه صغيرة، مع صمام لتخفيض خروج الهواء، ومؤشر يعبر عن مقدار الضغط (سيد، 2003، ص 190). ولقياس الضغط يشير بكري والغماري (2005، ص 147)، أنه ينبئ الكيس المطاطي بلغه حوال
عند الولد، حيث يحيط الشريان العضدي، ويضخ الهواء داخل الكيس المطياطي، بحيث يزداد الضغط حول العضد، وعند مستوى الضغط في الشريان، وهنا ينقل الشريان، ويتوقف تدفق الدم، وتنعس صمامات طبية على الشريان العضدي أسفل الكيس المطياطي، وتنطلق الهواء تدريجيًا.
وعند سماع أول صوت نبض قراءة موجودة على المؤشر، والتي تشير إلى ضغط الانقباضي، ويستمر سماع النبض حتى آخر نبضة مسيرة، وحينها نقرأ القراءة الموجودة على المؤشر، والمعبرة عن الضغط الانبساطي.

ثانية: الدراسات السابقة

من خلال إلقاء الباحث على الدراسات السابقة، وفي ضوء متغيرات الدراسة تم تقسيم الدراسات السابقة كما يلي:

- الدراسات المتعلقة بتأثير البرنامج التدريبي على المتغيرات البدنية قيد الدراسة.
- الدراسات المتعلقة بتأثير البرنامج التدريبي على المتغيرات الفسيولوجية قيد الدراسة وهي:
 - دراسات متعلقة بالحد الأقصى لاستهلاك الأكسجين.
 - دراسات متعلقة بالقدرة اللااكسيجينية.
 - دراسات متعلقة بتركيز الجسم.
 - دراسات متعلقة بالتمثيل الغذائي خلال الراحة.

أولا: الدراسات المتعلقة بتأثير البرنامج التدريبي على المتغيرات البدنية قيد الدراسة

دراسة ميخيل وآخرون (2012) والتي هدفت إلى تحديد أثر العدو لمصابات قصيرة مقابل تكرار العدو لمدة طويلة على بعض الخصائص البدنية لدى ناشئي كرة القدم ممن تراوح أعمارهم بين (14 - 15) سنة، وتم إجراء القياسات قبل وبعد ثمانية أسابيع من التدريب، حيث كان البرنامج الأول عبارة عن العدو (4-6) مجموعات وكل مجموعة عبارة عن عدو 5
دراسة زيمك، وآخرون (2012) التي هدفت إلى التعرف إلى المقارنة بين تأثير التدريب الفني عالي الشدة والتدريب الادراكي للسرعة على اللاعبين اللاوكسيجينية، استخدم الباحثين المنهج التجربي على عينة قوامها (31) لاعباً، قسموا إلى ثلاث مجموعات، خضعوا لبرنامج تدريبي لمدة (6) أسابيع، مجموعة تعمل بالتدريب الفني عالي الشدة، ومجموعة بالتدريب الادراكي، والمجموعة الثالثة هي المجموعة الضبطة، حيث أظهرت نتائج الدراسة تطوراً كبيراً لدى اللاعبين الذين يعملون بالتدريب الفني في التحمل الخاص وبصورة أكبر من المجموعة الثانية، بينما لم يلاحظ الباحث أي تغير لدى المجموعة الثالثة (الضبطة)، كما أظهرت الدراسة تحسناً مشابهاً لدى المجموعتين (الفنى، والادراكي) في الراحة اللاوكسيجينية العامة.

دراسة سيريلتش، وآخرون (2011) وكان هدفها تحديد أثر برنامج لمدة 5 أسابيع للتدريب الفني عالي الشدة والتدريب عالي الحجم على الحد الأقصى لاستهلاك الأكسجين والسرعة والقدرة العضلية للرجلين لدى ناشئي كرة القدم وتحقيق ذلك أجريت الدراسة على عينة قوامها (19) ناشئة قسمت إلى مجموعتين متوسط أعمارهم (14) عام، الأولى تدربت باستخدام التدريب الفني عالي الشدة وبشدة (90%) من أقصى نسبة، بينما تدربت مجموعة الحجم العالي بشدة (60-70%) من أقصى نسبة، إذ أظهرت نتائج الدراسة أن التدريب الفني عالي الشدة حسن الحد الأقصى لاستهلاك الأكسجين بنسبة (7%), بينما نقص في طريقة التدريب عالي الحجم بنسبة (10%) وحدث تحسن في عد 30 مترمأ عند كلا المجموعتين بينما لم يحدث أي تحسن في الوثب العمودي.
دراسة محمد وآخرون (2012) التي هدفت إلى تحديد آخر موسم رياضي على بعض القياسات الأثاثومترية والبدنية لدى ناشئي كرة القدم في تونس، و لتحقيق ذلك أجريت الدراسة على عينة قوامها (50) ناشئاً من الأكاديمية التونسية لكرة القدم، حيث تم إجراء القياسات قبل وبعد ثمانية شهور، وأظهرت النتائج حدوث تحسن في جميع الخصائص بروتوامترية والبدنية، فيما يتعلق في نسبة الشحم نقصت من (13.3%) إلى (8.11%) وحده زيادة من (47.9) ميللير/كغم/دقيقة في بداية الموسم إلى (55.7) ميللير/كغم/دقيقة في نهاية الموسم.

دراسة جوفانوفيتش وآخرون (2011) وهدف البحث منها تحديد آخر برنامج تدريبي للسرعة والرشاقة والتسارع على قدرة الاداء لدى اللاعبين النخبة لكرة القدم، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (100) لاعب قمست بالتساوي إلى مجموعتين تجريبية وضابطة، وتم قياس قدرة الاداء قبل وبعد البرنامج التدريبي من خلال: قياس السرعة من خلال عدو 5 أمتار، والتسارع من خلال عدو 10 متر، وأقصى سرعة من خلال عدو 30 متراً والقدرة للرجلين من خلال اختبار بوسكو للوثب العمودي، وبعد تطبيق برنامج تدريبي لمدة (8) أسابيع أظهرت نتائج الدراسة أن البرنامج التدريبي أثر إيجابياً على السرعة والتسارع وأقصى سرعة والقدرة على الوثب العمود ووجود فروق بين المجموعتين في القياسات قبلاً للدراسة ولصالح المجموعة التجريبية.

دراسة المالكي (2011) التي هدفت إلى التعرف على تأثير أساليب مختلفة لتدريبات الفارتك (اللعب بالسرعة) على تطور تحمل السرعة، وقد استخدم الباحث المنهج التجريبي لملاحته طبيعة مشكلة البحث واعتمد التصميم التجريبي ذا الضبط المحكم (المجموعات المتكافئة) تم اختيار أفراد عينة البحث بالطريقة العمدية من طالبات المرحلة الرابعة كلية التربية الرياضية للبنات والبالغ عددهن (45) طالبة وتم توزيعهن في مجموعتين تجريبية وضابطة ويوقع طالبة في كل مجموعة، وشكل عشوائي. وبجمع البيانات تم الوصول إلى اختبار تحمل السرعة ل50م هو أفضل اختبار لقياس تحمل السرعة ثم تم إعداد تدريبات التلاعب بالسرعة وتم
إدخالها في القسم الرئيسي من الدروس وبواقع (40) دقيقة وعلى مدى 12 أسبوعاً. وبعد الانتهاء من تطبيق التمرينات المقترحة تم إجراء الاختبارات البعيدة وبالأسلوب نفسه الذي طبقت به الاختبارات القبلية. لغرض التعرف على الفروق بين الاختبارات القبلية والبعيدة لمجموعتي عينة البحث تم معالجة النتائج إحصائياً بوساطة اختبار (T) للعينات المتراكبة.

فتبين أن تدريبات التلاعب بالسرعة تأثير إيجابي في تطوير تحمل السرعة لدى طالبات المرحلة الرابعة في كلية التربية الرياضية - جامعة بغداد إضافة إلى وجود فروق معنوية بين المجموعة التجريبية والمجموعة الضابطة في الاختبارات البعيدة لتحمل السرعة ولنصالح المجموعة التجريبية كما أن المجموعة التجريبية حققت نسب تطور أفضل من المجموعة الضابطة في اختبار تحمل السرعة.

دراسة ونج وآخرون (Wong, et al., 2010) هدفت الدراسة إلى تحديد أثر التدريب الفتري عالي الشدة على بناء القوة العضلية قبل الموسم الرياضي لدى اللاعبين المحترفين لكرة القدم، ولتحقيق ذلك أجريت الدراسة على مجموعتين الأولى تجريبية (n=20) والأخرى ضابطة (n=19) حيث مارست المجموعة الضابطة التدريبات الاعتيادية لمدة ثمانية أسابيع، بواقع تدريبين في الأسبوع إضافة إلى ذلك استلم البرنامج على 4 مجموعات للقوة العنقية (6) تكرارات أقصى ما يكون، تمرينات سحب الذراعين، وثب سكوات، وتمارين المقعد الوسطي، بينما كان برنامج التدريب الفتري عالي الشدة للمجموعة التجريبية (16) مرة للعدو لمدة 15 ثانية بشدة (120%) من أقصى سرعة لكل لاعب، وبفترة راحة (15 ثانية) بعد كل عدو، أي العمل إلى الراحة (1:1). أظهرت نتائج الدراسة وجود تحسن في الحد الأقصى لاستهلاك الاكسجين والقوة العضلية وزمن عدو 30 مترا، والمسافة المقطوعة في اختبار يو-يو، والقدرة العضلية للرجال لدى أفراد المجموعة التجريبية ودرجة أفضل من أفراد المجموعة الضابطة.

دراسة إبراهيم (2010) التي هدفت إلى التعرف إلى تأثير منهج تدريبي مقترح باستخدام التدريب الفتري عالي الشدة في تطوير تحمل السرعة الخاصة وعلاقتها بانجاز ركض 1100 م.
حاجز استخدام الباحث المنهج التجريبي لملاءمتة طبيعتة البحث واستخدام تصميم المجموعتين الضابطية والتجريبية. تم إجراء الدراسة على عينة من نخبة عدائي أندية العراق فئة الشباب بأعمار (19) سنة وعدهم (12) عداءً إذ تم اختيارهم بطريقة العدامة وقد قسمهم الباحث إلى مجموعتين تجريبيتين ووزعوا عليها عشوائياً عن طريق القرعة إذ ملت الأرقام الفردية المجموعة التجريبية والتي تستخدم المناهج التدريبي المقترح لتطوير تحمل السرعة الخاصة لدى عدائين محجز 110 متر إما الأرقام الزوجية مثل المجموعة الضابطة والتي تتدريب حسب المناهج المعدة من قبل مدربهم. وأظهرت نتائج الدراسة أن العمل باستخدام المناهج المقترح إلى تطوير تحمل السرعة لدى إفراد المجموعة التجريبية.

دراسة فيرنكو، وآخرون (2010) والتي هدفت تحديد التغير في النبض لدى ناشئي كرة القدم، ولتحقيق ذلك أجريت الدراسة على عينة مكونة من (8) ناشئين متوسط أعمارهم (14.6) عاماً ومن يتدربيون أسبوعياً من (10-20) ساعة لمدة (5) شهر. أظهرت نتائج الدراسة وجود تأثير للتدريب، حيث كانت القيم للمتغيرات بعد (5) شهر كما يلي: نبض الراحة (60.3) نبضة/ دقيقة، والحد الأقصى لاستهلاك الأكسجين (56.02) مليترات/ كجم/ دقيقة، ونسبة شحوم الجسم (12.2%)، وكثافة الجسم (59.3) كجم، ومؤشر كتلة الجسم (20) كجم/ م2، وكثافة الجسم الخالية من الشحوم (52) كجم.

دراسة عاشور (2009) وقد هدفت إلى التعرف إلى تأثير برنامج تدريبي باستخدام التدريب التكراري مقترح للسرعة بكرة القدم، حيث استخدم الباحث المنهج التجريبي نظرية لملاءمتة طبيعتة الدراسة، وتم اختيار العينة بطريقة العدامة من طلبة المرحلة الثانية في فرع التربية الرياضية في كلية التربية الأساسية الجامعة المستنصرية. وذلك كون مادة كرة القدم هي إحدى المقررات للفصل الدراسي الثالث. وبلغت العينة (27) طالباً بعد أن استبعد ثلاثة لاعبين وذلك لتثبيتهم لعام الدراسة 2002. وكانت نسبة العينة 90% من المجموع الأصلي وكان متوسط أعمار الطلبة بين 20-21 سنة. وأظهرت النتائج أن هناك فروقًا واضحة حيث كانت سرعة الطلبة في الاختبار البعدي أكبر من الاختبار القبلي وزمنهم أقل.
دراسة المطري (2009) التي هدفت إلى التعرف إلى تأثير تدريب تحمل القوة على بعض المتغيرات البدنية والفسيولوجية والمستوى الرقمي، وكذلك التعرف إلى الفترات الزمنية للبرنامج المقترح على تحسين بعض المتغيرات البدنية والفسيولوجية والمستوى الرقمي، وقد تكونت عينة الدارسة من (5) لاعبين من منتخب الأمن العام والقوات المسلحة لجري المسافات الطويلة في عمان، وقد استخدمت الباحثة المنهج التجريبي عن طريق تصميم برنامج تدريبي لمدة (12) أسبوعاً بواقع ثلاث وحدات تدريبية في الأسبوع، وقد أشارت نتائج هذه الدارسة إلى وجود فروق ذات دلالة إحصائية بين القياسين القبلي والبعدي على بعض المتغيرات الفسيولوجية والقياسات الجسمية (الحذ الأقصى لاستهلاك الأوكسجين ونسبة الدهون) كما أشارت النتائج أنه لم تظهر فروق دالة إحصائية بالنسبة لمتغيرات (السرعة، القوة، تحمل السرعة، نبض الراحة، جري 5000 م).

دراسة عبد الكريم وآخرون (2008) التي هدفت إلى التعرف إلى تأثير استخدام تدريبات مفترحة لتطوير تحمل السرعة الخاصة وإنجاز ركض 1500 متر. وقد استخدم الباحث منهج التجريبي نظراً لملامته طبيعة الدارسة على عينة عشوائية تم اختيارها بالطريقة العمية من
فئة الناشئين (14-16) وععدهم (عاجليه) الرياضيين، حيث تم تقسيمهم على مجموعتين تجريبتين ووزعوا عشوائياً عن طريق القرعة. إذ مثلت الأرقام الفردية المجموعة التجريبية الأولى التي تستخدم التدربات المقترحة لتطوير تحمل السرعة الخاصة وإنجاز ركض 1500 متر فعًن طريقة هذا النوع من الاختبار (يعطي الباحث فرصة متساوية لكل أفراد المجتمع بأن يكونوا ضمن العينة المختارة). أظهرت نتائج الدراسة أن أسلوب العمل باستخدام التدربات المقترحة أدت إلى تطوير تحمل السرعة الخاصة وإنجاز ركض مسافة 1500 متر لدى أفراد المجموعة التجريبية. كما أظهرت أيضاً أن تقسيم مسافة 1500 متر إلى مسافات مختلفة ساعد على تطوير تحمل السرعة وإنجاز ركض 1500 متر لدى أفراد المجموعة التجريبية.

دراسة دوفيلد وآخرون (2006) التي هدفت إلى معرفة أثر التدريب الفكري Vo2max على الشدة على استجابة الحد الأقصى لاستهلاك الأوكسجين عالي الشدة على استجابة الحد الأقصى لاستهلاك الأوكسجين وبيئة تمارين ثابتة، وذلك على عينة قوامها (10) إناث من لاعبات مراكز اللياقة البدنية، حيث أجريت لهم اختبارات لتحديد الحد الأقصى لاستهلاك الأوكسجين القصوى وعنبى اللاعبين وقد استمرت لمدة (8) أسابيع وواقع ثلاثة أيام في الأسبوع، وقد توصلت الدراسة إلى وجود تحسين في الاستجابة القصوى لاستهلاك الأوكسجين والتي ازدادت بعد التدريب، وبالتالي استنتج الباحثون أنه بسبب الأبحاث السابقة أن برنامج التدريب الفكري عالي الشدة قد زاد الحد الأقصى لاستهلاك الأوكسجين في التمرين ثابتة الشدة وخفض العجز الباركي للمؤسسين خلال تمارين الجري الثابت.

دراسة محمد، وآخرون (2005) التي هدفت إلى التعرف على أثر استخدام طريقة التدريب الفكري المراجع الشدة والتدريب التكراري في تطوير القوة القصوى لعضلات الرجلين، استخدام الباحث المنهج التجريبي نظراً لملامته لطبيعة الدراسة، تم اختيار العينة بالطريقة العمدية من طلاب المرحلة الأولى في كلية التربية الرياضية بجامعة بغداد للعام الدراسي (2004 -2005) والبالغ عددهم (52) طالباً. يمثلون نسبة (50%) من طلاب القسم، أظهرت نتائج الدراسة فاعلية كل من طريقة التدريب الفكري عالي الشدة والتدريب التكراري في تطوير القوة العضلية لعضلات الرجلين.
دراسة البيباتي، ويوسف (2004) التي هدفت إلى التعرف إلى تأثير برنامج تدريب مقترح
لتطوير بعض القدرات البدنية وبعض المهارات الأساسية لأعمر تحت 17 سنة بكلا الاتجاهي،
اشتملت عينة الدراسة على (40) لاعبا تم تقييمهم إلى مجموعتين تجريبية وعددها (18) لاعباً
وضابطية وعددها (18) لاعبا بعد استبعاد حراز المرمى، واستغرق تنفيذ البرنامج (8) أسابيع
بواقع ثلاث وحدات تدريبية أسبوعيا لكل من المهارات الأساسية والقدرات البدنية، أظهرت نتائج
الدراسة تطور في مستوى أداء اللاعبين في جميع المهارات الأساسية والقدرات البدنية لدى
المجموعتين التجريبية والضابطية بين الاختبارين الفعلي والبعدي ولتلاقي الاختبار البعدي وكانت
نسبة التطور لدى المجموعة الضابطية أقل مقارنة بنتائج المجموعة التجريبية.

دراسة محمد (2004) التي هدفت إلى التعرف إلى أثر استخدام أساليب مختلفة لتدريبات
الفارتك على بعض المتغيرات البدنية والبيولوجية ومستوى الإنجاز الرقمي لمتسابقي 800 م
1500م، الذي استخدم الباحث المنهج التجريبي بطريقة القياس القفلي والبعدي بتصميم
مجموعتين قاووم كل منهما 4 لاعبين من لاعبي نادي الشمس إحداهما تجريبية واستخدمت طريقة
Astrand Fartlek والأخرى تجريبية ثانية واستخدمت طريقة Gerechler Fartlek
أظهرت النتائج أن التدريب باستخدام طريقة الفارتك يؤدي إلى تحسين الإنجاز الرقمي، وتحسين
معدلات النبض، وتحسين القدرات البدنية للاعب المسافات المتوسطة. كما أظهرت نتائج
Astrand Fartlek أفضل من طريقة Gerechler Fartlek
في نتيجة المستوى الرقمي والمتغيرات الفسيولوجية للاعبي المسافات المتوسطة.

دراسة يوسف، وعطية (1998) التي هدفت إلى التعرف إلى تأثير برنامج تدريبي مقترح
باستخدام طريقة الفارتك لرفع مستوى الكفاءة الوبنية للجهاز الدورلي التنفسي والقدرة الحركية
للمدارس الصيفية، وقد استخدمت الباحثين المنهج التجريبي بتصميم التجربة على مجموعتين
أخدموها تجريبية والأخرى ضابطة وقد استخدمت عينة قوامها (500) طفلة أعمارهن مئ (6:12)
سنة وتتم تقييمها إلى مجموعتين إحداهما تجريبية والأخرى ضابطة. وقد أظهرت النتائج
أن البرنامج التدريبي المقترح له تأثير إيجابي على رفع مستوى الكفاءة الوبنية للجهاز الدورلي
التنفسي وكذلك انخفاض معدلات النبض أثناء الراحة. كما أظهرت نتائج الدراسة أيضاً أن
البرنامج المقترح بوساطة الفارتك أثر تأثيراً إيجابياً على اختبارات القدرة الحركية.
دراسة ليندسي وآخرون (1996) التي هدفت إلى التعرف إلى أثر برنامج تدريبي عالي الشدة باستخدام التدريب الفتري على زمن أداء (40) كيلومتر دراجات وشملت عينة الدراسة (8) من متسابقي الدراجات وتم اختيار جميع أفراد العينة بثلاثة قياسات في مناسبات مختلفة للتحقق من ثبات مستوى الأداء لديهم تم تدريب أفراد العينة بمعدل (300) كيلومتر مقسمة من (6 - 8) مجموعات 5 دقائق تكثار بشدة 80% من أقصى قدرة وقت راحة (60) ثانية بين المجموعات، وأظهرت النتائج أن التدريب الفتري مرشح الشدة أدى إلى تحسن دال إحصائياً زمن أداء (40) كيلومتر.

دراسة بسيوني، وشكري (1995) التي هدفت إلى التعرف إلى تأثير تدريبات الجري الأكسجيني واللاكسجيني على السرعة وتحمل السرعة للاعب كرة السلة. استخدم الباحث المنهج التجربي نظراً للاستقلالية الطبيعية الدراسة على عينة قوامها (30) لاعبًا من لاعبي كرة السلة تحت (18) سنة وقد خلصت الدراسة إلى أن التدريب اللاهوائي يؤدي إلى تحسين متغيرات الدراسة أكثر من التدريبات الهاوية.

دراسة هاري جولبي وموريس مور (1993) التي هدفت إلى وضع برنامج لمدة عشرة أسابيع بمعدل من (3: 4) وحدات تدريبية أسبوعياً باستخدام طريقة الفارتك لتحقيق أعلى مستوى لللياقة البدنية. كانت عينة البحث من العدائين للفرق القومي. وقد أظهرت النتائج وجود علاقة بين استخدام طريقة اختلاف الأماكن داخل البرنامج (طريقة الفارتك) ورفع اللياقة لدية عينة الدراسة.

ثانيا: الدراسات التي تتعلق بالمتغيرات الفسيولوجية قبل الدراسة وقسمها الباحث إلى خمسة أنواع وهي:

- الدراسات المتعلقة بالحد الأقصى لاستهلاك الأكسجين

دراسة هوب وآخرون (2013) (Hoppe, et al.) التي هدفت إلى تحديد العلاقة بين ثلاثة اختبارات ميدانية والحد الأقصى لاستهلاك الأكسجين لدى اللاعبين المحترفين لكرة القدم في السويد، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (11) لاعباً متوسط أعمارهم (23.8) سنة، فيما يتعلق بالحد الأقصى لاستهلاك الأكسجين وصل المتوسط إلى (58.2) مليلتر/كم/ دقيقة.
دراسة أنتوننيو وآخرون (2012) التي هدفت لتحديد الأداء البدني خلال مباريات كرة القدم لدى الشباب في البرتغال، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (39) لاعبًا. متوسط العمر لديهم (15.6) سنة، وتوصلت الدراسة إلى أن متوسط الحد الأقصى لاستهلاك الأكسجين (VO2max) وصل إلى (61.8) ميليرت/كم/دقيقة، إضافة إلى وجود فروق ذات دالة إحصائية في (VO2max) تبعًا لموقع الملعب ومصلحة لاعب خط الوسط، ويليهم لاعبو الهجوم، وأخيرًا لاعبو الدفاع، وفما يتعلق بأقصى نسب وصل المتوسط إلى العينة ككل إلى (197) نبضة/دقيقة.

دراسة أنتوننيو وآخرون (2012) التي هدفت التعرف إلى مستوى الحد الأقصى لاستهلاك الأكسجين والقدرة اللااكسميجينية والتمثيل الغذائي خلال الراحة وتركيب الجسم لدى لاعبات كرة القدم في الضفة الغربية والعلاقة بين المتغيرات إضافة إلى تحديد الفروق في القياسات قبل الدراسة تبعًا إلى متغير مركز الملعب. ولتحقيق ذلك أجريت الدراسة على عينة قوامها (55) لاعبة، وكان متوسط العمر، وطول القامة، وكثافة الجسم لديهن على التوالي (15.58 سنة، 1.59 متر، 59.16 %). وتوصلت الدراسة إلى أن المتوسط الحسابي إلى متغيرات الحد الأقصي لاستهلاك الأكسجين والقدرة اللااكسميجينية (عشرة 40 مترا، والثوب العمودي والثوب الطويل، ومعادلة نويس) والتمثيل الغذائي خلال الراحة وتركيب الجسم (مؤشر كتلة الجسم، ونسبة الشحم، وكثافة الشحم، وكثافة الجسم الخالية من الشحم) كانت على التوالي (0.84 ميليرت/كم/دقيقة) (7.55 ثانية) (33.69 سم) (166.6 سم) (97.89كم/ثانية) (1352.5 سرعة/يوميا).

دراسة داروس وآخرون (2012) التي هدفت إلى بناء اختبار لقياس الحد الأقصي لاستهلاك الأكسجين للاعبي كرة القدم، ومقارنته في اختبار اليوبي تريم (Treadmill) وتكوين عينة الدراسة من (24) لاعب كرة القدم حيث يكون الاختبار من مربع محيطه يبلغ (80) متر طول كل ضلع (20) مترا، تم أخذ قياسات كل من (الحد الأقصي لاستهلاك
VO2max (HR max) and the lowest (HR max) was shown to be 55.485 ± 0.191 L/min/kg. The study also showed that there was a correlation between the highest VO2max and the distance covered in the test.

The Maress et al. (2012) study, which identified the effect of a 5-week program on the aerobic capacity of the leg muscles, found that VO2max increased in a dose-dependent manner with increasing distance covered in the test.

De Maress, & et, al. (2012) studied the effect of a 12-week program on the VO2max and the time to exhaustion. They found that VO2max increased by 10%, while the time to exhaustion decreased by 20%.

Can, 2010 study found that VO2max increased by 15% in the group that performed 10,000 m of swimming in a pool.

Brien Bj, et, al. (2008) studied the effect of a 12-week program on the VO2max and the time to exhaustion. They found that VO2max increased by 15%, while the time to exhaustion decreased by 20%.

The study also showed that there was a correlation between the highest VO2max and the distance covered in the test.

The study also showed that there was a correlation between the highest VO2max and the distance covered in the test.

The study also showed that there was a correlation between the highest VO2max and the distance covered in the test.
مدة كل فترة 20 دقيقة)، وكانت أهم نتائج هذه الدراسة هي الحصول على معدل متوسط أعلى من الجري باستخدام التدريبات القتارية. واكتشفت هذه الدراسة أن الجري باستخدام التمارين القتارية ساعد بشكل أفضل على تحسين الحد الأقصى لاستهلاك الأوكسجين والتحسين في استمرارية الأداء أكثر من التدريب بمعدل ثابت.

دراسة (أبو خيط 2007) التي هدفت إلى معرفة أثر برنامج تدريبي هوائي على بعض المتغيرات الفسيولوجية عند لاعبي كرة القدم، وتكونت عينة الدراسة من (20) لاعباً من لاعبي كرة القدم في نادي العجيلات في الموسم (2006-2007). وتتم تقسيمهم إلى مجموعة تدريبية وأخرى ضابطة حيث تم أخذ قياسات كل من (معدل النبض في الراحة وضغط الدم الانقباضي وضغط الدم الانبساطي والحد الأقصى لاستهلاك الأكسجين (VO2max)) حيث أظهرت النتائج أن متوسطات القياسات المذكورة في القياس البعدي كانت على التوالي: (66.09، 119.4، 78.40، 40.8، 45 BMI و 160 RMR و 54.9 مليمتر/كم²). كما أظهرت النتائج أن للبرنامج أثراً جيداً على جميع المتغيرات الفسيولوجية.

دراسة كاساجيوس وكاستيجنا (2007) التي هدفت إلى تقييم اللياقة البدنية الأكسجينية عند الحكام النخبة لكرة القدم في إسبانيا. كانت عينة الدراسة من (45) حكماً موزعين على أعمار مختلفة وقد تم أخذ قياسات كل من (العمر الطول وكتلة الجسم ونسبة الشحوم (% BF) والحد الأقصى لاستهلاك الأكسجين (VO2max) وأقصى نبض (HR max)) أظهرت النتائج أن متوسطات القياسات المذكورة وصلت لدى العينة ككل على التوالي: (55 سنة، 78.1 كجم، 11.3%، 54.9 مليمتر/كم²، 182 نبضة/د). دراسة (القدومي، ونمر، 2004) التي هدفت إلى التعرف على الحد الأقصى لاستهلاك الأكسجين ومؤشر كتلة الجسم والتمثيل الغذائي خلال الراحة (BMI) VO2Max(RMR) لدى لاعبي أندية الدرجة الممتازة لألعاب الرياضية الجماعية في فلسطين، وتحقيق ذلك أجريت الدراسة على عينة قوامها (160) لاعبا، بواقع (60) لاعباً لكرة القدم، و (40) لاعباً لكرة اليد.
الطائرة، و(30) لا يلعبا ليلة، و(30) لا يلعبا هم. حيث كان متوسط (أعمارهم، أوزانهم، وأطولهم) على التوالي: (66 (22.66 سنة، 33.33 كغم، 1.76 متر). إذ طبًح عليهم اختبار الخطوة لجامعة كاليفورنيا لقياس (VO2Max)، ومعادلة (BMI) الوزن/كم/مين/طول بالمتر، ومعادلة (DeLorenzo et al، 1999، et al) أظهرت نتائج الدراسة أن مستوى (RMR)، و(VO2Max)، و(BMI)، كان جيدا عند أفراد العينة حيث كانت القيم على التوالي: (43.40 hindi/كم/ دقيقة، 32.71 كغم/م²، 906.72 أسمر/يوميا) وكذلك أظهرت النتائج أنه لا توجد فروق ذات دلالة إحصائية في (VO2Max) تباع للعبة، بينما كانت الفروق تباع لمتغيري (RMR) و(BMI) تباع لمتغير اللعبة.

دراسة (الكودوني ونمر، 2004 (ب)) هدفت إلى التعرف إلى مستوى الحد الأقصى لاستهلاك الأكسجين (VO2Max)، وتركيب الجسم لدى الطلاب الذكور في قسم التربية الرياضية في جامعة النجاح الوطنية، لتحقيق ذلك أجريت الدراسة على عينة قوامها (88) طالبًا من مختلف المستويات الدراسية وذلك على النحو الآتي: (18) سنة أولى (33) سنة ثانية (15) سنة ثالثة و(22) سنة سومزة، وكانت متوسطات العمر والطول والوزن على التوالي: (21.14 سنة، 1.77 متر، 73.71 كغم). وبعد عملية جمع البيانات باستخدام اختبار الخطوة لجامعة كاليفورنيا لقياس (VO2Max) ومليف الدهن ومعادلة بالسك وجاكسون (Balck، Jakson) لتحديد نسبة الدهن، وزن العضلات، أظهرت نتائج الدراسة أن متوسط الحد الأقصي لاستهلاك الأكسجين وصل إلى (42.63) مليتر/كم/ دقيقة ومتقاطع نسبة الشحم (10.20)% ومتقاطع وزن العضلات (67.06) كغم. كما أظهرت النتائج وجود فروق ذات دلالة إحصائية في الحد الأقصي لاستهلاك الأكسجين ونسبة الشحم تباع للمستوى الدراسى ونسبة طلاب السنة الرابعة، مما أظهرت النتائج وجود علاقة ذات دلالة إحصائية عند مستوى (0.01) بين الحد الأقصي لاستهلاك الأكسجين (VO2Max) وتركيب الجسم عند الطلاب الذكور في قسم التربية الرياضية في جامعة النجاح الوطنية، وكانت هذه العلاقة إيجابية بين (VO2Max) وزن العضلات (LBW).
الدراسات المتعلقة بالقدرة اللاكسيجينة

دراسة (القدومي علي، 2011) وقد هدفت هذه الدراسة أن تكون إلى العلاقة بين بعض الاختبارات الميدانية المقترحة للتنبؤ بقياس العمل اللاكسيجيين لدى طلبة تخصص التربية الرياضية في جامعة النجاح الوطنية. ولتحقيق ذلك أجريت الدراسة على عينة قوامها (40) طالباً من الطلبة الذين يدرسون مساق الجمباز (1) في كلية التربية الرياضية في جامعة النجاح الوطنية من مختلف سنوات الدراسة للفصل الدراسي الثاني من العام الدراسي (2010 - 2011) حيث كان متوسط (العمر، والطول، الوزن، ومؤشر كتلة الجسم) لديهم على التوالي (20.35 عام، 176.20 سم، 72.22 كغم، 23.32 كغم). تم تطبيق الاختبارات البندية المقترحة لقياس القدرة اللاكسيجية وهي: اختبارات اليوب العمودي، واليوب الطويل، واليوب الثلاثي، والعدو 30 م، والعدو 60 م، والخطوة 15 ثانية، ثم تم تطبيق الاختبارات البندية المقترحة لقياس السعة اللاكسيجية وهي: العدو 200 م، والعدو 400 م، والخطوة 60 ثانية. وأظهرت نتائج الدراسة أن مستوى القدرة والسعة اللاكسيجية لدى طلبة تخصص التربية الرياضية في جامعة النجاح الوطنية كان عاليًا، ووصلت قيمة القدرة اللاكسيجية إلى (15.53 كغم.متر/ثانية) وصلت الدراسة إلى وجود علاقة ارتباطية إيجابية ذات دالة إحصائية عند مستوى الدلالة (α=0.05) بين جميع اختبارات القدرة اللاكسيجيجية المقترحة لدى طلبة تخصص التربية الرياضية في جامعة النجاح الوطنية، مازادا معادلة سيريز وآخرون، والعدو 90 م.

دراسة جيل وآخرون (Gil, et, al, 2007) التي تهدف إلى بحث بعض الصفات الفسيولوجية لأنبجي كرة القدم وربطها بميزات مركز الالعب وعملية اختيار اللاعبين. حيث أجريت الدراسة على عينة من (242) لاعبًا لكرة القدم، الذين تراوح متوسط أعمارهم 17.31 سنة، واحتسبت الدراسة متأجرات مثل الطول، الوزن، مؤشر كتلة الجسم، وتركيب الجسم، كما استخرجت الدراسة الحد الأقصى للاستهلاك اللاكسيجيين باستخدام معادلة استرمان (Astrand).
الدرسة ماركوس (2004) التي هدفت إلى التعرف على العلاقة بين القدرة اللااكسيجئنية المنتجة، والقدرة التنبوية لاختبارات السرعة (30 م)، والقوة. وقد تكونت عينة الدراسة من (14) لاعباً ألعاب قوى، متوسط أعمارهم (14-20) عاماً، و(9) لاعبات ألعاب قوى، متوسط أعمارهن (19.78) عام في جامعة ولاية داكوتا الجنوبية. إذ استخدم الباحث النهج الوصفي بأحد صور الدراسة الارتباطية. وكان من أهم الاختبارات المستخدمة في الدراسة اختبار الوثب العمودي، اختبار مارجاريا - كالمان للخطوة، اختبارات العدود (10 م، 30 م، 40 م)، ومعادلة لويس. وأظهرت نتائج الدراسة قيم المتوسطات الحسابية الآتية: الوثب العمودي (67.81 سم)، ومعادلة لويس (129.1 كغم.متر/ث)، اختبار مارجاريا - كالمان للخطوة (1305.4 واط)، والقدرة القصوى (18.4 واط)، والعدود (10 مترب/ث) والعدود 30 متر (3.55 ث)، والعدود 40 متر (5.56 ث). أما العلاقات الارتباطية بين اختبار العدود (10 م) واختبار العدود (40 م، 30 م) كانت القيم على التوالي (0.94، 0.88)، وكذلك العلاقات الارتباطية بين اختبار الوثب العمودي واختبار العدود (40 م، 30 م) كانت القيم على التوالي (0.77-0.75-0.75)، أما قيمة معامل الارتباط بينسون بين العدود (40 م) والعدود (30 م) كانت (0.98)، وقيم الارتباط بين معادلة لويس واختبار العدود (40 م، 30 م) كانت على التوالي (0.64، 0.67)، وكذلك القيم الارتباط بين اختبار مارجاريا - كالمان للخطوة واختبار العدود (40 م، 30 م) كانت على التوالي (0.74-0.75).

دراسة هيرتج ووهاي (2002) التي هدفت إلى التعرف إلى تحديد أفضل معادلة تنبوية بالقدرة اللااكسيجئنية باستخدام الوثب لتقييم لاعبي الكرة الطائرة وذلك باستخدام منصة القوة، ومعادلة القدرة اللااكسيجئنية. حيث استخدم الباحث النهج الوصفي الارتباطي. تكنت عينة الدراسة من (18) لاعباً الكرة الطائرة، تراوحت أعمارهم من
(18 - 26) عاماً، قسموا إلى: مجموعة (أ) التي تكونت من (9) لاعبين محترفين في الدوري الفرنسي للكرة الطائرة، حيث كان متوسط العمر، والطول، والوزن لهم على التوالي (21.1 عام، 185.7 سم، 78.5 كغم)، والمجموعة (ب) التي تكونت من (9) لاعبين في الفرق الجامعية للكرة الطائرة، حيث كان متوسط العمر، والطول، والوزن لهم على التوالي (22.2 عام، 180.0 سم، 72.8 كغم). وقام جميع اللاعبين بأداء اختبار اليوث الارتدادي المنعكس على منصة القوة (Force Platform). وأظهرت نتائج الدراسة أن القدرة القصوى كانت عند المجموعة (أ) كبيرة مقارنة بالمجموعة (ب). وتم التوصل إلى وجود علاقة ذات دلالة إحصائية بين نتائج القوة القصوى على منصة القوة (Force Platform) ومعادلات لويس، وآخرون، وسريز، وآخرون، وهارمان، وآخرون بالنسبة لل集球ة الكلية (عينة الدراسة)، وكانت قيم معامل الارتباط على التوالي (0.63، 0.65، 0.69)، وكذلك أظهرت النتائج عدم وجود علاقة ذات دلالة إحصائية بين نتائج القوة القصوى على منصة القوة (Force Platform) ومعادلات لويس، وآخرون، وسريز، وآخرون، وهارمان، وآخرون، المجموعتين (أ) و(ب).

دراسة (القدومي، 1999) التي هدفت للتعرف إلى مستوى القدرة اللاكتسينية عند لاعبي فرق كرة القدم والطائرة واليد والسلة في جامعة النجاح الوطنية، وقد تمت الدراسة على عينة قوامها (50) لاعبيًّا تم اختيارهم بطريقة العشوائية ووزعت تحت للألعاب “كرة القدم (14) لاعباً والطائرة (12) لاعباً واليد (12) لاعباً والسلة (12). وقد استخدم الباحثان أربعة اختبارات لقياس القدرة اللاكتسينية وهي اليوث العمودي، اليوث الطويل من اللاعب، عدد الـ 30 سم، ومعادلة لويس لقياس دليل القدرة. وقد أظهرت النتائج ضعف مستوى القدرة اللاكتسينية عند لاعبي فرق الألعاب الجماعية بالإضافة إلى وجود فروق في اختيار اليوث العمودي بين لاعبي كرة القدم والطائرة واليد والسلة لصالح لاعبي كرة الطائرة وكرة اليد، أما اختبار العدود الـ 30 سم فكانت الفروق لصالح لاعبي كرة القدم، ومعادلة لويس بين لاعبي القدم واليد الـ 30 سم، والطاولة كانت لصالح لاعبي القدم والسلة والطاولة، ولم توجد فروق على اختبار اليوث الطويل من اللاعب، بين لاعبي فرق الألعاب الجماعية.
الدراسات المتعلقة بتركيب الجسم

دراسة ماركو وآخرون (Marco & et al, 2012) التي هدفت إلى معرفة تركيب وحجم الجسم للاعبين الذين يلعبون في دورى الدرجة الأولى لكرة القدم في البربرو، إضافة إلى تحليل أثر متغير مركز اللعب (هجوم، وسط، دفاع، حارس مرمى)، وتحقيق ذلك أجريت الدراسة على عينة مكونة من (68) لاعباً، أظهرت النتائج أنه لا توجد فروق دالة إحصائياً في كل من قياسات الطول، كتلة الجسم، نسبة الشحم في الجسم، وكتلة الشحم، تبعاً لمراكز اللعب المختلفة، كما أظهرت النتائج أن لاعبي خط الوسط كانوا أقل من غيرهم في كتلة الخاليا من الشحم، كما أنهم أقل وزن من غيرهم، كما أظهرت النتائج أن متوسط كل من (العمر، الطول، كتلة الجسم، نسبة الشحم (%BF)، وكتلة الجسم الخاليا من الشحم (FFM)، كانت على التوالي لعينة الدراسة ككل: (27 سنة 187 سم 75.9 كغم 11.4% 67.1 كغم)، كما أظهرت النتائج أن كل من (نسبة الشحم (%BF)، وكتلة الجسم الخاليا من الشحم (FFM)، كانت على التوالي لحوراس المرمى: (11.8% 72.7 كغم)، وعند المدافعين كانت على التوالي: (11.28% 67.7 كغم)، وعند لاعبي الوسط جاءت على التوالي: (11.76% 63.8 كغم).

وعند المهاجمين جاءت على التوالي: (10.68% 69.48 كغم).

دراسة نيكوليدز ونيكوز (Nikolaides, & Nikos, 2011) التي هدفت للتعرف إلى التركيب والبناء الجسمى عند لاعبي كرة القدم الشبان، وكانت عينة الدراسة مكونة من (279) لاعباً، تم تصنيفهم إلى تسع مجموعات حسب الفئات العمرية، حيث كانت فئة الكبار من عمر (21-31) سنة، وتم أخذ قياسات (الطول، نسبة الشحم في الجسم % BF)، وكتلة الجسم الخاليا من الشحم (FFM)، حيث وصلت نسبة الشحم (%BF) إلى (15.6%)، ومتوسط الطول (179)سم، وكتلة الجسم الخاليا من الشحم (FFM) وصل إلى (60.07)كغم، وأظهرت نتائج الدراسة أن العمر يرتبط إيجاباً مع كتلة الجسم الخاليا من الشحم، ويرتبط ارتباطاً سلبياً مع نسبة الشحم في الجسم ومؤشر كتلة الجسم.
دراسة (شاكر، والأطرش، 2011) التي هدفت للتعرف إلى مستوي قياسات تركيب الجسم والتمثيل الغذائي خلال الراحة لدى لاعبي فرق الألعاب الجماعية والفردية في جامعة النجاح الوطنية، كذلك التعرف إلى الفروقات في قياسات تركيب الجسم والتمثيل الغذائي خلال الراحة بين لاعبي فرق الألعاب الفردية والجماعية، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (32) لاعباً (16) لاعباً من فرق الألعاب الجماعية و (16) لاعباً من فرق الألعاب الفردية، وأظهرت النتائج الدراسة وجود فروقات ذات دلالة إحصائية بين لاعبي الألعاب الجماعية والفردية في متغيري (مؤشر كثافة الجسم ونسبة الشحوم) ولصالح فرق الألعاب الجماعية في حين لا يوجد فروقات ذات دلالة إحصائية في المتغيرات الأخرى (التمثيل الغذائي خلال الراحة وكتلة الجسم، والكتلة الخالية من الشحوم وكتلة الماء).

دراسة (حمارشة وأخرون 2011) التي هدفت إلى تحديد مؤشر كثافة الجسم لدى طلبة جامعة النجاح الوطنية في نابلس وجامعة القدس، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (1500) طالب وطالبة من كليات الآداب والاقتصاد والعلوم والهندسة في جامعة النجاح الوطنية، و (900) طالب وطالبة، ومن كليات العلوم والآداب والهندسة في جامعة القدس (أبو ديس)، وأظهرت النتائج أن متوسط مؤشر كثافة الجسم عند الطلاب بشكل عام كان جيداً في ضوء المعايير العالمية، وكذلك أظهرت النتائج عدم وجود فروقات ذات دلالة إحصائية في مؤشر كثافة الجسم بين طلبة جامعة النجاح الوطنية وجامعة القدس.

دراسة (القدومي و الطاهر، 2010) هدفت هذه الدراسة إلى بناء مستويات معنوية لمؤشر كثافة الجسم ومصاحة سطح الجسم والوزن المثالي ونسبة محيط الوسط لمحيط الحوض والتمثيل الغذائي خلال الراحة لدى طلبة جامعة بيرزيت إضافةً لتحديد العلاقة بين هذه المتغيرات ونسبة الفاصلة للبدانة لدى الطلاب، ومن أجل تحقيق ذلك أجريت الدراسة على عينة قوامها (421) طالباً وطالبة وكانت متوسطات العمر والطول والوزن ومؤشر كثافة الجسم والوزن المثالي، والتمثيل الغذائي خلال الراحة: للذكور (18.59 سنة، 1.75متر، 24.46 كجم، 18.59 كجمم²، 93.91 كجم، 68.93 كجم، 1759.55 سعر/يوم، والإثاث: 18.37 سنة، 75.22 كجم، 18.37 كجمم²، 93.91 كجم، 68.93 كجم، 1759.55 سعر/يوم).
دراسة فيشاو وآخرون (Vishaw & et al, 2010) والتي هدفت للمقارنة بين خصائص الجسم البشري، والنمط الجسدي، وتركيب الجسم للاعب كرة السلة، والطائرة الذكور في جامعة (Guru Nanak Dev University Amritsar)، وتحقيق ذلك أجريت الدراسة على عينة قوامها (36) لاعب كرة طائرة، و(27) لاعب كرة سلة، تتراوح أعمارهم من (18-25) سنة، تم اختيارهم من جميع الكليتين التابعة للجامعة الموجودة في الهند، وتتم قياس (الطول، وكثافة الجسم، وسمك ثياب الجلد، وانساتعات)، أظهرت النتائج أن هناك فروقاً دالة إحصائياً بين لاعبي السلة والطائرة، ولصالح السلة في كل من: (الطول، وكثافة الجسم، ومساحة سطح الجسم، وسمك ثياب الجلد، ومحيط الساق، ومجموع الشحوم في الجسم، ونسبة البدانة في الجسم) بينما كانت كثافة الجسم عند لاعبي كرة الطائرة أعلى من كرة السلة، كما أظهرت أن متوسط كل من الطول، وكثافة الجسم، ومؤشر كثافة الجسم، ومساحة سطح الجسم، ومحيط الساق، وكثافة الجسم، ونسبة الشحوم(%BF)، وكثافة الجسم، وكتلة الجسم الخالية من الشحوم (BSA)، حيث وصلت عند لاعبي كرة الطائرة على التوالي: 13.3% (63.1 كغم) وعند لاعبي كرة السلة كانت على التوالي: 15.9% (66.7 كغم).

دراسة لورا وآخرون (Laura & et al, 2009) التي هدفت إلى معرفة التركيب الجسدي للاعبي كرة القدم، ومعرفة الاختلافات عند اللاعبين تبعاً لموقع اللاعب والعرق، وتتم تقسيم التركيب الجسدي في استخدام طاقة موزعة من الأشعة الفوق بنفسجية (X-Ray)، وتشمل عينة الدراسة من (64) لاعب كرة قدم، تم اختيارهم من أربعة أديرة متتالية في الدوري الإنجليزي، وتم قياس كثافة المعادن في العظام، ونسبة العضلات، حيث أظهرت الدراسة أن نسبة العضلات، وكثافة المعادن في العظام من أهم المتغيرات في تحديد لاعبي كرة القدم، كما أظهرت أن هناك فروقاً في تركيب الجسم بين حراس المرمى واللاعبين، ولم تكن فروق في التركيب الجسدي تبعاً لمركز اللاعب، بينما أظهرت أن للعرق دوراً في التركيب الجسدي.
حيث أظهر اللاعبون الذين ينتمون إلى عروق غير قوقازية نسبة أقل في الشحوم من العرق القوقاز، كما بنيت الدراسة أن هناك تجسس بين لاعبي كرة القدم في الدوري الإنجليزي الممتاز في تركيب الجسم، كما أظهرت النتائج أن متوسط كل من (% الطول، كتلة الجسم، العمر) كانت على التوالي: (182سم 83.3كم³، 26.2 سنة)، وأظهرت النتائج أيضاً أن قياسات كل من: (الطول، وكتلة الجسم، ونسبة العضلات، ونسبة الشحوم) كانت عند حرس المرمى على التوالي: (190سم 91.2كم³ 79.9% 12.9)، ووصلت عند المدافعين على التوالي: (184سم 88كم³ 81.4% 1.6% 10.2)، وكانت عند لاعبي خط الوسط على التوالي: (178سم 78كم³ 81.1% 10.2% 9.9). التوالي: (180سم 82.3% 82.3% 9.9%)

دراسة أميت (2007) التي هدفت لمعرفة الخصائص الأنتروبوتمترية والتركيب الجسمى للاعبى كرة القدم وكرة الطائرة في ولاية البنغال الغربية الهندى، ومقارنتهم مع الأشخاص العاديين، ولتحقيق ذلك أجريت الدراسة على (50) شخصاً عادياً غير ممارسين للرياضة الذين يقومون بالأعمال المكتبية، و(12) رياضي، تم تقسيمهم إلى (82) لاعب من لاعبي كرة الطائرة، و(46) لاعب كرة قدم، وتم أخذ قياسات كل من (الطول، وكتلة الجسم، ومؤشر كتلة الجسم (BMI)، ومساحة سطح الجسم (BSA)، وسمك ثنايا الجلد، ومحيط الوسط، ونسبة الشحوم (BF)، والكتلة الخالية من الشحوم ((LBW))، أظهرت النتائج أن (مساحة سطح الجسم (BMI)، ومؤشر كتلة الجسم (BMI)، ونسبة الشحوم (BF)، ونسبة الجسم بدون شحوم (BSA)، والكتلة الخالية من الشحوم (LBW)، وطول القامة). كانت عند لاعبي كرة القدم على التوالي: (1.62م² 62.05كم³/م² 10.03% 89.9%) وتوقيت الإحصائية الأنتروبوتمترية لديهم نسبة شحوم ومحيط الوسط أعلى من لاعبين لكرة الطائرة، وأن الأفراد الرياضيين لديهم وزن عضلات أعلى من غير الرياضيين.
دراسة ياسوكي وآخرون (2006) التي هدفت إلى معرفة القدرة البدنية والفسيولوجية وترتيب الجسم للاعبين كرة القدم في المدرسة الثانوية في ولاية ياسوكي في اليابان، تكوّنت عينة الدراسة من (72) لاعب كرة القدم تراوحت أعمارهم من (16-18) سنة قسموا حسب مراكز اللعب (12 مهام 23 لاعب خطي الوسط 31 مدافع و6 حراس مرمى) ثم أخذ قياسات كل من (الطول وكتلة الجسم ونسبة الدهون BF وكتلة الجسم الخالية من الشحوم FFM) والحد الأقصى للاستهلاك الأكسجيني VO2max حيث وصلت متوسطات القياسات المأخوذة في الدراسة ككل على التوالي: (173 سم، 65 كجم، 58% من وزن الجسم متوسط). أما نتائج الدراسات بين مراكز اللعب في التقارير المأخوذة باستثناء حراس المرمى حيث تبين أن حراس المرمى أقل في الحد الأقصى للاستهلاك الأكسجين وتأثر في نسبة الدهون مقارنة بين مراكز اللعب الأخرى.

دراسة لويس وآخرون (2004) وقد هدفت إلى تحديد ترتيب الجسم لدى الناشئين الذكور لكرة القدم في إسبانيا، ولتحقيق ذلك أجرت الدراسة على عينة قوامها (239) ناشئًاً ممن تتراوح أعمارهم بين (9-14) سنة، وتوصلت الدراسة إلى أن متوسط نسبة الدهون لديهم (14.97%) وكتلة الجسم الخالية من الشحوم (27.64) كجم، وكثافة الجسم (32.25) كجم.

دراسة (عائد، 1998) التي هدفت إلى التعرف إلى تأثير التدريب البدني على نسبة الدهون لطلبة الأكاديمية العسكرية في العراق وتناولت عينة عمديه قوامها (38) طالبًاً بعمر 20 سنة وتوصّلت الدراسة إلى أن التدريب البدني تأثرًا إيجابيًا في خفض وزن الجسم الكلي وأشار إلى أن النسبة المئوية للدهون قد تأثرت بشكل إيجابي وأن زيادة في وزن الجسم ليست في جميع الحالات هي زيادة في نسبة الدهون وإنما من الممكن زيادة في حجم ووزن العضلات وسمك العظام.

106
دراسة (القدومي ونمر، 2010) التي هدفت إلى بناء مستويات معنوية لمؤشر كتلة الجسم ومساحة سطح الجسم والوزن المثالي ونسبة محيط الوسط لمحيط الحوض والتمثيل الغذائي خلال الراحة لدى طالبة جامعة بير زيت إضافة لتحديد العلاقة بين هذه المتغيرات، ونسبة القابلية للبدانة لدى الطلبة، لتحقيق ذلك، أجريت الدراسة على عينة قوامها (421) طالبًا وطالبة وكانت أفضل الرتب المثالية لتمتغيرات مؤشر كتلة الجسم والوزن المثالي، والتمثيل الغذائي خلال الراحة على التوالي: للذكور (20.50كجم/2.74م2،0.77سكر/يوميا) وللإناث: (17.70كجم/2.44م2،0.60سكر/يوميا).

دراسة (القدومي ونمر، 2005) التي هدفت إلى بناء مستويات معنوية لمؤشر كتلة الجسم ونسبة الدهن ووزن العضلات ومساحة سطح الجسم والتمثيل الغذائي خلال الراحة لدى طالبات تخصص التربية الرياضية في جامعة النجاح الوطنية، كما هدفت إلى معرفة العلاقة بين تلك المتغيرات وتناولت الدراسة عينة قوامها (62) طالبة. وتوصلت الدراسة إلى أن أفضل الرتب المثالية لتمتغيرات مؤشر كتلة الجسم 19,30كجم/2،ونسبة الدهن 17% وزن العضلات 21,47كجم وتمثيل الغذائي خلال الراحة 1559 سكر/يوميا.

دراسة (القدومي ونمر، 2004(أ)) التي هدفت للتعرف إلى الحد الأقصى لاستهلاك الأكسجين (V02max) ومؤشر كتلة الجسم (BMI) والتمثيل الغذائي خلال الراحة (RMR) لدى لاعبي أندية الدرجة الممتازة للألعاب الرياضية الجماعية في شمال فلسطين، وأجريت الدراسة على عينة قوامها (160) لاعب تمّضنت (60) لاعب كرة قدم و(40) لاعب كرة طائرة و (30) لاعب كرة سلة و(30) لاعب كرة يد وتوصلت الدراسة إلى مستوى الحد الأقصى لاستهلاك الأكسجين (3,40مليتر/كجم/دقيقة) ومؤشر كتلة الجسم (32,71 كجم/2) وتمثيل الغذائي خلال الراحة (1906,72 سكر/يوميا) كما أظهرت نتائج هذه الدراسة عدم وجود فروق ذات دلالة إحصائية في الحد الأقصى لاستهلاك الأكسجين تبعا لتمتير نوع اللعبة بينما أظهرت وجود فروق ذات دلالة إحصائية في متغيري مؤشر كتلة الجسم والتمثيل الغذائي خلال الراحة تبعا لتمتير نوع اللعبة.
دراسة (القدومي 2004) التي هدفت للتعرف إلى الفروق بين أربع معدلات للتنبؤ في قياس التمثيل الغذائي خلال الراحة (RMR) سعر/يومياً عند لاعبي كرة الطائرة، إضافة إلى التعرف (RMR) وأجريت الدراسة على عينة قوامها (101) في فاعلية سطح الجسم للتنبؤ في قياس (RMR) من لاعبي كرة الطائرة في فلسطين من مختلف الدرجات، وكان متوسط أعمارهم، وزنهم، وأطوالهم، وميّوز كتلة الجسم لديهم، وسطح الجسم كان على التوالي (21.02 سنة، 60.74 كجم، 1.80 متر، 22.77 كجم/م2) وقام الباحث بتطبيق أربع معدلات قياس (RMR) وهذه المعدلات هي: (DeLorenzo, et al., 1999) (WHO, 1985) وأظهرت نتائج هذه الدراسة وجود فروق ذات دلالة إحصائية بين المعادلات الأربعة المستخدمة، وكان أعلى متوسط إلى (RMR) معادلة حيث وصل إلى (38.30 سعرة يومياً، بلغها معادلة (DeLorenzo et al., 1999) (WHO, 1985) (1854.30 سعرة يومياً، بلغها معادلة (Harris & Benedict, 1999) (Mifflin, et al, 1990) (1777.95 سعرة/يومياً، وأخيراً معادلة (RMR) ومما أظهرت نتائج هذه الدراسة فاعلية مساحة سطح الجسم للتنبؤ في قياس adopt RMR بالبحث بالمعادلة الآتية: (RMR) سعرات يومياً = ((D-66.6)+((1024.402x(باستخدام BMI بالمترا المربع)).

دراسة (القدومي 2003) التي هدفت التعرف إلى مؤشر كتلة الجسم (BMI) والتمثيل الغذائي (BMR) خلال الراحة (BMR) ومن أجل تطوير معادلة لقياس (BMR) وبناء معايير لكل (BMR) وأجريت الدراسة على عينة قوامها (186) لاعبين من لاعبين الفرق المشاركة في البطولة العربية للكرة الطائرة وتوجهت الدراسة إلى أن مستوى مؤشر كتلة الجسم كان جيداً حيث بلغ المتوسط (38.38 كجم/م2) وكان المستوى جيداً بالنسبة للتمثيل الغذائي خلال الراحة لدى أفراد البعثة، حيث وصل إلى (2067.6 سعرة يومياً) وكان أفضل معيار لمؤشر كتلة الجسم (20.76 كجم/م2) وتم تطوير معادلة لقياس التمثيل الغذائي خلال الراحة بالاعتماد على طول القامة وكانت النتيجة التالي: سعر يومياً= (133.51×الطول بالمترا) - 1704.67.

دراسة إرميلين وآخرون (1997) (Armellin, et al, 1997) التي هدفت للتعرف إلى أثر تسلق المرتفعات إلى تركيب الجسم والتمثيل الغذائي خلال الراحة، وأجريت الدراسة على عينة مكونة من (12) شخساً، تم قياس الشحم وكتلة الجسم لهم و (RMR) قبل وبعد (16) يوماً من التسلق. وأظهرت نتائج الدراسة حدوث نقص في الشحم وصل إلى (2.2 كغم)، وكتلة العضلات (1.1 كغم)، والتمثيل الغذائي أثناء الراحة وصل إلى (1900 سعرة/ يومياً).

دراسة جليبرت وآخرون (1997) (Gliebter, et al 1997) التي هدفت للتعرف إلى أثر تدريبات القوة والتدريبات اللاوكسجينية على بنية الجسم والتمثيل الغذائي خلال الراحة والحد الأقصى لاستهلاك الأوكسجين عند اللاعبين، ولتحقيق ذلك أجريت الدراسة على عينة قوامها (65) شخصاً بواقع (25) ذكرًا و (40) أنثى حيث تم تقسيم العينة إلى مجموعتين: الأولى تمارس تمارين باستخدام الإقبال، والأخيرة تمارس التمارين اللاوكسجينية من خلال التبديل بالذراعين عدة أسابيع، وبوصف تدريبي (3) أيام أسبوعياً. وأظهرت النتائج وجود تراجع في (RMR) عند كلتا المجموعتين نتيجة نقص كتلة الجسم (9 كغم) بعد ثمانية أسابيع عند العينة كلها، ولم تكن الفروق دالة إحصائياً في (RMR) بين أفراد المجموعتين، وحدث عكس ذلك في عند المجموعة الثانية التي مارست التمرينات اللاوكسجينية بدرجة أفضل من المجموعة التي مارست التمارين بالذراعين.

دراسة أرسيرو وآخرون (1991) (Arciero, et al, 1991) برناة التي هدفت للتعرف إلى التمثيل الغذائي خلال الراحة لدى كلاً من الذكور والإناث، وأجريت الدراسة على (328) من الذكور و (149) من الإناث الذين تراوحت أعمارهم بين (20-80) سنة أظهرت نتائج هذه الدراسة أن التمثيل
الغذائي خلال الراحة لدى كل من الذكور والإناث وصل إلى (1740 سعرة/يوما) على التوالي وان الذكور أفضل بنسبة (23%) في التمثيل الغذائي خلال الراحة من الإناث.

- الدراسات المتعلقة بالجهاز الدوري

دراسة فيرنك وآخرون (Veronque, etal, 2010) هدفت الدراسة لتحديد التغير في النبض لدى ناشئ كرة القدم، والتحقق بذلك أجريت الدراسة على عينة مكونة من (8) ناشئين متوسط أعمارهم (14.6) عاماً، ومن يتدردون أسبوعياً من (10-20) ساعة لمدة (5) شهور، أظهرت نتائج الدراسة وجود تأثير للتدريب، حيث كانت القيم للمتغيرات بعد (5) شهر كما يلي: نبض الراحة (60.3 نبضة / دقيقة، الحدل الأقصى لاستهلاك الأكسجين (56.02) ميليتر/كغم/ دقيقة، ونسبة شحوم الجسم (12.2%) وكتلة الجسم (59.3) كغم، ومؤشر كتلة الجسم (20) كغم/م2 وكتلة الجسم الخالية من الشحوم (52) كغم.

دراسة أحمد (2009) التي هدفت التعرف إلى علاقة نسبة الشحوم في الجسم ببعض المتغيرات البدنية والوظيفية لدى طلاب كلية التربية الرياضية. وقد استخدم الباحث المنهج الوصفي على عينة عشوائية قوامها (65) طالباً متوسط أعمارهم وكتلة الجسم والطول كانت على التوالي (20.33 عام، 167.09 سم). وبلغت قيمة المتغيرات الحسابية لمتغيرات الدراسة وهي النسبة المنوية للشحوم (12.03 %)، ومعدل النبض (74.04 نبضة/د)، والضغط الانقباضي (120.5 ملم. ز)، والضغط الانبساطي (70.93 ملم. ز). وأظهرت نتائج الدراسة أن وجود ارتباط قوي بين نسبة الشحوم في الجسم مع ضغط الدم الانقباضي حيث بلغت قيمة معامل الارتباط (0.79).

ومعدل الضغط، وحجم النبض، والدفع القلبي. تم قياس هذه المتغيرات قبل أداء الاختبار على دراجة الأرجوميتر مع التدرج في زيادة الحمل من (25) واط إلى (150) واط عند الدقيقة (12). وقد أظهرت نتائج الدراسة زيادة في جميع متغيرات الدراسة ما عدا ضغط الدم الانتقابي، حيث كانت قيم متوسطات القياس القلبي لمتغيرات معدل النبض، وضغط الدم الانتقابي، وضغط الدم الانتباضي، ومعدل الضغط، وحجم النبضة، والدفع القلبي على التوالي (69 نبضة/د، 117 مليلتر زمني، 66 مليلتر زمني، 50 مليلتر زمني، 4.1 مليلتر/د 5.5 لتر/د)، أما قيم متوسطات القياس البعدي لمتغيرات معدل النبض، وضغط الدم الانتقابي، ومعدل الضغط، وحجم النبضة، والدفع القلبي على التوالي (105 نبضة/د، 138 مليلتر زمني، 64 مليلتر زمني، 74 مليلتر زمني، 87.3 مليلتر، 9.5 لتر/د).

دراسة عزب (2007) وقد هدفت إلى التعرف إلى تأثير أحمال تدريبية مقننة بالذراعين والرجلين على استجابة ضغط الدم وبعض وظائف القلب "دراسة مقارنة". وقد استخدم الباحثون المنهج التجريبي إجراء القياس القلبي والقياس البعدي لمجموعة تجريبية واحدة قوامها (18) طالباً من طلاب قسم التربية الرياضية بكلية فلسطين التقنية خضورياً تم اختيارها عشوائياً، وبلغ متوسط أعمارهم وكتلتهم على التوالي (21 عام، 65.4 كغم). أما أهم المتغيرات التي تناولتها الدراسة فهي ضغط الدم الانتقابي وضغط الدم الانتباضي والدفع القلبي وقيمة حجم النبضة باستخدام معايرة مل أرقها. وتم تطبيق اختبارين هما اختبار قوة الشد بالذراعين، باستخدام شد التجذيف من وضع الجلوس، واختبار قوة الدفع بالرجلين. وظهرت نتائج الدراسة وجود فروق بين متوسطات القياس القلبي والقياس البعدي لصالح القياس البعدي حيث إن متوسطات القياس القلبي لمتغيرات ضغط الدم الانتقابي وضغط الدم الانتباضي والدفع القلبي وحجم النبضة كانت على التوالي (117.35 مم/د، 5.02 لتر/د، 67.67 ملي للات/د، 71.28 ملي للات/د، 20 كغم، 17.91 كغم)، أما متوسطات القياس البعدي لمتغيرات ضغط الدم الانتباضي وضغط الدم الانتباضي والدفع القلبي وحجم النبضة عند تطبيق اختبار قوة الشد بالذراعين كانت على التوالي (168.43 مم/د، 12.82 لتر/د، 79.16 مليملي للات/د، 50.5 مليملي للات/د، 20 كغم، 17.91 كغم). وأيضاً عند تطبيق اختبار قوة الدفع بالرجلين كانت متوسطات القياس البعدي لمتغيرات ضغط الدم الانتباضي وضغط الدم الانتباضي والدفع القلبي وحجم النبضة عند التدريب على التوالي (168.43 مم/د، 12.82 لتر/د، 79.16 مليملي للات/د، 50.5 مليملي للات/د، 20 كغم، 17.91 كغم).
القلبي وحجم النبض عند تطبيق اختبار قوة الشد بالذراعين على التوالي (159.20 مم/ز، 83.2 مليمتر).

16 مم/ ز، 13.48 لتر/د، 76.16 مليلتر.)

دراسة جرين وآخرون (2007) التي هدفت إلى التعرف إلى استجابات الجهاز الدوري بالمقارنة بين تمارين الكارديا والجري على السير المتحرك بسرعة (70%) من أقصى نبض. أجريت الدراسة على عينة قومها (10) لاعبين ولاعبات كارديات متوسط أعمارهم وكتلتهم على التوالي (22 عامًا، 68 كغم)، استخدم الباحثان النهج الوصفي وذلك بقياس الدفع القلبي وحجم النبضة ومعدل النبض عند أداء اللعب والركض بتمرين الكارديا والجري على السير المتحرك بسرعة (70%) من أقصى نبض لمدة (5) دقائق. حيث أظهرت النتائج أن متوسطات قيم الدفع القلبي وحجم النبضة ومعدل النبض عند أداء اللعب والركض كانت على التوالي (8.9 لتر/د، 64 مليلتر، 144 نبضة/د) أما قيم متوسطات الدفع القلبي وحجم النبضة ومعدل النبض عند الجري على السير المتحرك بسرعة (70%) من أقصى نبض لمدة (5) دقائق كانت على التوالي (8.7 لتر/د، 65 مليلتر، 139 نبضة/د). كما أظهرت النتائج أنه لا توجد فروق ذات دلالة إحصائية باستخدام تمارين اللعب والركض بالكروتية والجري على السير المتحرك بسرعة (70%) من أقصى نبض بالتأثير على استجابات الجهاز الدوري.

دراسة أبو شادي، وأبو المكارم (2006) التي هدفت إلى التعرف إلى مستوى دهون الدم الثلاثية وبعض المتغيرات الفسيولوجية لدى متسابقي العدو والجري (القصيرة المتوسطة الطويلة). استخدم الباحثان النهج التجريبي للقياسين القلبي والبدني على عينة قومها (30) عداء بواقع (10) عداءين لكل سباق، حيث كانت قيم متوسطات أعمارهم وكتلتهم وأطوالهم ومعدل ضربات القلب وضغط الدم الانتقاضي وضغط الدم الانقباضي على التوالي (21.3 عام، 63.83 كغم، 171.57 سم، 60.37 نبضة/د، 127.87 مليمتر زئبقي، 76.37 مليمتر زئبقي). حيث أظهرت النتائج وجود فروق بين القياس القلبي والقياس البدني في متغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانقباضي عند عدائي المسافات القصيرة (100 م) ولصالح القياس البدني حيث كانت قيم متوسطات القياس القلبي لمتغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانقباضي على التوالي (59 نبضة/د، 128.2 مليي متر زئبقي، 78.80 مليي متر زئبقي)، أما قيم متوسطات القياس البدني فكانت على التوالي (174.4 نبضة/د، 167.5 مليي متر زئبقي، 91.6 مليي متر زئبقي). كما أظهرت نتائج
الدراسة وجود فروق بين القياس القلبي والقياس البدعي في متغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانبساطي عند عندي المسالح المتوسطة (800 م) ولصالح القياس البدعي حيث كانت قيم متوسطات القياس القلبي لمتغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانبساطي على التوالي (63.70 نبضة/د، 129 مليمتر زئبقي، 77 مليمتر زئبقي)، أما قيم متوسطات القياس البدعي فكانت على التوالي (185.6 نبضة/ دقيقة، 148.70 مليمتر زئبقي، 86 مليمتر زئبقي). وأخيرا أظهرت نتائج الدراسة وجود فروق بين القياس القلبي والقياس البدعي في متغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانبساطي عند عندي المسالح المتوسطة (500 م) ولصالح القياس البدعي حيث كانت قيم متوسطات القياس القلبي لمتغيرات معدل ضربات القلب وضغط الدم الانقباضي وضغط الدم الانبساطي على التوالي (58.30 نبضة/د، 126.40 مليمتر زئبقي، 73.30 مليمتر زئبقي)، أما قيم متوسطات القياس البدعي فكانت على التوالي (184.30 نبضة/د، 142.10 مليمتر زئبقي، 97.60 مليمتر زئبقي).

التعليق على الدراسات السابقة

بالنسبة للدراسات المتعلقة بالمتغيرات البدينية قيد الدراسة:

وفيما يتعلق بتأثير طريقة تدريب البارتك على الخصائص البدنية والفيزيمولوجية كما في
هارى جولبي وسيمون مور (1993)، فقد تبين أن
تدريب البارتك حققت تحسنا في مطرادلة السرعة (تحمل السرعة)، كما في دراسة المالكي
(2011)، ودراسة محمد (2004)، كما أنها أثرت إيجاباً على مستوى الكفاءة الوظيفية للجهاز
الدوري التنفسي وكذلك انخفاض معدلات النبض أثناء الراحة، كما في دراسة محمد (2004)

أما بالنسبة لعينات الدراسة فقد وجد الباحث أن ثمة دراسات كانت العينة فيها عمّدة مثل
دراسة عاشور (2009) دراسة عبد الكريم وآخرون (2008)، دراسة براين
وآخرون (2008) وأخرى كانت العينة فيها عشوائية مثل دراسة القدومي

- بالنسبة للدراسات المتعلقة بالحد الأقصى لاستهلاك الأكسجين:

من خلال عرض الدراسات السابقة المتعلقة بالحد الأقصى لاستهلاك الأكسجين
(Daros & et al, 2012) كدراسة داروس وآخرون (VO2max)
(VO2max) ودراسة (القدومي ونمر 2004) (Can, 2010) ودراسة براين ويسوتو
(Bunc.R.P.2001) للذكور تراوحت ما بين (40-65) مليليتر / كغم / دقيقة، (VO2max) حيث كانت أقل قيمة في دراسة
أبو خيط (2007)، بينما كانت أعلى قيمة في دراسة الهزاع (2005) في حين بلغت قيم الحد
الأقصى لاستهلاك الأكسجين (VO2max) للإناث (36.08) مليليتر / كغم / دقيقة كما في
دراسة (أشتية، 2012).

كما أثبت بعض الدراسات التأثير الإيجابي للبرامج التدريبية على الحد الأقصى لاستهلاك
الأكسجين (VO2max) مثل دراسة دي ماس، وآخرون (De Maress, et al, 2012).

بالنسبة لدراسات المتعلقة بالقدرة اللاكسيجينة:

من خلال عرض الدراسات السابقة التي تناولت القدرة اللاكسيجينة تبين أن الاختبارات التي تم تطبيقها لقياس القدرة اللاكسيجينة تمثلت: باختبارات الوثب العمودي، والوثب الطويل، والوثب الثلاثي، والعدو 30 م، والعدو 60 م، والعدو 90 م، والخطوة 15 ثانية، كما في دراسة (القدومي، علي، 2011)، ودراسة دراسة ماركوس (2004)، ودراسة (القدومي، 1999) أما الاختبارات التي تم تطبيقها لقياس السعة اللاكسيجينة هي: العدو 200 م، والعدو 400 م، والخطوة 60 ثانية، كما في دراسة (القدومي، علي، 2011).

بالنسبة للدراسات المتعلقة بالتمثيل الغذائي وقت الراحة:

بالنسبة للدراسات المتعلقة بتركيب الجسم:

وحوّل تأثير البرامج التدريبية للاعبي كرة القدم على كتلة الجسم الخالية من الشحم،
ونسبة الشحم توصلت الدراسات إلى أن الأشخاص الذين لا يمارسون الأنشطة الرياضية لديهم
 نسبة شحم ومحييط الوسط أعلى من الذين يمارسون الرياضة، وأن الأفراد الرياضيين لديهم
 وزن عضلات أعلى من غير الرياضيين. كما في دراسة المطيري (2009)، ودراسة أميتس

- الدراسات المتعلقة بالجهاز الدوري:

بعد استعراض الباحث للدراسات السابقة المتعلقة بالضغط القلبي مثل دراسة أحمد
(Green et al, 2007) تبين أن قيم الدفع القلبي في القياسات القلبية تراوحت بين (5.02 - 9.5) بالنقطة، حيث كانت
 أعلى قيمة في شاهزاد وآخرون (2008)، بينما كانت أقل قيمة في دراسة عزب (2007). وقد تراوحت قيم حجم النبض ما بين (84.1 - 64)
ميلنتر، حيث كانت أعلى قيمة في دراسة العزب (2007)، بينما كانت أقل قيمة في دراسة جرين وآخرون
(2007). أما قيمة النبض بعد أداء الاختبار فقد تراوحت ما بين (105 - 185.6)، حيث كانت أعلى قيمة في دراسة أبو شادي وأبو المكارم (2006) في اختبار الدراجة
الثابتة، بينما كانت أقل قيمة في دراسة شاهزاد وآخرون (2008).

وفيما يتعلق بالضغط الانقباضي والانبساطي فقد أظهرت نتائج الاختبارات التي طبقت
 عليهم أن قيم الضغط الانقباضي والانبساطي تراوحت ما بين (40.40 - 73.30) / (168.48 - 168.48)
مليوناً رابطاً، حيث كانت أعلى قيمة في دراسة عزب (2007) في اختبار السرعة
اللأعلى، بينما كانت أقل قيمة لدى دراسة أبو شادي، وأبو المكارم (2006) عند متسبقي
المسافات الطويلة. كما لاحظ الباحث أن قيم الضغط الانقباضي والانبساطي اختفت باختلاف
الاختبارات التي طبقت، فمنهم من استخدم اختبار الشد لأعلى، واختبار قوة الدفع بالرجالين كما
في دراسة العزب (2007)، ومنهم من استخدم اختبار الجري على السير المتحرك بـشتة

118
(70%)، واللكم والركل كما في دراسة جرين وآخرون (2007) وآخرون (Shahzad et al., 2008)، وتبين أيضاً اختلاف الضغط الانقباضي والانبساطي باختلاف طول المسافات لدى متسابقي المسافات (القصيرة المتوسطة- الطويلة) كما في دراسة أبو شادي وأبو المكارم (2006).

بعد اطلاع الباحث على الدراسات التي عمل على جمعها وتقديمها في دراسته، فإنه قد استفاد منها الأمور الآتية:

- كيفية تحديد العينة واختيارها.
- اختيار النهج المناسب للدراسة.
- اختيار الأداة المستخدمة في الدراسة.
- الاطلاع على الاطار النظري للدراسات والإفادة منه لوضع الخطوط العريضة للدراسة.
- الاستفادة من مراجع الدراسات ومصادرها كي تكون عونا للباحث أثناء إعداد البحث.
- أخذ فكرة عامة عن التصميم الإحصائي المستخدمة في الدراسات وتوظيفها في مجال الدراسة.
- التركيز على بعض العناصر الهامة أثناء إعداد البرنامج التدريبي مثل المصدر والمتبة والموضوعية (تقييم الأداة).

وبعد استعراض الباحث للدراسات السابقة التي ذكرها تبين له أن ما يميز هذه الدراسة من غيرها أنها تستخدم طريقتين من طرق التدريب وهما طريقة التدريب الفضيرو عالي الشدة وتدريبات الفارتك، كما أنها درست بعض الخصائص البدنية مثل السرعة والرشاقة وتحمل السرعة، والخصائص الفسيولوجية مثل الحد الأقصى لاستهلاك الأكسجين والقدرة الليمينية والتمثيل الغذائي وتركيب الجسم والدفع القلبي وهذا بدوره يعتبر مؤشر على أهمية أجراء مثل هذه الدراسات.
الفصل الثالث
الطريقة والإجراءات

- منهج الدراسة
- مجتمع الدراسة
- عينة الدراسة
- متغيرات الدراسة
- أدوات الدراسة
- إجراءات الدراسة
- الخصائص العلمية لأدوات الدراسة
- المعالجات الإحصائية
الفصل الثالث
الطريقة والإجراءات

يتضمن هذا الفصل عرضاً للإجراءات التي تضمنها هذه الدراسة، وهي منهج الدراسة ومجتمع الدراسة، وعينة الدراسة، ومنغذات الدراسة، وأدوات الدراسة، والخصائص العلمية لأدوات الدراسة والمعالجات الإحصائية.

منهج الدراسة

استخدم الباحث في هذه الدراسة المنهج التجريبي للقياسات القبلية والبعدي لمجموعتين تجريبيتين، نظراً لملاءمتها لطبيعة مشكلة الدراسة.

مجتمع الدراسة

تكون مجتمع الدراسة من ناشئي كرة القدم في الضفة الغربية لفئات تتراوح أعمارهم ما بين (14-16) سنة، الممارسين للعبة كرة القدم في الأندية الفلسطينية، والمنتسبات للاتحاد الفلسطيني.

عينة الدراسة

اختيرت العينة بالطريقة العمدية من ناشئي مركز شباب طولكرم، ونادي فرعون الرياضي لكرة القدم للموسم (2012-2013)، وبلغ عدد أفراد العينة (30) ناشئًا، وتم توزيعهم عشوائياً إلى مجموعتين تجريبيتين بواقع (15) ناشئًا في كل مجموعة تجريبية تبعاً إلى طريقيتي التدريب، ومن أجل التكافؤ بين أفراد المجموعتين التجريبيتين في العمر وطول القامة وكثافة الجسم إضافة إلى القياسات القبلية للمتغيرات قيد الدراسة، استخدم اختبار (t) لمجموعتي مستقلتين (Independent t-test) ونتائج الجدول رقم (5) تبين ذلك.
الجدول (5)
نتائج اختبار (ت) لمجموعتين مستقلتين للتكافؤ بين المجουضين التجربيين

<table>
<thead>
<tr>
<th>مستوى الدالة* (ت)</th>
<th>قيمة المتغير</th>
<th>مجموعة تدريب الفارتك (ن=15)</th>
<th>مجموعة اختبار الفارتك (ن=15)</th>
<th>وحدة القياس</th>
<th>المتغيرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>1.03</td>
<td>0.88</td>
<td>0.88</td>
<td>١٤.٩٣</td>
<td>عمر عام</td>
</tr>
<tr>
<td></td>
<td></td>
<td>١٥.٢٦</td>
<td></td>
<td></td>
<td>سم طول القامة</td>
</tr>
<tr>
<td>0.71</td>
<td>0.36</td>
<td>٧.٨٢</td>
<td>٨.٠٠</td>
<td>١٦٧.٦٦</td>
<td>سم سم كتلة الجسم</td>
</tr>
<tr>
<td>0.48</td>
<td>0.٧٠</td>
<td>٨.٧٤</td>
<td>٨.٨٢</td>
<td>٥٥.٩١</td>
<td>كم كتلة الجسم</td>
</tr>
<tr>
<td>0.٩٥</td>
<td>٠.٦٤</td>
<td>٠.٤٩</td>
<td>٠.٤١</td>
<td>٤.٩٦</td>
<td>ثانية ثانية السرعة</td>
</tr>
<tr>
<td>٠.٣١</td>
<td>١.٠٢</td>
<td>٥.٤٣</td>
<td>١.٦٢</td>
<td>٣٣.٤٨</td>
<td>ثانية ثانية تحميل السرعة</td>
</tr>
<tr>
<td>٠.٤١</td>
<td>٠.٨٢</td>
<td>٠.٤٥</td>
<td>٠.٨١</td>
<td>٦.٧٠</td>
<td>ثانية ثانية الرشاشة</td>
</tr>
<tr>
<td>٠.٧٩</td>
<td>٠.٢٦</td>
<td>٥.٦٨</td>
<td>٧.٤١</td>
<td>٣٧.٩٩</td>
<td>ثانية ثانية القدرة اللاوكسجينية</td>
</tr>
<tr>
<td>٠.٩٢</td>
<td>٠.٠٠٠</td>
<td>٦.١١</td>
<td>٧.٤٠</td>
<td>٣٧.٧٣</td>
<td>ثانية ثانية المدة اللاوكسجينية</td>
</tr>
<tr>
<td>٠.١٢</td>
<td>١.٥٧</td>
<td>١.٣٣</td>
<td>٢.٦١</td>
<td>٩.٨٩</td>
<td>% % الشحم</td>
</tr>
<tr>
<td>٠.٩٣</td>
<td>٠.٠٨٩</td>
<td>٧.٥٥</td>
<td>٧.١٨</td>
<td>٤٩.٨٦</td>
<td>كم كتلة الجسم الخالية من الشحم</td>
</tr>
<tr>
<td>٠.٥١</td>
<td>٠.٥٦</td>
<td>١٥٢.٠٧</td>
<td>١٥٣.٨٣</td>
<td>١٦٥٦.٥٣</td>
<td>ملم/ثينت تمثيل الجسم خلال الراحة</td>
</tr>
<tr>
<td>٠.٠٨</td>
<td>١.٧٨</td>
<td>٤.٩٤</td>
<td>٨.٨٥</td>
<td>١١٦.٤٠</td>
<td>ملم/ثينت ضغط الانقباضي</td>
</tr>
<tr>
<td>٠.١٣</td>
<td>١.٥٤</td>
<td>٨.٥٢</td>
<td>١٠.٧١</td>
<td>٧٢.٧٣</td>
<td>ملم/ثينت ضغط الانقباضي</td>
</tr>
<tr>
<td>٠.٦٥</td>
<td>٠.٤٥</td>
<td>٧.٦٧</td>
<td>٨.٥٣</td>
<td>٧٧.٤٠</td>
<td>ملم/ثينت ضغط الانقباضي</td>
</tr>
<tr>
<td>٠.٣٦</td>
<td>٠.٩١</td>
<td>٦.٤٧</td>
<td>٨.٠٣</td>
<td>٥٧.٧٧</td>
<td>ملم/ثينت ضغط الانقباضي</td>
</tr>
<tr>
<td>٠.٢٢</td>
<td>١.٢٣</td>
<td>٠.٢٩</td>
<td>٠.٣٠</td>
<td>٤.٤٥</td>
<td>نقطات مضخة ضغط الدم قبل الغشاء</td>
</tr>
<tr>
<td>٠.١٥</td>
<td>١.٤٤</td>
<td>٠.٢٩</td>
<td>٠.٢٥</td>
<td>٢.٢٧</td>
<td>كيلومتر كويكب</td>
</tr>
<tr>
<td>٠.٥١</td>
<td>٠.٦٦</td>
<td>٨.٧٥</td>
<td>٦.٥٨</td>
<td>١٤٠.٨٦</td>
<td>نقطات مضخة ضغط الدم قبل الغشاء</td>
</tr>
<tr>
<td>٠.٤١</td>
<td>٠.٨٣</td>
<td>٠.٦٩</td>
<td>٠.٩٦</td>
<td>٩.٤٠</td>
<td>نقطات مضخة ضغط الدم قبل الغشاء</td>
</tr>
<tr>
<td>٠.١٥</td>
<td>١.٤٤</td>
<td>٦.٥٦</td>
<td>٥.٦٥</td>
<td>٣٩.٥٤</td>
<td>ملايين كم/ثينت عرق الأجسام لأستهلاك الأكسجين</td>
</tr>
</tbody>
</table>

* قيمة (ت) الجدولية (٢.٠٤).
يتضح من الجدول (5) أن جميع قيم اختبار (ت) لمجموعتين مستقلتين للمتغيرات في الدراسة كانت أقل من القيمة الجدولية (0.04) أي أنه لا توجد فروق ذات دلالة إحصائية في جميع المتغيرات بين أفراد المجموعتين وهذا يدرسه يعني وجود تكافؤ بين أفراد المجموعتين قبل البدء في تنفيذ البرنامج.

أدوات الدراسة

من أجل جمع البيانات المطلوبة والتي تخصص الدراسة استخدم الباحث ما يلي:

أولا: الأدوات والأجهزة

- استمارة جمع البيانات
- ساعة توقيت الكترونية تقيس إلى أقرب 1/100 من ساعة (Diamond).
- شيد (بودرة) لتخطيط ضغط الدم الزئبي الكتروني (Sphygmomanometer).
- جهاز قياس ضغط الدم الزئبي الكتروني.
- متر من نوع كركر بطول (50) متراً لقياس ضغط الركض.
- شواخص بلاستيكية وأقماع، وصافرة.
- صندوق (Step test) خشبي بارتفاع (40) سم.
- المصادر والمراجع.

ثانيا: رابع: البرنامج التدريبي:

قام الباحث، ومن خلال اطلاعه على الأدبات، ومراجعة المراجع والدراسات العلمية، وخبراته في مجال التدريب، وكذلك الأخذ برأي أصحاب الخبرة والتخصص في مجال كرة القدم بوضع برامج تدريبيين مختلفين يحتويان على بعض تمرينات التحميل الأكسيجي وتحمل السرعة والرشاقة وتحمل القوة حيث كان هدفهما التعرف إلى مدار التغيير لبعض الخصائص البدنية والفيزيولوجية لدى ناشي كرة القدم، وقد صمم البرامجان بالاعتماد على نظام إنتاج
الطاقة الأكسجيني واللاكسيجيني، و لتحقيق ذلك استخدم الباحث طريقتين من طرق التدريب،
الطريقة الأولى هي طريقة التدريب اللفتري عالي الشدة، وهي خاصة بالبرنامج الأول، والطريقة
الثانية وهي طريقة تدريب الفارتك، وقد أعدت للبرنامج الثاني، حيث خصص البحاث لكلا
طريقة تدريبية (8) أسابيع، بواقع (3) وحدات تدريبية أسبوعيا، والملحق رقم (1) يوضح ذلك.
ثالثاً: الاختبارات المستخدمة

أ - الاختبارات البدنية وتشمل:
- اختبار السرعة: (عدو 30م) لقياس السرعة القصوى.
- اختبار الشاقة: الجري المكعبي لقياس الشاقة.
- اختبار تحمل السرعة: العدو لمسافة (200م) لقياس تحمل السرعة.

ب- الاختبارات الفسيولوجية
- اختيار القدرة اللاكسيجينية: (الفسفاجينية): اختبار الخطوة لمدة (10 ثوان)، حيث يتم
حسابها من خلال المعادلة الآتية بعد تحويل ارتفاع سطح الصندوق من (40 سم) إلى (0.4
م) وذلك لتوحيد الوحدات (سيد 1998، ص 162).
القدرة اللاكسيجينية = 1.33× وزن اللاعب (كم) × 0.4م × عدد الخطوات خلال (10 ثوان)
الزمن (10 ثوان)
- اختيار السعة اللاكسيجينية (لاكتيكية): اختبار الخطوة لمدة (30 ثانية) ويتم حسابها وفق
المعادلة الآتية:
السعة اللاكسيجينية = 1.33× وزن اللاعب (كم)×0.4 م × عدد الخطوات خلال (30 ثانية)
الزمن (30 ثانية)
- اختيار كوبير (جري 12 دقيقة) لقياس الحد الأقصى لاستهلاك الأكسجين، حيث تستخدم
المعادلة التي أوردها الهزاع (2008 ص 496) لإيجاد الحد الأقصى لاستهلاك الأكسجين
المليتر/ كم/د = 22.351 VO2max (المسافة المقطوعة بالكم) × (المسافة المقطوعة بالكم) x
يُ erre (11.289)
قياس الدفع القلب (Cardio Output) ويتم حسابه من خلال المعادلة التي أوردها أبو العلا (2003 ص 405) وهي: الدفع القلبي لتر/د = معدل النبض في الدقيقة (HR) × حجم النبضة (SV).

ويمكن حساب حجم النبضة (Stork volume) (SV) من خلال معادلة سيرت التي أوردها سيد (2003 ص 91):

حجم النبضة (SV) = (الضغط المدقي نبضة ضغط الدم الانقباضي)/(العمر بالسنوات) × ضغط الدم الانقباضي في الراحة من وضع الجلوس من خلال جهاز ضغط الدم الزئبقي سيفوجمانوميتر (Sphygmomanometer)

- حساب أقصى دفع قلبي (Q max): لحساب الدفع القلبي بعد المجهود تم استخدام المعادلة التي أوردها سيد (2003 ص 192) وهي:

الدفع القلبي لتر/د = 5.7 × الحد الأقصى لاستهلاك الأكسجين المطلق + 3.6

- حساب الحد الأقصى لاستهلاك الأكسجين المطلق من خلال ضرب نتيجة الحد الأقصى لاستهلاك الأكسجين النسبي في كتلة الجسم ومن ثم تحويل الناتج من ملليتر إلى لتر. وتم تنفيذ جميع هذه العمليات باستخدام المدخل (Compute) في برنامج الرزم الإحصائي للعلوم الاجتماعية (SPSS).

- حساب أقصى حجم نبضة (SV max) (SV max): لحساب حجم النبضة بعد أداء اختبار كوبر تم تحويل الدفع القلبي من لتر إلى ملليتر ومن ثم تقسيمه على أقصى نبضة وذلك باستخدام المدخل (Compute) في برنامج الرزم الإحصائي للعلوم الاجتماعية (SPSS).
حساب ضغط الدم الانقباضي والانبساطي بعد أداء اختبار كوبر: - لحساب ضغط الدم الانقباضي والانبساطي بعد أداء اختبار كوبر تم استخدام جهاز سيجومانوميتر الزيتيقى (قياس ضغط الدم) كما هو موضح قياسه أثناء الراحة وذلك بمساعدة فريق العمل.

قياس التمثيل الغذائي خلال الراحة وتركيب الجسم باستخدام جهاز التنانين.

والملحق رقم (2) يوضح مفردات الاختبارات البدنية والفسيولوجية من ناحية الهدف منها، ووصف الأدوات وطريقة التقييم، والأدوات المستخدمة.

ثالثا: الفريق المساعد:

تم الاستعانة بزملاء من قسم التربية الرياضية في جامعة فلسطين التقنية "خصوصي" لإجراء الدراسة الحالية، والملحق رقم (3) يوضح أسمائهم وتخصصاتهم ومكان عملهم.

متغيرات الدراسة:

اشتملت الدراسة على المتغيرات الآتية:

أ - المتغيرات المستقلة: التدريب الشامل عالي الشدة وتدريب الفارتك.

ب - المتغيرات التابعة: تشتمل على المتغيرات الآتية:

• الخصائص البدنية وتشمل على: (السرعة وتحمل السرعة والرشاقة)

• الخصائص الفسيولوجية وتشمل على: (نسبة الراحة وحجم النبضة وضغط الدم الانقباضي، وضغط الدم الانبساطي، والدفع القلبي خلال الراحة والقدرة اللاكسجينية والسعة اللاكسجينية، ونسبة شحوم الجسم، وكلة الجسم الخالية من الشحوم، والتمثيل الغذائي خلال الراحة وأقصى نبض، وأقصى دفع قلبي، والمسافة المقطعة في اختبار كوبر، الحد الأقصى لاستهلاك الأكسجين).
التجربة الاستطلاعية الثانية:

طبقت هذه التجربة على عينة مكونة من خمسة عشر لاعبا من خارج عينة الدراسة في الفترة الواقعة ما بين 6/11/2012 - 13/11/2012. حيث تم استثنائها من عينة الدراسة فيما بعد. وكان الهدف من هذه التجربة هو:

1 - التعرف إلى المعاملات العلمية لقياسات والاختبارات من حيث صدقها وثابتها.
2 - التأكد من مدى فريق العمل لطبيعة الاختبارات وكيفية أدائها.
3 - التأكد من دقة تسجيل البيانات.
4 - الصعوبات التي تواجه الاختبار وإمكانية تلافيها.
5 - مدى ملاءمة التجهيزات والأدوات اللازمة لأداء الاختبارات.
6 - معرفة الوقت المستغرق لأداء الاختبارات.

رابعا: المعاملات العلمية لاختبارات الدراسة:

صدق وثبات الاختبارات:

جميع الاختبارات والأدوات المستخدمة في الدراسة الحالية صادقة وثابتة واستخدمت في الكثير من الدراسات العلمية، وللتأكيد على صدق وثبات بعض الاختبارات البدنية والفيزيولوجية، استخدمت طريقة تطبيق وإعادة تطبيق الاختبار بفارق زمني أسبوعي أسهم بين التطبيقين واستخرج معامل الثبات والصدق الذاتي لهذه الاختبارات وذلك كما أشار إليه (رضوان 2011 ص216) من خلال احتساب الجذر التربيعي لمعامل ثبات الاختبار كما في المعادلة التالية:

المثبّت = /
صدق الذاتي

127
الجدول (6)

<table>
<thead>
<tr>
<th>الاختبار</th>
<th>الوحدة القياسية</th>
<th>القدرة اللاكتينجية</th>
<th>السعة اللاكتينجية</th>
<th>اختبار كوركود 12 دقيقة</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد 30 متراً</td>
<td>ثانية</td>
<td>0.91</td>
<td>0.84</td>
<td>0.60</td>
</tr>
<tr>
<td>عدد 200 متراً</td>
<td>ثانية</td>
<td>0.96</td>
<td>0.93</td>
<td>1.87</td>
</tr>
<tr>
<td>الجري المكروكي</td>
<td>ثانية</td>
<td>0.99</td>
<td>0.98</td>
<td>0.75</td>
</tr>
<tr>
<td>كجم متر ثانية</td>
<td>0.97</td>
<td>0.96</td>
<td>7.85</td>
<td>44.66</td>
</tr>
<tr>
<td>كجم متر ثانية</td>
<td>0.99</td>
<td>0.98</td>
<td>8.71</td>
<td>45.32</td>
</tr>
<tr>
<td>اختبار كوركود 12 دقيقة</td>
<td>كم</td>
<td>0.96</td>
<td>0.93</td>
<td>0.18</td>
</tr>
</tbody>
</table>

"(") دال عند مستوى الدالة (α=0.05)

يتضح من الجدول (6) أن جميع معاملات الارتفاع لصدق والثقة كانت عالية وتفس

بأغراض الدراسة أسا بالنسبة للأجهزة المستخدمة لقياس ضغط الدم والنبض، وتركيب الجسم والتمثيل الغذائي خلال الراحة بعد من المقاييس (Ratio Scale) وكمية الخث في قليلة، وتمتاز بصدق وثبات عالية، كما يشير كيركيندل وآخرون (1987) لذلك لم يتم استخراج الصدق والثقة لها.

تحديد الدراسة

أولا: الاختبارات القبلية:

قام الباحث بإجراء الاختبارات القبلية للمجموعتين التجريبيتين، وقد كان إجراء هذه الاختبارات بعد إجراء التجربة الاستطلاعية والتحقق من صدق وثبات الاختبارات وقد تم إجراء هذه الاختبارات في الفترة الواقعة من (14/11/2012) وفق التسلسل الآتي:

- في اليوم الأول تم أخذ قياسات التمثيل الغذائي وتركيب الجسم باستخدام جهاز الراحة، بالإضافة إلى قياس الضغط الانقباضي والانبساطي والنبض وقت الراحة.
- في اليوم الثاني تم إجراء اختبارات القدرة اللاаксجينية (الخطوة بـ10 ثوان، و30 ثانية).
 - وكذلك اختبار العدو (30م)، والرشاقة، والعدو (200م) لقياس حمل السرعة.
- في اليوم الثالث تم قياس الضغط الانقباضي والانبساطي، وأقصى نبض بعد اختبار كوبير (جري 12 دقيقة) وأقصى دفع قلبي، والحد الأقصى لاستهلاك الأكسجين.

تطبيق البرنامجين

بدأ الباحث ومساعديه بتطبيق البرنامجين التجريبيين على المجموعتين التجريبيتين بتاريخ 20/11/2012 ولغاية 20/1/2012.

التقييمات البعيدة

بعد أن تم الانتهاء من تطبيق البرنامجين التجريبيين والذان امتدتا لمدة (8) أسابيع، تم اخذ التقييمات البعيدة للمجموعتين التجريبيتين خلال المدة الواقعة ما بين (1/21/2012-1/24/2012).

المعالجات الإحصائية

من أجل معالجة البيانات استخدم الباحث برنامج الرزم الإحصائية للعلوم الاجتماعية (SPSS) وذلك من خلال استخدام المعالجات الإحصائية الآتية:

- Paired- t-test المتوسطات الحسابية والانحرافات المعيارية واختبار (t) للأزواج لتحديد الفروق بين القياس القبلي والبعدي والنسبه المنوية للتغير عند كل من المجموعتين التجريبيتين.
- Independent t-test اختبار (t) لمجموعتين مستقلتين لتحديد الفروق في القواسم البعيدة بين المجموعتين التجريبيتين.

129
الفصل الرابع

نتائج الدراسة
الفصل الرابع

نتائج الدراسة

يتضمن هذا الفصل عرضًا للنتائج التي تم التوصل إليها، بعد أن قام الباحث بجمع البيانات، ثم عالجها إحصائيًا وفقًا لفرضيات الدراسة، فيما يلي عرض لنتائج الدراسة تبعًا لتسلسل فرضياتها:

أولاً: النتائج المتعلقة بالفرضية الأولى والتي نصها:

توجد فروق ذات دلالة إحصائية في أثر طريقة التدريب الفوري على الشدة على بعض الخصائص البدنية و الفسيولوجية لدى ناشئي كرة القدم بين القياسين القبلي والبعدي.

لختبار الفرضية استخدم اختبار (ت) للأزواج (Paired- t-test)، ونتائج الجدول رقم (7) تبين ذلك.

الجدول (7)

نتائج اختبار (ت) للأزواج لدلالة الفروق بين القياسين القبلي والبعدي في المتغيرات قيد الدراسة لدى أفراد التدريب الفوري عالي الشدة (ن= 15).

<table>
<thead>
<tr>
<th>المتغيرات</th>
<th>النسبة المستوية الدلالة للتحفظ %</th>
<th>مستوى القبلي القياسي</th>
<th>القياسي المحيطي</th>
<th>المتوسط الانحراف</th>
<th>الانحراف</th>
<th>المتوسط الانحراف</th>
<th>الانحراف</th>
</tr>
</thead>
<tbody>
<tr>
<td>السرعة</td>
<td>0.0001</td>
<td>6.85</td>
<td>0.38</td>
<td>4.45</td>
<td>0.41</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>تحمل السرعة</td>
<td>0.0001</td>
<td>15.2</td>
<td>1.79</td>
<td>30.99</td>
<td>1.62</td>
<td>33.48</td>
<td></td>
</tr>
<tr>
<td>الرشفة</td>
<td>0.0001</td>
<td>5.56</td>
<td>0.37</td>
<td>5.82</td>
<td>0.81</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>القمر المتر / ثانية</td>
<td>0.0001</td>
<td>8.65</td>
<td>7.44</td>
<td>43.41</td>
<td>7.41</td>
<td>37.99</td>
<td></td>
</tr>
<tr>
<td>المسرة</td>
<td>0.0001</td>
<td>13.8</td>
<td>8.27</td>
<td>43.94</td>
<td>7.40</td>
<td>37.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.54</td>
<td>0.01</td>
<td>2.91</td>
<td>2.70</td>
<td>8.65</td>
<td>2.61</td>
<td>9.89</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>49.86</td>
<td>15.40-</td>
<td>0.02</td>
<td>2.57</td>
<td>7.10</td>
<td>51.16</td>
<td>7.29</td>
<td></td>
</tr>
<tr>
<td>7.18</td>
<td>116.40</td>
<td>8.85</td>
<td>103.46</td>
<td>7.13</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
</tr>
<tr>
<td>51.16</td>
<td>103.46</td>
<td>8.85</td>
<td>103.46</td>
<td>7.13</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
</tr>
<tr>
<td>7.29</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.04</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.61</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>161.51</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1669.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
في اختبار كوبر (6.6%) وأقصى نبض (10.7%)، والحد الأقصى لاستهلاك الأكسجين (8.32%).

وتظهر هذه النتائج بوضوح في الأشكال البيانية من (1-15).

الشكل رقم (1) متوسط القياسين الفعلي والبعدي لمتغير السرعة (ثانية) عند أفراد مجموعة التدريب الفحصي عالي الشدة.

الشكل رقم (2) متوسط القياسين الفعلي والبعدي لمتغير تحمل السرعة (ثانية) عند أفراد مجموعة التدريب الغتري عالي الشدة.
الشكل رقم (3): متوسط القياسين القياسي والبعدي لمتغير الرشاقة (ثانية) عند أفراد مجموعة التدريب القتري عالي الشدة

الشكل رقم (4): متوسط القياسين القياسي والبعدي لمتغير القدرة اللاوكسيجينية (كم/متر/ثانية) عند أفراد مجموعة التدريب القتري عالي الشدة
الشكل رقم (5): متوسط القياسات القبلية والبعدي لمتغير السعة اللاوكرسنية (كم متر ترانيه) عند أفراد مجموعة التدريب الفني عالي الشدة

الشكل رقم (6): متوسط القياسات القبلية والبعدي لمتغير نسبة الشحوم (%) عند أفراد مجموعة التدريب الفني عالي الشدة
الشكل رقم (7): متوسط القياسين البقالي والبعدي لمتغير كتلة الجسم الخالية من الشحوم (كم) عند أفراد مجموعة التدريب الفكري عالي الشدة

الشكل رقم (8): متوسط القياسين البقالي والبعدي لمتغير التمثيل الغذائي خلال الراحة (سعرة/يوميا) عند أفراد مجموعة التدريب الفكري عالي الشدة
The chart shows the mean values for two groups, pre and post, with the data points 116 and 103, respectively. The title in Arabic translates to: "The chart number 6: Mean values for the pre and post groups for blood pressure (millimeters mercury) in a high-intensity training group."

The second chart shows the mean values for two groups, pre and post, with the data points 73 and 62, respectively. The title in Arabic translates to: "The chart number 10: Mean values for the pre and post groups for blood pressure (millimeters mercury) in a high-intensity training group."

Page 137
الشكل رقم (11): متوسط القياسي القلبي والبدني لمتغير نبض الراحة (لمستوى دقيق) عند أفراد مجموعة التدريب الفكري عالي الشدة

الشكل رقم (12): متوسط القياسي القلبي والبدني لمتغير حجم النبضة (مليلتر/دقيقة) عند أفراد مجموعة التدريب الفكري عالي الشدة
الشكل رقم (13): متوسط القياسين القبلي والبعدي لمتغير جري كوبير 12 دقيقة (كيلو متر) عند أفراد مجموعة التدريب اللفقي عالي الشدة

الشكل رقم (14): متوسط القياسين القبلي والبعدي لمتغير القصي نبض (نبضة/ دقيقة) عند أفراد مجموعة التدريب اللفقي عالي الشدة
الشكل رقم (15): متوسط القياسين القبلي والبعدي لمتغير الحد الأقصى لأستهلاك الأوكسجين (مليلتر/كم²/ دقيقة) عند أفراد مجموعة التدريب الفتري عالي الشدة.

ثانيا: النتائج المتعلقة بالفرضية الثانية والتي نصها:

توجد فروق ذات دلالة إحصائية في أثر طريقة تدريب الفارتك على بعض الخصائص البدنية والبيولوجية لدى ناشئي كرة القدم بين القياسين القبلي والبعدي.

لاختبار الفرضية استخدم اختبار (t) للأزواج (Paired-t-test)، ونتائج الجدول رقم (8) تبين ذلك.
الجدول (8)

نتائج اختبار (ت) للأزواج لدلالات الفروق بين القياسين القلبي والباعدي في المتغيرات في الدراسة لدى أفراد طريقة التدريب الفارتيك (ن= 15).

<table>
<thead>
<tr>
<th>المتغيرات</th>
<th>النسبة المئوية للنوعية</th>
<th>مستوى الدلالة</th>
<th>قيمة (ت)</th>
<th>القياس الباعدي</th>
<th>القياس القلبي</th>
<th>وحدة القياس</th>
<th>القياسات</th>
</tr>
</thead>
<tbody>
<tr>
<td>السرعة</td>
<td>3.44%</td>
<td>*0.002</td>
<td>3.75</td>
<td>0.36</td>
<td>4.77</td>
<td>0.49</td>
<td>ثانية</td>
</tr>
<tr>
<td>تحمل السرعة</td>
<td>7.20%</td>
<td>*0.0001</td>
<td>4.87</td>
<td>3.69</td>
<td>32.47</td>
<td>5.43</td>
<td>ثانية</td>
</tr>
<tr>
<td>الرشاقة</td>
<td>8.17%</td>
<td>*0.0001</td>
<td>6.94</td>
<td>0.26</td>
<td>5.51</td>
<td>0.45</td>
<td>ثانية</td>
</tr>
<tr>
<td>القدرة</td>
<td>7.76%</td>
<td>*0.0001</td>
<td>5.10</td>
<td>5.96</td>
<td>40.25</td>
<td>5.68</td>
<td>كجم/متر希腊</td>
</tr>
<tr>
<td>الكثافة المكسحفة</td>
<td>11.31%</td>
<td>*0.0001</td>
<td>6.74</td>
<td>7.19</td>
<td>41.72</td>
<td>6.11</td>
<td>كجم/متر希腊</td>
</tr>
<tr>
<td>السعة</td>
<td>20.34%</td>
<td>*0.0001</td>
<td>7.12</td>
<td>0.63</td>
<td>6.93</td>
<td>1.33</td>
<td>%</td>
</tr>
<tr>
<td>الكم</td>
<td>1.01%</td>
<td>*0.0001</td>
<td>8.66</td>
<td>7.63</td>
<td>50.12</td>
<td>7.55</td>
<td>كجم</td>
</tr>
<tr>
<td>التمثيل الغذائي خلال الراحة</td>
<td>1.20%</td>
<td>*0.0001</td>
<td>8.03</td>
<td>152.63</td>
<td>1639.13</td>
<td>152.07</td>
<td>سعر/يوم</td>
</tr>
<tr>
<td>الضغط الانقباضي</td>
<td>11.81%</td>
<td>*0.0001</td>
<td>6.34</td>
<td>10.21</td>
<td>98.53</td>
<td>4.94</td>
<td>مل/ثانية</td>
</tr>
<tr>
<td>الضغط الانبساطي</td>
<td>11.39%</td>
<td>*0.007</td>
<td>3.13</td>
<td>7.37</td>
<td>59.60</td>
<td>8.52</td>
<td>مل/ثانية</td>
</tr>
<tr>
<td>الراحة</td>
<td>13.97%</td>
<td>*0.0001</td>
<td>13.01</td>
<td>6.59</td>
<td>67.73</td>
<td>7.67</td>
<td>نبضة</td>
</tr>
<tr>
<td>حجم النبضة</td>
<td>20.66%</td>
<td>*0.0001</td>
<td>7.58</td>
<td>5.82</td>
<td>72.66</td>
<td>6.47</td>
<td>مليتر/دبضة</td>
</tr>
<tr>
<td>الدفع القلبي خلال الراحة</td>
<td>6.77%</td>
<td>*0.02</td>
<td>2.49</td>
<td>0.34</td>
<td>4.89</td>
<td>0.29</td>
<td>لتر/دقيقة</td>
</tr>
<tr>
<td>الراكة</td>
<td>12.74%</td>
<td>*0.0001</td>
<td>10.38</td>
<td>0.25</td>
<td>2.39</td>
<td>0.29</td>
<td>كيلومتر/دقيقة</td>
</tr>
<tr>
<td>أقصى نبض الراكة</td>
<td>8.78%</td>
<td>*0.01</td>
<td>2.93</td>
<td>14.19</td>
<td>151.20</td>
<td>8.75</td>
<td>نبضة/دقيقة</td>
</tr>
<tr>
<td>أقصى دفع قلب الراكة</td>
<td>19.13%</td>
<td>*0.0001</td>
<td>6.16</td>
<td>1.10</td>
<td>10.90</td>
<td>0.69</td>
<td>لتر/دقيقة</td>
</tr>
<tr>
<td>العدد الأقصى لاستهلاك الأجسرين</td>
<td>16.03%</td>
<td>*0.0001</td>
<td>10.38</td>
<td>5.61</td>
<td>42.12</td>
<td>6.56</td>
<td>مليتر/دقيقة</td>
</tr>
</tbody>
</table>

* دال إحصائيات عند مستوى الدلالة (0.05) قيمة (ت) الجدولية (2.19) بدرجات حرية (14).
يتضح من الجدول (8) أن برنامج تدريب الفارتك أثر على جميع المتغيرات في الدراسة وبدلاً من الإحصائية بين القياسات القبلي والبعدي ولصالح القياس البعدي، فيما يتعلق بالنسبة المنوية للتغير كانت على النحو الآتي: السرعة (-3.44%)، وتحمل السرعة (-7.20%)، والرشاقة (-8.17%)، والقدرة اللاكتساجينية (8.76%) والسرعة اللاكتساجينية (11.31%) ونسبة الشحمون (-20.34%)، وكثافة الجسم الخالية من الشحمون (1.01%)، والتمثيل الغذائي خلال الراحة (10.20%)، وضغط الدم الانتباهي (11.81%) وضغط الدم الانقباضي (-11.39%)، ونسب الراحة (13.97%)، وحجم النبضة (20.66%)، والدفع القلبي خلال الراحة (6.67%) والمسافة المقطوعة في اختبار كوبر (12.74%)، وأقصى نبض (8.78%) وأقصى دفع قلبي (13.19%) والحد الأقصى لاستهلاك الأكسجين (16.03%).

وتظهر هذه النتائج بوضح في الأشكال البيانية من (16-32).

الشكل رقم (16) متوسط القياسان القبلي والبعدي لمتغير السرعة (ثانية) عند أفراد مجموعة تدريب الفارتك
الشكل رقم (17) متوسط القياسين القبلي والبعدي لمنحل السرعة (ثانية) عند أفراد مجموعة تدريب الفارتاك

الشكل رقم (18) متوسط القياسين القبي والإبداعي لمنحل الرشاقة (ثانية) عند أفراد مجموعة تدريب الفارتاك
الشكل رقم (19): متوسط القياسين القبلي والبعدي لمتغير القدرة اللاوكسيجينية (كم. متر/ثانية) عند أفراد مجموعتك تدريب الفارئتك

الشكل رقم (20): متوسط القياسين القبلي والبعدي لمتغير السعة اللاوكسيجينية (كم. متر/ثانية) عند أفراد مجموعتك تدريب الفارئتك

144
الشكل رقم (21): متوسط القياسين القبلي والبعدي لمتغير نسبة الشحوم (٪) عند أفراد مجموعة تدريب الفارتك.

الشكل رقم (22): متوسط القياسين القبلي والبعدي لمتغير كتلة الجسم الخالية من الشحوم (كغم) عند أفراد مجموعة تدريب الفارتك.
الشكل رقم (23) : متوسط القياسين القلبي والبديع لمتغير التمثيل الغذائي خلال الراحة (سورة/يوميا) عند أفراد مجموعة تدريب الفارتلك

الشكل رقم (24) : متوسط القياسين القلبي والبديع لمتغير ضغط الدم الانقباضي (ملم/ثاني) عند أفراد مجموعة تدريب الفارتلك
الشكل رقم (25): متوسط القياسين القبلي والباعدي لمتغير ضغط الدم الانبساطي (ملم/رتبة) عند أفراد مجموعة تدريب الفارتك.

الشكل رقم (26): متوسط القياسين القبلي والباعدي لمتغير نبض الراحة (نبضة/دقيقة) عند أفراد مجموعة تدريب الفارتك.
الشكل رقم (27): متوسط القياسين القبلي والبعدي لفمّ تغير حجم النبضة (مليلتر/نقطة) عند أفراد مجموعة تدريب الفارتلك

الشكل رقم (28): متوسط القياسين القبلي والبعدي لفمّ تغير الدفع القبلي خلال الراحة (نتر/دقيقة) عند أفراد مجموعة تدريب الفارتلك
الشكل رقم (29): متوسط القياسات القلبي والبديع لمتغير جري كوبير 12 دقيقة (كيلومتر) عند أفراد مجموعة تدريب الفائتك

الشكل رقم (30): متوسط القياسات القلبي والبديع لمتغير أقصى نبض (نقطة / دقيقة) عند أفراد مجموعة تدريب الفائتك
الشكل رقم (31): متوسط القياسين القبلي والبعدي لمتغير أقصى دفع قلبي (أثر/ دقيقة) عند أفراد مجموعة تدريب الفارتك.

الشكل رقم (32): متوسط القياسين القبلي والبعدي لمتغير الحد الأقصى لاستهلاك الأوكسجين (ملليتر/ كجم/ دقيقة) عند أفراد مجموعة التدريب التدريبي عالي الشدة.

ثانيًا: النتائج المتعلقة بالفرضية الثالثة والتي نصها:

توجد فروق ذات دلالة إحصائية بين أثر طريقة التدريب الفترى عالي الشدة وطريقة تدريب الفارتك على بعض الخصائص البدنية و الفسيولوجية لدى ناشئي كرة القدم في القياس البعدي. لاختبار الفرضية استخدم اختبار (ت) لمجموعتين مستقلتين (Independent t-test).

ونتائج الجدول رقم (9) تبين ذلك.
الجدول (9)

نتائج اختبار (ت) لمجموعتين مستقلتين لدالة الفروق في القياس البعدي في المتغيرات قيد الدراسة بين افراد طريقة التدريب الفكري عالي الشدة وطريقة تدريب الفارتك (ن=30).

<table>
<thead>
<tr>
<th>مستوى الدالة</th>
<th>قيمة (ت)</th>
<th>طريقة تدريب الفارتك</th>
<th>طريقة تدريب الفكري</th>
<th>وحدة القياس</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>المتوسط</td>
<td>الانحراف</td>
<td>المتوسط</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>المسار</td>
<td>2.31</td>
<td>0.36</td>
<td>4.77</td>
<td>0.38</td>
</tr>
<tr>
<td>القوة</td>
<td>0.02</td>
<td>2.04</td>
<td>4.18</td>
<td>0.20</td>
</tr>
<tr>
<td>الشمع</td>
<td>1.39</td>
<td>3.69</td>
<td>32.47</td>
<td>1.79</td>
</tr>
<tr>
<td>الشمع</td>
<td>0.17</td>
<td>1.19</td>
<td>5.51</td>
<td>0.37</td>
</tr>
<tr>
<td>القدرة</td>
<td>0.21</td>
<td>1.28</td>
<td>5.96</td>
<td>40.25</td>
</tr>
<tr>
<td>المريء</td>
<td>0.43</td>
<td>0.78</td>
<td>7.19</td>
<td>41.72</td>
</tr>
</tbody>
</table>

المتغيرات

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>المسار</td>
<td>30.99</td>
<td>1.79</td>
<td>30.99</td>
<td>30.99</td>
</tr>
<tr>
<td>القوة</td>
<td>0.02</td>
<td>30.99</td>
<td>1.79</td>
<td>30.99</td>
</tr>
<tr>
<td>الشمع</td>
<td>0.21</td>
<td>5.96</td>
<td>40.25</td>
<td>7.44</td>
</tr>
<tr>
<td>الشمع</td>
<td>0.43</td>
<td>7.19</td>
<td>41.72</td>
<td>8.27</td>
</tr>
</tbody>
</table>

* ملاحظة: إحصائيات عند مستوى الدالة (0.05) قيمة (ت) الجدولية (2.04) بدرجات حرية (28).
يتضح من الجدول (9) أنه لا توجد فروق ذات دلالات إحصائية في القياس البعدي لغالبية المتغيرات في الدراسة بين أفراد المجموعتين، بينما كانت الفروق دالة إحصائيا في متغيرات السرعة، ونسبة الشحوم وحجم النبضة حيث كانت الفروق في السرعة لصالح طريقة التدريب الفتري عالي الشدة، بينما كانت الفروق في نسبة الشحوم وحجم النبضة لصالح تدريب الفارتك، وتظهر هذه الفروق في الأشكال البيانية (33-35).
الشكل رقم (35) المتوسطات الحسابية لقياس البهدي حجم البضبة (مليونت/بضة) تبعاً إلى متغير المجموعة1=
التدريب الفعلي عملي الشدة 2=تدريب الفاريتاك

<table>
<thead>
<tr>
<th>Mean</th>
<th>64</th>
<th>66</th>
<th>70</th>
<th>72</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الفصل الخامس

مناقشة النتائج والاستنتاجات والتوصيات

- مناقشة النتائج
- الاستنتاجات
- التوصيات
الفصل الخامس
مناقشة النتائج والاستنتاجات والتوصيات

يشتمل هذا الفصل على مناقشة النتائج تبعًا لفرضيات الدراسة إضافة إلى الاستنتاجات والتوصيات. وفيما يلي بيان لذلك:

أولا: مناقشة النتائج

هدفت الدراسة إلى تحديد أثر التدريب الفكري عالي الشدة وتدريب الفارتك على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم، إضافة إلى المقارنة بين الطرفين، وتحقيق ذلك أجريت الدراسة على عينة قوامها (30) ناشئًا من تراوح أعمارهم بين (14-16) عامًا، ووزعت عشوائياً بالتساوي إلى مجموعتين تجريبيتين هما التدريب الفكري عالي الشدة وتدريب الفارتك، حيث تم تطبيق البرنامجين التدريبيين لمدة 8 أسابيع بواقع ثلاثة وحدات تدريبية أسبوعية. وتم (90-120) دقيقة لبرنامج التدريب الفكري عالي الشدة، و (65-90) دقيقة لبرنامج تدريب الفارتك، وقبل وبعد تطبيق البرنامجين التدريبيين تم إجراء قياسات: تحسين الراحة، وحجم النبض، وزخم الدم الانقباضي، وضغط الدم الانقباضي، والضغط القلبي خلال الراحة، والقدرة اللاكتسيمية للدورة اللاكتسيمية، ونسبة شحوم الجسم، وكثافة الجسم خالية من الشحوم، والتوتر الغذائي خلال الراحة وأقصى نبض، وأقصى دفع قلبي، والمسافة المقطوعة في اختبار كوبير، الحد الأقصى (استهلاك الأكسجين)، وبعد عملية جمع البيانات تم تحليلها إحصائياً، في استخدام برامج الرزم الإحصائية (SPSS) فيما يلي عرض لمناقشة نتائج الدراسة حسب تسلسل فرضياتها:

1- مناقشة النتائج المتعلقة في الفرضية الأولى والتي نصها:

توجد فروق ذات دلالة إحصائية في أثر طريقة التدريب الفكري عالي الشدة على بعض الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم بين القياسين القلبي والبديهي والصالح.
أظهرت نتائج اختبارات الأرواح في الجدول رقم (7) والنماذج (1-15) أن برنامج التدريب الواعي الشديد أثناء الراحة وقصة دفع قلبي بعد أداء اختبار كورب، فيما يتعلق بالمتغيرات الدالة إحصائية ونسبة القلياسي الباعي كانت النسبة المئوية للقياس على النحو الآتي: السرعة (10.28%)، وتحمل السرعة (7.44%)، والرشاقة (13.13%)، والقدرة اللاكسيجينية (12.54%)، ونسبة الشحوم (14.27%)، والانقباضي (12.24%)، وضغط الدم الانتقاضي (11.12%)، وضغط الدم الانقباضي (15.50%)، ونسبة الفرق (15.04%)، والمسافة المقطوعة في اختبار كورب (6.61%)، وأقصى نبض (10.70%)، والحد الأقصى لاستهلاك الأوكسجين (8.32%).

ويبرى الباحث أنه فيما يتعلق بمتغيرات قصي سرعة، وتحمل السرعة، والقدرة اللاكسيجينية، والسرعة اللاكسيجينية، والرشاقة فإنها جميعها تعتمد العمل اللاكسيجيني بشقته، حيث تعتمد السرعة والقدرة اللاكسيجينية على النظام الفسيولوجي ATP-PC والانقباضي في هذه المتعارضات تاجم Glycatic والانقباضي على النظام الجلوكوزي والتحسن الناجم في هذه المتغيرات تاجم Glycatic وزيادة نشاط الأشعة (أنزيم الفوسفوفيريكو كينيز katch & McArdle, 2006)
أنزيم لاكتصوكينز (LDH)، أنزيم لاكتيك دهيدروجينز (PF)
(ATPase) تعد عامل بجد ذاته يؤثر على الأداء اللاكسمجني، ويُبَّأَر أيضاً أشار (خريبيض، 1997) عن دور أنزيم
(CKP) في إعادة تكوين (ATP) إذ يزداد نشاطها من 10 - 25% خلال (30 ث) من الأداء وتستعاد 70% من النظام اللاكسمجني، أيضاً أشار بارت وآخرون
إذا التنز يناله للعمل اللاكسمجي يعمل على زيادة كفاءته
ويؤثر على العديد من العوامل المؤثرة في النظام اللاكسمجي، ونتيجة لذلك تحدث التكيفات
الآثارية: زيادة في السعة اللاكسمجني، زيادة حجم الألياف العضلية، زيادة نشاط الأنيميات مثل
(أنزيم الفوسفوفيريكوت كايزيز (PFK)، أنزيم لاكتيك دهيدروجينز (LDH)، المايوكابينز،
فوسفولاتز، فولينيز) أيضاً يحسن بالأداء اللاكسمجي. وأكد على ذلك عبد الفتاح وسيد
(2003) في أن تدريبات الصفات والقدرات البدنية لأنظمة إنتاج الطاقة اللاكسمجني تشتمل على
تدريبات النظام اللاكسمجني وهي (القوة القصوى الثابتة، القوة القصوى المتحركة، السرعة
والقوة الالتفازية والقوة المميزية بالسرعة)، أما تدريبات النظام اللاكستكي فيتكون من (تحمل
السرعة، تحمل القوة الثابتة وتحمل القوة المتحركة). كما أتَّق كل من (أبو عبدة، 2008)
(البشتاوي، والخواجة، 2005) على أن هذه الطريقة من التدريب تعمل على تنمية القدرات
البدنية المتمثلة بالتحمل الخاص مثل: (تحمل السرعة، وتحمل القوة). كما تعمل هذه الطريقة
على تحسين التبادل اللاكسمجي للعضلات وزيادة مقدرة الفرد على العمل تحتالدين
اللاكسمجي، وتأخير ظهور التعب من خلال التكيف للأعمال البدنية.

وحول تأثير البرامج التدريبية على القدرة اللاكسمجني، فقد تبين وجود تأثير إيجابي
للبرامج التدريبية للاعبي كرة القدم على القدرة اللاكسمجني كما في دراسة ونج وآخرون

و فيما يتعلق بتركيب الجسم أثر برنامج التدريب الفكري عالي الشدة على نقص شحوم
الجسم وزيادة كثافة الجسم الخالية من الشحم، وجاءت هذه النتيجة متقدة مع نتائج دراسة محمد
وآخرون (2012) على ناشئي كرة القدم في تونس حيث نقصت نسبة شحوم
Fat oxidation (Talanien et al., 2007) was found to increase in endurance training, and this was evident in a study by Arciero et al. (1993) and Fox et al. (1989). A two-year follow-up of endurance training in women showed that 36% increase in fat oxidation was observed. The result is consistent with the hypothesis that endurance training increases fat oxidation in women.

In a study by Talanien et al. (2007), it was found that fat oxidation increased by 36% in women who underwent endurance training. This finding is consistent with the hypothesis that endurance training increases fat oxidation in women.

In conclusion, the results of this study support the hypothesis that endurance training increases fat oxidation in women. Further research is needed to confirm these findings and to better understand the mechanisms underlying the observed changes in fat oxidation.
وفيما يتعلق بحجم النبضة ضمن الذي أشار إليه (سيد،2003 ص187) وف (50 - 80 ملليتر/دقيقة)

وفيما يتعلق في ضغط الدم الانقباضي والانبساطي في الراحة يتأتي نتيجة للتقلل الناتج عن التدريب وتوزع الشرايين والأوردة وهذا يتوقف مع ما ذكره (سلامة 2008 ص100) بأن التدريب يقلل من ضغط الدم الانقباضي والانبساطي وقت الراحة ويكون الانخفاض في الانقباضي ما يعادل (11ملم زئبي) والانبساطي (8 ملم زئبي) وهذا ما أكده (بتي ملحم 2012)، بأن التدريب يزيد من كفاءة الجهاز الدوري التنفسي، حيث أشار إلى أن التدريب يعمل على زيادة ضخ الدم والانانت الوردي، وانخفاض نشاط الجهاز العصبي السمباثي يؤدي إلى إحداث تكييف واسع في قطر الأوعية الدموية الأمر الذي تسبب في انخفاض مقاومة الأوعية الدموية للدم، أما بالنسبة للدفع القلبي أثناء الراحة بالرغم أنه لم يكن دال إحصائيا إلى أنه جاء المتوسط متقارب مع ما أشار إليه كل من (عبد الفتاح وسيد،2003 ص405) و(سيد 2003 ص187) بأن الدفع القلبي في الراحة لدى الرياضيين متشابه بغير الرياضيين ويكون ما بين (4-6) لتر/ دقيقة. أيضا بالرغم من أن القصي دفع قلبي لم يكن دال إحصائيا الا أنه حدث تحسن نتيجة للتدريب الفتري عالي الشدة.

159
2 - مناقشة النتائج المتعلقة بالفرضية الثانية والتي نصها:

توجد فروق ذات دلالة إحصائية في أثر طريقة تدريب الفارثلك على بعض الخصائص البدنية والفييولوجيَّة لدى ناشئ كرة القدم بين القياسين القبلي والبعدي ولصالح القياس البعدي.

أظهرت نتائج اختبارات (ت) للأزواج في الجدول رقم (8) والأشكال (16-31) ان برنامج تدريب الفارثلك أثر على جميع المتغيرات قد الدراسة وبدلاء إحصائيَّة، حيث كانت الفروق بين القياسين القبلي والبعدي جميعها دالة إحصائيَّة ولصالح القياس البعدي، وكانت النسبة المنوية للتغير لهذه المتغيرات على النحو الآتي: السرعة (3.44%), وتحمل السرعة (7.20%), والرشاقة (8.17%), والقدرة اللاكتسحية (7.67%) والسرعة اللاكتسحية (11.31%)

و نسبة الشحوم (20.34%), وكثافة الجسم الخالية من الشحوم (10.1%), والتعبير الغذائي خلي الراحة (12.0%), وضغط الدم الانقباضي (11.81%), وضعف الدم الامبساطي (11.39%), ونبيض الراحة (13.97%), وحجم البنفسج (20.6%), والندف الغبلي خلال الراحة (6.77%) والمسافة المقطوعة في اختبار كوير (12.74%), وأقصى نبض (8.78%) وأقصى دفع قلبي (19.13%) والحد الأقصى لاستهلاك الأكسجين (16.03%).

160
تُعمل على زيادة كفاءة الجهاز الدوري التنفسي ورفع التحمل الأكسجيني واللاوكسيجيني إلى جانب تحسين النواحي الفسيولوجية، لذلك ساهمت طريقة تدريب الفارثلك في تنمية الخصائص البدنية والفسولوجية قيد الدراسة.

3- مناقشة النتائج المتعلقة بالفرضية الثالثة والتي نصها:

توجد فروق ذات دلالة إحصائية بين أثر طريقة التدريب الفردي عالي الشدة وطريقة تدريب الفارثلك على بعض الخصائص البدنية والفسولوجية لدى ناشئي كرة القدم في القياس البعدي، ولصالح طريقة التدريب الفردي مرتفع الشدة.

أظهرت نتائج الجدول رقم (9) أنه لا توجد فروق ذات دلالة إحصائية في القياس البعدي لغالبية المتغيرات قيد الدراسة بين أفراد المجموعتين بينما كانت الفروق دالة إحصائية في متغيرات السرعة، ونسبة الشحوم وحجم النبضة حيث كانت الفروق في السرعة لصالح طريقة التدريب الفردي عالي الشدة، (4.42) ثانية، بينما كانت الفروق في نسبة السحوم (6.93)% وحجم النبضة (72.66) مليلتر/ثانية لصالح تدريب الفارثلك، وتظهر هذه الفروق في الأشكال البيانية (32-34).

ثانيا: الاستنتاجات

في ضوء نتائج الدارسة ومناقشتها يمكن استنتاج الآتي:

1- أن مستوى القياسات البدنية والفسيولوجية في الدراسة كان جيداً وضمن المعايير المقبولة لنظامي القوة والتنفيذ.

2- أن برنامج التدريب الفوري عالي الشدة على جميع الخصائص البدنية والفسيولوجية باستثناء الدفع القلبي خلال الراحة وأقصى دفع قلبي.

3- أن أعلى نسبة للتأثير لبرنامج التدريب الفوري عالي الشدة كانت في تغيير السعة اللاكتسجسية (16.42%).

4- أثر برنامج تدريب الفارتك على جميع الخصائص البدنية والفسيولوجية في الدراسة.

162
5 - أن أعلى نسبة للتأثير لبرنامج تدريب الفارتكك كانت في متغير نسبة شحوم الجسم (-20.34%).

6 - صلاحية البرامج التدريبية لتنمية الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم، حيث لم تكن الفروقات دالة إحصائياً في غالبية المتغيرات في القياس البعدي بين البرنامجين.

7 - أن برنامج تدريب الفارتكك أفضل لتنمية العمل الأكسجيني من التدريب اللفتري عالي الشدة والدليل على ذلك ظهور الفروقات في نقص نسبة شحوم الجسم وحجم اليهضة، بينما كانت طريقة التدريب اللفتري عالي الشدة أفضل في تثبيت السرعة القصوى.

ثالث: النصوصات

في ضوء أهداف الدراسة ونتائجها يوصي الباحث بما يلي:

1 - تعميم نتائج الدراسة الحالية على مدربى الناشئين لكرة القدم للاستفادة منها في إعداد البرامج التدريبية وتوفر قيم مرجعية للقياسات قبل الدراسة لتقدير البرامج التدريبية والحالة التدريبية والتطور لدى الناشئين.

2 - استخدام طريقة التدريب اللفتري عالي الشدة وتدريب الفارتكك في تطوير الخصائص البدنية والفسيولوجية لدى ناشئي كرة القدم، حيث لم تكن الفروقات دالة إحصائياً في غالبية المتغيرات في القياس البعدي بين البرنامجين.

3 - إجراء دراسات مشابهة للدراسة الحالية على مختلف الألعاب الجماعية والفردية الأخرى لدراسة فاعلية أثر طرق تدريب أخرى على الخصائص البدنية والفسيولوجية لدى الناشئين.

4 - ضرورة بناء معايير فلسطينية لخصائص البدنية والفسيولوجية لناشئي كرة القدم للاستناد عليها في الإبقاء الرياضي للموهوبين وبناء تقييم البرامج التدريبية.

5 - إجراء دراسة مشابهة حول أثر طريقة التدريب اللفتري عالي الشدة وطريقة تدريب الفارتكك على بعض الجوانب النفسية لدى الناشئين.
المصادر والمراجع

أولاً: المراجع العربية

- البساطي، أمر الله أحمد. (1998). أسس وقواعد التدريب الرياضي وتطبقاته. الإسكندرية:

منشأة المعارف، مصر.

- البساطي، أمر الله أحمد. (1995). التدريب والإعداد البدني في كرة القدم. الإسكندرية:

منشأة المعارف، مصر.

164

165

- سليمان فاروق، وعلي محمد حمدي. (2006) تأثير تدريب مقتصر لتدريبات البارتكال على بعض المتغيرات البدنية والفسيولوجية للاعبي كرة القدم. مجلة كلية التربية الرياضية، بورسعيد 7 (2).

167

- القدومي، عبد الناصر. (2003(ب)). دراسة لبعض القياسات الفسيولوجية المختارة عند طلبة تخصص التربية الرياضية في جامعة النجاح الوطنية. مجلة اتحاد جامعة الدول العربية العدد (42): 544.

- القدومي، عبد الناصر. (2003(ب)). مؤشر كتلة الجسم (BMI) والتمثيل الغذائي خلال الراحة (RMR) للاعبين الفرق المشاركة في البطولة العربية العشرية للكرة الطائرة للرجال في الأردن. مجلة جامعة النجاح للأبحاث (سلسلة العلوم الإنسانية) المجلد (17) العدد (1).

القدومي عبد الناصر نمر صحي. (2004(ب)). الحد الأقصى لاستهلاك الأوكسجين وتركيب الجسم لدى الطلاب الذكور في قسم التربية الرياضية في جامعة النجاح الوطنية. مجلة اتحاد الجامعات العربية. (44).

القدومي عبد الناصر نمر صحي. (2004(ا)). الحد الأقصى لاستهلاك الأوكسجين (Vo2max) مؤشر كتلة الجسم (BMI) والتمثيل الغذائي خلال الراحة (RMR) لدى لاعبي أندية الدرجة الممتازة للألعاب الرياضية الجماعية في شمال فلسطين. مجلة العلوم التربوية والنفسية. جامعة البحرين. 5 (1):191-227.

الكبيسي، خالد. (2002)، علم المناعة والأمراض، طأ، عمان: دار صفاء للنشر والتوزيع، الأردن.

ملاح، فاطمة عبد، وجاسم، نوال مهدي، وكعبش، حميد اسماء، (2011)، التدريب الرياضي لطلبة المرحلة الثانية في كليات التربية الرياضية. ط. بغداد: مكتبة المجتمع العربي للنشر والتوزيع العراق.

محمد، ناصر عبد المنعم. (2004). "أثر استخدام أساليب مختلفة لتدريبات الفارتك على بعض المتغيرات البدنية والنفسية ومستوى الإنجاز الرقمي لمسابقي 800 م 1500م. جري" (رسالة ماجستير غير منشورة)، كلية التربية الرياضية للبنين، جامعة حلوان.

محمد، حمدي محمد. (2007). "تأثير تدريب الفارتك على بعض المتغيرات الفسيولوجية ومستوى الإنجاز الرقمي لنسائي سباق 3000 متر جري" (رسالة ماجستير غير منشورة)، كلية التربية الرياضية، جامعة بورسعيد.

ثانيا: المراجع باللغة الإنجليزية

-Can Ozgide.(2010)."Four Weeks of Respiratory Muscle Training Improves Intermittent Recovery Performance but Not Pulmonary Functions and Vo2 Max Capacity in Young Soccer Players". (Unpublished Dissertation), Middle East Technical University, Department of Physical Education and Sports; Orta Dogu Teknik Universitesi, Cankaya, Ankara, Turkiye.

-Harry, Golby, and, Simon, Moore. (1993). **Intensive 10 week training program for ultimate GB, Captain.**

الملاحق
ملحق رقم (1)

البرامج التدريبيين: التدريب الفكري عالي الشدة وتدريب الفارتك

الاستمارة الخاصة لاستطاعة أراء المحکمون حول البرامج التدربین المقتربین

حضرته: ------------------------ المحترم

تحية طيبة وبعد:

يقوم الباحث بإجراء دراسة بعنوان "أثر التدريب الفكري عالي الشدة وتدريب الفارتك على بعض الخصائص البدنية والنفسية لدى ناشئي كرة القدم" وذلك استكمالاً لمتطلبات الحصول على درجة الماجستير في التربية الرياضية بجامعة النجاح الوطنية، وعليه فقد تم اختياره كعضو لتحكيم البرامج التدربین المقتربین من قبل الباحث، لما عهدنا منك من خبرة ومعرفة في هذا المجال، وبناء عليه أرجو من حضرتك التكرم بالإطلاع على البرامج بعناية وإبداء ملاحظاتك حول ملائمته هذين البرنامجين، وهذا بدوره سيستعمل حكم دقيق وموضوعي على البرنامجين كما يرجى إبداء ملاحظتك من حيث اقتراح أي تعديل على البرنامجين والを行いة اللغوية.

مع الاحترام والتقدير

الباحث

حامد سلمان
أولا: هدف البرنامج:

يهدف هذا البرنامج إلى التعرف إلى مقدار التغيير لبعض الخصائص البدنية والكيميائية لدى ناشئ كرة القدم، وذلك من خلال برامج تدريبية مختلفة يحتويان على بعض تمرينيات السرعة وتحمل القوة وتحمل الرشاقة، مع المحافظة على سلامة اللاعبين من الإصابات خلال التنفيذ.

ثانيا: طرق التدريب المستخدمة:

تم استخدام طريقة التدريب الفني عالية الشدة وتدريب الفارتك.

ثالثا: التوزيع الزمني لتنفيذ البرنامج:

تم توزيع البرنامج على ثلاث وحدات تدريبية أسبوعياً وذلك على النحو الآتي:

- تم تحديد (24) وحدة تدريبية خلال ثماني أسابيع.
- تم تحديد (3) وحدات تدريبية في الأسبوع. (سبت، الاثنين، أربعاء) للمجموعتين.
- تم تحديد زمن الوحدة التدريبية الواحدة لبرنامج تدريب الفارتك، تستغرق على الإجمالي والجزء الرئيسي والختامي، كما هو موضح أدناه.

1- زمن فترة الإحماء لبرنامج التدريب الفني عالي الشدة (20) دقيقة، و الفارتك (10) دقائق مع التعليمات والارشادات.
2 - تم تحديد (40-70) دقيقة لتطبيق البرنامج التدريبي الفتري عالي الشدة المقترح.

3 - تم تحديد (15-40) دقيقة لتطبيق برنامج تدريب الفارتلوك المقترح.

4 - تم تحديد (20) دقيقة للعب الجماعي في برنامج التدريب الفتري عالي الشدة، و (30) دقيقة لبرنامج تدريب الفارتلوك.

5 - زمن الجزء الختامي في نهاية الوحدة التدريبية (10) دقائق لكل البرنامجين.

- تم استخدام (4) دوائر تدريبية لتطبيق برنامج التدريب الفتري عالي الشدة المقترح، في حين تم استخدام دائرتين تدريبتين لتطبيق برنامج تدريب الفارتلوك.

أولاً: دوائر برنامج التدريب الفتري عالي الشدة

1 - دائرة (1) تدريبات التحمل الامكاني (التحمل الاسماس)، وتتكون من (3) تمرينات، مرقبة من (1-3).

2 - دائرة (2) تدريبات والرشاقة. وتتكون من (3) تمرينات، مرقبة من (4-6).

3 - دائرة (3) تدريبات تحمل السرعة. وتتكون من (3) تمرينات، مرقبة من (7-9).

4 - دائرة (4) تدريبات تحمل القوة. وتتكون من تمرينين، مرقبة من (10-11).

ثانياً: دوائر برنامج تدريب الفارتلوك

1 - دائرة (1) تدريبات التحمل الامكاني (التحمل الاسماس)، وتتكون من (3) تمرينات، مرقبة من (1-3).

2 - دائرة (2) تدريبات البرنامج المقترح (تدريبات الفارتلوك) وتتكون من (3) تمرينات، مرقبة من (4-6).
ثالثاً: محتوى برنامج التدريب الفتري عالي الشدة
الدائرة رقم (1): تمارين التحمل الاكسيجيني (إعداد عام)

التمرين رقم (1): جري مسافة (500) متر موزعة على النحو الاتي: (100)متر بطول الملعب على الخط الجانبي، و(85) متر من الركنية حتى منطقة ال18 باردة، ثم (85) متر من منطقة ال18 باردة لزاوية الركلة الركنية، ثم (100) متر على خط الجانب الآخر وأخيراً (80) متر بعرض الملعب حتى الوصول لنقطة البداية ويكدر التدريب.

ملفحة: الإداء جماعي

شكل (1)

التمرين رقم (2): يقوم اللاعب بالجري ممسكا بالكرة، وعندما يقترب من الحاجز يلقى الكرة على الأرض ويمرها من داخل الحاجز والوئله من فوق للحاق بالكرة والسيطرة عليها والجري بها حول الكور الطريقية حتى يصل إلى نقطة البداية.

ملفحة: الإداء فردي وبفواصل زمنية (10) ثواني بين اللاعب والذي يليه.

شكل (2)
تمرين رقم (3): يقوم اللاعب بالجري الزيزاجي بالكرة من بين الكور الطويلة بسرعة ثم يرقد على الظهر ممسكاً الكرة في يده ويحاول ثني الجذع للمس الكرة للمشطبين لا يقل عن (20)م ثم الوقوف لعلل خطوات واسعة بالوثب من فوق العصي، اخذ وضع الانبطاح المائل وثني وصد الذراعين (15) مرة، ثم الوقوف والجري المتعرج، ثم الوقوف، ومسك الكرة عالياً خلف الرأس لرفع القدمين عالياً بزاوية (45) درجة (15) مرة، ثم الوقوف، ومسك الكرة خلف الوسط والوثب بالقدمين ضماً، ثم الجري الجانبين بين الحواجز، ثم العدو لمسافة (40م)، واللف للوصول لخط البداية.

ملاحظة: الاداء فردي وبمواصل زمنية (10) ثواني بين اللاعب بليه.

ال دائرة رقم (2): دائرة تدريبات والرشاقة

التمرين رقم (4): الجري المتعرج (الزيزاجي) بين الأعلام والأعلام المتباينة.

ملاحظة: الاداء فردي وبمواصل زمنية (5) ثواني بين اللاعب بليه.

التمرين رقم (5): الجري المتعرج بين الأعلام مع تبادل تمرير الكرة بين الزميلين والجري من خلف الزميل.

ملاحظة: الاداء زوجي وبمواصل زمنية (5) ثواني بين اللاعب بليه.
التمرين رقم (6): الجري المتعارج بين الأقسام والجري الارتدادي، ثم الوض من فوق الحاجز مرتين والمرور من تحته مرة أخرى والوض من فوق الأقسام (تدريب دائرى على شكل محاذاة)

ملاحظة: الأداء فردي وفواصل زمنية (5) ثواني بين اللاعبين.

الدائرة رقم (3): دائرة تدريبات تحمل السرعة

التمرين رقم (7): يقوم اللاعب (أ) بتمرير الكرة إلى (ب) ويجري ليدور حول العلامة، حيث يقوم (ب) باستلام الكرة وتمريرها ثانيا إلى (أ) ويجري ليدور هو الآخر حول العلامة وهكذا والشكل المجاور يوضح ذلك.

ملاحظة: الأداء جماعي ضمن أربعة مجموعات كل مجموعة تتكون من (4) لاعبين.
التمرين رقم (8): يقسم الملعب إلى مناطق مختلفة المسافة، حيث يبدأ اللاعبون بالجري بسرعة عالية (حسب شدة التمرين) والعودة بالجري الخفيف إلى خط المرمى.

ويكرر الجري للخط الذي يليه وهكذا. والشكل المجاور يوضح ذلك.

ملاحظة: الأداء فردي وبتفاعلات زمنية (5) ثواني بين اللاعبين.

شكل (8)

التمرين رقم (9): الجري لمسافة (400م)، على مسار عقارب قوى مساحته (200م).

ملاحظة: الأداء بمجموعات كل مجموعة تتكون من (4) لاعبين حسب عدد حارات المضمار وتفاعلات زمنية (10) ثواني بين المجموعة والتي تليها.

شكل (9)

الدائرة رقم (4): دائرة تدريب تحميل القوة.

التمرين رقم (10): تدريب فتري باستخدام تشكيل التدريب الدائري.

1. (انبئاح ماتل) ثم ود الذراعان كاملا.
2. (رقص تشبيك الذراعان خلف الرأس. مسك قدمي الزميل) تقوس الجذع خلفا ():.

194
3. (رقود. القرفصاء. تشبه الذراعين خلف الرأس) رفع الجذع عالياً عن الأرض بزاوية 45 درجة.

4. (وقوف. حمل الكرة اماما) ثني ومد الركبتين كاملاً.

5. (رقود. القدمان اماما) ثني ومد الركبتين كاملاً باستمرار (:).

6. (وقوف. مواجهة الجانب للكرات) الوثب جانباً من فوق الكرات باستمرار.

7. (وقوف. مواجها للصندوق.) الوثب على الصندوق بالتبادل.

8. (وقوف. عال على الصندوق) رفع وخفض العينين عالياً وأسفل على الصندوق.

شكل (10)
<table>
<thead>
<tr>
<th>الزمن الكلي للاداء</th>
<th>زمن لراحة بين المجموعات</th>
<th>عدد المجموعات</th>
<th>عدد التكرارات</th>
<th>زمن الاداء للتمرين</th>
<th>الاداء المستخدم</th>
<th>رقم الدائرة</th>
<th>رقم التمرين</th>
<th>اليوم</th>
<th>الاسبوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>118 اتفاقية</td>
<td>2.30-2</td>
<td>1</td>
<td>4</td>
<td>1.30-1.20</td>
<td>1.15-1.33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>181 اتفاقية</td>
<td>2.30-2</td>
<td>1</td>
<td>4</td>
<td>1.30-1.20</td>
<td>1.15-1.33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>181 اتفاقية</td>
<td>2.30-2</td>
<td>1</td>
<td>4</td>
<td>1.30-1.20</td>
<td>1.15-1.33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>181 اتفاقية</td>
<td>2.30-2</td>
<td>1</td>
<td>4</td>
<td>1.30-1.20</td>
<td>1.15-1.33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>181 اتفاقية</td>
<td>2.30-2</td>
<td>1</td>
<td>4</td>
<td>1.30-1.20</td>
<td>1.15-1.33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

196
<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>90-85%</td>
<td>10</td>
</tr>
<tr>
<td>Second</td>
<td>85-80%</td>
<td>4</td>
</tr>
<tr>
<td>Third</td>
<td>80-75%</td>
<td>3</td>
</tr>
<tr>
<td>Fourth</td>
<td>75-70%</td>
<td>2</td>
</tr>
<tr>
<td>Fifth</td>
<td>70-65%</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The table contains categories with specific percentage ranges and quantities.
الجدول الزمني لتوزيع دوائر التدريب المستخدمة في البرنامج

<table>
<thead>
<tr>
<th>رقم التمرين</th>
<th>الدوائر التدريبية</th>
<th>الأسابيع</th>
<th>الأشهر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 2 1</td>
<td>1</td>
<td>الأول</td>
</tr>
<tr>
<td></td>
<td>3 2 1</td>
<td>1</td>
<td>الثاني</td>
</tr>
<tr>
<td></td>
<td>6 5 4</td>
<td>2</td>
<td>الثالث</td>
</tr>
<tr>
<td></td>
<td>9 8 7</td>
<td>3</td>
<td>الرابع</td>
</tr>
<tr>
<td></td>
<td>11 10</td>
<td>4</td>
<td>الأول</td>
</tr>
<tr>
<td></td>
<td>6 5 4</td>
<td>2</td>
<td>الثاني</td>
</tr>
<tr>
<td></td>
<td>9 8 7</td>
<td>3</td>
<td>الثالث</td>
</tr>
<tr>
<td></td>
<td>11 10</td>
<td>4</td>
<td>الرابع</td>
</tr>
</tbody>
</table>
ثانياً: محتوى برنامج تدريب الفارثي

يحتوي البرنامج على التدريبات الآتية:

 دائرة رقم (1): تدريبات فترة الإعداد (تمرينتين تحمل هوايي - أساسي) وتشتمل على التدريبات المرموقة من (1-3)

تدريب رقم (1)

- أولاً: الهربولة لمدة (10) دقائق للإجمام.
- ثانياً: الجري لمسافة (2000م) موزعة على النحو الآتي:
 - الجري بسرعة ثابتة لمسافة (1000م)، بمعدل نبض يتراوح ما بين (120-140 نبضة في الدقيقة).
 - وزمن قدره (7) دقائق.
- المشي السريع لمسافة (200م)، بحيث لا يقل النبض عن (120 نبضة في الدقيقة) وزمن قدره (3 دقائق).
- الجري بسرعة ثابتة لمسافة (400م)، بمعدل نبض يتراوح ما بين (140-150 نبضة في الدقيقة).
 - وزمن قدره (3) دقائق.
- المشي البطيء لمسافة (200م) وزمن قدره (3) دقائق.
- ثالثاً: لعب جماعي لمدة (30 دقيقة).

تدريب رقم (2)

- أولاً: الهربولة لمدة (10) دقائق للإجمام.
- ثانياً: الجري لمسافة (3000م) موزعة على النحو الآتي:
الجري لمسافة (1500م) موزعة على النحو الآتي: الجري بسرعة ثابتة لمسافة (1000م)
أي بمعدل نبض يتراوح ما بين (120 - 140 ن/د) وزمن قدره (7) دقائق، المشي البطيء
لمسافة (200م)، بحيث لا يقل النبض عن (120 ن/د)، وزمن قدره (3) دقائق، الجري
لمسافة (300م) بمعدل نبض (140 - 150 ن/د)، وزمن قدره (3) دقائق، الجري بسرعة
ثابتة لمسافة (1500م)، موزعة على النحو الآتي: (400م) بمعدل نبض (120 - 140 ن/د)
ق) زمن قدره (2.30 دقيقة)، (500م) بمعدل نبض (140 - 160 ن/د) زمن قدره (3)
دقائق (400م) بمعدل نبض (120 140 ن/د) زمن قدره (3.20 دقيقة).
- المشي السريع لمسافة (200م) وزمن قدره (3 دقائق).
- الثالث: لعب جماعي لمدة (30 دقيقة).

تدريب رقم (3)
أولا: الهبوط لمدة (10) دقائق للإحماء.
ثانيا: التدريب في الخلاء على الجبال والتلال والمناطق غير المستوية ولمدة (30 دقيقة)، والشدة
حسب طبيعة منطقة الجري.
ثالثا: لعب جماعي لمدة (30 دقيقة).

دائرة رقم (2): وتشتمل على تمرينات والرشاقة وتحمل السرعة وتحمل القوة.

تدريب رقم (4)
أولا: الهبوط لمدة (10) دقائق للإحماء.
ثانيا: الجري لمسافة (5000م) موزعة على النحو الآتي:
الجري لمسافة (100م) على النحو الآتي: (30م) عدو سريع بزمن (5ث)، (40م) هرولة بزمن (10ث)، (40م) مشي بزمن (20ث) ويكرر التمرين (5) مرات. (5×100م).
زيادة المسافة بالجري لمسافة (200م) على النحو الآتي: (100م) عدو سريع بزمن (15ث)، (50م) هرولة بزمن (25ث)، (50م) مشي بزمن (40ث) ويكرر التمرين (4) مرات، (4×200م).
الجري البطيء لمسافة (200م) بزمن (1.30 دقيقة).
زيادة المسافة بالجري لمسافة (400م) موزعة على النحو الآتي: (150م) عدو سريع بزمن (25ث)، (50م) هرولة بزمن (40م)، (100م) مشي بزمن (40ث) ويكرر التمرين (3) مرات. (3×400م).
المشي السريع لمسافة (200م) بزمن (1.30 دقيقة).
الجري لمسافة (1000م) بمعدل نبض (130 إلى 150 نبضة/د) بزمن قدره (6.30 دقيقة).
الهرولة والمشي لمسافة (100م) لأداء التمرينيات الاستشفائية بزمن (1) دقيقة.
ثالثًا: لعب جماعي لمدة (30 دقيقة).
تدريب رقم (5)
أولا: الهرولة لمدة (10) دقائق للإحماء.
ثانيا: الجري لمسافة (5000م) موزعة على النحو الآتي:
الجري بعرض الملعب لمسافة (400م) على شكل حرف (W) موزعة على النحو الآتي: (50م) عدو سريع بزمن (15ث)، (50م) هرولة بزمن (15ث)، (50م) الوثب فوق الأقدام بزمن (40ث)، (50م) الجري الزوجي بين الأقدام بزمن (20ث)، (50م) الجري للخلف بزمن (15ث)، (50م) الحجل على القدم اليمنى بزمن (20ث)، (50م) هرولة بزمن (40ث).
الجري الخفيف بالكرة حول المضمار لمسافة (50م) بزمن (4) دقائق.
- الجري لمسافة (1500م) على النحو الآتي: (50م) بمعدل نبض (140-150 ن/د) بزمن قدره (1.5) دقيقة.
(50م) بمعدل نبض (160-170 ن/د) بزمن قدره (1.4) دقيقة.
- الهوولة والمشي الخفيف لمسافة (25م) بزمن قدره (40) دقيقة.
- الجري لمسافة (1000م) بمعدل نبض (130 150 ن/د) بزمن قدره (6.3) دقائق.
- الجري لمسافة (200م) بمسافة (120-140 ن/د) بزمن قدره (1) دقيقة.
- ثالثا: لعب جماعي لمدة (30 دقيقة).

تدريب رقم (6)
- أولا: الهوولة لمدة (10) دقائق للإحماء.
- ثانيا: الجري لمسافة (300م) موزعة على النحو الآتي.
- الجري الزنجاجي بالكرة من بين الكور الطبية بسرعة ومسافة (30م) بزمن قدره (20ث).
- يرقد اللاعب على الظهر ممسكاً الكرة في يديه ويحاول ثني الجذع للمسيرة للمشطين لا يقل عن (20مرة) بزمن قدره (30ث).
- الوقوف لعمل خطوات واسعة بالثوب من فوق العصي ومسافة (30 م) بزمن قدره (15ث).
- اخذ وضع الإبطاح المائل وثني وجدارتين (15رة) بزمن قدره (20ث).
- ثم الوقوف والجري الممتد بالكرة لمسافة (30 م) بزمن قدره (20ث).
- ثم الرقود ومسك الكرة عالية خلف الرأس لرفع القدمين عالية بزاوية 45 درجة (15 مرة)

بزمن قدره (25ث) .

- ثم الوقوف ومسك الكرة خلف الوسط والوُثب بالقدمين ضما لمسافة (20 م) بزمن قدره

(20ث) .

- ثم الجري المتدرج بين الحواجز بالكرة ومسافة (30 م) بزمن قدره (30ث) .

- ثم العدو لمسافة (40م) بالكرة بزمن قدره (6ث) .

- ثم الجري الخفيف بالكرة لمسافة (40 م) بزمن قدره (15ث).

- ثم التنطيط بالكرة لمسافة (30م) حتى الوصول لخط البداية والتكرار (250م×5) بزمن قدره

(30ث).

الجري لمسافة (1500م) على الاتجاه الشمالي: (500م) بمعدل نبض (120-140 ن/د) بزمن قدره (30ث) (دقيقة)

دقيقة (دقيقة)

(دقيقة 150-120 ث) بزمن قدره (دقيقة (دقيقة 1.4).)

- المشي الجري الخفيف لمسافة (250م) بزمن قدره (دقيقة 40 ث) بزمن قدره (دقيقة 1.4).

- الجري لمسافة (1000م) بمعدل نبض (150-130 ن/د) بزمن قدره (دقيقة 30 ث) بزمن قدره (دقيقة 1.4).

- المشي الجري الخفيف لمسافة (250م) بمعدل نبض (150-170 ن/د) بزمن قدره (دقيقة 3 دقائق).

- الجري لمسافة (500م) بمعدل نبض (150-170 ن/د) بزمن قدره (3 دقائق).

ثالثًا: لعب جماعي لمدة (30 دقيقة).
الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
تم استخدام ساعة باول (Polar) لقياس النبض | 60 دقيقة | 65-15 | 15 | 1 | 1 | السيدات
| 62 دقيقة | 20-25 | | | | | الأرامل
| 80 دقيقة | | | | | |
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 65 دقيقة | 65-20 | 15 | 1 | 1 | السيدات
| 62 دقيقة | 20-25 | | | | | الأرامل
| 80 دقيقة | | | | | | 3

الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 75 دقيقة | 30-25 | | 4 | 2 | السيدات
| 80 دقيقة | 35-30 | | | | | الأرامل
| 85 دقيقة | 40-35 | | | | | 3

الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 74 دقيقة | 28-24 | | 4 | 2 | السيدات
| 79 دقيقة | 33-29 | | | | | الأرامل
| 74 دقيقة | 38-34 | | | | | 6

الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 73 دقيقة | 26-23 | | 4 | 2 | السيدات
| 78 دقيقة | 31-28 | | | | | الأرامل
| 83 دقيقة | 36-33 | | | | | 3

الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 72 دقيقة | 25-22 | | 4 | 2 | السيدات
| 77 دقائق | 30-27 | | | | | الأرامل
| 82 دقيقة | 35-32 | | | | | 6

الหมายات | الزمن الكلي (دقائق) | الزمن لأداء التدريب (دقائق) | الرضا المستخدمة | عدد التدريب | رقم الدائرة | اليوم | الأجراءات
---|---|---|---|---|---|---|
قياس النبض كمؤشر فسيولوجي على شدة التمرين من خلال ساعة | 72 دقيقة | 25-22 | | 4 | 2 | السيدات
| 77 دقائق | 30-27 | | | | | الأرامل
| 82 دقيقة | 35-32 | | | | | 6
الشكل (11) يوضح النموذج ورشدة التدريب لبرنامج التدريب الفتري خلال الـ (8) أسابيع

عيدة الرسالة

203
عينة الدراسة التجريبية لطريقة التدريب الفتري عالي الشدة

عينة الدراسة التجريبية لطريقة تدريب الفارتيك

204
عينة الدراسة الاستطلاعية

عينة الثبات

205
الاختبارات البدنية والفسيولوجية المستخدمة في الدراسة

إجراءات الاختبارات:

تم إجراء الاختبارات لكل من القياسات البدنية والفسيولوجية على النحو التالي:

أولا الاختبارات البدنية:

1- اختبار السرعة (عدو 30م): (اختبار الاتحاد الألماني لكرة القدم واللجنة الدولية للرياضة البدنية)

الغرض من الاختبار: قياس السرعة القصوى.

الأجهزة والأدوات المستخدمة: شريط قياس (كيركر) أقمار.

2- اختبار الرشاقة

اسم الاختبار: (الجري المكوي للجنسين)

الغرض من الاختبار: قياس الرشاقة.

وصف الاختبار: يقوم اللاعب بالجري المتجتر حول القوائم الأربعة، حيث يبعد القائم الأول عن خط البداية (6.0م). ويبعد كل قائم عن الآخر مسافة (2.5م) ويحاول اللاعب تجنب لمس القوائم أثناء الجري ذهاباً وإياباً. والشكل المجاور يوضح ذلك.احصاء الدرجة: يسجل الزمن من لحظة الجري على خط البداية وحتى العودة إليه مرة ثانية. (البسيطي، 1995، ص232).

3- اختبار تحمل السرعة

ال العدو لمسافة (200م).

الغرض من الاختبار: قياس تحمل السرعة.

وصف الاختبار: الجري لمسافة (200م) سريعاً من وضع البدء العالي.

احصاء النتيجة: أقل زمن. (محمود، 2009، ص35).
اختبار العدو (200م) لقياس تحمل السرعة

208
اختبار الخصائص الفسيولوجية

1 - اختبار القدرة اللاواكسجينية (الفسفاغينية):

اختبار الخطوة لمدة (10 ثوان): بداية يتم اخذ وزن اللاعب، وبعدها يبدأ الاختبار بالوقوف مواجهاً الصندوق بارتفاع (40 سم)، حيث يضع اللاعب إحدى رجليه على سطح الصندوق، بينما تكون الأخرى حرة على الأرض وممتدة باستقامة الظهر بحيث لا تستخدم في الدفع إلى الأعلى عن طريق المرجحة، ويكون العدد واحد للأعلى (فوق الصندوق)، واثنان للأعلى (تحت)، ويستمر العمل لمدة (10 ثوان) صعوداً وهبوطاً، وبعدها يحسب لكل صعود وهبوط خطوة واحدة.

اختبار القدرة اللاواكسجينية (اختبار الخطوة لمدة (10 ث))

يتم حساب القدرة اللاواكسجينية من خلال المعادلة الآتية بعد تحويل ارتفاع سطح الصندوق من (40 سم) إلى (0.4 م) وذلك لتوحيد الوحدات (سيد، 1998، ص 162).

209
القدرة اللاوكسجينية = 1.33 × وزن اللاعب (كغم) × 0.4 م × عدد الخطوات خلال (10 ثوان)
الزمن (10 ثوان)

2 - اختبار السعة اللاوكسجينية (اللاكتيكية):
اختبار الخطوة لمدة (30 ثانية): وهو اختبار مشابه لاختبار الأول (الخطوة لـ10 ثوان)، إلا أن تسجيل الخطوات يتم خلال مدة (30 ثانية) ويتم حساب القدرة وفق المعادلة الآتية:
السعة اللاوكسجينية = 1.33 × وزن اللاعب (كغم) × 0.4 م × عدد الخطوات خلال (30 ثانية)
الزمن (30 ثانية)

(سيد، 1998، ص 163).

3 - قياس الحد الأقصى لاستهلاك الأكسجين النسبي (VO2max): تم استخدام اختبار كوبر
وهو على درجة عالية من الصدق والثبات، حيث أشار البزاع (2009)، أن معامل
الارتباط عالي بين المسافة المقطوعة في (12) دقيقة والحد الأقصى لاستهلاك الأكسجين
النسيبي، حيث وصل إلى (0.90)، كما يعد اختبار كوبر من أكثر الاختبارات الميدانية
المستخدمة في تقدير الحد الأقصى لاستهلاك الأكسجين، حيث استخدامه في العديد من
الدراسات مثل دراسة (زايد 2010)، ودراسة (الغامدي 2006)، ويمكن وصف الاختبار
كما وصفه (جردات 2012) بما يلي:
اختبار كوبر (جري 12 دقيقة)

هدف الاختبار: قياس كفاءة الجهاز التنفسي لإيجاد الحد الأقصى لاستهلاك الأكسجين (VO2max).

المعدات المستخدمة: (ساعة إيقاف، أقمار أو أعلام لتحديد مضمار الركض متعدد الأدوار المستخدمة في الرياضة). شيفرة قياس مسافة من نوع كورك بطول 50 متر حيث يرسم مضمار الركض ويحدد عند مستوى أمتار ويحدد مكان للبداية.

طريقة أداء الاختبار: يأخذ اللاعبون وضع الاستعداد خلف خط البداية. عند سماع الصافرة يقوم اللاعبين بالجري حول مضمار لمدة ثانية عشرة دقيقة متواصلة، ليحاول كل لاعب قطع أكبر مسافة ممكنة. وعند انتهاء الزمن يتم حساب المسافة المقطوعة بالمتري.

التسجيل: عند سماع إشارة انتهاء الزمن المحدد للاختبار، يقف كل لاعب مكانه للتحديد المسافة بينه وبين نقطة البداية، وذلك بحساب عدد الدورات التي قطعها ضروبًا في مسافة كل دورة، ويساعد عليها عدد الأمتار الأخيرة التي وقف عليها اللاعب بعد اجتياز خط البداية لأخر مرة ومن ثم تحول المسافة من متر إلى كيلومتر.

تستخدم المعادلة التي أوردها الهزاز (2009)، لإيجاد الحد الأقصى لاستهلاك الأكسجين و هي:

\[VO2max = \frac{22.351 \times \text{المسافة المقطوعة بالكيلومتر}}{11.289} \]

211
اختبار كويبر جري (12) دقيقة

4 - الدفع القلبي (Cardio Output): تم حساب الدفع القلبي (CO)، من خلال المعادلة التي أوردها عبد الفتاح (2003)، وهي: الدفع القلبي لتر/د = معدل النبض في الدقيقة (HR) × حجم النبضة (SV).

• و يتم قياس نبض الراحة من خلال وضع الرقد، وضع إصبعي السبابة والوسطى على الشريان السباتي وتحسين النبض (عبد الفتاح 2003 ص 409) حيث تم سماع النبض لمدة (10) ثانية ثم ضرب الناتج في ستة.
قياس ضغط الدم

- حجم النبضة (SV) (Strok volum) من خلال معادلة ستار التي أُوردها سيد (2003).

- حجم النبضة (SV) ميلليتر/دقيقة = 100(0.5×(ضغط الدم الانقباضي ضغط الدم الانقباضي)) (0.6×العمر بالسنوات).

- ضغط الدم الانقباضي والانقباضي - يتم قياس ضغط الدم الانقباضي والانقباضي في الراحة من وضع الجلوس، من خلال جهاز ضغط الدم الزائفي سيفجومانوميتر (Sphygmomanometer) ويمكن وصف الاختبار كما يلي:

- اختبار قياس ضغط الدم.

- الأدوات المستخدمة: حماية طبية، جهاز ضغط الدم سيفجومانوميتر (Sphygmomanometer).

مواصفات الاختبار: - يتم لف الحزام على اليد (فوق المرفق) بشكل جيد، ويتم وضع السماكة على سطح اليد فوق الشريان، ويتوقف الحزام حتى يتوقف الدم من الجريان، وهنا لا يسمح للدم أي صوت في السماكة، ويتم تقريغ الحزام من الهواء بالتدريج، وبمجرد بذء الدم في الجريان وعند سماع أول صوت في السماكة، تؤخذ القراءة الموجودة على لوحة القياس، وتعبر هذه القراءة عن الضغط الانقباضي، ويستمر تقريغ الحزام تدريجياً من
الهواء ويبدأ صوت النيب في الانخفاض حتى يتم الوصول إلى مرحلة يختفي فيها صوت نبض القلب أي عند سماع آخر نبضة وهذا يتم قراءة الضغط في جهاز القياس وتعبر قيمة القياس عن الضغط الانبسطي.

- تم التنبؤ على المفصول بعدم الحركة وعدم الكلام أثناء القياس.
- ضغط الدم الانبسطي والانبسطي بعد أداء اختبار كوير: لحساب ضغط الدم الانبسطي والانبسطي بعد أداء اختبار كوير، تم استخدام جهاز سيفيجومانوميتر الرقمي لقياس ضغط الدم كما هو موضح قياسه أثناء الراحة وذلك بمساعدة فريق العمل.
- أقصى نبض قلبي (Qmax): لحساب الدفع القلبي بعد المجهد تم استخدام المعادلة التي أوردها سيده (2003) وهي:

\[Q_{max} = 5.7 \times \text{حد الأقصى لاستهلاك الأكسجين المطلق} + 3.6 \]

- حيث تم حساب الحد الأقصى لاستهلاك الأكسجين المطلق، من خلال ضرب نتيجة الحد الأقصى لاستهلاك الأكسجين النسبى في كتلة الجسم، ومن ثم تحويل الناتج من ميلتر إلى لتر. وتم تنفيذ جميع هذه العمليات باستخدام المدخل (Compute) في برنامج الرزم الإحصائي للعلوم الاجتماعية (SPSS).

- أقصى حجم النبضة (SVmax): لحساب حجم النبضة بعد أداء اختبار كوير تم تحويل الدفع القلبي من لتر إلى ميلتر، ومن ثم تقسيمه على أقصى نبض. وذلك باستخدام المدخل (Compute) في برنامج الرزم الإحصائي للعلوم الاجتماعية (SPSS).

- التمثيل الغذائي خلال الراحة وتركيب الجسم:

- سيتم استخدام جهاز تانتا لقياس وزن العضلات والدهون ونسبة الدهون.

- جهاز تانتا (Tanita TBF-410): لقياس تركيب الجسم، حيث يتم من خلال هذا الجهاز قياس مترات (الوزن، ومؤشر كتلة الجسم، نسبة الدهن، وزن العضلات، والتمثيل الغذائي خلال الراحة)، أمثل بالنسبة للوزن فيكون لأقرب (10)غرام.

- مكونات جهاز تانتا (Tanita TBF-410):

- قاعدة الجهاز حيث يوجد أعلاها قطعتان منيتتان لوضع القدمين بدون ارتداء الحذاء الرياضي والجريبات أثناء القياس.

- قائم يوصل بين القاعدة ولوحة المعلومات للجهاز (الشاشة).

- شاشة الجهاز والتي تشتمل على معلومات حول (وزن الملايين، والجنس، والطول (سم)).

- طابعة للنتائج المقاسة.
وصولاً تيار كهربائي، والملحق (1) يبين الجهاز بالتفصيل.
- خطوات القياس على الجهاز:
- زود الجهاز بالمعلومات وهي (وزن الملابس، والجنس، والفرد بالسنة، والطول (سم)).
- يصعد المفحوص على الجهاز يوضع القدمين على قاعدة الجهاز.
- يبدأ الجهاز بالعمل على إجراء التحليل لمدة (30) ثانية.
- يبقى المفحوص على الجهاز حتى يتم طباعة النتائج على الطابعة إلكترونياً دون تدخل من قبل الفاحص.
- تستغرق عملية القياس (1-2) دقيقة.
<table>
<thead>
<tr>
<th>مكان عملهم</th>
<th>الدرجة العلمية</th>
<th>المساعد</th>
</tr>
</thead>
<tbody>
<tr>
<td>استاذ في مدرسة الصفريني</td>
<td>ماجستير تربية رياضية / جامعة اليرموك</td>
<td>معتصم أبو عليا</td>
</tr>
<tr>
<td>محاضر غير متفرغ في جامعة خضوري</td>
<td>بكالوريوس تربية رياضية / جامعة خضوري</td>
<td>لوئي حنون</td>
</tr>
<tr>
<td>محاضر غير متفرغ في جامعة خضوري</td>
<td>بكالوريوس تربية رياضية / جامعة خضوري</td>
<td>محمد الشوربجي</td>
</tr>
<tr>
<td>محاضر غير متفرغ في جامعة خضوري</td>
<td>بكالوريوس تربية رياضية / جامعة خضوري</td>
<td>هشام الأسعد</td>
</tr>
</tbody>
</table>
ملحق رقم (4)

أسماء المحكّمين ورتبهم العلميّة والتخصص والتخصص ومكان عملهم

<table>
<thead>
<tr>
<th>مكان العمل</th>
<th>التخصص</th>
<th>الرتبة العلمية</th>
<th>المحكم</th>
</tr>
</thead>
<tbody>
<tr>
<td>جامعة النجاح الوطنية</td>
<td>التدريب الرياضي</td>
<td>استاذ</td>
<td>أ.د. عماد عبد الحق</td>
</tr>
<tr>
<td>جامعة خضوري</td>
<td>التعلم الحركي/ سباحة</td>
<td>استاذ مشارك</td>
<td>د. بهجت أبو طامع</td>
</tr>
<tr>
<td>جامعة خضوري</td>
<td>تدريب رياضي / كرة القدم</td>
<td>استاذ مساعد</td>
<td>د. بسام حمدان</td>
</tr>
<tr>
<td>جامعة خضوري</td>
<td>علم النفس الرياضي</td>
<td>استاذ مساعد</td>
<td>د. ثابت شتيوي</td>
</tr>
<tr>
<td>جامعة خضوري</td>
<td>تدريب رياضي / كرة القدم</td>
<td>استاذ مساعد</td>
<td>د. جمال أبو بشارة</td>
</tr>
<tr>
<td>جامعة النجاح الوطنية</td>
<td>سباحة</td>
<td>استاذ مساعد</td>
<td>د. جمال شاكر</td>
</tr>
<tr>
<td>جامعة النجاح الوطنية</td>
<td>علم النفس الرياضي / كرة قدم</td>
<td>استاذ مساعد</td>
<td>د. محمود الأطرش</td>
</tr>
<tr>
<td>جامعة خضوري</td>
<td>فسيولوجيا في التربية الرياضية</td>
<td>استاذ مساعد</td>
<td>د. محمود عزب</td>
</tr>
</tbody>
</table>

رتبة أسماء المحكّمين حسب الرتب العلميّة والأحرف الأبجدية
The Effect of High Intensity Interval Training and Fartlek Training on Some Physical and Physiological Characteristics Amongst Soccer Beginners

Prepared by
Hamed Salameh

Supervisor
Prof. Abdel Naser Qadumi

This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Physical Education, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine

2013
The purpose of this study was to determine the effect of High-Intensity Interval Training (HIIT) and Fartlek Training (FT) on some physical and physiological characteristics amongst soccer beginners. In addition, to conduct a comparison between the two methods, to achieve this, the study was conducted on a sample of (30) beginners, aged (14-16) years, and distributed randomly equally to two experimental groups, High-Intensity Interval Training (HIIT) and Fartlek Training (FT).

The training programs applied for 8 weeks, three times per week, 90-120 minutes (HIIT) and 65-90 minutes (FT) for each training unite, pre and post both training programs the following physical and physiological measures were conducted: (speed, speed-endurance, agility, resting heart rate (RHR), stroke volume (SV), systolic blood pressure (SBP), diastolic blood pressure (DBP), resting cardiac output (RCO), anaerobic power (AP), anaerobic capacity (AC), percentage of body fat (PBF), fat free mass (FFM), resting metabolic rate (RMR), maximum heart rate (MHR), maximum cardiac output (MCO), distance covered in Cooper test (DCT), and the maximum consumption oxygen (VO2MAX)), after equivalence between the two groups in pre test in all variables, and the implementation of the tow programs, the study revealed the following results:

B
- There were a significant effect of high intensity interval training program on all variables in this study except resting cardiac output and maximum cardiac output, the percentage of change of measures were as follows: speed (-10.28%), and speed-endurance (-7.44%), agility (-13.13%), anaerobic power (14.27%), anaerobic capacity (14.27%), percentage of body fat (-12.54%), fat free mass (2.61%), resting metabolic rate (0.76%), systolic blood pressure (-11.12%), diastolic blood pressure (-15.40%), resting heart rate (-12.24%), stroke volume (15.04%), distance of Cooper test (6.61%), maximum heart rate (10.70%), and maximum oxygen consumption (8.32%).

- There were a significant effect of Fartlek Training program on all variables in this study, where the percentage of change were as follows: speed (-3.44%), speed-endurance (-7.20%), agility (-8.17%), anaerobic power (7.76%), anaerobic capacity (11.31%), percentage of body fat (-20.34%), fat free mass (1.01%), resting metabolic rate (1.20%), systolic blood pressure (-11.81%), diastolic blood pressure (-11.39%), resting heart rate (-13.97%), stroke volume (20.66%), resting cardiac output (6.77%), distance covered in Cooper test (12.74%), maximum heart rate (8.78%), maximum cardiac output (19.13%), and maximum oxygen consumption (16.03%).

- There were no significant differences in the most of the study variables in the post-test between both experimental groups, while there were a significant differences in speed in favor of (HIIT), percentage of body fat and the stroke volume in favor of (FT).
Based on the findings of the study the researcher recommended the coaches to benefit from both training programs in the development of physical and physiological characteristics of the soccer beginners.

Key words: High-Intensity Interval Training, Fartlek Training, Physical Characteristics, Physiological Characteristics, Soccer Beginners, Palestine.