

An-Najah National University

Energy and Environment Engineering Department

Evaluation of 22 photovoltaic systems installed in Rujeib, Palestine

Prepared by:

Heba Sawalha

Supervisor:

Dr. Tamer Al-Khatib

A Graduation Project Submitted to Energy Engineering and Environment Department in Partial Fulfillment of the Requirements for Bachelor Degree in Energy Engineering and Environment

May, 2021

Dedication

I dedicate this work to my fear of stand still. My greatest concern, and only motive.

Acknowledgements

I would like to express the deepest appreciation to my supervisor, who has always believed in me when I am in desperate need of such support, For all his accomplishments that made me believe in the possibility of my dreams, who has also been an unstinting source of wise and advice, and his pertinent guidance has been of great importance.

To my family and a few friends who bear my mood swings during this semester, even when they didn't know the reason for it as for most of the time I didn't know it myself, Thank you.

Disclaimer

This report was written by Heba Sawalha submitted to the Department of Energy and Environmental Engineering of An-Najah National University in partial fulfillment of the Bachelor degree in Energy and Environmental Engineering, It has not been altered or corrected, other than editorial corrections, as a result of the assessment and it may contain language as well as content errors. The views expressed in it together with any outcomes and recommendations are solely those of the student. An-Najah National University accepts no responsibility or liability for the consequences of this report being used for a purpose other than the purpose for which it was commissioned.

Table of content:

DedicationII
Acknowledgements III
DisclaimerIV
Nomenclature:VII
Abstract:VIII
Chapter 1 Introduction1
Energy History1
Electricity consumption growth in the residential sector in Palestine
Objectives:4
Chapter 2 Literature Review
The performance of various photovoltaic systems5
Climate effect on solar system performance
Different technologies effect on solar system performance8
Different technologies effect on solar system performance
Different technologies effect on solar system performance
Different technologies effect on solar system performance
Different technologies effect on solar system performance
Different technologies effect on solar system performance 8 Surface inclination and orientation effect on solar system performance 9 Chapter 3 Methodology 10 Definitions 10 Case study 11 Calculations 14
Different technologies effect on solar system performance 8 Surface inclination and orientation effect on solar system performance 9 Chapter 3 Methodology 10 Definitions 10 Case study 11 Calculations 14 Chapter 4 Results and Discussion 16
Different technologies effect on solar system performance8Surface inclination and orientation effect on solar system performance9Chapter 3 Methodology10Definitions10Case study11Calculations14Chapter 4 Results and Discussion161. Performance16
Different technologies effect on solar system performance8Surface inclination and orientation effect on solar system performance9Chapter 3 Methodology10Definitions10Case study11Calculations14Chapter 4 Results and Discussion161. Performance162. Safety:19
Different technologies effect on solar system performance 8 Surface inclination and orientation effect on solar system performance 9 Chapter 3 Methodology 10 Definitions 10 Case study 11 Calculations 14 Chapter 4 Results and Discussion 16 1. Performance 16 2. Safety: 19 Chapter 5 Conclusions and recommendations 23
Different technologies effect on solar system performance.8Surface inclination and orientation effect on solar system performance.9Chapter 3 Methodology.10Definitions.10Case study11Calculations.14Chapter 4 Results and Discussion.161. Performance.162. Safety:.19Chapter 5 Conclusions and recommendations.23References.24

List of Figures:

Figure 1:Global energy consumption, 1800-2015.	2
Figure 2: Population growth in Palestine	2
Figure 3: Mean annual temperature in Jerusalem (1964-2011)	3
Figure 4: A satellite Photo of Rujeib Village	12
Figure 5: Manifestations of systems safety	20
Figure 6: Chassis-modules support problem1	20
Figure 7: Chassis-modules support problem2	21
Figure 8: Welding support problem	21
Figure 9: Crossed wires problem	22
Figure 10:Installing the DB problem	22

List of tables

Table 1: Photovoltaic Specifications	12
Table 2: Inverter Specifications	13
Table 3: Solar radiation in Palestine	15
Table 4: Performance inductors values	16
Table 5: Comparison between with systems in near countries	18
Table 6: Comparison with the simulated values	18

Nomenclature:

PV	Photovoltaic
Yf	Final Yield (Kwh/Kwp)
PR	Performance ratio(%)
CUF	Capacity utilization factor(%)
STC	Standard Test Conditions
SPV	Photovoltaic system
PC-Si	Polycrystalline silicon
MC-Si	Monocrystalline silicon
CIS	Copper indium selenium
CIGS	Copper indium gallium selenide
a-Si	Amorphous silicon
BAPV	Building attached photovoltaic
E _{AC}	Energy generated (Kwh)
E _{DC}	Solar radiation (Kwh)
P _{rated}	Power rated (Kwp)
DB	Distribution
Eff	Efficiency

Abstract:

Photovoltaic systems are becoming increasingly popular world wild and that's reflect the current trend in Palestine. A 22 residential Photovoltaic systems located in a Palestinian village (Rujeib) have been analyzed in terms of performance and safety, with a total capacity equals to 195kWwp, and 28° tilt angle oriented to the south. The study shows that the mean values of the final yield, Performance ratio and the Capacity utilization factor of the systems are 1507.32 kWh/kWp, 72.87% and 17.79% respectively. The performance results of the systems are also compared with the simulation values obtained from PVsyst software with a margin of error in the PR equals to 7% from the measured values. Compared to PV plants in county near to Palestine, and particularly a PV plants in Jordan and Syria, the analyzed systems have an acceptable overall performance. A number of recommendations was proposed to improve the safety and the performance of the systems.

Chapter 1 Introduction

Energy History

If we start back in 1800 we see that nearly all of the world's energy was produced from traditional biomass (essentially burning wood and other organic matter). The world was using a small amount of coal. The expansion into oil consumption didn't begin until around 1870. Two decades later it was followed by natural gas and hydroelectricity. By 1900, coal consumption had increased significantly, accounting for almost half of global energy (the other half remaining biomass, since oil, gas and hydroelectricity remained small).

By the mid-20 th century, coal overtook traditional biofuels and oil was up to around 20 percent. By 1960 the world had moved into nuclear electricity production. Finally, today's renewable energy sources such as solar energy, wind energy and bioenergy are relatively new, not appearing until the 1980-90s. Other renewable sources, such as geothermal and marine technologies, have not been included because levels of production are so small.

In 2015, the world consumed 146,000 terrawatt-hours (TWh) of primary energy- more than 25 times more than in 1800. But it is often today's energy mix, rather than levels of consumption that people find surprising. While the expectations were that the renewable energy sources cover a huge amount of global energy consumption, In fact their total contribution remains small in the consumption [1].

Investment and the production of renewable technology is growing, as the following chart shown:

Figure 1:Global energy consumption, 1800-2015.

Electricity consumption growth in the residential sector in Palestine

The energy consumption for the residential sector constitutes is the largest part of the total electricity consumption in Palestine (61%)[2], and it is showing a steady increase through the past years due to three main reasons, one is the dramatic population growth in Palestine as a whole (see Figure 2). In the West Bank only, the number of Palestinian inhabitance has reached around 2.90 million at the end of 2015 [3].

Secondly, is the need to find an alternative to fuel for heating the residential sector, due to the increase in its price over the years. For example the price for gasoline in Palestine increased from 0.86 US dollars/liter in 1998 to 1.54 US dollars/liter in 2016 growing at an average annual rate of 7.58% [4], while the price of electricity remained almost the same, which the cost of consumption in kWh is around 0.6 NIS, which made it the alternative to the gas people were looking for. Thirdly, global warming that led to an increase in the temperatures in Palestine, that clearly shown in figure (3) the calculated trend-line indicates an overall increase in the past years[5]. This pushed people to use air conditioners in their homes attempting to reaching a comfortable living environment.

Figure 3: Mean annual temperature in Jerusalem (1964-2011)

The annual electricity consumption per capita (kWh/Capita) increased from 1048.0 in year the 2014 to 1148.7 in the year 2018. The increasing demand and scarcity in conventional sources have triggered the scientist to pave way for the development of research in the field of renewable energy sources especially solar energy.

Due to the recent promotion of solar energy and an attempt to break free from the Israeli occupation's grip on electricity, the Palestinians have tended to take advantage of the sun's energy, although they were among the pioneers in the use of water solar heaters, Photovoltaics have started to spread recently compared to previous years. However, Its prevalence is still limited.

Even though the annual sunny days in Palestine equal 300 days, with average solar radiation equals 5.4 kW per day[6], There are still uncertainties and a lack of control over solar resources. Due to this, it always tends to support Photovoltaic systems with stable systems or ones which we have partial control on, such as diesel generators, batteries, or connect them directly to the grid, and because of the high cost of the first two options, the third option is the most widespread in Palestine.

Objectives:

As the share of solar electricity continues to grow in the global electricity mix, It becomes necessary to study the performance of existing systems and analyze them to improve their performance and the performance of new systems. The focus of this project was on:

- Understand the electricity consumption situation in Palestine.
- Evaluate the performance of 22 systems installed in Rujeib, Palestine.
- Comparing them with systems from neighboring countries and with simulated values.
- Study the safety aspects for the 22 systems.

Chapter 2 Literature Review

The performance of various photovoltaic systems

M. Sidrach-de-Cardona and Ll. Mora Lo´pez [7] studied a 2.0 kWp photovoltaic system that has been installed at the University of Ma´laga, Spain to examine the grid-connected photovoltaic system under the Southern Spain climate. The mean daily output was 7.4 kWh while the performance ratio was found to be 64.5%. Then an optimization on the final yield and the performance ratio of the system has been done to remove the influence on the system yield of losses due to problems in the grid, the optimal PR then was 67.9%.

Emmanuel Kymakis et al. [8] evaluated the 171.36 kWp grid-connected photovoltaic park of C. Rokas SA in Sitia, Crete, by studying it for a year in all respects. During the project study period, the average annual energy output was 1336.4 kWh/ kWp, and the annual performance ratio (PR) of the system was 67.36%.

B. Shiva Kumar and K. Sudhakar [9] studied a photovoltaic power plant of 10MW in Ramagundam, India. that operating at a seasonal tilt. The different types of losses were calculated so as the performance ratio was found to be 83%, and was compared with simulation values from the Posit and PV-GIS software.

Jayanta Deb Mondol et al. [10] performance of 12kWp grid-connected photovoltaic system was made during three years, and it has been analyzed on an hourly, daily and monthly basis. The annual average monthly performance ratios for the three years were 0.60, 0.61, and 0.62, respectively.

S. Bouacha et al. [11] monitored a 9.5 kWp photovoltaic grid-connected system for 3 years in Algeria. And although it was the first photovoltaic grid-connected system in Algeria its performance is still considered satisfactory as it was found to be equal to 70%.

M. Drif, P.J. Pe'rez et al [12] made a performance analysis of a grid-connected photovoltaic system of 200 kWp at Jae'n University, Spain. They obtained unsatisfactory PR values due to a consequence of the existing problems with different junction boxes of some

modules (failures in 42 modules), and to improve the project performance, the defective part of PV generators which was responsible for the reduction of PR was replaced.

Lutero Carmo de Lima et al. [13] studied the performance analysis of a 2.2 kWp photovoltaic system installed at the State University of Ceará, Fortaleza, Brazil, for a year. The performance ratio and the annual energy yield were 82.9% and 1685.5 kWh/kWp respectively.

Priya Yadav et al. [14] simulated a proposed photovoltaic system for Hamirpur, Himachal Pradesh, India, by using the predicted climate conditions for the site, and the design of the system using the PVsyst program. And the PR was found to be 72.4%.

F. Fairouz et al. [15] A performance evaluation of the first 85.05 kWp and 21.6 kWp copper indium gallium selenide (CIGS) thin-film, grid-connected PV systems on the roof of two schools in Kuwait were studied for 12 months. The effect of continuous surface cleaning has also been studied. The annual average daily final yields of the PV systems in this study were 4.5 kW h/kWp/day, and the performance ratio was maintained between 0.74 and 0.85.

Mete Cubukcu and Harun Gumus [16] studied a grid-connected photovoltaic (PV) power plant of 2130.7 kWp rated power installed in the eastern part of Turkey. A simulation of the plant data was also done to compare the results, the PR of the plant was found to be 81.15%.

Xinfang Wu et al. [17] presented the performance of the first home-based grid-connected roof-mounted building attached photovoltaic (BAPV) system in Shanghai, China for three years, With a simulation of the plant data was also done to compare the results in the PVsyst software. The average annual and average daily outputs are 3189.13 kWh and 8.74 kWh. The predicted yearly energy output is 3220.21 kWh by software of PVsyst.

Climate effect on solar system performance

Studies have proven that climate affects the performance of solar systems, and this is shown in the following studies:

M. Shravanth Vasisht et al. [18] monitored the effect of seasonal changes on a 20 kWp Solar Photovoltaic system was created to conduct this study in Bangalore, India. The average Performance Ratio (PR) of the system was around 85%. It was confirmed that the PR depends on the climatic changes from one season to another, As it directly depends on the efficiency of the

system, and the efficiency of the system directly depends on the temperature of the modules. In summer, the SPV modules attain maximum efficiency at $T_{mod} = 45^{\circ}C$, but in winter, it is at 55 C. The efficiency decreases by 0.08/C while the temperature increases more than 45 °C in summer. While the efficiency is not affected much in the winter when the temperature increases more than 55 °C, this is due to the automatic cooling due to the wind and the low temperatures in winter.

Sebastijan Seme et al. [19] a performance analysis of 3326 solar systems was made in Slovenia under different climate conditions. The performance was found to be 68.84% and it mainly depends on the proper inclination and azimuth angle of the photovoltaic modules, shadings, and snow barrier. Due to that, the study shows that PR reaches its highest rates in the winter and declines to its lowest in the summer because of the negative effect of temperature on the efficiency of the system.

Emilio Ghiani and Fabrizio Pilo [20] worked on comparing two PV power plants in Italy. as the results showed, in general, that the highest value of the PR was in the winter season while the worst value of it was in the summer, and by comparing the two plants together, the second PV Plant had a lower PR value due to the worse azimuth angle and the higher impact of the ambient temperature. As the average PR value of the first and the second PV power plants were 87,3% and 83,2% respectively.

L.M. Ayompe et al. [21] monitored a 1.72 kWp photovoltaic system installed in Dublin, Ireland for a year. To obtain the following parameters: final yield, reference yield, array yield, system losses, array capture losses, cell temperature losses, PV module efficiency, system efficiency, inverter efficiency, performance ratio, and capacity factor. Where the system efficiency and performance ratio was 12.6% and 81.5% respectively. With a comparison of the system's performance in Ireland with other systems in other cities, it was found that the station's performance in Ireland was higher due to the low insolation levels, high average wind speeds, and low ambient temperature.

Mahmoud Dhimish [22] made a comparison between the performance of photovoltaic solar systems in terms of the PR values in Scotland, Ireland, and England. and found that the values were more reliable in Ireland and England compared to those located in Scotland. And it

found out that the system degradation was highest in relatively cold regions due to cold climate conditions, and heavy snow affecting the system.

Bing Guo et al. [23] monitored a photovoltaic system in Qatar in terms of cleaning the dust from the surface of the modules where it was found that on the average over the seven months, the PV performance loss due to soiling was 0.0042+/-0.0080 per day for modules cleaned every sixth month, and 0.0045+/-0.0091 per day for modules cleaned every second month.

Different technologies effect on solar system performance

The performance of the different systems varies according to the material from which the cells are made, which has been proven by numerous studies such as

Ramanan P et al. [24] compared the performance of two technologies (polycrystalline silicon (p-Si) and copper indium selenium (CIS) arrays) under hot and humid conditions in Tamil Nadu, Southern India. It has been found that the yearly average performance ratio was 78.48% for p-Si and 86.73% for CIS. An analysis of the data was also done on the PVsyst software to simulate the performance of the system and compare it from actual values.

Elias Urrejola et al. [25] studied the effect of soiling and sunlight on the performance ratio of different photovoltaic technologies (polycrystalline, monocrystalline array, thin-film system array), exposed outdoors for two years in Santiago, Chile. The yearly degradation of the arrays system due to the high soiling in Santiago was found to be 1.29% for the polycrystalline array, 1.74% for the monocrystalline array, and 2.77% for the thin-film system array. And a weather correction was made on the PR to be 75% for all technologies. The study showed that continuous cleaning contributes effectively to maintaining the effectiveness of the systems, and the best methods of cleaning were studied.

Vikrant Sharma et al. [26] made a performance comparison between different solar photovoltaic technologies (p-Si, HIT, a-Si arrays) under similar outdoor conditions were made, and the PR rating of HIT and a-Si arrays are found to be about 7% higher as compared to p-Si PV array under the almost outdoor conditions.

Muhammad Anser Bashir et al. [27] compared the performance of the three most common solar photovoltaic technologies used in Taxila, Pakistan (monocrystalline, polycrystalline, and single junction amorphous silicon) during the winter months, The study showed that the performance of the three types decreased with the increase in the temperature of its back surface, but the monocrystalline photovoltaic module showed higher monthly average module efficiency among them all.

Nitin Kumar [28] made a comparison of different Photovoltaic technologies (monocrystalline, polycrystalline, amorphous silicon, and CIS) in terms of effectiveness, each with a capacity of 10Kw at Hamirpur Himachal Pradesh, India. A simulation of the data was done on the PVsyst software to compare the results. And the results show that CIS technology performs considerably better than the other three technologies in terms of energy output, performance ratio, capacity factor, and economics.

Arechkik Ameur et al. [29] compared the performance of different Photovoltaic technologies of (amorphous silicon (a-Si), Polycrystalline silicon (pc-Si), and Monocrystalline silicon (mc-Si)) grid-connected systems, that generating around 2 kWp each, in Morocco. And the obtained results showed that polycrystalline technology is the most cost-effective technology for the region of Ifrane.

Surface inclination and orientation effect on solar system performance

Jayanta Deb Mondol et al. [30] using validated TRNSYS simulations the effect of surface inclination and orientation on its performance was studied. the particular location and system studied, the maximum annual PV efficiency, the inverter efficiency, the PR and the system efficiency were for a south-facing surface with an inclination of 20°.

Chapter 3 Methodology

Definitions

1. Performance indicators:

There are many parameters to indicate the system performance such as array yield, PV module efficiency, inverter efficiency, system efficiency, final yield, Performance ratio, and the capacity utilization factor. These normalized indicators act as key comparators for comparing the performance of the existing grid-connected PV systems. And the last three indicators will be used in this project.

The **final yield** is the time taken by the PV to generate energy (E_{ac}) with respect to its nominal power capacity, and its unit is kWh/kWp. Consequently, it depends on the total production, which in turn depends on the composition of the structure, the location of the system, and other influences.

The **performance ratio** is the ratio of the total energy produced from the system (when on-grid) or the useful energy produced (when off-grid), to the energy which would be produced if the system was continuously working at its nominal STC conditions. Taking into account environmental factors (temperature, irradiation, etc.), and including all the losses that might affect the system.

The **capacity utilization factor** is the percentage of actual output over the rated output that the system can output if the system is running daily without interruption. Therefore, it is suitable for continuously operating plants more than renewable energy systems, because most of the renewable energy systems work with variable input making the system intermittent[31].

However, The performance of Photovoltaic modules refers to Standard Test Conditions (STC), which does not always represent the real performance of the modules. Due to that, a lot of corrections have been created to improve system performance prediction under real weather conditions. As Juwi Inc [32] proved that module temperature adjustment provided the closest match between modeled and measured performance.

The rise in the ambient temperature increases the temperature of the cells and thus negatively affects the system production. While increasing wind speed positively affects system productivity. Therefore, calculating the PR in isolation from climate change does not necessarily increase the PR, but rather gives more stable values throughout the year.

2. PVsyst software:

It is a software for designing and simulating photovoltaic systems. It is used for project development and for giving a predictive view of the system's functioning. The program contains a meteorological database for different regions around the world, with the ability to manually enter this data, and some inputs must be provided to the program to obtain results in the form of a complete report that contains charts and tables for the progress of energy production and losses during the year [14]. The main inputs are:

1. Location

2. Tilt angle

- 3. Module and Inverter Specification
- 4. Solar Radiation Variation
- 5. Azimuth Angle

Case study

One of the villages that installed a several photovoltaic systems in Palestine is Rujeib. It is located southeast of Nablus, with 4,500 residents, according to 2017 statistics. With a latitude, longitude and altitude almost the same for all the systems (32.18°, 35.2°, 530 m) respectively.

Figure 4: A satellite Photo of Rujeib Village

A 22 system located in a different location in Rujeib has been evaluated, oriented to the south with tilt angle equals to 28°, and 195 kWp in total. The smallest system capacity is equal to 5 kWp, and the largest one is 40Kwp, located on top of residential buildings. Using a varies types of PV array with different power rated, and panels number as defined in Table (1). And a varies types of inverters as well, as defined in table (2).

No. of System	Power _{Rated}	No. of Panels	PV type	Eff./module area
1	385	18	JA solar	19.54
2	365	28	Sunket	19.08

385	15	JA solar	20.61
375	30	JA solar	20.07
325	20	Q.power	16.74
330	16	Q.power	19.59
330	16	Q.power	17
335	32	Asrtonergy	19.77
410	12	CS3W	18.57
385	30	JA solar	19.54
400	15	Trinasolar	19.49
400	12	Q.power	17
335	30	Asrtonergy	19.36
385	10	JA solar	19.54
400	15	Trinasolar	19.49
390	13	Philadelphia	19.57
330	16	Yingli solar	17.03
410	12	CS3W	18.57
410	12	CS3W	18.57
410	87	Cnadian solar	19.93
410	16	CS3W	18.57
400	12	Trinasolar	19.49
440	14	CS3W	17.49
	385 375 325 330 330 330 335 410 385 400 400 335 3400 400 335 385 400 330 410 390 330 410 410 410 410 410 410 410 410 410 410 410 410 410 410	385 15 375 30 325 20 330 16 330 16 330 16 335 32 410 12 385 30 400 15 400 12 335 30 3400 12 335 30 3400 15 300 15 300 16 410 15 390 13 330 16 410 12 410 12 410 12 410 12 410 12 410 12 410 16 400 12 440 14	385 15 JA solar 375 30 JA solar 325 20 Q.power 330 16 Q.power 335 32 Asrtonergy 410 12 CS3W 385 30 JA solar 400 15 Trinasolar 400 12 Q.power 335 30 Asrtonergy 385 10 JA solar 400 15 Trinasolar 400 15 Trinasolar 300 13 Philadelphia 330 16 Yingli solar 410 12 CS3W 410 12 CS3W 410 87 Cnadian solar 410 16 CS3W 400 12 Trin

 Table 2: Inverter Specifications

No. of system	System Capacity	Inverter Capacity	No. of inverters	Inverter
1	14	10	1	ABB
2	12	10	1	ABB
3	6	5	1	INGECON
4	10	10	1	KACO plueplant
5	7	6	1	ABB
6	5	5	1	KACO plueplant
7	5	3.7	1	KACO plueplant

8	10	10	1	KACO plueplant
9	5	5	1	ABB
10	14	10	1	ABB
11	6	5	1	HUAWEI
12	5	6	1	ABB
13	10	10	1	KACO plueplant
14	5	5	1	INGECON
15	6	5	1	ABB
16	5	5	1	Sungrow
17	5	5	1	HUAWEI
18	5	5	1	SUNGROW
19	5	5	1	SUNGROW
20	40	20	2	KACO plueplant
21	5	6	1	ABB
22	5	5	1	HUAWEI
23	5	5	1	Sungrow

Calculations

The data for the total energy generated was collected once for the twenty-three systems on the same day. Therefore the **Final Yield** was calculated for each system separately taking into consideration the time each system was installed in.

$$Yf = \frac{E_{ac}}{P_{Pv(rated)}} \tag{1}$$

Since E_{ac} is the total energy generated by the system in (kWh), and the P is the power rating for the panels of the system (kWp).

The total in-plane incoming solar radiation was also calculated separately for each system by summing up the incoming solar radiation for all the months since the system has been installed until the total energy generated has been collected depending on the following data in table (3) for the total in-plane solar radiation in Palestine.

 Table 3: Solar radiation in Palestine

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Total in-plane Solar radiation/month (kWh) (E _{DC})	99	120.6	172	208.2	240.9	249	257.3	225	213.9	158	120.2	93

The **Performance Ratio** then has been calculated for each system based on the past calculations, using the following equation:

$$PR = \frac{Yf}{E_{DC}}$$
(2)

Where the E_{DC} is the summation of the solar radiation for each month from the beginning of the insallation of the system, until the data collected.

The **Capacity Utilization Factor (CUF)** is another common indicator to judge the performance of grid-connected PV systems.

$$CUF = \frac{Yf}{operating hours} \times 100\%$$
⁽³⁾

The mean values then were calculated to make the comparing task easier. However, one system was excluded from the aggregate calculations due to a major flaw in that system.

Based on the systems information, data analysis has been made for each system separately using the **PVsyst**, and the reports of the systems are attached in appendices (1). Also, safety measures were evaluated at the sites.

Chapter 4 Results and Discussion

1. Performance

Table (4) represents the monitoring period for each system which is varying from 2-25 month, and the Photovoltaic technologies used for each system which shows that only 34.7% from the photovoltaic systems used Monocrystalline-silicon and the rest was Polycrystalline-silicon, it also shows the energy produced from each system as well as the Yf, the PR, and the CUF. As can be seen from table (4), system number 7 has the lowest PR and CUF (11.59%, 2.76%) respectively. This is due to an obvious flaw in the design, it has been used as a 3.7 kW inverter with a 5 kWp system capacity. The inverter plays an important role in the overall electricity production. Therefore, when an inverter smaller than the size of the system is placed, the system will not take advantage of the maximum solar energy the photovoltaics can absorb, and it will lead to a lot of losses.

Excluding system number 7 the mean values of the Yf, PR, and the CUF for the remaining 22 systems were (1339.17 kWh/kWp, 65.86%, 15.76%), where three of them were under the nominal range of the PR for a new PV system that lays between 60-90% [33], and only one system was around 3% greater than 90%, which may be possible when the shading minimalized and when using highly efficient components [34].

No. of system	Monitored period (month)	PV type	System Capacity (kWp)	E _{ac} (kWh)	Total Yf (kWh/kWp)	PR%	CUF%
1	21	MC-Si	6.93	21783	3143.29	80.11	20.78
2	21	MC-Si	10.22	33543	3282.09	83.65	21.70
3	21	MC-Si	5.775	15171	2627.013	66.95	17.37
4	14	MC-Si	11.25	17334	1540.8	64.97	15.28
5	16	PC-Si	6.5	13217	2033.38	74.12	17.65
6	17	MC-Si	5.28	12111	2293.75	77.27	18.73
7	16	PC-Si	5.28	1680	318.18	11.59	2.76
8	6	MC-Si	10.72	7357	686.28	64.29	15.88

 Table 4: Performance inductors values

9	7	PC-Si	4.92	3520.9	715.63	54.36	14.19
10	22	MC-Si	11.55	35132	3041.73	74.26	19.20
11	3	MC-Si	6	1095.7	182.61	49.18	8.45
12	25	PC-Si	4.8	19092	3977.5	90.21	22.09
13	5	MC-Si	10.05	6318	628.65	77.59	17.46
14	21	MC-Si	3.85	11091	2880.77	73.42	19.05
15	6	MC-Si	6	5524.4	920.73	86.25	21.31
16	5	MC-Si	5.07	3717	733.13	90.49	20.36
17	2	MC-Si	5.28	784.35	148.55	69.66	10.31
18	6	PC-Si	4.92	4250	863.82	80.92	19.99
19	6	PC-Si	4.92	4203	854.26	80.02	23.72
20	7	MC-Si	35.67	34221	959.37	72.87	19.03
21	4	PC-Si	6.56	2918.4	444.87	76.02	15.44
22	5	PC-Si	4.8	2125.5	442.8125	54.65	12.3
23	5	MC-Si	6.16	4682	760.06	93.81	21.11
Mean	-	-	-	-	1507.32	72.87	17.79

In order to compare the quality of the 22 systems in Rujeib, Palestine, it was compared with two grid-connected PV plants in two neighboring cities (Syria and Jordan) as shown in table (5). The first plant is in Syria that installed in November.2010 containing 45 modules with a rated power of 90 W each and a fixed tilt angle equals to 35°. The measured data from the Syrian plant showed that energy produced in the third year of operation was 6177 kWh with a Yf and a PR equals to (1525 kWh/kWp and 88.2%) respectively, which is (1.17% and 15.33) larger than the Yf and the PR in Palestine respectively. The CUF was 17.4 in Syria which was almost the same but only 0.39% lower than the CUF value in Palestine [35].

The second plant is in Jordan that is 276kWp and with 10° and 15° tilt angles. It has been installed in 2014, and the performance was made for the first year of installation and the energy production is found to be 476467 kWh, and the Yf was 1639 kWh/kWp which is 8.73% larger than the Yf in Palestine, as well as the PR and the CUF that was (87.5% and 18.7%) in Jordan that were (14.63% and 1%) higher than the values in Palestine respectively [36].

Country	Yf (kWh/kWp)	PF%	CUF%
Palestine	1507.32	72.87	17.79
Jordan	1639	87.5	18.7
Syria	1525	88.2	17.4

Table 5: Comparison between with systems in near countries

Whilst the simulated PR values from the PVsyst ranged between 76%-83% with a mean value equal to 81.9% (excluding system number 7 again because the program did not accept it due to the small size of the inverter) as shown in details in table (6). The mean value of the simulated values was 7.67% larger than the mean measured value which is still an acceptable range due to many reasons. Firstly, in the field, the system holds many losses that the PVsyst does not take into considerations such as the different types of shadows that we cannot anticipate, like clouds and living creatures as birds or their droppings and the accumulation of large layers of dust on the surface of the PV modules especially with the absence of awareness about the importance of the constant cleaning of the PV modules, and although there are some factors that can be predicted, it cannot be predicted exactly such as the ambient temperature and the irradiation as there are changing from year to year but still have a direct effect on the performance of the system. Secondly, the margin of error in the PVsyst itself, as the PVsyst shows inaccuracies from 1-2% for the yearly yield and the same inaccuracies percentage for the shadow losses [37].

No. of system	PR% (Calc.)	PR% (PVsyst)	
1	80.11	80.7	
2	83.65	77.3	
3	66.95	83.5	
4	64.97	82.6	
5	74.12	82.9	
6	77.27	82.5	
7	11.59	-	
8	64.29	83.2	
9	54.36	.36 82.7	
10	74.26	82.1	

Table 6: Comparison with the simulated values

11	49.18	76	
12	90.21	81.3	
13	77.59	83.1	
14	73.42	83	
15	86.25	80.1	
16	90.49	83.4	
17	69.66	83.9	
18	80.92	81.7	
19	80.02	83.3	
20	72.87	83.3	
21	76.02	82.7	
22	54.65	83.39	
23	93.81	81.1	
Means	74.32	81.99	

2. Safety:

Apart from the productivity and performance of the systems, there are problems with most systems in terms of safety, as figure (5) shows the manifestations of systems safety. For instance, all systems contain no solar warning signals (on the entrance, panels, or chasses), nor lightning rods, which is often placed in the top of the buildings to attract lightning bolts to provide a safe path to ground the electricity so that it does not damage the building. Also there are obvious problems with grounding in all systems as there are 14 with no grounding systems at all, and three of the rest do have grounding but with no ability to measure it due to a layer of cement that covers the electrode, while the remaining five systems have a grounding system, but the electrode resistance is more than five ohms. What worth mentioning is that grounding a system limits the voltage potential to the ground on the grounded conductor, which may come from contact with higher-voltage lines, lightning strikes, and the like.

Figure 5: Manifestations of systems safety

Also, 20 out of 22 of the systems their solar cells attached to the chassis with a rusted metal as shown figure (6) and the remaining two systems do not even attach to the chassis but with screws as shown in figure (7).

Figure 6: Chassis-modules support problem1

Figure 7: Chassis-modules support problem2

It is noticeable that 19 out of 22 from the systems did not strengthened the welding areas in the structures with an extra metal as shown in figure (8). Also, the welding areas were very rusty. The last two problems are considered as weak link methods, that produce a lean structure can be easily broken in difficult weather conditions (like strong storms) or any strong blows on the structure.

Figure 8: Welding support problem

Access to the system is very important for cleaning and repairing the systems when needed, so a safe path leads to the system must be provided. However, 9 out of 22 systems have no safe paths leading to the system. In addition, the crossed power lines pose a potential danger even if they are covered with an insulating material, as the passage of high voltage through them in certain cases causes a rise in the temperature of the wires and may leads to melt the covering material and cause electrical fault and fires. However, there are 18 out of 22 systems have crossed power lines as shown in figure (9).

Figure 9: Crossed wires problem

Distribution boards should be installed in a safe place to reduce the possibility of falling and be well-covered in a waterproof board to prevent short circuits. Along with potentially melting wires and causing power to go out, a short circuit can also lead to the development of an electrical fire. These fires can do extensive damage to the building if they are not caught immediately. However, 6 out of 22 systems their distribution boards are not water-proofed and four of the remaining 16 systems are installed on the chassis itself as shown in figure (10).

Figure 10:Installing the DB problem

Chapter 5

Conclusions and recommendations

The performance analysis of 22 residential grid-connected Photovoltaic systems with a total capacity equals to 195 kWp in Rujeib, Palestine, is carried out in terms of main performance criteria such as specific final yield (Yf), performance ratio (PR%), and capacity utilization factor (CUF%), There values were 1507.32 kWh/kWp, 72.87% and 17.79% respectively. The systems were simulated using the PVsyst Version 7.1 software and it showed PR values that only 7% greater than the mean measured values. A comparison was also made between the measured values and evaluation parameters of reported PV plants in some near countries (Jordan and Syria) that shows a good performance of the systems in total, and it gives a good indication of installing such systems in the region.

Although the systems performed well, there are some recommendations:

- An exception of system number 7 was made, where the inverter used has smaller in size than the system capacity. As for this system, the inverter must be changed to a suitable one. This alerts us to the importance of making a professional design for solar systems by specialized engineers and not by technicians.
- 2. Some problems were encountered in collecting sufficient information throughout the year about the production of the system, due to the lack of a monitoring system. Therefore, a monitoring and supervision system is very important to provide when installing a new PV system to improve the system study process and its accuracy.
- 3. It is important to understand the frequency of cleaning the photovoltaic solar systems because the performance of the system can vary depending on the yearly degradation of the whole system and on monthly decay due to soiling.
- 4. Pay more attention to safety means, where should install lightning rods and grounding systems where the electrode resistance is less than five ohms for all systems, add warning signals, support the structure well by supporting weak areas with an additional piece of galvanized metal, paving safe lanes that are needed, re-extending power lines in systems that are needed, in a way that shows no crosses between them, and put the inverters and the distribution boards in safe, water-proofed placed.

References

- [1]. M. R. H. Ritchie, "Energy Production & Changing Energy Sources," 2017. [Online] Available from : https://ourworldindata.org/energy-production-and-changing-energysources.
- [2]. E. Basel and T. Q. Yaseen, "Renewable Energy Applications in Palestine," vol. 804, pp. 52–65, 2007, [Online]. Available: https://scholar.najah.edu/sites/default/files/conference-paper/renewable-energy-applications-palestine.pdf.
- [3]. R. T. Sataloff, M. M. Johns, and K. M. Kost, "Population matters." [Online] Available from: https://palestine.unfpa.org/ar/node/22457.
- [4]. R. T. Sataloff, M. M. Johns, and K. M. Kost, "Palestine Pump price for gasoline," [Online]. Available: https://knoema.com/atlas/Palestine/topics/Economy/Inflation-and-Prices/Price-for-gasoline.
- [5]. B. M. Richard and J. Issac, "Analysis of climatic variability and its environmental impacts across the occupied Palestinian territory," pp. 1–20, 2012.
- [6]. NEDCO, "Solar radiation in Palestine," 2017. [Online] Available from: http://www.nedco.ps/?ID=1522.
- [7]. M. Sidrach-de-Cardonaa and L. M. Lo'pezb, "Performance analysis of a grid-connected photovoltaic system," vol. 24, pp. 93–102, 1999.
- [8]. E. Kymakis, S. Kalykakis, and T. M. Papazoglou, "Performance analysis of a grid connected photovoltaic park on the island of Crete," *Energy Convers. Manag.*, vol. 50, no. 3, pp. 433–438, 2009.
- [9]. B. S. Kumar and K. Sudhakar, "Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India," *Energy Reports*, vol. 1, pp. 184–192, 2015.
- [10]. J. D. Mondol, Y. Yohanis, M. Smyth, and B. Norton, "Long term performance analysis of a grid connected photovoltaic system in Northern Ireland," vol. 47, pp. 2925–2947, 2006, doi: 10.1016/j.enconman.2006.03.026.
- [11]. S. Bouacha *et al.*, "Energy for Sustainable Development Performance analysis of the fi rst photovoltaic grid-connected system in Algeria," *Energy Sustain. Dev.*, vol. 57, pp. 1–11, 2020, doi: 10.1016/j.esd.2020.04.002.
- [12]. J. Aguilera *et al.*, "Univer Project . A grid connected photovoltaic system of 200 kW p at ' n University . Overview and performance analysis Jae," vol. 91, pp. 670–683, 2007.
- [13]. L. C. De Lima, L. D. A. Ferreira, F. Hedler, and B. De Lima, "Energy for Sustainable Development Performance analysis of a grid connected photovoltaic system in northeastern Brazil," vol. 37, pp. 79–85, 2017.

- [14]. P. Yadav, "Simulation and Performance Analysis of a lkWp Photovoltaic System Using PVsyst," pp. 358–363, 2015.
- [15]. F. Fairouz, "Performance evaluation of photovoltaic systems on Kuwaiti schools", rooftop," *Energy Convers. Manag.*, vol. 95, pp. 110–119, 2015.
- [16]. M. Cubukcu and H. Gumus, "Performance analysis of a grid-connected photovoltaic plant in eastern Turkey," *Sustain. Energy Technol. Assessments*, vol. 39, no. December 2019, p. 100724, 2020.
- [17]. X. Wu *et al.*, "Monitoring the performance of the building attached photovoltaic (BAPV) system in Shanghai," *Energy Build.*, vol. 88, pp. 174–182, 2015.
- [18]. M. S. Vasisht, J. Srinivasan, and S. K. Ramasesha, "ScienceDirect Performance of solar photovoltaic installations : Effect of seasonal variations," *Sol. ENERGY*, vol. 131, pp. 39– 46, 2016.
- [19]. S. Seme, K. Sreden, Š. Bojan, and M. Had, "Analysis of the performance of photovoltaic systems in Slovenia," vol. 180, no. May 2018, pp. 550–558, 2019.
- [20]. E. Ghiani, "On the performance ratio of photovoltaic installations."
- [21]. L. M. Ayompe, A. Duffy, S. J. Mccormack, and M. Conlon, "Measured performance of a 1. 72 kW rooftop grid connected photovoltaic system in Ireland," *Energy Convers. Manag.*, vol. 52, no. 2, pp. 816–825, 2020.
- [22]. M. Dhimish, "clean technologies Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland," pp. 170–183, 2020.
- [23]. B. Guo, W. Javed, B. W. Figgis, and T. Mirza, "Effect of Dust and Weather Conditions on Photovoltaic Performance in Doha, Qatar," 2015.
- [24]. P. Ramanan, K. M. K, and A. Karthick, "Energy for Sustainable Development Performance analysis and energy metrics of grid-connected photovoltaic systems," *Energy Sustain. Dev.*, vol. 52, pp. 104–115, 2019.
- [25]. E. Urrejola *et al.*, "Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile," *Energy Convers. Manag.*, vol. 114, pp. 338–347, 2016.
- [26]. V. Sharma, A. Kumar, O. S. Sastry, and S. S. Chandel, "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," *Energy*, vol. 58, pp. 511–518, 2013.
- [27]. M. A. Bashir, H. M. Ali, S. Khalil, M. Ali, and A. M. Siddiqui, "Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan," vol. 2014, 2014.
- [28]. N. Kumar, "Comparative Analysis of Four Different Solar Photovoltaic Technologies,"

2015.

- [29]. A. Ameur, A. Sekkat, K. Loudiyi, and M. Aggour, "Energy for Sustainable Development Performance evaluation of different photovoltaic technologies in the region of Ifrane, Morocco," *Energy Sustain. Dev.*, vol. 52, pp. 96–103, 2019.
- [30]. J. Deb, Y. G. Yohanis, and B. Norton, "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," vol. 32, pp. 118–140, 2007.
- [31]. K. P. Satsangi, D. B. Das, G. S. S. Babu, and A. K. Saxena, "Energy for Sustainable Development Performance analysis of grid interactive solar photovoltaic plant in India," *Energy Sustain. Dev.*, vol. 47, pp. 9–16, 2018.
- [32]. B. Rupnik and O. Westbrook, "Ambient temperature correction of photovoltaic system performance data," 2014 IEEE 40th Photovolt. Spec. Conf. PVSC 2014, pp. 1973–1977, 2014.
- [33]. B. Marion *et al.*, "Performance Parameters for Grid-Connected PV Systems," no. February, 2005.
- [34]. V. Raoul, "Gehalt und Aufriss der Argonautica des Valerius Flaccus," Antiq. Class., vol. 44, no. 1, pp. 285–286, 1975.
- [35]. "Private communication with National Energy Research Center (NERC), Syria."
- [36]. A. Hamzeh, S. Hamed, A. Sandouk, and G. Aldahim, "First Year Performance of a PV Plant in Jordan Compared to PV Plants in the Region," vol. 5, no. 4, 2015.
- [37]. A. Mermoud, "What is the accuracy of the PVsyst simulation results?," 2014. [Online] Available from: https://forum.pvsyst.com/viewtopic.php?t=1649.

Appendices

PVsyst reports

The following appendices are the reports from all the systems that had been simulated using the PVsyst software.

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 1 Variant: 14 Building system System power: 6.93 kWp R2 - Palestine, State Of

Author

I

Project: System 1

Variant: 14

PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1

		Project s	ummary ——		
Geographical Site R2 Palestine, State Of		Situation Latitude Longitude Altitude Time zone	32.19 °N 35.29 °E 0 m UTC+2	Project settings Albedo	0.20
Meteo data Rūjayb Meteonorm 7.3 (2006-20	11), Sat=100% - Syn	thetic			
			ummary —		
Grid-Connected System Simulation for year no 1		Building system	-		
PV Field Orientation Fixed plane Tilt/Azimuth	28 / 0 °	Near Shadings Linear shadings		User's needs Daily household consu Seasonal modulation Average	umers 2.3 kWh/Day
System information PV Array Nb. of modules Pnom total		18 units 6.93 kWp	Inverters Nb. of units Pnom total	11	1 Unit 0.00 kWac
		Pnom ratio		0.693	
		Results s	ummary ——		
Produced Energy	12.27 MWh/year	Specific production	1771 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	80.71 % 50.47 %
		Table of o	contents		
Project and results summ General parameters, PV Near shading definition - Detailed User's needs Main results Loss diagram Special graphs	nary Array Characteristics Iso-shadings diagrar	s, System losses			2 3 5 7 8 9

24/05/21

PVsyst Licensed to

Variant: 14

PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters Building system Models used Transposition Perez 28/0°

Diffuse Perez, Meteonorm Circumsolar separate

Daily household consumers Seasonal modulation Average

Horizon Free Horizon

User's needs

2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	JA Solar	Manufacturer	ABB
Model	JAM72-S09-385-PR	Model	PVI-10.0-TL-OUTD
(Original PVsyst database)		(Original PVsyst database	e)
Unit Nom. Power	385 Wp	Unit Nom. Power	10.00 kWac
Number of PV modules	18 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	6.93 kWp	Total power	10.0 kWac
Modules	2 Strings x 9 In series	Operating voltage	175-850 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	0.69
Pmpp	6.29 kWp		
U mpp	325 V		
I mpp	19 A		
Total PV power		Total inverter power	
Nominal (STC)	7 kWp	Total power	10 kWac
Total	18 modules	Nb. of inverters	1 Unit
Module area	35.5 m²	Pnom ratio	0.69

Array losses

Array Soiling	Losses		Thermal Lo	oss factor		DC wiring	g losses	
Loss Fraction	3	.0 %	Module temp	erature accordii	ng to irradiance	Global arra	iy res.	282 mΩ
			Uc (const)		29.0 W/m²K	Loss Fract	ion	1.5 % at STC
			Uv (wind)		0.0 W/m ² K/m/s			
LID - Light In	duced Degra	dation	Module Qu	ality Loss		Module n	nismatch loss	es
Loss Fraction	2	.0 %	Loss Fraction	1	-0.8 %	Loss Fract	ion	2.0 % at MPP
Strings Misn	natch loss		Module ave	erage degrad	ation			
Loss Fraction	0	.1 %	Year no		1			
			Loss factor		0.4 %/year			
			Mismatch du	ue to degradati	on			
			Imp RMS dis	persion	0.4 %/year			
			Vmp RMS dis	spersion	0.4 %/year			
IAM loss fact Incidence effect	t or t (IAM): Fresnel	smooth glass, n	= 1.526					
0°	30°	50°	60°	70°	75°	80°	85°	90°

0.776

0.636

0.403

14/05/21

0° 1.000

0.998

0.981

0.948

PVsyst Licensed to

0.862

Page 3/9

0.000

		Project: Syste Variant: 14	m 1				
PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1				C2 C3 C4 C5 0 0 0 0			
		 Array losses 					
Spectral correction FirstSolar model							
Coef	ficient Set	C0	C1	C2	C3	C4	C5
		0	0	0	0	0	0
		System losse	s —				
Unavailability of the syste	em Aux	ciliaries loss					
Time fraction 2	2.0 %						
7	7.3 days,						
	3 periods						

PVsyst Licensed to

Page 4/9

PVsyst Licensed to

Page 5/9

Variant: 14

PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1

Detailed User's needs

Daily household consum S	ers, Seasor ummer (J	nal modulat u n-Aug)	ion, averaç	ge = 2.3 kWI	
Number Power Use En					
		w	Hour/day	Wh/day	
Lamps (LED or fluo)	6	10W/lamp	4.0	240	
TV / PC / Mobile	1	75W/app	3.0	225	
Domestic appliances	1	200W/app	3.0	600	
Fridge / Deep-freeze	1		24	799	
Stand-by consumers			24.0	144	
Total daily energy				2008Wh/da	

Autumn (Sep-Nov)						
	Number	Power	Use	Energy		
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/da		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 6/9

Variant: 14

PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1

Variant: 14

PVsyst V7.1.1 Simulation date: 07/04/21 10:49 with v7.1.1

PVsyst Licensed to

Page 9/9

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 2 Variant: 12 SM Building system System power: 10.22 kWp R3 - Palestine, State Of

Author

Variant: 12 SM

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

	Project	summary —		
Geographical Site R3	Situation Latitude	32.19 °N	Project settings Albedo	0.20
Palesune, State Of	Altitude Time zone	561 m UTC+2		
Meteo data Rūjayb Meteonorm 7.3 (2006-2011), Sat=10	0% - Synthetic			
	System	summary —		
Grid-Connected System Simulation for year no 1	Building system	1		
PV Field OrientationFixed planeTilt/Azimuth28 / 0 °	Near Shadings Linear shadings		User's needs Daily household consume Seasonal modulation Average	rs 2.3 kWh/Day

		Rest	ins summary —		
		Boei	ulte eummani		
			Pnom ratio		1.022
Pnom total		10.22 kWp	Pnom total		10.00 kWac
Nb. of modules		28 units	Nb. of units		1 Unit
System information PV Array	1		Inverters		
				Average	2.3 kWh/Day
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
Fixed plane		Linear shadings	;	Daily household co	onsumers
PV Field Orientation	n	Near Shading	js	User's needs	
Simulation for year no 1	1				

	Produced Energy	17.35 MWh/year	Specific production	1697 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	77.30 % 51.73 %	
_			— Table of co	ontents —			
	Project and results summ	ary					2
	General parameters, PV	Array Characteristics,	System losses				3
	Near shading definition -	lso-shadings diagram					4
	Detailed User's needs						5

14/05/21

Main results _ Loss diagram

Special graphs

PVsyst Licensed to

Page 2/8

6

7

8

Variant: 12 SM

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Array Soiling Losses

Strings Mismatch loss

LID - Light Induced Degradation

Loss Fraction

Loss Fraction

Loss Fraction

3.0 %

2.0 %

0.1 %

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate Free Horizon

Horizon

28/0°

User's needs Daily household consumers Seasonal modulation Average

PV Array Characteristics

PV module		Inverter		
Manufacturer	Sunket	Manufacturer	ABB	
Model	SKT360M6-24	Model	PVI-10-I-OUTD-S1-US-600	
(Custom parameters definition)		(Original PVsyst database))	
Unit Nom. Power	365 Wp	Unit Nom. Power	10.00 kWac	
Number of PV modules	28 units	Number of inverters	2 * MPPT 50% 1 units	
Nominal (STC)	10.22 kWp	Total power	10.0 kWac	
Modules	4 Strings x 7 In series	Operating voltage	120-470 V	
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.02	
Pmpp	9.42 kWp			
U mpp	257 V			
I mpp	37 A			
Total PV power		Total inverter power		
Nominal (STC)	10 kWp	Total power	10 kWac	
Total	28 modules	Nb. of inverters	1 Unit	
Module area	54.3 m²	Pnom ratio	1.02	
Cell area	49.0 m ²			

Array losses

Thermal Loss factor Module temperature according to irradiance Uc (const) 29.0 W/m²K Uv (wind) 0.0 W/m²K/m/s Module Quality Loss 3.8 % Loss Fraction Module average degradation Year no 1

0.4 %/year Loss factor Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year

DC wiring losses

Global array res. Loss Fraction

Module mismatch losses

115 mΩ

1.5 % at STC

Loss Fraction 2.0 % at MPP

IAM loss factor

ASHRAE Param: IAM = 1 - bo(1/cosi -1) bo Param. 0.05

14/05/21

PVsyst Licensed to

2.3 kWh/Day

PVsyst Licensed to

Page 4/8

Variant: 12 SM

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Detailed User's needs

Daily household consum	ers, Seasor	nal modulat	ion, averaç	ge = 2.3 kWł			
Number Power Use Energy							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/da			

Autumn (Sep-Nov)							
	Number	Energy					
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2343Wh/da			

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

Variant: 12 SM

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

14/05/21

Variant: 12 SM

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 3 Variant: New simulation variant Building system System power: 5.78 kWp R4 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Pnom total

Near shading definition - Iso-shadings diagram

Detailed User's needs

Main results _ Loss diagram

Special graphs _

		Projec	t summary —		
Geographical S	lite	Situation		Project settings	
R4		Latitude	32.19 °N	Albedo	0.20
Palestine, State (Df	Longitude	35.29 °E		
		Altitude	563 m		
		Time zone	UTC+2		
Meteo data					
Rüjayb					
Meteonorm 7.3 (20	006-2011), Sat=100% -	Synthetic			
		System	n summary —		
Grid-Connected Simulation for year	d System r no 1	Building system	n		
PV Field Orient	ation	Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household co	nsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulation	on
				Average	2.3 kWh/Day
System informa	ation				
PV Array			Inverters		
Nb. of modules		15 units	Nb. of units		1 Unit

_			— Results su	mmary			
	Produced Energy	10.59 MWh/year	Specific production	1833 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	83.48 % 51.85 %	
_			Table of co	ontents			
	Project and results summ	nary					2
	General parameters, PV	Array Characteristics,	System losses				3

Pnom total

Pnom ratio

5.78 kWp

14/05/21

PVsyst Licensed to

4 5

6

7 8

5.00 kWac

1.155

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Project: System 3

Variant: New simulation variant

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Free Horizon

Near Shadings Linear shadings

28/0°

Grid-Connected System **PV Field Orientation**

User's needs Daily household consumers Seasonal modulation Average

2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	JA solar	Manufacturer	Ingeteam
Model	JAM60-S20-385-MR	Model	Ingecon Sun 5TL N
(Original PVsyst database)		(Custom parameters de	finition)
Unit Nom. Power	385 Wp	Unit Nom. Power	5.00 kWac
Number of PV modules	15 units	Number of inverters	1 * MPPT 0.50 1 units
Nominal (STC)	5.78 kWp	Total power	5.0 kWac
Modules	1 String x 15 In series	Operating voltage	125-750 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.16
Pmpp	5.27 kWp		
U mpp	477 V		
I mpp	11 A		
Total PV power		Total inverter power	
Nominal (STC)	6 kWp	Total power	5 kWac
Total	15 modules	Nb. of inverters	1 Unit
Module area	28.0 m²	Pnom ratio	1.16

Array losses

Array Soiling Losses Loss Fraction 3.0 %		Thermal Loss factor Module temperature according to irradiance		DC wiring losses Global array res.	716 mΩ	
		Uc (const) Uv (wind)	29.0 W/m²K 0.0 W/m²K/m/s	Loss Fraction	1.5 % at STC	
LID - Light Induced Deg	radation	Module Quality Loss		Module mismatch losse	s	
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP	
Strings Mismatch loss		Module average degrad	lation			
Loss Fraction	0.1 %	Year no	1			
		Loss factor	0.4 %/year			
		Mismatch due to degradat	tion			
		Imp RMS dispersion	0.4 %/year			
		Vmp RMS dispersion	0.4 %/year			
IAM loss factor Incidence effect (IAM): Fresr	el AR coating, n(glas	ss)=1.526, n(AR)=1.290				

	0°	30°	50°	60°	70°	75°	80°	85°	90°
[1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

14/05/21

PVsyst Licensed to

Page 3/8

PVsyst Licensed to

Page 4/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)							
Number Power Use Energy							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/da			

Autumn (Sep-Nov)							
	Number	Number Power Use					
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2343Wh/da			

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:50 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 4 Variant: k10 Building system System power: 11.25 kWp R6 - Palestine, State Of

Author

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

	Projec	ct summary —			_
Geographical Site R6	Situation Latitude	32.19 °N	Project setting Albedo	s 0.20	
Palestine, State Of	Longitude Altitude	35.29 °E 523 m			
Meteo data Rūjayb	Time zone	UTC+2			
Meteonorm 7.3 (2006-2011), Sat=1009	6 - Synthetic				
	Syster	n summary —			
Grid-Connected System	Building system	m			

Simulation for year no 1					
PV Field Orientation Fixed plane		Near Shadings Linear shadings	3	User's needs Daily household co	onsumers
Tilt/Azimuth	28 / 0 °	5		Seasonal modulati	on
				Average	2.3 kWh/Day
System information PV Array			Inverters		
Nb. of modules		30 units	Nb. of units		1 Unit
Pnom total		11.25 kWp	Pnom total		10.00 kWac
			Pnom ratio		1.125

_			— Results su	mmary			
	Produced Energy	20.40 MWh/year	Specific production	1813 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	82.59 % 52.16 %	
			— Table of co	ontents			
	Project and results summ	mary					2
	General parameters, PV	Array Characteristics,	System losses				3
	Near shading definition -	Iso-shadings diagram					5

 Near shading definition - Iso-shadings diagram

 Detailed User's needs

 Main results

 Loss diagram

 Special graphs

 CO₂ Emission Balance

14/05/21

PVsyst Licensed to

Page 2/10

6

7

8

9

10

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

General	parameters
---------	------------

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs

Daily household consumers Seasonal modulation Average 2.3 kWh/Day Free Horizon

Horizon

PV Array Characteristics

	Inverter	
JA solar	Manufacturer	Kaco new energy
JAM60-S20-375-MR	Model	Powador 12.0 TL3
	(Original PVsyst database)	
375 Wp	Unit Nom. Power	10.00 kWac
30 units	Number of inverters	2 * MPPT 50% 1 units
11.25 kWp	Total power	10.0 kWac
2 Strings x 15 In series	Operating voltage	200-800 V
	Pnom ratio (DC:AC)	1.13
10.26 kWp		
471 V		
22 A		
	Total inverter power	
11 kWp	Total power	10 kWac
30 modules	Nb. of inverters	1 Unit
56.1 m²	Pnom ratio	1.13
	JA solar JAM60-S20-375-MR 375 Wp 30 units 11.25 kWp 2 Strings x 15 In series 10.26 kWp 471 V 22 A 11 kWp 30 modules 56.1 m ²	Inverter JA solar JA Manufacturer Model (Original PVsyst database) 375 Wp Unit Nom. Power 30 units 11.25 kWp 2 Strings x 15 In series 2 Strings x 15 In series 10.26 kWp 471 V 22 A Total inverter power 11 kWp Total power 30 modules Nb. of inverters 56.1 m ² Pnom ratio

Array losses

Array Soiling Losses	3	Thermal Loss fac	tor	DC wiring losses	
Loss Fraction	3.0 %	Module temperature	according to irradiance	Global array res.	358 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
Serie Diode Loss		LID - Light Induce	ed Degradation	Module Quality Loss	
Voltage drop	0.7 V	Loss Fraction	2.0 %	Loss Fraction	-0.8 %
Loss Fraction	0.1 % at STC				
Module mismatch lo	sses	Strings Mismatch	loss	Module average degra	adation
Loss Fraction	2.0 % at MPP	Loss Fraction	0.1 %	Year no	1
				Loss factor	0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

14/05/21

PVsyst Licensed to

Page 3/10

0.4 %/year

0.4 %/year

Mismatch due to degradation Imp RMS dispersion 0.4

Vmp RMS dispersion

	Proje \	ect: Syste /ariant: k10	em 4				
Ysyst V7.1.1 nulation date: 04/21 10:51 h v7.1.1							
	A	rrav losse	s —				
Spectral correction FirstSolar model							
Coefficient	Set	C0	C1	C2	C3	C4	C5
		0	0	0	0	0	0
	AC	wiring los:	ses -				
Inv. output line up to injection	point						
Inverter voltage	400 Vac tri						
Loss Fraction	0.1 % at STC						
Inverter: Powador 12.0 TL3							
Wire section (One inverter) C	opper 1 x 3 x 3 mm ²						
Wires length	2 m						

2 m

14/05/21

Wires length

PVsyst Licensed to

Page 4/10

PVsyst Licensed to

Page 5/10

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh/da									
Summer (Jun-Aug)									
	Number	Power	Use	Energy					
		w	Hour/day	Wh/day					
Lamps (LED or fluo)	6	10W/lamp	4.0	240					
TV / PC / Mobile	1	75W/app	3.0	225					
Domestic appliances	1	200W/app	3.0	600					
Fridge / Deep-freeze	1		24	799					
Stand-by consumers			24.0	144					
Total daily energy				2008Wh/day					

Autumn (Sep-Nov)								
Number Power Use En								
	W	Hour/day	Wh/day					
6	10W/lamp	5.0	300					
1	75W/app	4.0	300					
1	200W/app	4.0	800					
1		24	799					
		24.0	144					
			2343Wh/da					
	Number 6 1 1 1	Number Power W 6 10W/lamp 75W/app 1 200W/app 1 0	Number Power Use W W Hour/day 6 10W/lamp 5.0 1 75W/app 4.0 1 200W/app 4.0 1 24 24.0					

Winter (Dec-Feb)

	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Number Power		Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Page 6/10

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

14/05/21

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

PVsyst Licensed to

Page 9/10

Variant: k10

PVsyst V7.1.1 Simulation date: 07/04/21 10:51 with v7.1.1

14/05/21

PVsyst Licensed to

Page 10/10

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 5 Variant: 6Taxi Building system System power: 6.50 kWp R7 - Palestine, State Of

Author

Variant: 6Taxi

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

		Projec	t summary —		
Geographical Sit	e	Situation		Project setting	s
R7		Latitude	32.20 °N	Albedo	0.20
Palestine, State Of		Longitude	35.29 °E		
		Altitude	480 m		
		Time zone	UTC+2		
Meteo data					
Rūjayb					
Meteonorm 7.3 (200	06-2011), Sat=100% - 3	Synthetic			
		Syster	n summary —		
Grid-Connected System		Building syster	n		
PV Field Orientation		Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household c	consumers
Tilt/A zimuth 29 / 0 °				Seasonal modulat	tion

	Fixed plane		Linear shadings		Daily nousehold	consumers
	Tilt/Azimuth 28 / 0 °				Seasonal modula	ation
					Average	0.4 kWh/Day
	System information					
	PV Array			Inverters		
	Nb. of modules		20 units	Nb. of units		1 Unit
	Pnom total		6.50 kWp	Pnom total		6.00 kWac
1				Pnom ratio		1.083

Results summary							
Produced Energy	11.82 MWh/year	Specific production	1819 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	82.85 % 11.18 %		
Table of contents							
Project and results sum	nmary					2	

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	_ 4
Detailed User's needs	5
Main results	6
Loss diagram	7
Special graphs	8

14/05/21

PVsyst Licensed to

Page 2/8

Variant: 6Taxi

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs

Daily household consumers Seasonal modulation Average 0.4 kWh/Day Horizon Free Horizon

PV Array Characteristics PV module Inverter Hanwha Q Cells Manufacturer Manufacturer Model Q.POWER L-G5.2 325 UNO-DM-6.0-TL-PLUS Model (Original PVsyst database) (Original PVsyst database) Unit Nom. Power 325 Wp Unit Nom. Power 6.00 kWac 2 * MPPT 50% 1 units Number of PV modules 20 units Number of inverters Nominal (STC) 6.50 kWp 6.0 kWac Total power 2 Strings x 10 In series Modules 90-580 V Operating voltage Pnom ratio (DC:AC) 1.08 At operating cond. (50°C) 5.85 kWp Pmpp 335 V U mpp 17 A I mpp Total PV power Total inverter power Nominal (STC) 7 kWp 6 kWac Total power Total 20 modules Nb. of inverters 1 Unit Module area 38.8 m² Pnom ratio 1.08 Cell area 35.0 m²

Array losses

Thermal Los	s factor		DC wiring losses			Module C		
Module temperature according to irradiance			Global array	res.	325 mΩ	Loss Fracti	on	-0.4 %
Uc (const) 20.0 W/m ² K		Loss Fractior	ı	1.5 % at STC				
Uv (wind) 0.0 W/m²K/m/s								
Module misn	natch losses		Strings Mismatch loss					
Loss Fraction 2.0 % at MPP		Loss Fraction	ı	0.1 %				
IAM loss fact Incidence effect	t or t (IAM): User de	fined profile						
0°	30°	60°	65°	70°	75°	80°	85°	90°
1.000	1.000	0.960	0.940	0.900	0.830	0.690	0.440	0.000

14/05/21

PVsyst Licensed to

ABB

PVsyst Licensed to

Page 4/8

Variant: 6Taxi

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 0.4 kWh Summer (Jun-Aug)						
	Number	Power	Use	Energy		
		W	Hour/day	Wh/day		
Lamps (LED or fluo)	2	10W/lamp	4.0	80		
TV / PC / Mobile	1	80W/app	2.0	160		
Stand-by consumers			24.0	96		
Total daily energy				336Wh/day		

Autumn (Sep-Nov)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	2	10W/lamp	5.0	100
TV / PC / Mobile	1	80W/app	3.0	240
Stand-by consumers			24.0	96
Total daily energy				436Wh/da

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	2	10W/lamp	6.0	120
TV / PC / Mobile	1	80W/app	3.0	240
Stand-by consumers			24.0	96
Total daily energy				456Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	2	10W/lamp	5.0	100
TV / PC / Mobile	1	80W/app	3.0	240
Stand-by consumers			24.0	96
Total daily energy				436Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: 6Taxi

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

14/05/21

Variant: 6Taxi

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

14/05/21

PVsyst Licensed to

Page 7/8

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 6 Variant: 5SH Building system System power: 5.28 kWp R8 - Palestine, State Of

Author

Variant: 5SH

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

	Projec	t summary —		
Geographical Site	Situation		Project setting	s
R8	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	558 m		
	Time zone	UTC+2		
Meteo data Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=1	00% - Synthetic			
	System	n summary —		

Grid-Connected Simulation for year n	System no 1	Building system			
PV Field Orientat	ion	Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System informati	on				
PV Array			Inverters		
Nb. of modules		16 units	Nb. of units		1 Unit
Pnom total		5.28 kWp	Pnom total		5.00 kWac
			Pnom ratio		1.056

		Results se	ininiai y			
Produced Energy	9.57 MWh/year	Specific production	1812 kWh/kWp/year	Perf. Ratio PR	82.52 %	
				Solar Fraction SF	50.69 %	
		Table of c	ontents			
			ontento			
Project and results sum	nmary					2
General parameters, P	V Array Characteristics,	System losses				3
Near shading definition	- Iso-shadings diagram					4
Detailed User's needs						5

14/05/21

Main results _ Loss diagram

Special graphs

PVsyst Licensed to

Page 2/8

6

7

8

Variant: 5SH

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

Total PV power

Nominal (STC)

Module area

Total

		Ger	neral pa	rameters —		
Grid Connected Syst		Building o	ioiui pu			
Grid-Connected Syst	em	Building sy	ystem			
PV Field Orientation					Horizon	
Orientation		Models used	d		Free Horizon	
Fixed plane		Transposition	n	Perez		
Tilt/Azimuth	28/0°	Diffuse	Perez, N	leteonorm		
		Circumsolar		separate		
Near Shadings		User's nee	ds			
Linear shadings		Daily househ	old consu	mers		
		Seasonal mo	dulation			
		Average		2.3 kWh/Day		
		PV Ar	ray Cha	racteristics -		
PV module				Inverter		
Manufacturer		Hanwha Q Cells	;	Manufacturer		Kaco new energy
Model		Q Peak Duo L-G7-330)	Model		Blueplanet 5.0 TL3
(Original PVsyst data	base)			(Original PVsyst o	database)	
Unit Nom. Power		330 Wp		Unit Nom. Power		5.00 kWac
Number of PV modules		16 units		Number of inverters	2 * MPF	PT 50% 1 units
Nominal (STC)		5.28 kWp		Total power		5.0 kWac
Modules		2 Strings x 8 In series		Operating voltage		200-800 V
At operating cond. (50°	C)			Pnom ratio (DC:AC)		1.06
Pmpp		4819 Wp				
U mpp		248 V				
I mpp		19 A				

Total inverter power 5 kWp Total power 5 kWac 16 modules Nb. of inverters 1 Unit 27.0 m² Pnom ratio 1.06

Array losses

		1			
Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	3.0 %	Module temperature acc	ording to irradiance	Global array res.	211 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
LID - Light Induced D	egradation	Module Quality Loss		Module mismatch I	osses
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP
Strings Mismatch los	s	Module average deg	radation		
Loss Fraction	0.1 %	Year no	1		
		Loss factor	0.4 %/year		
		Mismatch due to degra	dation		
		Imp RMS dispersion	0.4 %/year		
		Vmp RMS dispersion	0.4 %/year		
IAM loss factor Incidence effect (IAM): Fr	esnel AR coating, i	n(glass)=1.526, n(AR)=1.290			

30° 70° 0° 50° 60° 75° 80° 85° 90° 1.000 0.999 0.987 0.962 0.892 0.816 0.681 0.440 0.000

14/05/21

PVsyst Licensed to

Page 3/8

PVsyst Licensed to

Page 4/8

Variant: 5SH

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)						
Number Power Use Energy						
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	4.0	240		
TV / PC / Mobile	1	75W/app	3.0	225		
Domestic appliances	1	200W/app	3.0	600		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2008Wh/day		

Autumn (Sep-Nov)						
	Number	Power	Use	Energy		
		W	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/da		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number Power Use		Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Page 5/8

Variant: 5SH

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

Variant: 5SH

PVsyst V7.1.1 Simulation date: 07/04/21 10:52 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 8 Variant: 10BH Building system System power: 10.72 kWp R10 - Palestine, State Of

Author

Variant: 10BH

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

	Projec	t summary —		
Geographical Site	Situation		Project setting	S
R10	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	519 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=1009	% - Synthetic			

		System System	em summary —		
Grid-Connected Simulation for year	System no 1	Building syst	em		
PV Field Orientat	tion	Near Shading	s	User's needs Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System informat	ion				
PV Array			Inverters		
Nb. of modules		32 units	Nb. of units		1 Unit
Pnom total		10.72 kWp	Pnom total		10.00 kWac
			Pnom ratio		1.072
		Resu	lts summary		

Produced Energy	19.58 MWh/year	Specific production	1827 kWh/kWp/year	Perf. Ratio PR	83.19 %	
				Solar Fraction SF	51.03 %	
		Table of co	ontents			
		14510 01 0				
Project and results su	immary					2
General parameters, PV Array Characteristics, System losses						3
Near shading definitio	n - Iso-shadings diagram					4

14/05/21

PVsyst Licensed to

Page 2/8

5

6 7

8

Variant: 10BH

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

General	parameters
---------	------------

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Free Horizon

Near Shadings Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

User's needs

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	Astronergy	Manufacturer	Kaco new energy
Model	CHSM60M-HC-335	Model	Blueplanet 10.0 TL3
(Original PVsyst database)		(Original PVsyst databas	e)
Unit Nom. Power	335 Wp	Unit Nom. Power	10.00 kWac
Number of PV modules	32 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	10.72 kWp	Total power	10.0 kWac
Modules	2 Strings x 16 In series	Operating voltage	200-800 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.07
Pmpp	9.81 kWp		
U mpp	505 V		
I mpp	19 A		
Total PV power		Total inverter power	
Nominal (STC)	11 kWp	Total power	10 kWac
Total	32 modules	Nb. of inverters	1 Unit
Module area	54.3 m²	Pnom ratio	1.07

Array losses

Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	3.0 %	Module temperature acco	ording to irradiance	Global array res.	427 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
LID - Light Induced Deg	gradation	Module Quality Loss		Module mismatch los	ses
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP
Strings Mismatch loss		Module average degr	adation		
Loss Fraction	0.1 %	Year no	1		
		Loss factor	0.4 %/year		
		Mismatch due to degrad	dation		
		Imp RMS dispersion	0.4 %/year		
		Vmp RMS dispersion	0.4 %/year		
IAM loss factor					
In side and affect (IAAA). Free		4 500			

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

	0°	30°	50°	60°	70°	75°	80°	85°	90°
[1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

14/05/21

PVsyst Licensed to

Page 3/8

PVsyst Licensed to

Page 4/8

Variant: 10BH

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh							
Number Power Use Energy							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/da			

Autumn (Sep-Nov)						
	Number	Number Power Use				
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/d		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: 10BH

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

14/05/21

Variant: 10BH

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 9 Variant: 5SB Building system System power: 4920 Wp R11 - Palestine, State Of

Author

Variant: 5SB

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

	Projec	t summary —		
	Flojec	a summary		
Geographical Site	Situation		Project setting	5
R11	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	509 m		
	Time zone	UTC+2		
Meteo data Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=100%	- Synthetic			
	System	n summary —		
	Cyster	ii Sullillai y		
Grid-Connected System Simulation for year no 1	Building syster	n		
PV Field Orientation	Near Shadings		User's needs	
Fixed plane	Linear shadings		Daily household c	onsumers

Tilt/Azimuth 28/0° Seasonal modulation Average 2.3 kWh/Day System information PV Array Inverters Nb. of modules 12 units Nb. of units 1 Unit 4920 Wp Pnom total Pnom total 5.00 kWac Pnom ratio 0.984

		Results su	ımmarv ——			
De de la Composition	0.04.1444	Constitue and and and			00 70 %	
Produced Energy	8.94 MWn/year	Specific production	1818 KWh/KWp/year	Pert. Katio PK	82.78 %	
				Solar Fraction SF	51.60 %	
		Table of a				
		I able of c	ontents ——			
Project and results sum	nmary					2
General parameters, P	V Array Characteristics,	System losses				3
Near shading definition	- Iso-shadings diagram					4
Detailed User's needs						5
Main results						6

14/05/21

Loss diagram

Special graphs

PVsyst Licensed to

Page 2/8

7

8

Variant: 5SB

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate Horizon Free Horizon

User's needs

Canadian Solar Inc.

410 Wp

4920 Wp

4465 Wp 213 V 21 A

5 kWp

26.5 m²

23.8 m²

12 modules

2 Strings x 6 In series

12 units

CS3W-410P HE

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV Array Characteristics

Inverter

Model

Manufacturer

Total power

Total power

Pnom ratio

Nb. of inverters

Unit Nom. Power

Number of inverters

Operating voltage

Pnom ratio (DC:AC)

Total inverter power

(Original PVsyst database)

PV module
Manufacturer
Model
(Original PVsyst database)
Unit Nom. Power
Number of PV modules
Nominal (STC)
Modules
At operating cond. (50°C)
Pmpp
U mpp
I mpp
Total PV power
Nominal (STC)
Total
Module area
Cell area

Array losses

Array Soiling	J Losses		Thermal Lo	ss factor		DC wiring	g losses	
Loss Fraction	3	.0 %	Module temp	erature accordin	g to irradiance	Global arra	iy res.	168 mΩ
			Uc (const)	2	29.0 W/m²K	Loss Fracti	ion	1.5 % at STC
			Uv (wind)		0.0 W/m²K/m/s			
LID - Light In	duced Degra	dation	Module Qu	ality Loss		Module n	nismatch loss	es
Loss Fraction	2	.0 %	Loss Fraction	1	-0.3 %	Loss Fracti	ion	2.0 % at MPP
Strings Mism	natch loss		Module ave	erage degrada	ation			
Loss Fraction	0	.1 %	Year no		1			
			Loss factor		0.4 %/year			
			Mismatch du	le to degradation	on			
			Imp RMS dis	persion	0.4 %/year			
			Vmp RMS dis	spersion	0.4 %/year			
IAM loss fact	tor							
Incidence effec	t (IAM): User de	fined profile						
10°	20°	30°	40°	50°	60°	70°	80°	90°
1.000	1.000	1.000	0.990	0.990	0.970	0.920	0.760	0.000

14/05/21

PVsyst Licensed to

Page 3/8

ABB

UNO-DM-5.0-TL-PLUS

5.00 kWac

5.0 kWac

5 kWac

1 Unit

0.98

90-580 V

0.98

2 * MPPT 50% 1 units

PVsyst Licensed to

Page 4/8

Variant: 5SB

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

Detailed User's needs

Daily household consum S	ners, Seasor ummer (Ji	nal modulat un-Aug)	ion, avera	ge = 2.3 kWh
	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	4.0	240
TV / PC / Mobile	1	75W/app	3.0	225
Domestic appliances	1	200W/app	3.0	600
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2008Wh/day

Au	tumn (Se	ep-Nov)		
	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/day

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

Variant: 5SB

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

14/05/21

Variant: 5SB

PVsyst V7.1.1 Simulation date: 07/04/21 10:53 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 10 Variant: 14SK,m Building system System power: 11.55 kWp R12 - Palestine, State Of

Author

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

	Projec	ct summary —		
Geographical Site	Situation		Project setting	s
R12	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.30 °E		
	Altitude	579 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=100	% - Synthetic			
	System	n summarv —		
Grid-Connected System	Building system	m		
Simulation for year no 1				
PV Field Orientation	Near Shadings		User's needs	
			B 11 1 1 1 1 1	

Fixed plane		Linear shadings		Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System information	on				
PV Array			Inverters		
Nb. of modules		30 units	Nb. of units		1 Unit
Pnom total		11.55 kWp	Pnom total		10.00 kWac
			Pnom ratio		1.155

			ummarv ——			
Produced Energy	20.83 MWh/year	Specific production	1803 kWh/kWp/year	Perf. Ratio PR	82.11 %	
				Solar Fraction SF	51.84 %	
		Table of c	ontonte			
			ontents			
Project and results su	mmary					2
General parameters, F	PV Array Characteristics,	System losses				3
Near shading definitio	n - Iso-shadings diagram					5
Detailed User's needs						6
Main results						7

14/05/21

Loss diagram ____ Special graphs ____

PVsyst Licensed to

Page 2/9

8

9

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Free Horizon

Near Shadings Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

User's needs Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV module Inverter Manufacturer JA Solar Manufacturer ABB Model JAM72-S09-385-PR Model PVI-10-I-OUTD-S1-US-600 (Original PVsyst database) (Original PVsyst database) (Original PVsyst database) Unit Nom. Power 385 Wp Unit Nom. Power 10.00 kWac Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
Manufacturer JA Solar Manufacturer ABB Model JAM72-S09-385-PR Model PVI-10-UUTD-S1-US-600 (Original PVsyst database) (Original PVsyst database) (Original PVsyst database) Unit Nom. Power 385 Wp Unit Nom. Power 10.00 kWac Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
Model JAM72-S09-385-PR Model PVI-10-I-OUTD-S1-US-600 (Original PVsyst database) (Original PVsyst database) (Original PVsyst database) Unit Nom. Power 385 Wp Unit Nom. Power 10.00 kWac Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
(Original PVsyst database) (Original PVsyst database) Unit Nom. Power 385 Wp Unit Nom. Power 10.00 kWac Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
Unit Nom. Power 385 Wp Unit Nom. Power 10.00 kWac Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
Number of PV modules 30 units Number of inverters 1 Unit Nominal (STC) 11.55 kWp Total power 10.0 kWac
Nominal (STC) 11.55 kWp Total power 10.0 kWac Array #1 - PV Array Number of investers 11 MDDT 52% 0.5 units
Array #1 - PV Array
Number of DV modules 16 units Number of inverters 4 * MODT 52% 0.5 units
Number of FV modules To units Number of Inverters 1 MPPT 53% 0.5 Units
Nominal (STC) 6.16 kWp Total power 5.3 kWac
Modules 2 Strings x 8 In series
At operating cond. (50°C) Operating voltage 120-470 V
Pmpp 5.59 kWp Pnom ratio (DC:AC) 1.16
U mpp 289 V
I mpp 19 A
Array #2 - Sub-array #2
Number of PV modules 14 units Number of inverters 1 * MPPT 47% 0.5 units
Nominal (STC) 5.39 kWp Total power 4.7 kWac
Modules 2 Strings x 7 In series
At operating cond. (50°C) Operating voltage 120-470 V
Pmpp 4892 Wp Pnom ratio (DC:AC) 1.15
U mpp 253 V
I mpp 19 A
Total PV power Total inverter power
Nominal (STC) 12 kWp Total power 10 kWac
Total 30 modules Nb. of inverters 1 Unit
Module area 59.1 m ² Pnom ratio 1.16

Array losses

Array Soiling Losses		Thermal Loss factor		LID - Light Induced Degradation		
Loss Fraction	3.0 %	Module temperature according to irradiance		Loss Fraction	2.0 %	
		Uc (const)	29.0 W/m ² K			
		Uv (wind)	0.0 W/m ² K/m/s			
Module Quality Loss		Module mismatch loss	ses	Strings Mismatch loss		
Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP	Loss Fraction	0.1 %	

14/05/21

PVsyst Licensed to

Page 3/9

FTT-

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

				Array losses	;			
Module average	degradati	on						
/ear no		1						
oss factor	0.	4 %/year						
Mismatch due to d	degradation							
mp RMS dispersion	n 0.	4 %/year						
/mp RMS dispersion	on 0.	4 %/year						
AM loss factor ncidence effect (IA	M): Fresnel	smooth glass, n	= 1.526					
0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000
0° 1.000	30° 0.998	50° 0.981	60° 0.948	70° 0.862	75° 0.776	80° 0.636	85° 0.403	

DC wiring losses						
Global wiring resistance Loss Fraction	10 mΩ 1.5 % at STC					
Array #1 - PV Array			Array #2 - Sub-array #2			
Global array res.		251 mΩ	Global array res.	219 mΩ		
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC		

14/05/21

PVsyst Licensed to

Page 4/9

PVsyst Licensed to

Page 5/9

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)						
Number Power Use Energy						
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	4.0	240		
TV / PC / Mobile	1	75W/app	3.0	225		
Domestic appliances	1	200W/app	3.0	600		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2008Wh/da		

Autumn (Sep-Nov)								
	Number Power Use Energy							
		W	Hour/day	Wh/day				
Lamps (LED or fluo)	6	10W/lamp	5.0	300				
TV / PC / Mobile	1	75W/app	4.0	300				
Domestic appliances	1	200W/app	4.0	800				
Fridge / Deep-freeze	1		24	799				
Stand-by consumers			24.0	144				
Total daily energy				2343Wh/da				

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 6/9

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

14/05/21

Variant: 14SK,m

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/9

14/05/21

PVsyst Licensed to

Page 9/9

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 11 Variant: 6 ST Building system System power: 6.00 kWp R14 - Palestine, State Of

Author

Variant: 6 ST

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

	Projec	ct summary —		
Geographical Site	Situation		Project setting	s
R14	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	527 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=100)% - Synthetic			

		0,010	, out out the second seco		
Grid-Connected Simulation for year n	System no 1	Building syste	em		
PV Field Orientat	tion	Near Shadings	5	User's needs	
Fixed plane		Linear shadings		Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System informati	ion				
PV Array			Inverters		
Nb. of modules		15 units	Nb. of units		1 Unit
Pnom total		6.00 kWp	Pnom total		5.00 kWac
			Pnom ratio		1.200

Produced Energy	10.02 MWh/year	Specific production	1669 kWh/kWp/year	Perf. Ratio PR	76.02 %	
				Solar Fraction SF	51.17 %	
		Table of c	ontents			
Project and results summary						
General parameters, PV Array Characteristics, System losses						3
Near shading definition - Iso-shadings diagram						4

14/05/21

Detailed User's needs

Main results _ Loss diagram

Special graphs

PVsyst Licensed to

Page 2/8

5

6

7

8

Variant: 6 ST

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate Horizon Free Horizon

28/0°

User's needs Daily household consumers Seasonal modulation Average

2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	Trina Solar	Manufacturer	Huawei Technologies
Model	TSM-DEG15MC-20-(II)-400-Bifacial	Model	SUN2000L-5KTL
(Original PVsyst dat	abase)	(Custom parameters de	finition)
Unit Nom. Power	400 Wp	Unit Nom. Power	5.00 kWac
Number of PV modules	15 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	6.00 kWp	Total power	5.0 kWac
Modules	3 Strings x 5 In series	Operating voltage	90-500 V
At operating cond. (50	°C)	Max. power (=>40°C)	5.50 kWac
Pmpp	5.48 kWp	Pnom ratio (DC:AC)	1.20
U mpp	185 V		
I mpp	30 A		
Total PV power		Total inverter power	
Nominal (STC)	6 kWp	Total power	5 kWac
Total	15 modules	Nb. of inverters	1 Unit
Module area	30.8 m ²	Pnom ratio	1.20
Cell area	26.1 m ²		

Array losses

Array Soiling	Losses		Thermal Lo	oss factor		DC wirin	g losses	
Loss Fraction	3	.0 %	Module temp	erature accordir	g to irradiance	Global arra	ay res.	104 mΩ
			Uc (const)	:	29.0 W/m ² K	Loss Fract	ion	1.5 % at STC
			Uv (wind)		0.0 W/m ² K/m/s			
LID - Light In	duced Degra	dation	Module Qu	ality Loss		Module r	nismatch loss	es
Loss Fraction	2	.0 %	Loss Fraction	n	-0.8 %	Loss Fract	ion	2.0 % at MPF
Strings Mism	atch loss		Module ave	erage degrada	ation			
Loss Fraction	0	.1 %	Year no		1			
			Loss factor		0.4 %/year			
			Mismatch de	ue to degradati	on			
			Imp RMS dis	persion	0.4 %/year			
			Vmp RMS di	spersion	0.4 %/year			
IAM loss fact	or							
Incidence effect	(IAM): Fresnel	AR coating, n(g	lass)=1.526, n(A	R)=1.290				

0° 30° 50° 60° 70° 75° 80° 85° 90° 1.000 0.999 0.987 0.962 0.892 0.816 0.681 0.440 0.000

14/05/21

PVsyst Licensed to

Page 3/8

14/05/21

PVsyst Licensed to

Page 4/8

Variant: 6 ST

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)					
	Number	Power	Use	Energy	
		w	Hour/day	Wh/day	
Lamps (LED or fluo)	6	10W/lamp	4.0	240	
TV / PC / Mobile	1	75W/app	3.0	225	
Domestic appliances	1	200W/app	3.0	600	
Fridge / Deep-freeze	1		24	799	
Stand-by consumers			24.0	144	
Total daily energy				2008Wh/d	

Autumn (Sep-Nov)						
Number Power Use Energy						
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/da		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Page 5/8

Variant: 6 ST

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

14/05/21

Variant: 6 ST

PVsyst V7.1.1 Simulation date: 07/04/21 10:54 with v7.1.1

from grid from solar

14/05/21

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 12 Variant: New simulation variant Building system System power: 3960 Wp Rūjayb 15 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

		Project s	ummary ——		
Geographical Site		Situation		Project settings	
Rüjayb 15		Latitude	32.19 °N	Albedo	0.20
Palestine, State Of		Longitude	35.29 °E		
		Altitude	499 m		
		Time zone	UTC+2		
Meteo data					
Rüjayb 15					
Meteonorm 7.3 (1990-20	004), Sat=100% - Syn	thetic			
		System s	ummary		
		oystem s	ammary		
Grid-Connected Sys Simulation for year no 1	tem	Building system			
PV Field Orientation		Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household cor	nsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulation	n
				Average	2.3 kWh/Day
System information					
PV Array			Inverters		
Nb. of modules		12 units	Nb. of units		1 Unit
Pnom total		3960 Wp	Pnom total		6.00 kWac
			Pnom ratio		0.660
		Results s	ummarv —		
Produced Energy	7 OF MMb/woor	Specific production	1782 k\Mb/k\Mp/sear	Porf Potio PP	81 27 %
Froduced Ellergy	7.00 WWW/year	opeome production	1705 KWII/KWP/year	Solar Fraction SE	51 22 %
				Joiar Fraction SP	J1.22 70

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	4
Detailed User's needs	5
Main results	6
Loss diagram	
Special graphs	

14/05/21

PVsyst Licensed to

Page 2/8

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Project: System 12

Variant: New simulation variant

General parameters

Building system

Average

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Free Horizon

Near Shadings Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

User's needs Daily household consumers Seasonal modulation

PV Array Characteristics

2.3 kWh/Day

Inverter

Model

Manufacturer

Total power

Total power

Nb. of inverters

Unit Nom. Power

Number of inverters

Operating voltage Pnom ratio (DC:AC)

Total inverter power

(Original PVsyst database)

PV module	
Manufacturer	Hanwha Q Cells
Model	Q.POWER L-G5.2 330
(Original PVsyst database)	
Unit Nom. Power	330 Wp
Number of PV modules	12 units
Nominal (STC)	3960 Wp
Modules	2 Strings x 6 In series
At operating cond. (50°C)	
Pmpp	3565 Wp
U mpp	202 V
I mpp	18 A
Total PV power	
Nominal (STC)	4 kWp
Total	12 modules
Module area	23.3 m ²
Cell area	21.0 m ²

Pnom ratio

				Array losses	;			
Array Soiling	Losses		Thermal Lo	ss factor		DC wiring	g losses	
Loss Fraction	3.	.0 %	Module temp	erature accordir	ng to irradiance	Global arra	y res.	193 mΩ
			Uc (const)		29.0 W/m ² K	Loss Fracti	ion	1.5 % at STC
			Uv (wind)		0.0 W/m ² K/m/s			
LID - Light In	duced Degra	dation	Module Qu	ality Loss		Module n	nismatch loss	es
Loss Fraction	2	.0 %	Loss Fractior	1	-0.4 %	Loss Fracti	ion	2.0 % at MPP
Strings Misn	natch loss		Module ave	erage degrada	ation			
Loss Fraction	0.	.1 %	Year no		1			
			Loss factor		0.4 %/year			
			Mismatch du	le to degradati	on			
			Imp RMS dis	persion	0.4 %/year			
			Vmp RMS dis	spersion	0.4 %/year			
IAM loss fact	tor							
Incidence effec	t (IAM): User de	fined profile						
0°	20°	40°	60°	70°	75°	80°	85°	90°

0.830

0.690

0.440

14/05/21

0° 1.000

1.000

1.000

0.970

PVsyst Licensed to

0.900

Page 3/8

0.000

ABB

PVI-6000-OUTD-US (277V)

0.66

2 * MPPT 50% 1 units

6.00 kWac

6.0 kWac 120-530 V

6 kWac

1 Unit

0.66

14/05/21

PVsyst Licensed to

Page 4/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

Detailed User's needs

Daily household consum S	ners, Seasor ummer (J	nal modulat un-Aug)	ion, averaç	ge = 2.3 kW				
Number Power Use Energy								
		w	Hour/day	Wh/day				
Lamps (LED or fluo)	6	10W/lamp	4.0	240				
TV / PC / Mobile	1	75W/app	3.0	225				
Domestic appliances	1	200W/app	3.0	600				
Fridge / Deep-freeze	1		24	799				
Stand-by consumers			24.0	144				
Total daily energy				2008Wh/da				

Autumn (Sep-Nov)							
	Number	Power	Use	Energy			
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2343Wh/day			

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Page 5/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 13 Variant: 10MR Building system System power: 10.05 kWp R16 - Palestine, State Of

Author

Variant: 10MR

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

	Projec	t summary —		
Geographical Site	Situation		Project setting	s
R16	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	537 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=10	00% - Synthetic			
	Svetor	n summary —		
	Syster	ii suiiinaly –		

Grid-Connected Simulation for year	System no 1	Building syst	em		
PV Field Orienta	tion	Near Shading	Is	User's needs	
Fixed plane		Linear shadings		Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System informat	ion				
PV Array			Inverters		
Nb. of modules		30 units	Nb. of units		1 Unit
Pnom total		10.05 kWp	Pnom total		10.00 kWac
			Pnom ratio		1.005
		Rosi	ulte eummary		

			immary ——			
Produced Energy	18.33 MWh/year	Specific production	1824 kWh/kWp/year	Perf. Ratio PR	83.08 %	
				Solar Fraction SF	51.08 %	
		Table of co	ontents			
		14510 01 01				
Project and results summ	mary					2
General parameters, PV	Array Characteristics,	System losses				3
Near shading definition -	Iso-shadings diagram					4

14/05/21

Detailed User's needs

Main results

Loss diagram ____ Special graphs __

PVsyst Licensed to

Page 2/8

5

6

7

8

Variant: 10MR

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

General parameters

Building system

Models used Perez Transposition Diffuse Perez, Meteonorm Circumsolar separate Horizon Free Horizon

Near Shadings

28/0°

Grid-Connected System **PV Field Orientation**

Linear shadings

User's needs Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	Astronergy	Manufacturer	Kaco new energy
Model	CHSM60M-DG-F-BH-335-Bifacial	Model	Blueplanet 10.0 TL3
(Original PVsyst databa	se)	(Original PVsyst databa	se)
Unit Nom. Power	335 Wp	Unit Nom. Power	10.00 kWac
Number of PV modules	30 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	10.05 kWp	Total power	10.0 kWac
Modules	2 Strings x 15 In series	Operating voltage	200-800 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.01
Pmpp	9.20 kWp		
U mpp	473 V		
I mpp	19 A		
Total PV power		Total inverter power	
Nominal (STC)	10 kWp	Total power	10 kWac
Total	30 modules	Nb. of inverters	1 Unit
Module area	51.9 m²	Pnom ratio	1.01

Array losses

Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	3.0 %	Module temperature acco	ording to irradiance	Global array res.	401 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
LID - Light Induced Deg	radation	Module Quality Loss		Module mismatch los	sses
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP
Strings Mismatch loss		Module average deg	radation		
Loss Fraction	0.1 %	Year no	1		
		Loss factor	0.4 %/year		
		Mismatch due to degra	dation		
		Imp RMS dispersion	0.4 %/year		
		Vmp RMS dispersion	0.4 %/year		
IAM loss factor					

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

Γ	0°	30°	50°	60°	70°	75°	80°	85°	90°
	1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

14/05/21

PVsyst Licensed to

Page 3/8

14/05/21

PVsyst Licensed to

Page 4/8

Variant: 10MR

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

Detailed User's needs

Daily household consume Su	ers, Seasor Immer (J	nal modulati un-Aug)	ion, averaç	ge = 2.3 kW				
Number Power Use Energy								
		w	Hour/day	Wh/day				
Lamps (LED or fluo)	6	10W/lamp	4.0	240				
TV / PC / Mobile	1	75W/app	3.0	225				
Domestic appliances	1	200W/app	3.0	600				
Fridge / Deep-freeze	1		24	799				
Stand-by consumers			24.0	144				
Total daily energy				2008Wh/da				

Autumn (Sep-Nov)						
	Number	Number Power Use				
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/d		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: 10MR

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

Variant: 10MR

PVsyst V7.1.1 Simulation date: 07/04/21 10:55 with v7.1.1

14/05/21

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 14 Variant: 5N Building system System power: 3850 Wp R15+17 - Palestine, State Of

Author

Variant: 5N

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

		Desias			
		Projec	t summary —		
Geographical Site		Situation		Project settings	
R15+17		Latitude	32.19 °N	Albedo	0.20
Palestine, State Of		Longitude	35.29 °E		
		Altitude	499 m		
		Time zone	UTC+2		
Meteo data					
Rûjavb					
Meteonorm 7.3 (2006	-2011), Sat=100% - Sy	nthetic			
		System	n summary —		
Grid-Connected S Simulation for year no	ystem	Building syster	n		
PV Field Orientation	on	Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household cor	sumers
Tilt/Azimuth	28 / 0 °			Seasonal modulatio	n

			Average	2.3 kWh/Da
System information				
PV Array		Inverters		
Nb. of modules	10 units	Nb. of units		1 Unit
Pnom total	3850 Wp	Pnom total		5.00 kWac
		Pnom ratio		0.770

Results summary						
Produced Energy	7.01 MWh/year	Specific production	1822 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	82.97 % 51.39 %	
		Table of co	ontents			
Project and results sum General parameters, P Near shading definition	mary / Array Characteristics, - Iso-shadings diagram	System losses				2 3 4

14/05/21

Detailed User's needs

Main results

Loss diagram ____ Special graphs __

PVsyst Licensed to

Page 2/8

5

6

7

8

28/0°

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters

Project: System 14 Variant: 5N

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs

JA Solar

Daily household consumers Seasonal modulation Average 2.3 kWh/Day Horizon Free Horizon

PV module Manufacturer JAM72-S09-385-PR Model (Original PVsyst database) 385 Wp Unit Nom. Power Number of PV modules 10 units Nominal (STC) 3850 Wp 2 Strings x 5 In series Modules At operating cond. (50°C) 3494 Wp Pmpp 181 V U mpp 19 A I mpp Total PV power Nominal (STC) 4 kWp Total 10 modules Module area 19.7 m²

PV Array Characteristics Inverter Manufacturer Model Ingecon Sun 5TL M (Original PVsyst database) Unit Nom. Power 5.00 kWac 2 * MPPT 50% 1 units Number of inverters 5.0 kWac Total power 125-750 V Operating voltage Pnom ratio (DC:AC) 0.77 Total inverter power 5 kWac Total power Nb. of inverters 1 Unit Pnom ratio 0.77

Array losses

Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	3.0 %	Module temperature accord	ding to irradiance	Global array res.	157 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m²K/m/s		
LID - Light Induced Deg	radation	Module Quality Loss		Module mismatch loss	es
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP
Strings Mismatch loss		Module average degra	dation		
Loss Fraction	0.1 %	Year no	1		
		Loss factor	0.4 %/year		
		Mismatch due to degrada	tion		
		Imp RMS dispersion	0.4 %/year		
		Vmp RMS dispersion	0.4 %/year		
IAM loss factor					

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

ſ	0°	30°	50°	60°	70°	75°	80°	85°	90°
[1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

14/05/21

PVsyst Licensed to

Page 3/8

Ingeteam

14/05/21

PVsyst Licensed to

Page 4/8

Variant: 5N

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)						
Number Power Use Energy						
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	4.0	240		
TV / PC / Mobile	1	75W/app	3.0	225		
Domestic appliances	1	200W/app	3.0	600		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2008Wh/da		

Autumn (Sep-Nov)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/d

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

Variant: 5N

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

Variant: 5N

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

14/05/21

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 15 Variant: New simulation variant No 3D scene defined, no shadings System power: 6.00 kWp R18 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

		— Project s	ummary ——			
Geographical Site R18 Palestine, State Of Meteo data Rūjayb		Situation Latitude Longitude Attitude Time zone	32.19 °N 35.29 °E 510 m UTC+2	Project settings Albedo	0.20	
Meteonorm 7.3 (2006-201	1), Sat=100% - Syn	thetic				
		System s	ummary ——			
Grid-Connected Syste	em	No 3D scene defined, no shadings				
PV Field Orientation Fixed plane Tilt/Azimuth	28 / 0 °	Near Shadings No Shadings		User's needs Unlimited load (grid)		
System information PV Array Nb. of modules Pnom total		15 units 6.00 kWp	Inverters Nb. of units Pnom total Pnom ratio	1	1 Unit 5.00 kWac .200	
		Results s	ummary ——			
Produced Energy	10.55 MWh/year	Specific production	1758 kWh/kWp/year	Perf. Ratio PR	80.07 %	
		Table of a	contents			
Project and results summary General parameters, PV Array Characteristics, System losses Main results						2 3 4

Loss diagram ____ Special graphs __

14/05/21

PVsyst Licensed to

5

6

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Project: System 15

Variant: New simulation variant

General parameters

No 3D scene defined, no shadings

Models used

User's needs

Unlimited load (grid)

Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate Horizon Free Horizon

Module Quality Loss

-0.8 %

Loss Fraction

Near Shadings No Shadings

Grid-Connected System

28/0°

PV Field Orientation

PV Array Characteristics

PV module		Inverter	
Manufacturer	Trina Solar	Manufacturer	ABB
Model	TSM-DEG15MC-20-(II)-400-Bifacial	Model	UNO-DM-5.0-TL-PLUS
(Original PVsyst data	base)	(Original PVsyst databa	ase)
Unit Nom. Power	400 Wp	Unit Nom. Power	5.00 kWac
Number of PV modules	15 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	6.00 kWp	Total power	5.0 kWac
Modules	3 Strings x 5 In series	Operating voltage	90-580 V
At operating cond. (50°	C)	Pnom ratio (DC:AC)	1.20
Pmpp	5.48 kWp		
U mpp	185 V		
I mpp	30 A		
Total PV power		Total inverter power	
Nominal (STC)	6 kWp	Total power	5 kWac
Total	15 modules	Nb. of inverters	1 Unit
Module area	30.8 m ²	Pnom ratio	1.20
Cell area	26.1 m²		

Array losses

104 mΩ

0.1 %

1.5 % at STC

 Thermal Loss factor

 Module temperature according to irradiance

 Uc (const)
 20.0 W/m²K

 Uv (wind)
 0.0 W/m²K/m/s

DC wiring losses

Global array res. Loss Fraction

Module mismatch losses

Strings Mismatch loss Loss Fraction

Loss Fraction 2.0 % at MPP

IAM loss factor

Incidence effect (IAM): Fresnel AR coating, n(glass)=1.526, n(AR)=1.290

	0°	30°	50°	60°	70°	75°	80°	85°	90°
Γ	1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_Grid PR kWh/m² kWh/m² °C kWh/m² kWh/m² MWh MWh ratio January 89.9 38.41 8.14 129.2 127.1 0.698 0.678 0.874 February 104.1 46.44 9.45 135.4 133.0 0.716 0.696 0.856 154.7 63.04 13.37 181.6 178.3 0.924 0.823 0.897 March April 184.3 71.51 17.01 193.4 189.5 0.960 0.932 0.803 228.2 70.13 21.21 218.0 213.1 1.057 0.785 1.027 May June 239.7 59.41 24.13 217.3 211.9 1.042 1.012 0.776 244.0 58 79 26.28 226.3 220.8 1.076 1.045 0.769 July 224.7 56.60 25.93 228.1 223.2 1.077 1.046 0.764 August 206.1 0.963 0.756 182.1 40.34 23.64 202.2 0.935 September October 144.3 44.91 21.01 184.1 180.9 0.902 0.876 0.794 102.9 34.28 145.7 0.761 0.833 November 14.54 147.8 0.739 December 84.7 32.81 10.22 128.4 126.3 0.686 0.667 0.866 1983.5 616.68 17.96 2195.6 2152.1 10.861 0.801 10.549 Year

Legends

GlobHor	Global horizontal irradiation
DiffHor	Horizontal diffuse irradiation
T_Amb	Ambient Temperature
GlobInc	Global incident in coll. plane
GlobEff	Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array E_Grid Energy injected into grid PR

Performance Ratio

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

14/05/21

PVsyst Licensed to

Page 5/6

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:56 with v7.1.1

14/05/21

PVsyst Licensed to

Page 6/6

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 16 Variant: 5JJ Building system System power: 4560 Wp R19 - Palestine, State Of

Author

Variant: 5JJ

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

	Proiec	t summarv —			
Geographical Site	Situation	,	Project setting	s	
R19	Latitude	32.19 °N	Albedo	0.20	
Palestine, State Of	Longitude	35.29 °E			
	Altitude	523 m			
	Time zone	UTC+2			
Meteo data Rūjayb					
Meteonorm 7.3 (2006-2011), Sat=100% - Synthetic					
	•				

		Syste	em summary –		
Grid-Connected S Simulation for year no	ystem	Building syst	em		
PV Field Orientation Fixed plane Tilt/Azimuth	28 / 0 °	Near Shading Linear shadings	IS	User's needs Unlimited load (grid)	
System informatio	n		Inverters		
Nb. of modules		12 units	Nb. of units	1 Unit	
Pnom total		4560 Wp	Pnom total	5.00 kWac	
			Pnom ratio	0.912	

			•	
Produced Energy	8.35 MWh/year	Specific production	1831 kWh/kWp/year Perf. Ratio PR	83.37 %

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	4
Main results	5
Loss diagram	6
Special graphs	7

14/05/21

PVsyst Licensed to

Page 2/7

Variant: 5JJ

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

Model

Modules

Pmpp U mpp

I mpp

Total

General parameters Grid-Connected System Building system **PV Field Orientation** Horizon Orientation Models used Free Horizon Fixed plane Transposition Perez Tilt/Azimuth 28/0° Diffuse Perez, Meteonorm Circumsolar separate Near Shadings User's needs Linear shadings Unlimited load (grid) **PV Array Characteristics** PV module Inverter Manufacturer Philadelphia Solar Manufacturer Sungrow PS-M72-380 Model SG5KTL-D (Original PVsyst database) (Custom parameters definition) Unit Nom. Power 380 Wp Unit Nom. Power 5.00 kWac 2 * MPPT 50% 1 units Number of PV modules 12 units Number of inverters 4560 Wp Nominal (STC) Total power 5.0 kWac 125-560 V 2 Strings x 6 In series Operating voltage At operating cond. (50°C) Pnom ratio (DC:AC) 0.91 4125 Wp 215 V 19 A Total PV power Total inverter power 5 kWp Nominal (STC) Total power 5 kWac 12 modules Nb. of inverters 1 Unit Module area 23.4 m² 0.91 Pnom ratio Cell area 20.9 m² Array losses Array Soiling Losses Thermal Loss factor DC wiring losses Loss Fraction 30% Module temperature according to irradiance Global array res. 187 mO 29.0 W/m²K Loss Fraction 1.5 % at STC Uc (const) Uv (wind) 0.0 W/m²K/m/s LID - Light Induced Degradation Module Quality Loss Module mismatch losses Loss Fraction 2.0 % at MPP Loss Fraction 2.0 % Loss Fraction -0.8 % Strings Mismatch loss Module average degradation Loss Fraction 0.1 % Year no 1 Loss factor 0.4 %/year Mismatch due to degradation Imp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

0.4 %/year

Vmp RMS dispersion

14/05/21

14/05/21

PVsyst Licensed to

Page 4/7

Variant: 5JJ

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_Grid PR kWh/m² kWh/m² °C kWh/m² kWh/m² MWh MWh ratio January 89.9 38.41 8.14 129.2 123.3 0.535 0.522 0.887 February 104.1 46.44 9.45 135.4 129.1 0.555 0.542 0.879 154.7 63.04 13.37 181.6 173.0 0.728 0.859 0.711 March April 184.3 71.51 17.01 193.4 183.8 0.759 0.742 0.841 228.2 70.13 21.21 218.0 206.7 0.836 0.817 0.822 May June 239.7 59.41 24.13 217.3 205.5 0.821 0.802 0.809 244.0 58 79 26.28 226.3 214.2 0.847 0.827 0.802 July 224.7 56.60 25.93 228.1 216.5 0.855 0.836 0.803 August 0.779 182.1 40.34 23.64 206.1 196.1 0.761 0.810 September October 144.3 44.91 21.01 184.1 175.5 0.711 0.695 0.828 102.9 34.28 0.592 0.858 November 14.54 147.8 141.3 0.578 84.7 32.81 10.22 128.4 122.5 0.526 0.514 0.878 December 1983.5 17.96 2195.6 2087.6 8.544 0.834 616.68 8.347 Year

Legends

GlobHor	Global horizontal irradiation
DiffHor	Horizontal diffuse irradiation
T_Amb	Ambient Temperature
GlobInc	Global incident in coll. plane
GlobEff	Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array E_Grid Energy injected into grid PR

Performance Ratio

14/05/21

Variant: 5JJ

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

14/05/21

PVsyst Licensed to

Page 6/7

14/05/21

PVsyst Licensed to

Page 7/7

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 17 Variant: New simulation variant Building system System power: 5.28 kWp R20 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

		Project	t summary —		
Geographical Site		Situation		Project settings	
R20		Latitude	32.19 °N	Albedo	0.20
Palestine, State Of		Longitude	35.30 °E		
		Altitude	524 m		
		Time zone	UTC+2		
Meteo data					
Rūjayb					
Meteonorm 7.3 (2006-2	2011), Sat=100% -	Synthetic			
		System	n summarv —		
		5	,		
Simulation for year no	1	Building system	1		
PV Field Orientatio	n	Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household cor	nsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulation	n
				Average	2.3 kWh/Day
System information	n				
PV Array			Inverters		
Nb. of modules		16 units	Nb. of units		1 Unit
Pnom total		5.28 kWp	Pnom total		5.00 kWac
			Pnom ratio		1.056

Results summary							
Produced Energy	9.73 MWh/year	Specific production	1842 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	83.90 % 51.00 %		
	Table of contents						
Project and results sur	nmary					2	
General parameters, PV Array Characteristics, System losses						3	
Near shading definition - Iso-shadings diagram						4	
Detailed User's needs							

14/05/21

Main results

Loss diagram

Special graphs

PVsyst Licensed to

Page 2/8

5

6

7

8

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

PV Field Orientation

Project: System 17

Variant: New simulation variant

General parameters

Building system

Models used Transposition

Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs

Daily household consumers Seasonal modulation Average

Horizon

Free Horizon

2.3 kWh/Day

	PV Array 0	Characteristics
PV module		Inverter
Manufacturer	YIGLI solar	Manufacture
Model	YLM 72 CELL 40mm SERIES	Model
(Custom parameters def	inition)	(Custom
Unit Nom. Power	330 Wp	Unit Nom. Po
Number of PV modules	16 units	Number of in
Nominal (STC)	5.28 kWp	Total power
Modules	2 Strings x 8 In series	Operating vo
At operating cond. (50°C)		Max. power (
Pmpp	4810 Wp	Pnom ratio (I
U mpp	274 V	
I mpp	18 A	
Total PV power		Total inver
Nominal (STC)	5 kWp	Total power
Total	16 modules	Nb. of inverte
Module area	31.0 m ²	Pnom ratio
Cell area	28.0 m²	

28/0°

Inverter	
Manufacturer	Huawei Technologies
Model	SUN2000L-5KTL
(Custom parameters defi	nition)
Unit Nom. Power	5.00 kWac
Number of inverters	2 * MPPT 50% 1 units
Total power	5.0 kWac
Operating voltage	90-500 V
Max. power (=>40°C)	5.50 kWac
Pnom ratio (DC:AC)	1.06
Total inverter power	
Total power	5 kWac
Nb. of inverters	1 Unit
Pnom ratio	1.06

Array losses

Array Soiling	J Losses		Thermal Lo	ss factor		DC wiring	g losses	
Loss Fraction	3	.0 %	Module temp	erature accordin	g to irradiance	Global arra	iy res.	260 mΩ
			Uc (const)	2	29.0 W/m²K	Loss Fract	ion	1.5 % at STC
			Uv (wind)		0.0 W/m ² K/m/s			
LID - Light In	duced Degra	dation	Module Qu	ality Loss		Module n	nismatch loss	es
Loss Fraction	2	.0 %	Loss Fraction	1	-1.3 %	Loss Fract	ion	2.0 % at MPP
Strings Mism	natch loss		Module ave	erage degrada	ation			
Loss Fraction	0	.1 %	Year no		1			
			Loss factor		0.4 %/year			
			Mismatch du	le to degradation	on			
			Imp RMS dis	persion	0.4 %/year			
			Vmp RMS dis	spersion	0.4 %/year			
IAM loss fact	tor							
Incidence effect	t (IAM): Fresnel	AR coating, n(gl	ass)=1.526, n(A	R)=1.290				
0°	30°	50°	60°	70°	75°	80°	85°	۵۵°

IA

ſ	0°	30°	50°	60°	70°	75°	80°	85°	90°
[1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

14/05/21

PVsyst Licensed to

Page 3/8

14/05/21

PVsyst Licensed to

Page 4/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)						
	Number	Power	Use	Energy		
		w	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	4.0	240		
TV / PC / Mobile	1	75W/app	3.0	225		
Domestic appliances	1	200W/app	3.0	600		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2008Wh/da		

Autumn (Sep-Nov)							
	Number	Energy					
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy	Total daily energy 2343Wh/da						

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Page 5/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:57 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 18 Variant: K5,JD Building system System power: 4920 Wp R22+23 - Palestine, State Of

Author

Variant: K5,JD

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

	Projec	t summary —			
Geographical Site	Situation		Project settings	5	
R22+23	Latitude	32.19 °N	Albedo	0.20	
Palestine, State Of	Longitude	35.29 °E			
	Altitude	524 m			
	Time zone	UTC+2			
Meteo data					
Rūjayb					
Meteonorm 7.3 (2006-2011), Sat=1009	6 - Synthetic				
	System	n summary —			
Grid Connected System	Building system				
Simulation for year no 1	building syster				
PV Field Orientation	Near Shadings		liser's needs		

PV Field Orientat	tion	Near Shading	s	User's needs	
Fixed plane		Linear shadings		Daily household co	onsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulati	on
				Average	2.3 kWh/Day
System informat	ion				
PV Array			Inverters		
Nb. of modules		12 units	Nb. of units		1 Unit
Pnom total		4920 Wp	Pnom total		5.00 kWac
			Pnom ratio		0 984

Results summary						
Produced Energy	8.82 MWh/year	Specific production	1793 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	81.65 % 50.62 %	
		Table of c	ontents			
Project and results sun	nmary					2
General parameters, P	General parameters, PV Array Characteristics, System losses					
Near shading definition - Iso-shadings diagram						5
Detailed User's needs						6

14/05/21

Main results

Loss diagram

Special graphs

PVsyst Licensed to

Page 2/9

7

8

9

Variant: K5.JD

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters

Building system

User's needs

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate Horizon Free Horizon

Near Shadings

28/0°

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV module Manufacturer Model (Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) Modules At operating cond. (50°C) Pmpp U mpp I mpp Total PV power Nominal (STC) Total Module area Cell area

Canadian Solar Inc. CS3W-410P HE 410 Wp 12 units 4920 Wp 2 Strings x 6 In series 4465 Wp 213 V 21 A 5 kWp 12 modules 26.5 m² 23.8 m²

PV Array Characteristics Inverter Manufacturer Model SG5KTL-D (Custom parameters definition) Unit Nom. Power 5.00 kWac 2 * MPPT 50% 1 units Number of inverters 5.0 kWac Total power Operating voltage 125-560 V 0.98 Pnom ratio (DC:AC) Total inverter power 5 kWac Total power Nb. of inverters 1 Unit Pnom ratio 0.98

Array losses DC wiring losses Array Soiling Losses Thermal Loss factor 3.0 % 168 mΩ Module temperature according to irradiance Global array res. Uc (const) 29.0 W/m²K Loss Fraction 1.5 % at STC Uv (wind) 0.0 W/m²K/m/s LID - Light Induced Degradation Module Quality Loss Module mismatch losses 2.0 % at MPP 2.0 % Loss Fraction -0.3 % Loss Fraction Strings Mismatch loss Module average degradation 0.1 % Year no 1 Loss factor 0.4 %/year Mismatch due to degradation 0.4 %/year Imp RMS dispersion Vmp RMS dispersion 0.4 %/year

IAM loss factor

Loss Fraction

Loss Fraction

Loss Fraction

Incidence effect (IAM): User defined profile

10°	20°	30°	40°	50°	60°	70°	80°	90°
1.000	1.000	1.000	0.990	0.990	0.970	0.920	0.760	0.000

14/05/21

PVsyst Licensed to

Page 3/9

Sungrow

6	

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

System losses

Project: System 18 Variant: K5,JD

Unavailability of the system Time fraction 2.0 % 7.3 days, 3 periods

14/05/21

PVsyst Licensed to

Page 4/9

14/05/21

PVsyst Licensed to

Page 5/9

Variant: K5,JD

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

Detailed User's needs

Daily household consum S	ers, Seasor ummer (J	nal modulat u n-Aug)	ion, averaç	ge = 2.3 kW
	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	4.0	240
TV / PC / Mobile	1	75W/app	3.0	225
Domestic appliances	1	200W/app	3.0	600
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2008Wh/d

Autumn (Sep-Nov)

	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 6/9

Variant: K5,JD

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

14/05/21

Variant: K5,JD

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

from grid from solar

14/05/21

PVsyst Licensed to

Page 8/9

14/05/21

PVsyst Licensed to

Page 9/9

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 19 Variant: New simulation variant Building system System power: 4920 Wp R22+23 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

	Projec	ct summary —		
Geographical Site	Situation		Project setting	IS
R22+23	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.29 °E		
	Altitude	524 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=1009	6 - Synthetic			
	Syster	m summary —		
Grid-Connected System Simulation for year no 1	Building syste	m		
PV Field Orientation	Near Shadings		User's needs	
Fixed plane	Linear shadings		Unlimited load (g	rid)
Tilt/Azimuth 28 / 0 °	0		()	
System information				
PV Array		Inverters		
Nb. of modules	12 units	Nb. of units		1 Unit
Pnom total	4920 Wp	Pnom total		5.00 kWac
		Pnom ratio		0.984
	Result	ts summary —		

Produced Energy	9.00 MWh/year	Specific production	1828 kWh/kWp/year	Perf. Ratio PR	83.27 %

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	4
Main results	5
Loss diagram	6
Special graphs	7

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

General parameters Grid-Connected System Building system **PV Field Orientation** Horizon Orientation Models used Free Horizon Fixed plane Transposition Perez Tilt/Azimuth 28/0° Diffuse Perez, Meteonorm Circumsolar separate Near Shadings User's needs Linear shadings Unlimited load (grid) **PV Array Characteristics** PV module Inverter Manufacturer Canadian Solar Inc. Manufacturer Sungrow Model CS3W-410P HE Model SG5KTL-D (Original PVsyst database) (Custom parameters definition) 410 Wp Unit Nom. Power Unit Nom. Power 5.00 kWac 2 * MPPT 50% 1 units Number of PV modules 12 units Number of inverters 4920 Wp Nominal (STC) Total power 5.0 kWac 125-560 V Modules 2 Strings x 6 In series Operating voltage At operating cond. (50°C) Pnom ratio (DC:AC) 0.98 4465 Wp Pmpp U mpp 213 V I mpp 21 A Total PV power Total inverter power 5 kWp Nominal (STC) Total power 5 kWac Total 12 modules Nb. of inverters 1 Unit Module area 26.5 m² 0.98 Pnom ratio Cell area 23.8 m² Array losses Array Soiling Losses Thermal Loss factor DC wiring losses Loss Fraction 30% Module temperature according to irradiance Global array res. 168 mO 29.0 W/m²K Loss Fraction 1.5 % at STC Uc (const) Uv (wind) 0.0 W/m²K/m/s

LID - Light Induced Degradation Module Quality Loss Module mismatch losses Loss Fraction 2.0 % at MPP 2.0 % Loss Fraction -0.3 % Module average degradation 0.1 % Year no 1 Loss factor 0.4 %/year Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year

IAM loss factor

Loss Fraction

Loss Fraction

Strings Mismatch loss

Incidence effect (IAM): User defined profile

1,000 1,000 1,000 0,990 0,990 0,970 0,920 0,760 0,00	Γ	10°	20°	30°	40°	50°	60°	70°	80°	90°
	Γ	1.000	1.000	1.000	0.990	0.990	0.970	0.920	0.760	0.000

14/05/21

PVsyst Licensed to

Page 3/7

14/05/21

PVsyst Licensed to

Page 4/7

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

	I_AMD	Globinc	GlobEff	EArray	E_Grid	PR
kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
38.41	8.14	129.2	123.7	0.574	0.560	0.881
46.44	9.45	135.4	129.5	0.596	0.582	0.874
63.04	13.37	181.6	173.7	0.783	0.765	0.856
71.51	17.01	193.4	184.7	0.818	0.799	0.840
70.13	21.21	218.0	207.8	0.902	0.882	0.822
59.41	24.13	217.3	206.7	0.887	0.866	0.810
58.79	26.28	226.3	215.3	0.916	0.894	0.803
56.60	25.93	228.1	217.5	0.924	0.903	0.804
40.34	23.64	206.1	197.1	0.841	0.822	0.811
44.91	21.01	184.1	176.3	0.767	0.749	0.827
34.28	14.54	147.8	141.7	0.636	0.621	0.854
32.81	10.22	128.4	122.9	0.564	0.551	0.873
616.68	17.96	2195.7	2097.1	9.207	8.996	0.833
_	32.81 616.68	32.81 10.22 616.68 17.96	32.81 10.22 128.4 616.68 17.96 2195.7	32.81 10.22 128.4 122.9 616.68 17.96 2195.7 2097.1	32.81 10.22 128.4 122.9 0.564 616.68 17.96 2195.7 2097.1 9.207	32.81 10.22 128.4 122.9 0.564 0.551 616.68 17.96 2195.7 2097.1 9.207 8.996

Legends

GlobHor	Global horizontal irradiation
DiffHor	Horizontal diffuse irradiation
T_Amb	Ambient Temperature
GlobInc	Global incident in coll. plane
GlobEff	Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array E_Grid Energy injected into grid PR

Performance Ratio

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

14/05/21

PVsyst Licensed to

Page 6/7

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 10:58 with v7.1.1

14/05/21

PVsyst Licensed to

Page 7/7

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 20 Variant: 40EKH Building system System power: 35.7 kWp R24 - Palestine, State Of

Author

Γ

Project: System 20

Variant: 40EKH

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

	Projec	t summary —		
Geographical Site	Situation		Project settings	
R24	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.30 °E		
	Altitude	535 m		
	Time zone	UTC+2		
Meteo data Rūjayb Meteonorm 7.3 (2006-2011), Sat=100% - :	Synthetic			
	System	n summary —		
Grid-Connected System Simulation for year no 1	Building system	n		
PV Field Orientation	Near Shadings		User's needs	
Fixed plane	Linear shadings		Daily household consun	ners
Tilt/Azimuth 28 / 0 °			Seasonal modulation	
			Average	2.3 kWh/Day
System information				

Grid-Connected Syst Simulation for year no 1	tem	Building system				
PV Field Orientation Fixed plane		Near Shadings Linear shadings		User's needs Daily household consumers		
Tilt/Azimuth	28/0°			Seasonal modulation Average	on 2.3 kWh	/Day
System information						
PV Array			Inverters			
Nb. of modules		87 units	Nb. of units		2 units	
Pnom total		35.7 kWp	Pnom total		40.0 kWac	
			Pnom ratio		0.892	
		Results s	ummary —			
Produced Energy	65.24 MWh/year	Specific production	1829 kWh/kWp/year	Perf. Ratio PR	83.30 %	
				Solar Fraction SF	50.85 %	
		Table of o	contents			
Project and results summ	nary					2
General parameters, PV	Array Characteristics	System losses				3
Near shading definition -	Iso-shadings diagran	n				5
Detailed User's needs	5 5					6
Main results						7

14/05/21

Loss diagram _ Special graphs

PVsyst Licensed to

Page 2/9

8 9

Variant: 40EKH

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System

PV Field Orientation

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs

PV Array Characteristics

Horizon Free Horizon

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV module	
Manufacturer	Canadian Solar Inc.
Model	CS1U - 410MS
(Original PVsyst database)	
Unit Nom. Power	410 Wp
Number of PV modules	87 units
Nominal (STC)	35.7 kWp
Array #1 - PV Array	
Number of PV modules	42 units
Nominal (STC)	17.22 kWp
Modules	3 Strings x 14 In series
At operating cond. (50°C)	
Pmpp	15.65 kWp
U mpp	564 V
I mpp	28 A
Array #2 - Sub-array #2	
Number of PV modules	45 units
Nominal (STC)	18.45 kWp
Modules	3 Strings x 15 In series
At operating cond. (50°C)	
Pmpp	16.77 kWp
U mpp	605 V
I mpp	28 A
Total PV power	
Nominal (STC)	36 kWp

28/0°

Inverter	
Manufacturer	Kaco new energy
Model	Blueplanet 20.0 TL3
(Original PVsyst database)	
Unit Nom. Power	20.0 kWac
Number of inverters	2 units
Total power	40.0 kWac
Number of inverters	2 * MPPT 50% 1 units
Total power	20.0 kWac
Operating voltage	200-800 V
Pnom ratio (DC:AC)	0.86
Number of inverters	2 * MDDT 50% 1 unite
Total power	20.0 kWac
Operating voltage	200-800 V
Pnom ratio (DC:AC)	0.92
Total inverter newer	
Total power	40 kWac

ac 2 units 0.89

		Array	losses ——		
Array Soiling Losses	3	Thermal Loss factor		LID - Light Induced Degradation	
Loss Fraction	3.0 %	Module temperature	according to irradiance	Loss Fraction	2.0 %
		Uc (const)	29.0 W/m ² K		
		Uv (wind)	0.0 W/m ² K/m/s		
Module Quality Loss		Module mismatc	h losses	Strings Mismatch	loss
Loss Fraction	-0.3 %	Loss Fraction	2.0 % at MPP	Loss Fraction	0.1 %

87 modules

179 m²

173 m²

Nb. of inverters

Pnom ratio

14/05/21

Total

Module area Cell area

PVsyst Licensed to

Page 3/9

			Pro	ject: System 2 Variant: 40EKH	:0			
syst V7.1.1 ulation date: 4/21 10:59 v7.1.1								
				Array losses				
Module avera	ge degrad	lation						
Year no		1						
Loss factor		0.4 %/year						
Mismatch due t	to degradat	tion						
Imp RMS disper	sion	0.4 %/year						
Vmp RMS dispe	rsion	0.4 %/year						
IAM loss facto Incidence effect	or (IAM): User	defined profile						
10°	20°	30°	40°	50°	60°	70°	80°	90°
1.000	1.000	1.000	0.990	0.990	0.970	0.920	0.760	0.000
			D	C wiring losses				
Global wiring res	sistance	10 mΩ	2	o wing losses				
ana Erection		1 5 % at STC						

339 mΩ

1.5 % at STC

Array #2 - Sub-array #2

Global array res.

Loss Fraction

364 mΩ

1.5 % at STC

14/05/21

Array #1 - PV Array

Global array res.

Loss Fraction

PVsyst Licensed to

Page 4/9

14/05/21

PVsyst Licensed to

Page 5/9

Variant: 40EKH

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh/c					
3	Number	Power	Use	Energy	
		w	Hour/day	Wh/day	
Lamps (LED or fluo)	6	10W/lamp	4.0	240	
TV / PC / Mobile	1	75W/app	3.0	225	
Domestic appliances	1	200W/app	3.0	600	
Fridge / Deep-freeze	1		24	799	
Stand-by consumers			24.0	144	
Total daily energy				2008Wh/da	

Autumn (Sep-Nov)						
	Number	Power	Use	Energy		
		W	Hour/day	Wh/day		
Lamps (LED or fluo)	6	10W/lamp	5.0	300		
TV / PC / Mobile	1	75W/app	4.0	300		
Domestic appliances	1	200W/app	4.0	800		
Fridge / Deep-freeze	1		24	799		
Stand-by consumers			24.0	144		
Total daily energy				2343Wh/da		

Winter (Dec-Feb)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/day

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 6/9

Variant: 40EKH

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

14/05/21

Variant: 40EKH

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

14/05/21

PVsyst Licensed to

Page 9/9

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 21 Variant: 5AD Building system System power: 6.56 kWp R25 - Palestine, State Of

Author

Variant: 5AD

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

	Projec	ct summary —		
Geographical Site	Situation		Project setting	s
R25	Latitude	32.19 °N	Albedo	0.20
Palestine, State Of	Longitude	35.30 °E		
	Altitude	558 m		
	Time zone	UTC+2		
Meteo data				
Rūjayb				
Meteonorm 7.3 (2006-2011), Sat=1009	6 - Synthetic			
	Svetov	n euronanu —		

Grid-Connected Simulation for year	no 1	Building syst	em			
PV Field Orienta Fixed plane	ation	Near Shading	IS	User's needs Daily household consumers		
Tilt/Azimuth	28 / 0 °			Seasonal modulation		
				Average	2.3 kWh/Day	
System informa	tion					
PV Array			Inverters			
Nb. of modules		16 units	Nb. of units		1 Unit	
Pnom total		6.56 kWp	Pnom total		6.00 kWac	
			Pnom ratio		1.093	

		Kesuits su	ininary —			
Produce	d Energy 11.91 MWh/year	Specific production	1816 kWh/kWp/year	Perf. Ratio PR	82.69 %	
				Solar Fraction SF	51.70 %	
		Table of co	ontente			
			ontento			
Project a	ind results summary					2
General parameters, PV Array Characteristics, System losses						3
Near sha	ading definition - Iso-shadings diagram					4

14/05/21

Detailed User's needs

Main results

Loss diagram ____ Special graphs __

PVsyst Licensed to

Page 2/8

5

6

7

8

Variant: 5AD

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

General parameters

Building system

User's needs

Canadian Solar Inc.

410 Wp

16 units

6.56 kWp

5.95 kWp

283 V

21 A

35.3 m²

31.7 m²

7 kWp

16 modules

CS3W-410P HE

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Daily household consumers

Horizon Free Horizon

Near Shadings Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

Seasonal modulation Average 2.3 kWh/Day

PV module Manufacturer Model (Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) 2 Strings x 8 In series Modules At operating cond. (50°C) Pmpp U mpp I mpp Total PV power Nominal (STC) Total Module area Cell area

PV Array C	Characteristics —	
	Inverter	
Solar Inc.	Manufacturer	ABB
410P HE	Model	UNO-DM-6.0-TL-PLUS-US (240V)
	(Original PVsyst dat	abase)
D	Unit Nom. Power	6.00 kWac
its	Number of inverters	2 * MPPT 50% 1 units
Vp	Total power	6.0 kWac
series	Operating voltage	90-580 V
	Pnom ratio (DC:AC)	1.09
Vp		
	Total inverter power	
Vp	Total power	6 kWac
odules	Nb. of inverters	1 Unit
	Pnom ratio	1.09

Array losses Array Soiling Losses Thermal Loss factor DC wiring losses 3.0 % 224 mΩ Loss Fraction Module temperature according to irradiance Global array res. Uc (const) 29.0 W/m²K Loss Fraction 1.5 % at STC 0.0 W/m²K/m/s Uv (wind) LID - Light Induced Degradation Module Quality Loss Module mismatch losses -0.3 % 2.0 % at MPP Loss Fraction 2.0 % Loss Fraction Loss Fraction Strings Mismatch loss Module average degradation Loss Fraction 0.1 % Year no 1 0.4 %/year Loss factor Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year IAM loss factor Incidence effect (IAM): User defined profile

	 ,		
			_

10°	20°	30°	40°	50°	60°	70°	80°	90°
1.000	1.000	1.000	0.990	0.990	0.970	0.920	0.760	0.000

14/05/21

PVsyst Licensed to

Page 3/8

14/05/21

PVsyst Licensed to

Page 4/8

Variant: 5AD

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)							
Number Power Use							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/d			

Autumn (Sep-Nov)							
	Number	Number Power Use					
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2343Wh/d			

Winter (Dec-Feb)

	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: 5AD

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

14/05/21

Variant: 5AD

PVsyst V7.1.1 Simulation date: 07/04/21 10:59 with v7.1.1

14/05/21

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 22 Variant: New simulation variant Building system System power: 4800 Wp Rūjayb 27 - Palestine, State Of

Author

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

		Project s	ummary ——		
Geographical Site		Situation		Project settings	
Rūjayb 27		Latitude	32.20 °N	Albedo	0.20
Palestine, State Of		Longitude	35.30 °E		
		Altitude	470 m		
		Time zone	UTC+2		
Meteo data					
Rūjayb 27					
Meteonorm 7.3 (1990-20	04), Sat=100% - Synti	hetic			
		System s	ummary		
Crid Connected Such		Building system	annary		
Simulation for year no 1	tem	Building system			
PV Field Orientation		Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household consu	umers
Tilt/Azimuth	28 / 0 °			Seasonal modulation	
				Average	2.3 kWh/Day
System information					
PV Array			Inverters		
Nb. of modules		12 units	Nb. of units		1 Unit
Pnom total	4	4800 Wp	Pnom total	4	960 W
			Pnom ratio	0.	968
		Results s	ummary —		
Produced Energy	8 81 MWb/year	Specific production	1835 kWb/kWp/vear	Derf Patio DP	83 30 %
r roddood Ellelgy	o.or www.year	opeone production	1000 KWI/KWP/year	Solar Fraction SF	51.07 %

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	4
Detailed User's needs	5
Main results	6
Loss diagram	
Special graphs	
eposia grapho	

14/05/21

PVsyst Licensed to

Page 2/8

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Project: System 22

Variant: New simulation variant

General parameters

Building system

Models used Transposition Perez Diffuse Perez, Meteonorm

Horizon Free Horizon

Near Shadings Linear shadings

Grid-Connected System

28/0°

PV Field Orientation

Circumsolar separate
User's needs
Daily household consumers

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV Array Characteristics

PV module		Inverter	
Manufacturer	Trina Solar	Manufacturer	Huawei Technologies
Model	TSM-DEG15MC-20-(II)-400-Bifacial	Model	SUN2000L-4.95KTL-JP
(Original PVsyst datab	base)	(Original PVsyst databa	ise)
Unit Nom. Power	400 Wp	Unit Nom. Power	4.95 kWac
Number of PV modules	12 units	Number of inverters	2 * MPPT 50% 1 units
Nominal (STC)	4800 Wp	Total power	5.0 kWac
Modules	2 Strings x 6 In series	Operating voltage	90-500 V
At operating cond. (50°C	3)	Pnom ratio (DC:AC)	0.97
Pmpp	4381 Wp		
U mpp	222 V		
I mpp	20 A		
Total PV power		Total inverter power	
Nominal (STC)	5 kWp	Total power	5 kWac
Total	12 modules	Nb. of inverters	1 Unit
Module area	24.6 m²	Pnom ratio	0.97
Cell area	20.9 m ²		

Array losses Array Soiling Losses Thermal Loss factor DC wiring losses Loss Fraction 3.0 % Module temperature according to irradiance 187 mΩ Global array res. Uc (const) 29.0 W/m²K Loss Fraction 1.5 % at STC Uv (wind) 0.0 W/m²K/m/s LID - Light Induced Degradation Module Quality Loss Module mismatch losses Loss Fraction -0.8 % 2.0 % at MPP 2.0 % Loss Fraction Loss Fraction Strings Mismatch loss Module average degradation Loss Fraction 0.1 % Year no 1 0.4 %/year Loss factor Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel AR coating, n(glass)=1.526, n(AR)=1.290

[0°	30°	50°	60°	70°	75°	80°	85°	90°
[1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

14/05/21

PVsyst Licensed to

Page 3/8

7122 december 60 4 9h Sun height ["] 15h 45 81 16h 30 17h 15 the -120 Azimgth [°] -90 -60 -30 30 60 90 120

14/05/21

PVsyst Licensed to

Page 4/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWh Summer (Jun-Aug)							
Number Power Use Energy							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/da			

Autumn (Sep-Nov)							
	Number	Power	Use	Energy			
		W	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	5.0	300			
TV / PC / Mobile	1	75W/app	4.0	300			
Domestic appliances	1	200W/app	4.0	800			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2343Wh/da			

Winter (Dec-Feb)

	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/da

14/05/21

PVsyst Licensed to

Page 5/8

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

14/05/21

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

Variant: New simulation variant

PVsyst V7.1.1 Simulation date: 07/04/21 11:00 with v7.1.1

14/05/21

PVsyst Licensed to

Page 8/8

Version 7.1.1

PVsyst - Simulation report

Grid-Connected System

Project: System 23 Variant: K5 Building system System power: 4760 Wp R29 - Palestine, State Of

Author

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

	- Project s	ummary —		
Geographical Site R29 Palestine, State Of	Situation Latitude Longitude Altitude	32.19 °N 35.29 °E 516 m	Project settings Albedo	0.20
	Time zone	UTC+2		
Meteo data Rūjayb Meteonorm 7.3 (2006-2011), Sat=100% - Synthel	tic			
	Sustama			
Grid-Connected System Simulation for year no 1	Building system	uninary —		

PV Field Orientation		Near Shadings		User's needs	
Fixed plane		Linear shadings		Daily household co	nsumers
Tilt/Azimuth	28 / 0 °			Seasonal modulation	on
				Average	2.3 kWh/Day
System information					
PV Array			Inverters		
Nb. of modules		14 units	Nb. of units		1 Unit
Pnom total		4760 Wp	Pnom total		5.00 kWac
			Pnom ratio		0.952

Results summary								
Produced Energy	8.47 MWh/year	Specific production	1780 kWh/kWp/year	Perf. Ratio PR Solar Fraction SF	81.05 % 50.54 %			
		Table of co	ontents					
Project and results sun	imary					2		

General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	5
Detailed User's needs	6
Main results	7
Loss diagram	
Special graphs	
Cost of the system	10

14/05/21

PVsyst Licensed to

Page 2/10

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings

Linear shadings

Grid-Connected System PV Field Orientation

28/0°

General parameters

Building system

 Models used

 Transposition
 Perez

 Diffuse
 Perez, Meteonorm

 Circumsolar
 separate

User's needs

Canadian Solar Inc.

340 Wp

4760 Wp

4270 Wp 237 V 18 A

5 kWp

27 2 m²

24.6 m²

14 modules

14 units

CS6U-340M

Daily household consumers Seasonal modulation Average 2.3 kWh/Day

PV Array Characteristics

Inverter

Model

Manufacturer

Total power

Total power

Pnom ratio

Nb. of inverters

Unit Nom. Power

Number of inverters

Manufacturer Model (Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp I mpp
Model (Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp
(Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp I mpp
Unit Nom. Power Number of PV modules Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp I mpp
Number of PV modules Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp
Nominal (STC) Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp
Modules 2 At operating cond. (50°C) Pmpp U mpp I mpp
At operating cond. (50°C) Pmpp U mpp I mpp
Pmpp U mpp I mpp
U mpp I mpp
I mpp
Total PV power
Nominal (STC)
Total
Module area
Cell area

Strings x 7 In series Operating voltage Pnom ratio (DC:AC)

Total inverter power

(Custom parameters definition)

Horizon

Free Horizon

5 kWac 1 Unit 0.95

Sungrow

SG5KTL-D

5.00 kWac

5.0 kWac

2 * MPPT 50% 1 units

125-560 V 0.95

Array losses Array Soiling Losses Thermal Loss factor DC wiring losses 3.0 % 222 mΩ Loss Fraction Module temperature according to irradiance Global array res. Uc (const) 29.0 W/m²K Loss Fraction 1.5 % at STC 0.0 W/m²K/m/s Uv (wind) LID - Light Induced Degradation Module Quality Loss Module mismatch losses 2.0 % at MPP Loss Fraction 2.0 % Loss Fraction -0.4 % Loss Fraction Strings Mismatch loss Module average degradation Loss Fraction 0.1 % Year no 1 0.4 %/year Loss factor Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year IAM loss factor Incidence effect (IAM): User defined profile 10° 20° 30° 40° 50° 60° 70° 80° 90°

14/05/21

0.998

0.998

0.995

0.992

PVsyst Licensed to

0.986

0.970

0.917

0.763

Page 3/10

0.000

PVsyst V7.1

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

System losses

Unavailability of the system Time fraction 2.0 % 7.3 days, 3 periods

14/05/21

PVsyst Licensed to

Page 4/10

14/05/21

PVsyst Licensed to

Page 5/10

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 2.3 kWl Summer (Jun-Aug)							
Number Power Use Energy							
		w	Hour/day	Wh/day			
Lamps (LED or fluo)	6	10W/lamp	4.0	240			
TV / PC / Mobile	1	75W/app	3.0	225			
Domestic appliances	1	200W/app	3.0	600			
Fridge / Deep-freeze	1		24	799			
Stand-by consumers			24.0	144			
Total daily energy				2008Wh/d			

Autumn (Sep-Nov)

	Number	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	5.0	300
TV / PC / Mobile	1	75W/app	4.0	300
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2343Wh/d

Winter (Dec-Feb)

	Number	Power	Use	Energy
		w	Hour/day	Wh/day
Lamps (LED or fluo)	6	10W/lamp	6.0	360
TV / PC / Mobile	1	75W/app	6.0	450
Domestic appliances	1	200W/app	4.0	800
Fridge / Deep-freeze	1		24	799
Stand-by consumers			24.0	144
Total daily energy				2553Wh/da

Spring (Mar-May)

	Number	Power	Use	Energy	
		W	Hour/day	Wh/day	
Lamps (LED or fluo)	6	10W/lamp	5.0	300	
TV / PC / Mobile	1	75W/app	4.0	300	
Domestic appliances	1	200W/app	4.0	800	
Fridge / Deep-freeze	1		24	799	
Stand-by consumers			24.0	144	
Total daily energy				2343Wh/da	

14/05/21

PVsyst Licensed to

Page 6/10

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

Main results										
Sustam D	roduction									
System Production Produced Energy 8.47 MWb/year				Spec	ific productio	n		1780 kW	h/kWp/year	
Produced Energy 0.47 MWW/year			ni your	Performance Ratio PR				81.05 %		
				Solar Fraction SE				50.54 %		
Economic	evaluation							_		
Investment	t Yearly cost			LCOE						
Global	5'000	.00 USD	Annuities		0	00 USD/yr	J USD/yr Energy cost		0.02 USD/kWh	
Specific	ecific 1.05 USD/Wp Running Costs		0	.00 USD/yr	JSD/yr					
			Pay	back period	Unprolita	Die				
Nor	Normalized productions (per installed kWp) Performance Ratio PR									
10					n 1.2	E				
-	Lc: Collection Loss (F	V-array losses)	0.93 kWh/	kWp/day	. 1.1	PR:	Performance Rat	io (Yf / Yr): 0.81	1	-
<u></u> 8 –	Ls: System Loss (inv	verter,)	0.21 kWh/	kWp/day	1.0	Ē				-
Ap/dx	TT: Produced userul e	mergy (inverter o	utput) 4.00 KV/II	kvepiday	2.0		_			
A APA					3.0 3					
Å L					2 0.7 2 0.6					
alou [
1 P2 4					- 15 0.4					
					0.3					
2 ² 2					0.2					
					0.1					
Jan	Feb Mar Aor Ma	u Jun Jul	Aug Sep 0	L L L	0.0	Jan Feb 1	Mar Apr Ma	Jun Jul	Aug Sep O	t Nov Dec
				Balances	and main r	esults				
	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m ²	kWh/m ²	°C	kWh/m ²	kWh/m ²	MWh	MWh	MWh	MWh	MWh
January	89.9	38.41	8.14	129.2	123.4	0.554	0.079	0.036	0.506	0.043
February	104.1	46.44	9.45	135.4	129.3	0.575	0.071	0.033	0.529	0.038
March	154.7	63.04	13.37	181.6	173.4	0.754	0.072	0.038	0.698	0.034
April	184.3	71.51	17.01	193.4	184.4	0.786	0.070	0.038	0.730	0.032
May	228.2	70.13	21.21	218.0	207.4	0.866	0.072	0.041	0.805	0.032
June	239.7	59.41	24.13	217.3	206.3	0.850	0.060	0.033	0.797	0.027
July	244.0	58.79	26.28	226.3	214.9	0.876	0.062	0.031	0.742	0.031
August	224.7	56.60	25.93	228.1	217.1	0.884	0.062	0.034	0.830	0.028
September	182.1	40.34	23.64	206.1	196.7	0.805	0.070	0.037	0.749	0.033
October	144.3	44.91	21.01	184.1	175.9	0.735	0.072	0.038	0.681	0.035
November	102.9	34.28	14.54	147.8	141.4	0.612	0.070	0.033	0.535	0.038
December	84.7	32.81	10.22	128.4	122.6	0.545	0.079	0.033	0.445	0.046
Year	1983.5	616.68	17.96	2195.6	2093.0	8.843	0.841	0.425	8.046	0.416
Logondo										
GlobHor	Global borizontal	irradiation			EArr	av Effec	tive energy a	t the output	of the array	
DiffHor	Horizontal diffuse irradiation			E II	ser Eper	av supplied t	n the user	or the array		
T Amb	Ambient Temperature				E S	olar Energ	av from the s	un		
Globinc	Global incident in coll_plane				E_0	rid Ener	av injected in	to arid		
GlobFff	Effective Global corr for IAM and shadings				E_C	arid Ener	av from the o	rid		
	Ellective Global, corr. for IAM and shadings						a,			

14/05/21

Variant: K5

PVsyst V7.1.1 Simulation date: 07/04/21 11:02 with v7.1.1

from grid from solar

14/05/21

PVsyst Licensed to

Page 8/10

14/05/21

PVsyst Licensed to

Page 9/10