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Prof. Mohammad Elsaid 

Abstract 

Based on the effective mass approximation, the magnetic properties of 

cylindrical GaAs quantum pseudo dot with parabolic confinement and 

cylindrical InAs quantum dot have been investigated in the presence of 

magnetic field, Pseudo harmonic potential, and Rashba spin-orbit 

interaction. The Hamiltonian of an electron confined in a Quantum Dot (QD) 

has been solved analytically to obtain the Eigen energies. The binding energy 

of the confined electron has been calculated and displayed as a function of 

various QD physical parameters, we have shown the dependence of the 

magnetic and thermal quantities like: magnetization (M), magnetic 

susceptibility (χ), heat capacity (𝐶𝑣), and entropy (S) of the confined electron 

in the QD on: magnetic field, confining frequency (𝜔0), potential strength 

(Uₒ), and temperature (T). Furthermore, the effect of Rashba spin-orbit 

interaction term, as a key parameter in the field of       spintronic, on the 

magnetic properties has also been studied. 

The results reveal that the external magnetic field strength, temperature and 

confining frequency in addition to Rashba effect affect significantly the 

magnetic properties of the QD, changing it from diamagnetic to 

paramagnetic material in InAs material, while GaAs keeps diamagnetic at 
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ranges of magnetic field strength. The behavior of the heat capacity and 

entropy are investigated as a function of external magnetic field and quantum 

dot parameters. Our result are in very good quantitive agreement with the 

corresponding ones reported in literature. 
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Chapter One 

Introduction 

1.1 Nanotechnology and Nanoscale: 

Recently, much attentions are paid to the investigation of physics at low 

dimensional semiconductor structures. Low dimensional semiconductors or 

nanostructure semiconductors are those have at least one dimension in a 

nanoscale. Nanoscale means a range from 0 to 100 Nanometers (nm). A 

nanometer is one-billionth of a meter or 10‾⁹ m. The technique of 

manipulating, creating and controlling of matter at nanoscale dimension is 

called Nanotechnology [1]. 

Two main factors make the properties of nanomaterials significantly differ 

from bulk one. The increase in relative surface area to volume ratio, and 

quantum confinement effects. Which can change or enhance properties such 

as reactivity, optical characteristics of nanomaterial [2]. 

When the size of a particle is decreased, large number of atoms are exist at 

the surface compared to those inside, and because the growth and catalytic 

chemical reactions occur at surfaces, then nanomaterial will be much more 

reactive than bulk one. When we go into nanoscale region, quantum effects 

can begin to dominate the behavior of matter, affecting the optical, electrical 

and magnetic properties of materials.  

Classification of nanomaterial depends on the number of dimensions of a 

material, which are outside the nanoscale (<100 nm) range. 

The basic type of quantum-confined structure are shown in Table 1.1 
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Table 1.1:  Classification of quantum confined structures  

If the number of degrees of freedom are labeled as 𝐷𝑓 and the number of 

directions of quantum confinement are labeled as 𝐷𝑐, then clearly 

𝐷𝑐 + 𝐷𝑓 = 3                                            (1.1) 

For all solid-state systems. 

A quantum confined structure will be labeled into three groups in the 

nanoscale range (1-100 nm) as quantum well (QW), quantum well wire 

(QWW) and quantum dots (QD) [3]. 

In the absence of quantum effect, in other words, when the dimensions of the 

confining structure are not comparable to de Broglie wavelength (d ≁ 𝜆), 

then the particle behaves like a free particle. In this case, the energy states 

are continuous. However, the reduction of dimensionality in nanostructures 

to reach the nanoscale, lead to the quantum effect (d~𝜆)  which results in 

creation of discrete energy levels [4]. 

In summary, in each confinement direction the continuous energy band 

component changes to a discrete component characterized by a quantum 

number n. When the number of confinement dimension is increased, more 

discrete energy levels can be found, in other words, restriction on the carrier 

movement will be found. Density of state(DOS), which is defined as the 

Quantum confinement 
Number of dimension 

outside nanoscale 
Structure 

0 3 Bulk 

1 2 Quantum well 

2 1 Quantum well wire 

3 0 Quantum Dot 
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number of states per unit energy per unit volume, are affected also with the 

quantum confinement as shown in Fig. 1.1. 

 

Fig.1.1:  Effect of quantum confinement on the density of electronic states [5] 

 

 

Fig.1.2: The effect of quantum confinement on the energy levels in semiconductor 

quantum dots (QDs). [6] 
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1.2 Quantum Dot and its Structures:  

Quantum dots (QDs) are nanostructures that confine the carriers (electrons 

and holes) in three spatial dimensions, thus QD has zero degrees of freedom. 

Due to this confinement, the energy spectra are fully quantized. 

 

 

Fig 1.3 Type-1 QD and Type -2. [7] 

The main difference between both types is the location of a charge carrier. 

In structure Type-I both electrons and holes are confined to the core. In type-

II, the structure consists of a core where the conduction and valence bands 

are lower or higher than the shell, which results in one charge carrier in the 

core and the other confined to the shell. 

The properties of a QD’s are not only characterized by its size, but also by 

its shape, composition and structure. In early 1980’s, the first QD was 

successfully made in laboratories. This initiates the investigation of the 

properties of this heterostructure, and how they are affected and changed  
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In our research, the GaAs QD is made from Gallium Arsenide (GaAs) 

surrounded by Aluminum Gallium Arsenide (AlGaAs) semiconductor 

heterostructure in cylindrical shape, and in the same way the InAs is made  , 

as shown in Fig 1.4. 

 

Fig. 1.4: Schematic representation of the GaAs/AlGaAs cylindrical QD in an external 

magnetic field with the dot height L and the radius R. [8] 

To demonstrate our GaAs QD heterostructure, imagine an electron in the 

XY- plane, at distance r from the origin with confining radial potential V(r) 

and pseudo –harmonic potential V(z) in the Z –direction, under the influence 

of external magnetic field in the Z- direction. 

Heterostructure consists of layers of two or more semiconductors arranged 

in a particular way. By applying negative voltage to the metal electrodes on 

the surface of a heterostructure that contains two dimensional electron gas 

(2DEG), electrons can be confined to one or zero dimensions and this is how 

quantum dots are fabricated [9]. 
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Fig1.5 Confinement potential for QD [10]. 

1.3 Application of the QDs: 

The quantum dots, due to their small nanometer size and the ability of tuning 

its size and shape during fabrication, will have variety of application in 

nanotechnology, the main two application are medical and lighting 

application. 

1- Medical Applications and Cancer Treatments: 

Nanoparticles can be used as tumor-destroying hyperthermia agents that are 

injected into the tumor and then be activated to produce heat and destroy 

cancer cells locally either by magnetic fields, X-Rays or light. When these 

Quantum dots injected into body the QD's will bind directly to the cancer 

cell and remove it when they fluoresce.                   

2- Lighting Applications: 

QD's may someday light our homes and streets. When the current is applied 

directly to the quantum dots layer, it will cause them fluoresce and will be 

an extremely high efficiency light source. The frequency emitted by quantum 
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dots can be controlled and manipulate by changing the size of the dots, their 

shape and material used for their construction. [11] 

 

Fig .1.6: The absorption and emission light of a QD's. [12] 

1.4 Rashba Spin-Orbit Interaction (RSOI): 

The spin-orbit interaction also has an efficient effect in the energy spectrum 

of electrons confined in QDs. According to the theory of special relativity, 

electric and magnetic fields are Lorentz transformed when the inertial frame 

of reference is changed. 

Based on relativity concepts, the coupling between spin moment and 

magnetic field can be analyzed as follow, if an electron is moving in its rest 

frame, its sees the nucleus as moving charge, these moving charge developed 

to an internal magnetic field as seen from electron rest frame, and this 

internal magnetic field interact with the spin moment of the electron.   

Spin–orbit coupling phenomena is obviously affecting the energy levels of 

the electron and its effect is present in physical properties of the system 

including thermodynamics and magnetic quantities. 

The interesting of these phenomena lies in the fact that we can change the 

asymmetry of the confinement potential by electrostatic one, for example the 
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ability of tuning the strength of SOI by an external gate voltage. This type of 

SOI is known as Rashba SOI [13]. 

The following Hamiltonian describes Rashba SOI: 

                                        H𝑅  =    
𝛼𝑅

ℏ
× [(p⃗  − 𝑞A⃗⃗ ) × 𝜎 ] · 𝑛̂                      (1.2) 

Where 𝛼𝑅is the Rashba parameter which measures the strength of the SOI, 

𝑝  is the momentum operator, and 𝛔⃗⃗  is a vector of Pauli matrices, 𝑞 = −𝑒 is 

the electron charge, A⃗⃗  is the vector potential  .  

 The Rashba Hamiltonian, even at zero magnetic field, it removes the spin–

degeneracy of the states with the same orbital momentum. 

The spin and charge movement, are similar in that they give information 

about their device but the difference is that the spin direction can be easily 

manipulated by externally applied magnetic fields [gate-voltage] [14]. 

The manipulation of the direction of the spin [up down] by an external gate 

voltage is usually used in technology devise called "Spintronic". 

The strength of SOI term can be manipulated experimentally by an external 

gate voltage or equivalently an applied external electric field through the 

contact gate with the Heterostructure materials as shown in Figure (1.6). 
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Fig.2.1: Rashba Spin Orbit interaction in Spintronic devices, [15]. 

1.5 Literature Survey: 

Different authors had, recently, studied the thermo- magnetic properties of 

QD systems in the presence of an external magnetic field. 

Ikhdair and Hamzavi(2012) calculated the energy levels and the wave 

functions of an electron confined in a 2D pseudoharmonic quantum dot 

potential under the influence of temperature and an external magnetic field 

inside dot and AB field inside a pseudodot by using the Nikiforov-Uvarov 

method. They computed the exact solutions for energy eigenvalues and wave 

functions, [16].  

Jahromi& Rezaei, (2015), studied the electromagnetically induced 

transparency in a two-dimensional quantum pseudo-dot system: Effects of 

geometrical size and external magnetic field, [17]. 
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Khosravi, et.al. (2019), had presented the magnetic Susceptibility of 

Cylindrical Quantum Dot with Aharonov-Bohm Flux, and Simultaneous 

Effects of Pressure, Temperature, and Magnetic Field [18]. 

Yiming Li, et.al.(2001) studied the effect of the sizes and shapes of small 

semiconductor quantum dots on the electron and hole energy states [19]. 

Bogachek (2001) studied the temperature scales of magnetization 

oscillations in an asymmetric quantum dot [20]. 

Gumber, et.al. (2015) have studied the thermal and magnetic properties of 

cylindrical quantum dot with asymmetric confinement [21].   

Expansion methods to investigate the thermodynamic, electronic and 

magnetic properties of single and coupled QDs [22]. 

Shaer, et.al. (2016), studied the Magnetization of GaAs parabolic quantum 

dot by variation method. [23]. 

The magnetization (M) and magnetic susceptibility (χ) of a two - electrons 

parabolic QD in the presence of electron- electron and spin orbit interaction, 

had been studied by D. Sanjeev Kumar et al.[24]. 

Elsaid, (2019) studied Magnetic properties of GaAs parabolic quantum dot in 

the presence of donor impurity under the influence of external tilted electric and 

magnetic fields. Journal of Taibah University for Science, [25]. 

Elsaid, (2020) has stuied the Rashba spin-orbit interaction effects on thermal 

and magnetic properties of parabolic GaAs quantum dot   in the presence of 

donor impurity under external electric and magnetic fields, [26]. 
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The magnetization and the magnetic susceptibility of a single electron 

confined in a two-dimensional (2D) parabolic quantum ring under the effect 

of external uniform magnetic field and in the presence of an acceptor 

impurity have been studied by Elsaid (2020), [27]. 

The variational and numerical diagonalization techniques   have   been   

applied to study the QD Hamiltonian, and investigate the electronic structure, 

magnetic and thermodynamic properties of a coupled quantum dots, [28-30]. 

The magnetoabsorption spectra of donors in quantum well wire, has been 

studied by Elsaid (1994), [31] 

The energy level ordering in two-electron quantum dot spectra.  Has been 

studied by Elsaid (1998), [32]. 

In this research, we have studied the effects of the presence of uniform 

magnetic field and RSOI on the energy spectra and thermodynamic 

properties of a cylindrical QD with azimuthal symmetry. All the energy 

matrix elements are obtained in a closed analytical form, then we separate 

the variable and diagonalize the matrix Hamiltonian and compute the QD 

energy spectra. 

Our results are explicitly displayed in chapter 3. 

1.6 Research Objectives: 

The main goals of this research project can be summarized as follows: 

1-To write the Hamiltonian of a single electron confined in a cylindrical QD 

subjected to an external magnetic field 𝐵⃗ = B 𝑍̂, and radial potential V (ρ) in 
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x-y plane, and pseudo – harmonic potential V (z) in z-direction, and show 

how to compute the eigenenergies and eigenfunctions. We have also solved 

the QD Hamiltonian problem of an electron confined in a semiconductor 

cylindrical quantum dot subjected to an external magnetic field and SOI, and 

obtained the eigenenergies and eigenfunction 

2- The obtained Eigen energies will be used to study the energy dispersion 

relation, statistical energy and to investigate the modulation of the properties 

of the QD by calculating the magnetization (Μ) and susceptibility (χ) of QD 

made from GaAs and InAs nanomaterials. In addition, we have used energy 

spectra to demonstrate the behavior of QD’s heat capacity and entropy under 

the presence of the magnetic field, and the effect of RSOI. 
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Chapter Two 

Theory and Method of Calculation  

This chapter contains two parts. In the first part, we present the Hamiltonian 

of the GaAs cylindrical QD for a single electron confined by a parabolic 

confinement potential in the presence of the magnetic field and pseudo 

harmonic potential without Rashba SOI. In the second part, we present the 

Hamiltonian of the InAs cylindrical quantum dot of an electron confined at 

the surface of the cylinder in the present of an external magnetic field, 

Rashba SOI term and Zeeman term. The main essential step is to reproduce 

the energy eigenvalues and eigenstates by analytic expression of the QD 

Hamiltonian. In addition, the mathematical expression for the statistical 

average energy 〈𝐸〉, susceptibility (𝜒), and magnetization (𝑀) are shown.                                                                                                                         

2.1 Quantum Pseudo Dot with Zero Rashba Coupling: 

Within the framework of effective mass approximation, the Hamiltonian of 

an electron confined by the radial potential V (ρ) = 
 1

2
𝑚∗𝜔0 

2  𝜌2 and pseudo 

– harmonic potential V (z) = Uₒ ( 
𝐿

𝑍
 – 

𝑍

𝐿
) ² under the influence of an external 

magnetic field𝐵⃗ = 𝐵𝑧̂  is given by, [33]: 

Hₒ  =  
1

2𝑚∗ 
(𝑃⃗ −

𝑒

𝑐
𝐴 )

2
+

1

2
𝑚∗𝜔ₒ2𝜌2 + 𝑈ₒ (  

𝐿

𝑧
−

𝑧

𝐿
)
2
,               (2.1) 

where 𝑚∗is effective mass of the electron that have when interacting with 

other identical particle in thermal distribution , 𝑃⃗  is the electron momentum 

operator, 𝐴  is the magnetic vector potential in the Landau gauge 𝐴  = (𝐴𝜌 =0, 

𝐴𝛷= B 
𝜌

2
, 𝐴𝑍 = 0), ωₒ is the frequency of confinement potential,  Uₒ is the 
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strength of pseudo harmonic  potential and L is the height of the cylindrical 

QD. 

The term 𝑈ₒ (  
𝐿

𝑧
−

𝑧

𝐿
)
2
  includes both harmonic quantum dot and anti-dot 

potential. 

The Hamiltonian includes three different terms: 

1-The first term is the kinetic energy of the electron, where the quantity 

(p⃗ -
eA⃗⃗ 

c
) is known as canonical (total) momentum, 𝒑⃗⃗  is the momentum 

operator and 𝑒𝑨⃗⃗  is the potential momentum (momentum in field) due to 

interaction with constant magnetic field acting in the 𝑧 −direction on the QD. 

2-The second term is due to a confinement parabolic potential representing 

the restriction of the motion of charge carrier, where ωₒ    is the frequency of 

the confinement potential. 

3- The third term is due to pseudo – harmonic potential in z-direction. 

In cylindrical coordinate, the Schrödinger equation can be written as: 

−ℏ2

2 𝑚 ∗
[(

1

𝜌

𝜕

𝜕𝜌
(𝜌 

𝜕

𝜕𝜌
)) +

𝜕2

𝜕𝑧2
+

1

𝜌2

𝜕2

𝜕𝜑2
]𝜓 +

1

2
ℏ𝜔𝑐𝐿𝑧𝜓 +

𝑚∗𝜔𝑐
2𝜌2

8
𝜓

+ 𝑈ₒ (  
𝐿

𝑧
−

𝑧

𝐿
)
2

𝜓 +
1

2
𝑚∗𝜔ₒ2𝜌2𝜓 = 𝐸𝜓                              (2.2) 

where 𝜔𝑐 =
𝑒𝐵

𝑚∗𝑐
  is the Cyclotron frequency.  

Separation of variables gives the following eigen functions of the system: 

𝜓 = 𝑓(𝜌, 𝜑)χ(z)                                                        (2.3) 
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𝑓(𝜌, 𝜙) =
1

𝑎1+|𝑚|
√

(|𝑚| + 𝑛)!

2𝜋2|𝑚|𝑛!

1

𝑚!
𝑒𝑥𝑝 (

𝜌2

4𝑎2
) 

× 𝑒𝑥𝑝(𝑖𝑚𝜑)𝜌|𝑚|𝐹 (−𝑛, |𝑚| + 1,
𝜌2

2𝑎2
)                       (2.4) 

𝜒(z) =  𝐶𝑛𝑧𝑍
𝑣𝑒𝑥𝑝(−√

𝑚∗𝑈0

2ℏ2𝐿2
 . 𝑍2)

× 𝐹 (−𝑛𝑧, 𝑣 +
1

2
,√

𝑚∗𝑈0

2ℏ2𝐿2
 . 𝑍2)                                          (2.5)  

where  Ω = √𝜔𝑐
2 + 4𝜔0

2  is the effective frequency, a=√
ℏ

𝑚∗Ω
  is the effective 

length scale, 𝐹(𝑎, 𝑏, 𝑥) is the standard confluent hypergeometric function, n 

is the radial quantum number, m is the magnetic quantum number, 𝐶𝑛𝑧 is the 

normalization constant, 𝑣 =
1

2
√

8𝑚∗𝑈0𝐿
2

ℏ2
+ 1 + 1and 𝑛𝑧 is the quantum 

number. 

The total quantum dot Hamiltonian, H, can be reduced to a solvable 

harmonic oscillator Hamiltonian with analytical energy spectra expression. 

The eigenenergy spectra is defined, in terms of the quantum numbers (𝑛𝑟 , 𝑛𝑧, 

m) and other physical parameters, [31]:  

E= 𝛺ℏ (𝑛𝑟 +
(1+|𝑚|)

2
) + 𝑚

ħ𝜔𝑐

2
+

2ħ

L
√

2Uₒ

m∗
  ˣ {𝑛𝑧 +

1

2
+

1

4
 [√8 𝑚 ∗ 𝑈ₒ

𝐿2

ħ2
+ 1 − √8 𝑚 ∗ 𝑈ₒ𝐿2/ħ²]}                                                (2.6) 

2.2 Hamiltonian of Cylindrical QD with Rashba Coupling: 

The Hamiltonian of an electron confined in a cylindrical semiconductor 

quantum dot subject to an external magnetic field and SOI is given by [34]: 
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𝐻 = 
(𝑃⃗ + 𝑒𝐴 )

2

2 𝑚∗
+ ((𝛼𝑅  [𝜎 × (𝑃⃗ + 𝑒𝐴  )]. 𝑛̂ ))/ℏ +

𝑔 𝜇𝐵 𝐵𝜎𝑧

2
              (2.7) 

where 𝑚∗is the effective mass of the electron, g is the effective Lande factor 

of the electron, 𝜎  is the Pauli matrices, 𝑛̂ is a unit vector normal to the 

surface, σ=(𝜎𝑥, 𝜎𝑦, 𝜎𝑧), 𝐴 ⃗⃗  ⃗=(-𝐵𝑦/2 , 𝐵𝑥/2 , 0 ) is the vector potential induced 

by the magnetic field in the symmetric gauge and 𝛼𝑅 is the Rashba parameter 

which measures the strength of the SOI . 

The Hamiltonian consist of three different terms, which are defined as 

follow: 

1- The first term is the kinetic energy of the electron, where the quantity 

(p + eA) known as canonical (total) momentum, 𝒑 is the momentum 

operator and 𝑒𝑨 is the potential momentum (momentum in field) due 

to the interaction of the electron with constant magnetic field acting in 

the 𝑧 −direction on the QD. 

2- The second term is the Rashba SOI term due to the interaction between 

orbital angular and spin momenta, where 𝛼𝑅 is the Rashba parameter 

which measures the strength of the SOI and can be varied with the gate 

voltage, and ℏ is the Plank constant. 

3- The last term is Zeeman coupling due to an applied external magnetic 

field along the 𝑧 −direction 𝐵 = (0, 0, 𝐵), where 𝑔 is the effective 

Landau factor of the electron, μB  is the Bohr magnetron and 𝛔 is  Pauli 

spin matrix vector. 
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2.2.1 Analytical Solution: 

The QD Hamiltonian, using the matrix notation, can be written as,[34] . 

𝐻 = [
𝐻11 𝐻12

𝐻21 𝐻22
]  With  

𝐻𝑖𝑖 = − 
ħ2

2𝑚 ∗
(

𝜕2

𝜌2𝜕𝜑2
+

𝜕2

𝜕𝑧2
) +

ħ𝜔𝑐

2𝑖

𝜕

𝜕𝜑
+

1

8
𝑚∗𝜔𝑐

2𝜌2 ±
𝛼

𝑖𝜌

𝜕

𝜕𝜑
± 𝑒

𝐵𝛼𝜌

2ħ

±
1

2
𝑔𝜇𝐵𝐵𝜎𝑧 .                                                                        ( 2.8) 

The symbol +is for 𝐻11 and − is for 𝐻22, 𝐻12  =  𝛼𝑒−𝑖𝜑 𝜕

𝜕𝑧
 ;  𝐻21 =

 𝛼𝑒𝑖𝜑 𝜕

𝜕𝑧
                                                                                                                   (2.9) 

Where 𝜔𝑐 =
𝑒𝐵

𝑚∗𝑐
   is the cyclotron frequency. According to the Eqs. (2.8) and 

(2.9), we find that due to the cylindrical symmetry, the wave functions can 

be analyzed into a plane wave which is the eigenfunction of the momentum 

operator and a spinor representing the eigenfunction of the total momentum 

operator.  

 

(
φ1

↑(φ, z)

φ2
↓(φ, z)

) =  𝑒𝑖𝑘𝑧𝑧 (
𝑒𝑖𝑚𝜑𝑓1

𝑒𝑖(𝑚+1)𝜑𝑓2
)                            (2.10) 

where m=0,± 1, ± 2, ……… is the quantum number related to the projection 

of the angular momentum  on the z-direction .Substituting Eq 2.10 into 

Schrodinger equation yields the following system algebraic equations:  

(
𝐴11 𝐴12

𝐴21 𝐴22
) (

𝑓1
𝑓2

) = 0                                                  (2.11) 

The adopted notations in Eq. (2.11) are as 

𝐴11 = −𝑘𝑧
2𝜌2 − 𝛽1 + 𝜆1 +

2𝑚∗

ℏ2
𝜌2𝜀                                     (2.12)  
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𝐴22 == −𝑘𝑧
2𝜌2 − 𝛽2 + 𝜆2 +

2𝑚∗

ℏ2
𝜌2𝜀                                 (2.13) 

𝐴12 = −𝑖
2𝑚∗

ℏ2
𝜌2𝑘𝑧 α                                     (2.14)  

𝐴21 =  𝑖
2𝑚∗

ℏ2
𝜌2𝑘𝑧 α                                      (2.15)                   

Where  is energy eigenvalues. The parameters
1
, 

2
and1, 2 are defined 

as: 

𝛽1 = 𝑚 [
2𝑚∗𝛼𝜌

ℏ2
+ 𝑚 +

𝑒 𝐵

ℏ
𝜌2]                             (2.16) 

𝜆1 =
−6𝑚∗𝜌2

ℏ2
−

𝑚∗𝑔𝜇𝐵𝐵𝜌2

ℏ2
−

𝑒𝛼𝑚∗𝜌3𝐵

ℏ3
−

1

4
(
𝑒𝐵𝜌2

ℏ
)

2

                (2.17) 

𝛽2 = (𝑚 + 1) [−
2𝑚∗𝛼𝜌

ℏ2
+ (𝑚 + 1) +

𝑒𝐵

ℏ2
𝜌2]                    (2.18) 

𝜆2 =
6𝑚∗𝜌2

ℏ2
+

𝑚∗𝑔𝜇𝐵𝐵𝜌2

ℏ2
+

𝑒𝛼𝑚∗𝜌3𝐵

ℏ3
−

1

4
(
𝑒𝐵𝜌2

ℏ
)

2

              (2.19) 

The solution of Eq. (2.11) can be determined by setting the determinant of 

the matrix equal to zero (See appendix A); therefore, the energy spectrum 

can be found as: 

E1,2 =
ħ2

 4m∗ρ2
(2 kz

2ρ2 − λ1 − λ2 + β1 + β2) ±

1

4
√(4 kzα)2 +

ℏ4

m∗2ρ4
(λ1 − λ2 − β1 + β2)

2                                          (2.20) 

Where ± is the branch – splitting quantum index. Spin up and down, 

respectively. 

2.3. Magnetization and Susceptibility of the QD: 

Magnetization is characterized by how magnetic materials are affected and 

responds to the magnetic field, and it can be evaluated by taking the first 
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derivative of the statistical average energy, Eq. (2.6), with respect to 

magnetic field as follow: 

𝑀(𝑛𝑟 , 𝑚, 𝑛𝑧, 𝜔𝑐 , 𝐿, 𝑈ₒ)

=  −
𝜕 < 𝐸((𝑛𝑟 , 𝑚, 𝑛𝑧, 𝜔𝑐 , 𝐿, 𝑈ₒ)) >

𝜕𝐵
                        (2.21) 

Where < E𝑛𝑟,𝑚,𝑛𝑧
(𝜔𝑐 , 𝑈ₒ, 𝐿,𝑚, 𝑛𝑧 , 𝑛𝑟 )  >  is average energy, which can be   

calculated by using the standard statistical definition: 

< 𝐸𝑛𝑟,𝑚,𝑛𝑧
( 𝜔𝐶  , 𝑈ₒ, 𝐿,𝑚, 𝑛𝑧, 𝑛𝑟) > 

=
∑ 𝐸𝑛𝑟,𝑚,𝑛𝑧

𝑁
𝑛=1

∑ 𝑒
−

𝐸𝑛
𝐾𝛽𝑇𝑁

𝑛=1

      𝑒
−

𝐸𝑛
𝐾𝛽𝑇                                             (2.22)   

And for Eq. (2.20): 

𝑀(𝑚, 𝜌, 𝐵, 𝛼𝑅 , 𝑘𝑧 )

=  − 
𝜕〈𝐸(𝑚, 𝜌, 𝐵, 𝛼𝑅 , 𝑘𝑧〉

𝜕𝐵
                                                                     (2.23) 

< 𝐸𝑚(𝑚, 𝜌, 𝐵 , 𝛼, 𝑘𝑧) > 

=
∑ 𝐸𝑚

𝑁
𝑚

∑ 𝑒
−

𝐸𝑚
𝐾𝛽𝑇𝑁

𝑚

  𝑒
−

𝐸𝑚
𝐾𝛽𝑇                                                                                  (2.24)    

Susceptibility ꭕ shows whether the material is attracted to the magnetic field, 

so it will be positive sign (χ> 0) and it's called paramagnetic material or it 

will be repulsive to the magnetic field  (χ< 0), so it's called diamagnetic 

material . χ can be calculated from M using the following relation, [35]. 

ꭕ = 
𝜕𝑀

𝜕𝐵
                                                   (2.25) 
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2.4 Heat Capacity and Entropy: 

Heat Capacity is defined as the amount of heat that is required to raise the 

material's temperature by (1°C) one degree, and it’s the derivative of the 

average energy with respect to temperature[24], 

𝐶𝑣 =
𝜕 < 𝐸 >

𝜕𝑇
                                                 (2.26) 

Entropy of a system depends on the number of possible microstate for the 

system and its partition function which is giving information about the 

configuration and arrangement of the locations and energies of the atoms or 

molecules that involve a system like the following: 

S (𝑇, 𝜌, 𝐵, 𝛼𝑅 , 𝑘𝑧) = 

 
𝜕(𝐾𝛽𝑇𝑙𝑛〈𝑍(𝑇, 𝜌, 𝐵, 𝛼𝑅 , 𝑘𝑧)〉 

𝜕𝑇
                              (2.27) 

Where 𝑍(𝑇, 𝜌, 𝐵, 𝛼𝑅 , 𝑘𝑧) = ∑ 𝑒
−

𝐸𝑗

𝑘𝛽𝑇𝑗𝑚𝑎𝑥
𝑗=1  is the partition function of the 

system. 
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Chapter Three 

Results and Discussions 

Our computed results are presented into two parts. In the first part, we will 

discuss the obtained results for the energy spectra of an electron confined in 

a GaAs cylindrical QD under external magnetic field and confining potential 

in radial dimension and pseudo harmonic potential in z-direction without 

Rashba effect and Zeeman term. 

In the second part, we will discuss the obtained result for the energy spectra 

of an electron confined in InAs cylindrical quantum dot under external 

magnetic field and Rashba Spin -orbit interaction with Zeeman term. 

3.1 GaAs Cylindrical QD with Zero Rashba Effect: 

We study the physical properties of the GaAs QDs material by computing 

the statistical energy, magnetization, susceptibility and heat capacity. 

For GaAs QD, we used the following physical parameters: 

Effective electron mass: 𝑚* = 0.067𝑚e 

Effective Rydberg energy: 𝑅*= 5.694 𝑚𝑒𝑉 

Effective Bohr radius: 𝑎* = 9.8 𝑛m 

Magnetic field dependent cyclotron frequency 𝜔c (𝑅*) = 0.296× (𝐵 in Tesla 

(𝑇)) 
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3.1.1 Quantum Dot Spectra and Statistical Energy:   

In this section, we present our computed results for confining energies of an 

electron confined in a cylindrical quantum dot under the radial potential, 

pseudo harmonic potential and external magnetic field, for different ranges 

of physical parameters. 

Table 3.1: The values of the ground state energy, with changing angular 

quantum number m from -1 → 1 and the radial quantum number n is 

taken from 0 → 1, at 𝝎𝟎=5meV,  𝑩=1 Tesla, L=5 nm and 𝑼𝟎 = 𝟑𝒎𝒆𝑽. 

In Figure (3.1), we have plotted binding energy against 𝐵. the figure shows 

that the binding energy increases as B increases. This is an expected 

behavior; due to the presence of an external magnetic field, which adds new 

confinement term to the electron as seen from Hamiltonian equation (2.1), 

also the figure shows energy level crossing.  

{𝑛𝑟 , 𝑛𝑧, 𝑚} Energy in (meV) 

{0,0,0} 7.44729 

{0,1,0} 10.72924 

{0,0,-1} 11.68990 

{0,0, 1} 13.33990 

{0,1,-1} 14.97185 

{0,1,1} 16.62185 

{1,0,0} 17.58250 

{1,1,0} 20.86446 

{1,0,-1} 21.82511 

{1,0,1} 23.47511 

{1,1,-1} 25.10706 

{1,1,1} 26.75706 

file:///C:/Users/AB/Downloads/final%20word%20file%20for%20thesis.docx%23page45
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Fig. 3.1: The energy spectra of an electron at 𝝎𝟎 =5meV, 𝑼𝟎 = 3meV, L=5nm 

,  𝒏𝒓( 𝟎 → 𝟏),𝒏𝒛 (𝟎 → 𝟏),  𝒂𝒏𝒅 𝒎 (−𝟏 → 𝟏). 

3.1.2 Convergency Test and Statistical Energy: 

The first and important step in our work is to ensure the convergency of the 

statistical average energy of the QD. To achieve this goal, we plot in Fig.3.2, 

the statistical energy using equation (2.22) as function of number of basis for 

various set of temperatures. 

Fig. (3.2) shows the statistical energy < 𝐸 > calculated by taking quite large 

number of basis: n𝑟 (0→15), 𝑛𝑧 (0→15) and m (-25→ 25). For low 

temperature range (T=30 and 50 K), a small number of basis 

(~#200) 𝑖𝑠 𝑒𝑛𝑜𝑢𝑔ℎ, however, a large number of basis is needed (~#800) 

for temperature T=180 K. The number of choices #800 is a good choice, as 

indicate by the vertical line shown in the plot.  
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Fig3.2: Statistical average energy Vs. #basis calculated at different values of T, at 𝝎𝟎 =

𝟒𝒎𝒆𝑽,𝑩 = 𝟏𝟎𝑻𝒆𝒔𝒍𝒂, 𝑼𝟎 = 𝟏𝟓𝒎𝒆𝑽 , 𝒂𝒏𝒅  𝑳 = 𝟓𝒏𝒎. 

To investigate the effects of external parameters like temperature,  𝜔0and𝑈0, 

we have plotted in Fig. (3.5) the Statistical average energy against 𝐵 at 𝜔0 =

5𝑚𝑒𝑣, 𝐿 = 5𝑛𝑚 𝑎𝑛𝑑 𝑈0 = 10𝑚𝑒𝑉. 

When the magnetic field is increased, the < 𝐸 > increases too, and this 

resulting from the additional confinement of the electron by the external 

magnetic field, and for different values of temperature, the figure shows that 

the statistical energy is enhanced for higher temperature. 
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Fig.3.3: Statistical average energy against B for different values of T (T= 10 K for solid 

line, =30 K for dashed line=100K for dotted line). At L=5nm, 𝒂𝒏𝒅 𝑼𝟎 = 𝟓𝒎𝒆𝑽. 

Fig. 3.4 shows the effect of the strength of the confinement frequency (𝜔0) 

on the behavior of 〈𝐸〉. The figure displays a large change on the behavior of 

the energy curves as result of raising 𝜔0 from 4meV to 12meV, because of 

large energy confinement. The figure shows also that B has more effect on 

statistical average energy at low temperature. 
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Fig. 3.4: Statistical  average energy as  a function of external  magnetic field for three 

different values of 𝝎𝟎 (𝝎𝟎 = 𝟒𝒎𝒆𝑽 for solid line, 𝟖𝒎𝒆𝑽  for dashed line ,and𝟏𝟐𝒎𝒆𝑽 

for dotted line).At 𝑻 = 𝟏𝟎𝑲,𝑳 = 𝟓𝒏𝒎,and 𝑼𝟎 = 𝟓𝒎𝒆𝑽. 

In Fig (3.5), we have plotted statistical energy vs. B (T) for different pseudo 

potential strength 𝑈0. The figure shows that as  𝑈0 increases the statistical 

energy increases also due to further confinement of the electron which 

enhances the average energy. 

The effect of confining length on the energy of the system is shown in Fig 

(3.6). The figure shows that increasing the confining length (L) of the QD 

leads to a reduction in the energy due to inverse proportional of E with L, 

and the electron becomes less confined as L increases. 
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Fig.3.5: Statistical average energy as function of external magnetic field for three 

different values of pseudo potential strength 𝑼𝟎  (𝑼𝟎 = 𝟎𝒎𝒆𝑽 for solid line, 𝟓𝒎𝒆𝑽 for 

dashed line, and𝟏𝟎𝒎𝒆𝑽 for dotted line) .At 𝑻 = 𝟏𝟎𝑲,𝑳 = 𝟓𝒏𝒎, and 𝝎𝟎 = 𝟐𝟓𝒎𝒆𝑽. 

 

 

Fig.3.6: Statistical average energy against B for different values of L (L = 2nm for solid 

line, = 5nm for dashed line, = 10nm for dotted line).At  T= 10 K, 𝑼𝟎= 5meV, and 𝝎𝟎 =

𝟐𝟓𝒎𝒆𝑽. 
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3.1.3 Heat Capacity: 

In this section, we will show the effects of T, B and 𝑈0 on the heat capacity by 

substituting eq. (2.6) in eq. (2.26) to get a relation between them.  

We have presented in Fig 3.7 the heat capacity 𝐶𝑣 of a QD as a function of 

temperature for three different values of magnetic field B = 0 T, 5T, and 10 T. 

At the beginning, when the temperature is increased from absolute 

zero, Cv suddenly increases and then decreases giving a peak-like structure, 

[34]. This observed peak structure is the well-known Schottky - anomaly of 

the heat capacity, and this phenomenon which is subjected to a system with 

only two states is important, because at low temperature the thermal energy 

gained by the electron as kinetic energy is enough for only exciting the 

electron from the ground state to the first excited state. 

As the temperature increased more and more, the heat capacity starts 

increasing almost linearly and converges to the saturation value of 2kB. The 

increasing of heat capacity is steady and this is due to the increase in thermal 

energy 𝑘𝐵T of electrons as the temperature is increased which makes large 

number of states available for thermal excitations. 

The figure shows also that as B is increased, the peak shifts to the right and 

become broad in width. The saturation value of the Cv, at a high temperature 

approaches about 2𝑘𝐵, in agreement with result reported in Ref.[21] 

 

The specific heat capacity depends on the distribution of energy levels, 

temperature and the occupation probability of the states. 
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Fig.3.7: Variation of specific heat with temperature for different values of B (B = 0T for 

solid line, = 5T for dashed line, = 10T for dotted line).At 𝝎𝟎=25meV, L=20nm, 

 𝒂𝒏𝒅 𝑼𝟎=6nm. 

Fig.3.8 shows the effect of the confinement Pseudo strength 𝑈0 on 𝐶𝑣 –T 

curve by taking different values of 𝑈0 at particular values of the quantum dot 

size R, and the magnetic field strength B. 

From the figure, we can observe that at low temperatures the 𝐶𝑣 –T curve 

behaves qualitatively the same way for the three different 𝑈0values to reach 

the same peak- height which shifts to the right at large 𝑈0. The change in the 

heat capacity behavior starts in decreasing of the 𝐶𝑣 after the peak, where we 
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notice that the larger the value of 𝑈0 the lower the 𝐶𝑣 value , after the peak, 

before it re-raises again,  𝐶𝑣 starts increasing almost linearly and converges 

to the saturation value of 2kB. The obtained heat capacity limit-cases are 

consistent with the discussion given in Ref [21]. 

 

 

Fig.3.8: Variation of specific heat with temperature for different values of 𝑼𝟎(𝑼𝟎 =

𝟎. 𝟓 , 𝟐 , 𝟒 𝒎𝒆𝑽 𝒇𝒓𝒐𝒎 𝒃𝒐𝒕𝒕𝒐𝒎 𝒕𝒐 𝒕𝒐𝒑).At L=20nm, B=5T, 𝐚𝐧𝐝 𝝎𝟎 = 𝟐𝟓𝒎𝒆𝑽 

3.1.4 Magnetization and Susceptibility: 

In this section, we will present and discuss our computed results for the 

magnetization (𝑀) and susceptibility (𝜒) of the GaAs QD as a function of 

different physical parameters. 

After computing the statistical energy〈𝐸〉, we have calculated the 

magnetization 𝑀 of GaAs/AlGaAs QD system by using equation (2.21). 
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Magnetization gives us the information about how the system interact with 

an external magnetic field. 

In Fig 3.9, we have plotted the magnetization against B at different 

temperature values. The magnetization changes suddenly with a little 

increases in magnetic field. As we increase the magnetic field, the 

occupancy of a higher angular momentum state becomes energetically 

suitable, yield to the decreasing of magnetization. 

 

Fig.3.9: Magnetization (M) of GaAs quantum dot as a function of external magnetic 

field for two different values of T (T=0.1K for solid line, =10 K for dashed line).At 

𝝎𝟎 = 25 meV, L=5nm,𝒂𝒏𝒅 𝑼𝟎 = 𝟏𝟎𝒎𝒆𝑽 

Susceptibility (ꭕ) which is defined as how M changes with respect to B, is 

shown in Fig3.10. The Figure shows the behavior of the susceptibility as a 

function of the external magnetic field. It is obviously shown that the 
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susceptibility of ground state is diamagnetic for the present range of B (0-

10) T. 

 

Fig. 3.10: Magnetic susceptibility (ꭕ) of GaAs quantum dot as a function of external 

magnetic field for two different values of T (T=10K for solid line, =50 K for dashed 

line).At 𝝎𝟎 = 25 meV, L=5nm and 𝑼𝟎 = 𝟏𝟎𝒎𝒆𝑽. 

The variation of magnetization (M) with temperature (T) at 

L=5nm, 𝑈0=5meV and 𝜔0=25meV is shown in figure 3.11, from the figure 

we can observe that the magnetization is not affected by increasing the 

temperature until it reaches T=30K, after that there is a decreasing  in M, and 

M is large for low B, this indicates that the material is diamagnetic.  

In addition, Figure 3.12 shows the variation of susceptibility with 

temperature at L=5nm,𝑈0 =5meV and confining frequency = 25meV .The 
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susceptibility does not vary by increasing the temperature until T=25k, after 

that it decreasing linearly, for both values of magnetic field B=5 and 10T. 

 

Fig.3.11: Magnetization (M) of GaAs quantum dot as a function of temperature for two 

different values of 𝐦𝐚𝐠𝐧𝐞𝐭𝐢𝐜 𝐟𝐢𝐞𝐥𝐝(B=5T for solid line, =10T for dashed line) .At T = 

10K, L=5nm and 𝝎𝟎 = 𝟐𝟓𝒎𝒆𝑽. 
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Fig.3.12: Magnetic Susceptibility (ꭕ) of GaAs quantum dot as a function of temperature 

for two different values of 𝐦𝐚𝐠𝐧𝐞𝐭𝐢𝐜 𝐟𝐢𝐞𝐥𝐝(B=5T for solid line, =10T for dashed line) 

.At T = 10K, L=5nm and 𝝎𝟎 = 𝟐𝟓𝒎𝒆𝑽. 

The effect of the confining frequency (𝜔0) on M and 𝜒 have plotted in fig 

3.13 and 3.14, respectively, at L=5nm, 𝑈0 =15meV and T=10K. 

From figure (3.13), the magnetization is large for high confining frequency, 

and for all values of confining frequency, the magnetization decreases as the 

magnetic field increases.  
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Fig.3.13: Magnetization (M) of GaAs quantum dot as a function of external magnetic 

field for three different values of 𝛚𝟎(𝛚𝟎=5meV for solid line, =10meV for dashed line, 

=15meV for dotted line) .At T = 10 K, L=5 nm and 𝑼𝟎 = 𝟏𝟎 𝒎𝒆𝑽.   

 

 

Fig3.14: Magnetic susceptibility   (ꭕ) of GaAs quantum dot as a function of external 

magnetic field B for three different values of 𝛚𝟎(𝛚𝟎=5meV for solid line, =10meV for 

dashed line, =15meV for dotted line) .At T = 10K, L=5nm and 𝑼𝟎 = 𝟏𝟎𝒎𝒆𝑽.   
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Figure .3.14 shows that as the confinement frequency increases (𝜔0 =

15𝑚𝑒𝑉), the susceptibility become independent of the magnetic field 

because of the domination of the confining potential strength. 

3.2 InAs - Cylindrical QD with Rashba Effect: 

In this section, we will analyze the computed results for the energy spectra 

of an electron confined in a cylindrical QD under external magnetic field and 

SOI with Zeeman term. 

We study the physical properties of the InAs QDs material by computing the 

magnetic and thermal quantities like statistical energy〈𝐸〉, magnetization (M), 

susceptibility (ꭕ), heat capacity (𝐶𝑣) and entropy (S). 

For InAs QD, we used the following material parameters: 

We used the effective electron mass: 𝑚* = 0.042 𝑚𝑒, effective Rydberg 

energy: 𝑅*= 2.68 𝑚𝑒V, effective Bohr radius: 𝑎* = 18.39 𝑛m, magnetic 

field frequency relation 𝜔 𝑐:(𝜔 𝑐(𝑅*) = 0.296× (𝐵 in Tesla (𝑇)), and effective 

Lande g-factor (𝑔∗) = −14. 

3.2.1 Energy Spectrum and Statistical Energy: 

Computation of the energy spectra is an essential step in studying the thermo- 

magnetic properties of the nanomaterial's QD. In this section, we explain the 

thermodynamic and magnetic properties presented by a QD in the presence of 

B and RSOI. 
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The plan is; first, to calculate the energy spectrum of the quantum dot system. 

Second, use the statistical average energy to find its magneto- thermodynamic 

behavior. Finally, we discuss the properties of a cylindrical QD formed out of 

a three-dimensional heterostructure in which it is assumed that electrons are 

strictly confined at the surface of the cylinder, [36]. 

Fig 3.15 shows the effect of the presence of Zeeman term on  energy spectra 

as function of the magnetic field strength B in the ground state m=0, 𝜌 =

8𝑛𝑚, 𝑎𝑛𝑑  𝑘𝑧 =0, solid (dashed) line is for  the spin = 
1

2
 (zero values). The 

figure shows the crossing between the energy levels and the change in the 

angular momentum of the ground state. As the magnetic field increases, the 

spin and Zeeman terms show considerable energy contribution effects. The 

plot shows also the splitting in energy level as a result of interaction of the 

magnetic field with the spin of the electron, [Zeeman effect]. 
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Fig. 3.15: The calculated energies of a single electron QD versus the magnetic field at 

ρ=10 nm and 𝜶𝑹 = 0 meV.nm The solid (dashed) curves for S = 
𝟏

𝟐
 (0), respectively. 

To show the effect of the RSOI on the QD spectra, we have plotted in Fig 

3.16 the energy against. B (T) with and without Rashba parameter. The 

figure shows shifting and decreasing in the energy levels in the presence of 

Rashba parameter. The Rashba term acts like electric field effect on electron, 

name as [stark effect] tends to separate the electron, i.e.  It moves the electron 

away, increasing the distance between the electron and the nucleus, which 

results in decreasing the confinement and the Coulomb interaction, and 

hence decreasing the binding energy. The interesting result of the energy 

levels crossing clearly appears as oscillating peaks in the magnetic 

quantities, which will be presented later. 
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Fig.3.16: Confinement energy as a function of magnetic field, for two different values 

of RSOI parameter 𝜶𝑹(𝜶𝑹 = 40meV.nm for solid line, = 0 meV.nm for dashed line). At 

ρ=10nm. 

Figure 3.17 describes the statistical energy 〈E〉 as a function of the magnetic 

field B of the QD, in the presence of the effect of the electron spin term. The 

figure shows that at low temperature, T= 0.1K, the energy goes down as B 

increases, since the contribution of the thermal energy is small at low B, this 

behavior continues up to B≈1 T, then the energy begins to increase as the 

magnetic field raises. 

When the temperature is increased, from 0.1K to 10 and 20 K, respectively, 

the curve of the ground state shows a significant enhancement due to the 

considerable increase in the contribution of the thermal energy, [34].  The 

curves show oscillating behavior which is     attributed to the energy levels 

crossings in the QD spectra.                      
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Figure. 3.17: The statistical energy against the magnetic field B for three different 

values of T (T = 0.1 K, 10, and 20 K from bottom to top). At 𝜶𝑹=10 meV.nm, ρ=10nm. 

3.2.2 Magnetization and Susceptibility of InAs – QD:  

We also investigated here the effect of B on the magnetization (M) and 

susceptibility (ꭕ). M gives us the information about how the system interact 

with B. When RSOI turned off (𝛼𝑅 = 0), magnetization changes suddenly 

with the increase in B, and it starts decreasing.  

At a certain value of magnetic field, M becomes equal to zero and the 

addition increase in magnetic field causing change in the sign of M. Thereby, 

a magnetic phase transition occurs and the material changes from 

Diamagnetism (ꭕ < 0) to Paramagnetism (ꭕ > 0). The M-curves shows a peak 

structure, which results from the transition of the angular momentum of the 

ground state energy as shown before in Fig 3.15. 
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From Fig 3.18, we noticed that as the temperature is increased, the heights 

of the peaks due to transition jumps are reduced, broadened and shifted to 

higher magnetic field value. 

 

 

Fig.3.18: Magnetization (M) of InAs quantum dot as a function of external magnetic 

field for two different values of T (T=5K for solid line = 10K for dashed line) .At ρ=10 

nm,𝜶𝑹=10 meV.nm. 

The first peak related to the transition in the angular momentum from m= 0 

to m= 1, in the magnetic field strength range B= (3−4)𝑇. 

Susceptibility, which is related to the first derivative of M with respect to B, 

is shown in Fig.3.19. 
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Fig.3.19: Magnetic susceptibility (χ) of InAs as a function of external magnetic field for 

two different values of T (T=5K for solid line = 10K for dashed line). At ρ= 10nm, and 

𝜶𝑹= 10meV.nm.    

Hence, in fig .3.18 the material at these peaks changed its magnetic state 

from diamagnetic to paramagnetic at low magnetic fields and to diamagnetic 

again. 

To investigate the effect of RSOI on the magnetization, we have displayed 

in Fig.3.20 the (M) against B for zero and non-zero Rashba parameter 

strength. The figure shows that for α𝑅 = (40meV.nm) it shifts the peaks 

towards higher magnetic field.                                                
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Fig.3.20: Magnetization (M) of InAs quantum dot as a function of external magnetic field 

for two different values of Rashba parameter ( 𝜶𝑹 = 0 meV·nm for solid line 

𝜶𝑹=40 meV·nm for dashed line). At ρ=10nm, and T=10K. 

Susceptibility ꭕ which is known as the rate of change of M with respect to B 

is shown in Fig.3.21. The effect of RSOI is shown on ꭕ-curve   at low 

magnetic field strength range B = (0-10) T. 

Fig. 3.21 shows the susceptibility behavior as a function of external magnetic 

field. From the figure we can notice that the material changes its behavior 

from negative (𝜒 ) (Diamagnetic material) to positive 𝜒 (Paramagnetic 

material) at (𝐵 = 5𝑇)and it returns again to Diamagnetic at (𝐵 = 7𝑇), And 

the peak shifts toward high magnetic field in the presence of Rashba 

parameter {α =40meV.nm}.  
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Fig.3.21: Magnetic susceptibility (ꭕ) of InAs quantum dot as a function of external 

magnetic field for two different values of Rashba parameter ( 𝜶𝑹 = 0 meV·nm  for solid 

line, 𝜶𝑹=40 meV·nm for dashed line) .At ρ=10nm, and T=10K. 

The variation of M with Rashba spin orbit interaction parameter has plotted 

in Fig3.22 .The plot shows that the magnetization M increase as 𝛼𝑅 

increases, and that the magnetization is large for high magnetic field.    

Also the variation of ꭕ with Rashba spin orbit interaction parameter is plotted 

in Fig3.23.The figure shows that the susceptibility ꭕ increase as 𝛼 𝑅 

increases, and that the ꭕ is large for high magnetic field.    

 

 

 

 



45 

 

 

Fig.3.22: Magnetization (M) of InAs quantum dot as a function of RSOI parameter for 

two different values of magnetic field strength B   (B = 0.5 T for solid line, B=5 T for 

dashed line) .At ρ=10nm and T=10K. 

 

 

Fig.3.23: Magnetic susceptibility (ꭕ) of InAs quantum dot as a function of RSOI 

parameter for two different values of magnetic field strength B (B = 0.5 T for solid line, 

B=5 T for dashed line) .At ρ=10nm and T=10K. 
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3.2.3 Heat Capacity: 

In Fig. 3.24, we have presented the computed heat capacity 𝐶𝑣 , of a QD as a 

function of temperature for three different values of Rashba parameter 𝛼𝑅= 

0, 20 and 40 meV.nm at ρ=10nm, and B=5T. For all values of RSOI 

parameter, the heat capacity almost approaches to zero as T goes to zero. 

When the temperature is increased from absolute zero, Cv suddenly increases 

and then decreases giving a peak-like structure. Sharpness and shifting of the 

peak to lower temperature occur due to the spin-orbit interaction. Since spin 

-orbit interaction removes the degeneracy of the spin, large number of energy 

level exists in the unit range of energy, and this yield to a reduction in the 

level spacing, and shifting the peak to lower thermal energy and therefore 

lower𝐶𝑣. As the temperature increases more and more, specific heat starts to 

be temperature independent and converges to the saturation value of 
1

2
𝑘𝐵 . 

Since the electron move freely at 𝜑 direction only, so it act like 1D motion, 

which give  
1

2
𝑘𝐵 for its degree of freedom, [37].  
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Fig .3.24: Variation of specific heat with temperature for different values of RSOI 

parameter  𝛼 𝑅= (0meV.nm for solid line, 20meV.nm for dashed line, and 40meV.nm 

for dotted line).At B=5Tesla, and ρ=10nm. 

In fig. 3.25, we have presented the computed specific heat values of a QD as 

a function of temperature for three different values of magnetic field 

strength B, B= 0.5 T, 2.0 T, and 5.0 T at ρ=5nm, α=20meV.nm. At low 

magnetic field strength, the figure shows that when the temperature is 

increased from absolute zero, Cv suddenly increases and then decreases 

giving a peak-like structure. As the magnetic field increases, the spacing 

between the different Landau levels increases also, so the electron needs a 

larger amount of thermal heat to be excited to the next excited state. 

 The probability of the occupation of the higher energy state decreases at low 

temperatures. And this probability is enhanced by the existence of the 

magnetic field due to quantum confinement effects, [37]. At high 

temperature, and for all values of magnetic field, the behavior of a specific 

heat is nearly the same and it acts like 1D behavior of Cv. Also, electrons 
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have sufficient thermal energy and therefore excitations have a small 

dependence on DOS. 

 

Fig 3.25 Variation of specific heat with temperature for different values of B (B = 0T for 

solid line, = 2T for dashed line, = 4T for dotted line). At 𝛼𝑅=10meV.nm, and ρ=5nm.  

The variation of specific heat of a quantum dot with RSOI parameter are 

shown in Fig. 3.26, for two different values of magnetic field B =5 T, and 

10T at ρ=10nm, and T=10K. From the figure, one can notice that the heat 

capacity decreases as RSOI parameter increases. Because spin- orbit 

interaction removes the degeneracy of the spin and more energy levels are 

exist in the unit range of energy. This cause reduction in the level spacing, 

so electron needs small amount of energy to be excited to the higher level. 

This behavior was shown in the previous figure 3.24 in which SOI lower the 

peak of heat capacity.    
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Fig .3.26: Heat capacity as a function of RSOI parameter for two different value of B 

(B=5T for solid line, =10T for dashed line). At T=10K, and ρ=10nm. 

3.2.4 Entropy: 

Entropy measures the randomness and disorder of the system. More 

randomness means more entropy. 

 The variation of entropy (S) with temperature are presented in Fig.3. 27 

using eq. (2.27) for different values of α𝑅 . as expected, as the temperature 

increases the entropy of a quantum dot increases also. This increase in 

entropy with temperature is due to enhancement of the thermal energy gained 

by the electron as a kinetic energy that makes more and more randomness in 

the system. 

 Whatever the value of B and T, the entropy is always higher in the presence 

of RSOI. This is because the RSOI lifts the degeneracy of the spin, yielding 

more energy states and thus more randomness, as shown in Fig.3.27.  
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Fig.3.27: Entropy as a function of temperature at three different values of RSOI 

parameter (𝛼𝑅=0mev.nm for dashed line, =45meV.nm for solid line, = 90 meV.nm for 

dotted line). At B=5T, and ρ=10nm. 

Variation of entropy with respect to the temperatures at different values of B 

is shown in Fig. 3.28. The entropy is enhanced as the temperature is 

increased for fixed value of B. However, comparing the behavior of entropy 

at lower temperatures with relatively higher temperatures yield to a big 

difference. For example, at relatively high temperature, entropy increases 

with temperature for all the values of B, and it becomes independent of the 

magnetic field at higher values of T. However, at low temperature, the 

behavior is very different and is clearly depends on the magnetic field, and 

the entropy is also found to be inversely proportional to the magnetic field. 

Because the increase in magnetic field restricts the particle motion to 

Landau-type levels, so disorder decreases and thus entropy, [38]. 
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Fig. 3.28: Variation of entropy of InAs quantum dot with temperature at three different 

value of B (B=0T for dashed line, =1T for solid line, =3T for dotted line). At 𝛼𝑅=10 

meV.nm, and ρ =5nm. 

At high temperature, the entropy is found to be magnetic field independent 

due to the domination of thermal energy over magnetic energy [39]. 

To show the effect of changing radius of the cylindrical quantum dot on 

entropy, we have plotted in Fig3.29, the entropy as a function of T at different 

ρ - values. The figure shows that the entropy of a QD increases as the radius 

of the QD cylinder increases. And this behavior is due to increase in the 

range of motion, so the electron will be less confined, which leads to an 

increase in the disorder and thus entropy enhancement. 
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Fig.3.29: Variation of entropy of InAs quantum dot with temperature at three different 

value of ρ (ρ= 5nm for dashed line, =10nm for solid line, =15nm for dotted line). At 

𝛼𝑅=10meV.nm, and B=1T. 

The variation of entropy with RSOI parameter is shown in Fig 3.30.We 

notice that as 𝛼𝑅 increases the entropy increases also, this is due to the effect 

of RSOI  in lifting the degeneracy, so more energy levels exist and this lead 

to increase the electron's  movement, so there will be more disorder resulting 

in an increase in the entropy .   
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Fig.3.30: Variation of entropy of InAs quantum dot with RSOI parameter at two 

different value of B (B= 3T for solid line, =1T for dashed line). At T=30K and ρ=5nm. 

 

 

 

 

 

 

 

 

 

 



54 

 

Chapter Four 

Conclusions 

In this study, the eigenenergy spectra of the cylindrical QD's for GaAs and 

InAs materials in the presence of a magnetic field had been reproduced 

analytically, for zero and non-zero Rashba spin-orbit interaction term. 

We have studied in the first part, the energy spectra for GaAs QD as a 

function of: pseudo potential strength (𝑈0), frequency of confinement 

potential (𝜔0), cylindrical height (L), and magnetic field strength (B) for zero 

Rashba case.The energy spectra shows energy level crossings. 

We have studied in the second part the energy spectra, for InAs QD, as a 

function of: Radius (ρ), Strength of magnetic field (B), and Rashba 

parameter (𝛼𝑅). The energy spectra show a transition in the angular 

momentum of the electron energy states.  

We have computed the average statistical energy with different physical 

parameters. The convergency of statistical energy is tested against the 

variation of the number of basis to ensure accurate numerical results. Our 

results show that the magnetic field strength (𝐵), Rashba spin orbit 

parameter (𝛼𝑅), frequency of confinement potential (𝜔0) and the 

temperature (𝑇) have a great significant effects on the average statistical 

energy. 

In addition, we investigate theoretically the effects of magnetic field, Rashba 

parameter-strength and temperature on the variation of the magnetic 
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properties like magnetization and susceptibility of the GaAs –and InAs 

QD’s. The variation of the magnetization and susceptibility with Rashba 

parameter is explicitly shown. All the curves of physical quantities for 

various temperature: 〈𝐸〉,𝑀, 𝑎𝑛𝑑 𝜒 , show an oscillating behavior against  B 

for various temperatures. This behavior is attributed to the energy level 

crossings in the QD spectra. The susceptibility shows a magnetic phase 

changes from diamagnetic to paramagnetic type in a QD made from In- 

nanomaterial.  

Finally, we present the behavior of the thermal properties of the studied QD's 

and investigate the effect of magnetic field strength and Rashba spin orbit 

interaction on thermal quantities like: heat capacity and entropy. The heat 

capacity shows a peak structure known as Schottky effect. 

The present computed results are in agreement with the corresponding 

reported ones in literature.    
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Appendix A 

The used notations in Eq .2.11 are as: 

𝐴11 = −𝑘𝑧
2𝜌2 − 𝛽1 + 𝜆1 +

2𝑚∗

ℏ2
𝜌2𝜀 

𝐴22 == −𝑘𝑧
2𝜌2 − 𝛽2 + 𝜆2 +

2𝑚∗

ℏ2
𝜌2𝜀 

𝐴12 = −𝑖
2𝑚∗

ℏ2
𝜌2𝑘𝑧α 

𝐴21 =  𝑖
2𝑚∗

ℏ2
𝜌2𝑘𝑧 α 

Where 𝜀 is energy eigenvalues. The parameter 𝛽1, 𝛽2 𝑎𝑛𝑑  𝜆1, 𝜆2 are defined 

as  

 

𝛽1 = 𝑚 [
2𝑚∗𝛼𝜌

ℏ2
+ 𝑚 +

𝑒 𝐵

ℏ
𝜌2] 

𝜆1 =
−6𝑚∗𝜌2

ℏ2
−

𝑚∗𝑔𝜇𝐵𝐵𝜌2

ℏ2
−

𝑒𝛼𝑚∗𝜌3𝐵

ℏ3
−

1

4
(
𝑒𝐵𝜌2

ℏ
)

2

 

 

𝛽2 = (𝑚 + 1) [−
2𝑚∗𝛼𝜌

ℏ2
+ (𝑚 + 1) +

𝑒𝐵

ℏ2
𝜌2] 

𝜆2 =
6𝑚∗𝜌2

ℏ2
+

𝑚∗𝑔𝜇𝐵𝐵𝜌2

ℏ2
+

𝑒𝛼𝑚∗𝜌3𝐵

ℏ3
−

1

4
(
𝑒𝐵𝜌2

ℏ
)

2

 

Set the determinant of Eq. (2.11) equal to zero yield to: 

|
𝐴11 𝐴12

𝐴21 𝐴22
| = 0                                                                           (𝐴. 1) 

  𝐴11𝐴22 − 𝐴21 𝐴12 = 0                                                             (𝐴. 2) 

Where: 
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𝐴11𝐴22 = 𝑘𝑧
4𝜌4 + 𝑘𝑧

2𝜌2[𝛽1 + 𝛽2 − 𝜆1 − 𝜆2]

+
2 𝑚 ∗ 𝜌2𝜀

ℏ2
 [𝜆1 + 𝜆2 − 𝛽1 − 𝛽2] −

4𝑘𝑧
2𝑚 ∗ 𝜌4𝜀

ℏ2

+
4 𝑚 ∗ 𝜌4𝜀2

ℏ4
                                                           (A. 3) 

𝐴21 𝐴12 =
−𝑚∗𝜌4𝑘𝑧

2𝛼2

ℏ4
                                                  (A.4) 

So Eq.(A.2) become as squared equation : 

4 𝑚 ∗ 𝜌4𝜀2

ℏ4
− 

2 m ∗ ρ2

ℏ2
 [2𝑘𝑧

2𝜌2 − 𝜆1 − 𝜆2 + 𝛽1 + 𝛽2] ε + 𝑘𝑧
4𝜌4

+ 𝑘𝑧
2𝜌2[𝛽1 + 𝛽2 − 𝜆1 − 𝜆2] +

−𝑚 ∗ 𝜌4𝑘𝑧
2𝛼2

ℏ4

= 0                                                                       (A. 5) 

which have a general solution ∶ 

with , ε =
−b ± √𝑏2 − 4𝑎𝑐

2𝑎
                                 (A. 6) 

Where: 

a =  
4 𝑚 ∗ 𝜌4

ℏ4
     

𝑏 = −
2 m ∗ ρ2

ℏ2
[2𝑘𝑧

2𝜌2 − 𝜆1 − 𝜆2 + 𝛽1 + 𝛽2] 

 

𝑐 = 𝑘𝑧
4𝜌4 + 𝑘𝑧

2𝜌2[𝛽1 + 𝛽2 − 𝜆1 − 𝜆2] +
−𝑚 ∗ 𝜌4𝑘𝑧

2𝛼2

ℏ4
 

Substitute that parameter into Eq. (A.5) and make few simplification yield 

to: 

ℇ =
2 𝑚 ∗ 𝜌2

ℏ2
 [2𝑘𝑧

2𝜌2 − 𝜆1 − 𝜆2 + 𝛽1 + 𝛽2]

±
1

4
√(4𝑘𝑧𝛼)2 +

ℏ4

𝑚 ∗2 𝜌4
(𝜆1 − 𝜆2 + 𝛽1 + 𝛽2)        (𝐴. 7) 
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 الملخص

قمنا بدراسة تأثير المجال المغناطيسي و ظاهرة رشبا على الخصائص المغناطيسية و الحرارية لنقطة 
عن طريق حساب مستويات الطاقة لهذه النقطة باستخدام طريقة  InAsو  GaAs مادتي  كمية من

م استخدام مستويات الطاقة  في حساب التمغنط للنقطة الكمية ودراسة تأثير تحساب قطرية المصفوفة. 

ودرجة الحرارة وتردد القطع على كل من مستويات الطاقة و التمغنط  المغناطيسي كل من قوة المجال
تم دراسة تأثير  ,بالاضافة الى ذلك لهذه النقطة.العشوائية  ومعامل  والحرارة النوعية والنفاذية المغناطيسية

) الرشبا المغزلي( على الخصائص المغناطيسية  والحرارية للنقطة الكمية، حيث أن لهذا العامل دور 

  "Spintronics"الالكترونيات المعتمدة على غزل الالكترون  مجالفي   مهم

بالاضافة الى تأثير الرشبا  ,تردد الحصر ,درجة الحرارة , المجال المغناطي وكانت النتيجة ان وجود 
على الخصائص المغناطيسية والحرارية  للنقطة الكمية، حيث تتغير الطبيعة المغناطيسية للمادة  ؤثري

قطة الكمية تتأثر بتغيير قيم للن عشوائية بتغيير قيم هذه المتغيرات. كما أن الحرارة النوعية  ومعامل ال
 ات.ذه المتغير ه

 . وكانت النتائج التي حصلنا عليها متوافقة بشكل جيد مع نتائج منشورة سابقا

 


